Abstract

We investigate the resonances of aperture antennas from the visible to the terahertz regime, with comparison to comprehensive simulations. Simple piecewise analytic behavior is found for the wavelength scaling over the entire spectrum, with a linear regime through the visible and near-IR. This theory will serve as a useful and simple design tool for applications including biosensors, nonlinear plasmonics and surface enhanced spectroscopies.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical resonances of bowtie slot antennas and their geometry and material dependence

Hongcang Guo, Todd P. Meyrath, Thomas Zentgraf, Na Liu, Liwei Fu, Heinz Schweizer, and Harald Giessen
Opt. Express 16(11) 7756-7766 (2008)

Reflection of Cylindrical Surface Waves

Reuven Gordon
Opt. Express 17(21) 18621-18629 (2009)

Tuning plasmonic resonances of an annular aperture in metal plate

Barmak Heshmat, Dan Li, Thomas E. Darcie, and Reuven Gordon
Opt. Express 19(7) 5912-5923 (2011)

References

  • View by:
  • |
  • |
  • |

  1. A. Kumar and H. D. Hristov, Microwave Cavity Antennas (Academic, 1989).
  2. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
    [Crossref] [PubMed]
  3. P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photon. 1(3), 438–483 (2009).
    [Crossref]
  4. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
    [Crossref] [PubMed]
  5. L. Novotny and N. Van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
    [Crossref]
  6. P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
    [Crossref] [PubMed]
  7. P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett. 101(11), 116805 (2008).
    [Crossref] [PubMed]
  8. G. W. Bryant, F. J. García de Abajo, and J. Aizpurua, “Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett. 8(2), 631–636 (2008).
    [Crossref] [PubMed]
  9. H. Guo, T. P. Meyrath, T. Zentgraf, N. Liu, L. Fu, H. Schweizer, and H. Giessen, “Optical resonances of bowtie slot antennas and their geometry and material dependence,” Opt. Express 16(11), 7756–7766 (2008).
    [Crossref] [PubMed]
  10. Y. Alaverdyan, B. Sepúlveda, L. Eurenius, E. Olsson, and M. Käll, “Optical antennas based on coupled nanoholes in thin metal films,” Nat. Phys. 3(12), 884–889 (2007).
    [Crossref]
  11. P. Biagioni, J.-S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012).
    [Crossref] [PubMed]
  12. F. J. García-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
    [Crossref]
  13. L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
    [Crossref] [PubMed]
  14. E.-S. Kwak, T.-D. Onuta, D. Amarie, R. Potyrailo, B. Stein, S. C. Jacobson, W. L. Schaich, and B. Dragnea, “Optical trapping with integrated near-field apertures,” J. Phys. Chem. B 108(36), 13607–13612 (2004).
    [Crossref]
  15. M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced Back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
    [Crossref]
  16. M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
    [Crossref]
  17. C. Chen, M. L. Juan, Y. Li, G. Maes, G. Borghs, P. Van Dorpe, and R. Quidant, “Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity,” Nano Lett. 12(1), 125–132 (2012).
    [Crossref] [PubMed]
  18. A. Kotnala and R. Gordon, “Quantification of high-efficiency trapping of nanoparticles in a double nanohole optical tweezer,” Nano Lett. 14(2), 853–856 (2014).
    [Crossref] [PubMed]
  19. M. Airola, Y. Liu, and S. Blair, “Second-harmonic generation from an array of sub-wavelength metal Apertures,” J. Opt. A, Pure Appl. Opt. 7(2), S118–S123 (2005).
    [Crossref]
  20. A. Lesuffleur, L. K. S. Kumar, and R. Gordon, “Enhanced second harmonic generation from nanoscale double-hole arrays in a gold film,” Appl. Phys. Lett. 88(26), 261104 (2006).
    [Crossref]
  21. T. Xu, X. Jiao, G. P. Zhang, and S. Blair, “Second-harmonic emission from sub-wavelength apertures: Effects of aperture symmetry and lattice arrangement,” Opt. Express 15(21), 13894–13906 (2007).
    [Crossref] [PubMed]
  22. T. Xu, X. Jiao, and S. Blair, “Third-harmonic generation from arrays of sub-wavelength metal apertures,” Opt. Express 17(26), 23582–23588 (2009).
    [Crossref] [PubMed]
  23. B. L. Wang, R. Wang, R. J. Liu, X. H. Lu, J. Zhao, and Z. Y. Li, “Origin of shape resonance in second-harmonic generation from metallic nanohole arrays,” Sci. Rep. 3, 2358 (2013).
    [PubMed]
  24. A. Salomon, M. Zielinski, R. Kolkowski, J. Zyss, and Y. Prior, “Size and shape resonances in second harmonic generation from silver nanocavities,” J. Phys. Chem. C 117(43), 22377–22382 (2013).
    [Crossref]
  25. T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Höök, D. S. Sutherland, and M. Käll, “Plasmonic sensing characteristics of single nanometric holes,” Nano Lett. 5(11), 2335–2339 (2005).
    [Crossref] [PubMed]
  26. A. Dahlin, M. Zäch, T. Rindzevicius, M. Käll, D. S. Sutherland, and F. Höök, “Localized surface plasmon resonance sensing of lipid-membrane-mediated biorecognition events,” J. Am. Chem. Soc. 127(14), 5043–5048 (2005).
    [Crossref] [PubMed]
  27. K. A. Tetz, L. Pang, and Y. Fainman, “High-resolution surface plasmon resonance sensor based on linewidth-optimized nanohole array transmittance,” Opt. Lett. 31(10), 1528–1530 (2006).
    [Crossref] [PubMed]
  28. M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
    [Crossref] [PubMed]
  29. K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
    [Crossref] [PubMed]
  30. A. G. Brolo, E. Arctander, R. Gordon, B. Leathem, and K. L. Kavanagh, “Nanohole-enhanced raman scattering,” Nano Lett. 4(10), 2015–2018 (2004).
    [Crossref]
  31. Q. Yu, P. Guan, D. Qin, G. Golden, and P. M. Wallace, “Inverted size-dependence of surface-enhanced Raman scattering on gold nanohole and nanodisk arrays,” Nano Lett. 8(7), 1923–1928 (2008).
    [Crossref] [PubMed]
  32. D. Gérard, J. Wenger, N. Bonod, E. Popov, H. Rigneault, F. Mahdavi, S. Blair, J. Dintinger, and T. W. Ebbesen, “Nanoaperture-enhanced fluorescence: Towards higher detection rates with plasmonic metals,” Phys. Rev. B 77(4), 045413 (2008).
    [Crossref]
  33. F. J. García-Vidal, E. Moreno, J. A. Porto, and L. Martín-Moreno, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett. 95(10), 103901 (2005).
    [Crossref] [PubMed]
  34. J. R. Suckling, A. P. Hibbins, M. J. Lockyear, T. W. Preist, J. R. Sambles, and C. R. Lawrence, “Finite conductance governs the resonance transmission of thin metal slits at microwave frequencies,” Phys. Rev. Lett. 92(14), 147401 (2004).
    [Crossref] [PubMed]
  35. F. J. García-Vidal, L. Martín-Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, “Transmission of light through a single rectangular hole in a real metal,” Phys. Rev. B 74(15), 153411 (2006).
    [Crossref]
  36. A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239(1-3), 61–66 (2004).
    [Crossref]
  37. J.-H. Choe, J. H. Kang, D. S. Kim, and Q. H. Park, “Slot antenna as a bound charge oscillator,” Opt. Express 20(6), 6521–6526 (2012).
    [Crossref] [PubMed]
  38. R. Gordon and A. Brolo, “Increased cut-off wavelength for a subwavelength hole in a real metal,” Opt. Express 13(6), 1933–1938 (2005).
    [Crossref] [PubMed]
  39. R. Gordon, “Light in a subwavelength slit in a metal: propagation and reflection,” Phys. Rev. B 73(15), 153405 (2006).
    [Crossref]
  40. M. S. Tame, K. R. McEnery, S. K. Ozdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9(6), 329–340 (2013).
    [Crossref]
  41. G. Hajisalem, M. S. Nezami, and R. Gordon, “Probing the quantum tunneling limit of plasmonic enhancement by third harmonic generation,” Nano Lett. 14(11), 6651–6654 (2014).
    [Crossref] [PubMed]
  42. D. C. Marinica, A. K. Kazansky, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum plasmonics: Nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer,” Nano Lett. 12(3), 1333–1339 (2012).
    [Crossref] [PubMed]
  43. J. Braun, B. Gompf, G. Kobiela, and M. Dressel, “How holes can obscure the view: suppressed transmission through an ultrathin metal film by a subwavelength hole array,” Phys. Rev. Lett. 103(20), 203901 (2009).
    [Crossref] [PubMed]
  44. N. Bonod, S. Enoch, L. Li, P. Evgeny, and M. Nevière, “Resonant optical transmission through thin metallic films with and without holes,” Opt. Express 11(5), 482–490 (2003).
    [Crossref] [PubMed]
  45. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  46. R. Gordon, L. K. S. Kumar, and A. G. Brolo, “Resonant light transmission through a nanohole in a metal film,” IEEE Trans. NanoTechnol. 5(3), 291–294 (2006).
    [Crossref]

2014 (2)

A. Kotnala and R. Gordon, “Quantification of high-efficiency trapping of nanoparticles in a double nanohole optical tweezer,” Nano Lett. 14(2), 853–856 (2014).
[Crossref] [PubMed]

G. Hajisalem, M. S. Nezami, and R. Gordon, “Probing the quantum tunneling limit of plasmonic enhancement by third harmonic generation,” Nano Lett. 14(11), 6651–6654 (2014).
[Crossref] [PubMed]

2013 (3)

M. S. Tame, K. R. McEnery, S. K. Ozdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9(6), 329–340 (2013).
[Crossref]

B. L. Wang, R. Wang, R. J. Liu, X. H. Lu, J. Zhao, and Z. Y. Li, “Origin of shape resonance in second-harmonic generation from metallic nanohole arrays,” Sci. Rep. 3, 2358 (2013).
[PubMed]

A. Salomon, M. Zielinski, R. Kolkowski, J. Zyss, and Y. Prior, “Size and shape resonances in second harmonic generation from silver nanocavities,” J. Phys. Chem. C 117(43), 22377–22382 (2013).
[Crossref]

2012 (4)

P. Biagioni, J.-S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012).
[Crossref] [PubMed]

C. Chen, M. L. Juan, Y. Li, G. Maes, G. Borghs, P. Van Dorpe, and R. Quidant, “Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity,” Nano Lett. 12(1), 125–132 (2012).
[Crossref] [PubMed]

D. C. Marinica, A. K. Kazansky, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum plasmonics: Nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer,” Nano Lett. 12(3), 1333–1339 (2012).
[Crossref] [PubMed]

J.-H. Choe, J. H. Kang, D. S. Kim, and Q. H. Park, “Slot antenna as a bound charge oscillator,” Opt. Express 20(6), 6521–6526 (2012).
[Crossref] [PubMed]

2011 (3)

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

L. Novotny and N. Van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[Crossref]

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[Crossref] [PubMed]

2010 (2)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

F. J. García-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[Crossref]

2009 (4)

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced Back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[Crossref]

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photon. 1(3), 438–483 (2009).
[Crossref]

T. Xu, X. Jiao, and S. Blair, “Third-harmonic generation from arrays of sub-wavelength metal apertures,” Opt. Express 17(26), 23582–23588 (2009).
[Crossref] [PubMed]

J. Braun, B. Gompf, G. Kobiela, and M. Dressel, “How holes can obscure the view: suppressed transmission through an ultrathin metal film by a subwavelength hole array,” Phys. Rev. Lett. 103(20), 203901 (2009).
[Crossref] [PubMed]

2008 (6)

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

Q. Yu, P. Guan, D. Qin, G. Golden, and P. M. Wallace, “Inverted size-dependence of surface-enhanced Raman scattering on gold nanohole and nanodisk arrays,” Nano Lett. 8(7), 1923–1928 (2008).
[Crossref] [PubMed]

D. Gérard, J. Wenger, N. Bonod, E. Popov, H. Rigneault, F. Mahdavi, S. Blair, J. Dintinger, and T. W. Ebbesen, “Nanoaperture-enhanced fluorescence: Towards higher detection rates with plasmonic metals,” Phys. Rev. B 77(4), 045413 (2008).
[Crossref]

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett. 101(11), 116805 (2008).
[Crossref] [PubMed]

G. W. Bryant, F. J. García de Abajo, and J. Aizpurua, “Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett. 8(2), 631–636 (2008).
[Crossref] [PubMed]

H. Guo, T. P. Meyrath, T. Zentgraf, N. Liu, L. Fu, H. Schweizer, and H. Giessen, “Optical resonances of bowtie slot antennas and their geometry and material dependence,” Opt. Express 16(11), 7756–7766 (2008).
[Crossref] [PubMed]

2007 (4)

Y. Alaverdyan, B. Sepúlveda, L. Eurenius, E. Olsson, and M. Käll, “Optical antennas based on coupled nanoholes in thin metal films,” Nat. Phys. 3(12), 884–889 (2007).
[Crossref]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref] [PubMed]

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
[Crossref] [PubMed]

T. Xu, X. Jiao, G. P. Zhang, and S. Blair, “Second-harmonic emission from sub-wavelength apertures: Effects of aperture symmetry and lattice arrangement,” Opt. Express 15(21), 13894–13906 (2007).
[Crossref] [PubMed]

2006 (5)

A. Lesuffleur, L. K. S. Kumar, and R. Gordon, “Enhanced second harmonic generation from nanoscale double-hole arrays in a gold film,” Appl. Phys. Lett. 88(26), 261104 (2006).
[Crossref]

K. A. Tetz, L. Pang, and Y. Fainman, “High-resolution surface plasmon resonance sensor based on linewidth-optimized nanohole array transmittance,” Opt. Lett. 31(10), 1528–1530 (2006).
[Crossref] [PubMed]

R. Gordon, “Light in a subwavelength slit in a metal: propagation and reflection,” Phys. Rev. B 73(15), 153405 (2006).
[Crossref]

R. Gordon, L. K. S. Kumar, and A. G. Brolo, “Resonant light transmission through a nanohole in a metal film,” IEEE Trans. NanoTechnol. 5(3), 291–294 (2006).
[Crossref]

F. J. García-Vidal, L. Martín-Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, “Transmission of light through a single rectangular hole in a real metal,” Phys. Rev. B 74(15), 153411 (2006).
[Crossref]

2005 (6)

R. Gordon and A. Brolo, “Increased cut-off wavelength for a subwavelength hole in a real metal,” Opt. Express 13(6), 1933–1938 (2005).
[Crossref] [PubMed]

F. J. García-Vidal, E. Moreno, J. A. Porto, and L. Martín-Moreno, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett. 95(10), 103901 (2005).
[Crossref] [PubMed]

M. Airola, Y. Liu, and S. Blair, “Second-harmonic generation from an array of sub-wavelength metal Apertures,” J. Opt. A, Pure Appl. Opt. 7(2), S118–S123 (2005).
[Crossref]

T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Höök, D. S. Sutherland, and M. Käll, “Plasmonic sensing characteristics of single nanometric holes,” Nano Lett. 5(11), 2335–2339 (2005).
[Crossref] [PubMed]

A. Dahlin, M. Zäch, T. Rindzevicius, M. Käll, D. S. Sutherland, and F. Höök, “Localized surface plasmon resonance sensing of lipid-membrane-mediated biorecognition events,” J. Am. Chem. Soc. 127(14), 5043–5048 (2005).
[Crossref] [PubMed]

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

2004 (4)

E.-S. Kwak, T.-D. Onuta, D. Amarie, R. Potyrailo, B. Stein, S. C. Jacobson, W. L. Schaich, and B. Dragnea, “Optical trapping with integrated near-field apertures,” J. Phys. Chem. B 108(36), 13607–13612 (2004).
[Crossref]

J. R. Suckling, A. P. Hibbins, M. J. Lockyear, T. W. Preist, J. R. Sambles, and C. R. Lawrence, “Finite conductance governs the resonance transmission of thin metal slits at microwave frequencies,” Phys. Rev. Lett. 92(14), 147401 (2004).
[Crossref] [PubMed]

A. G. Brolo, E. Arctander, R. Gordon, B. Leathem, and K. L. Kavanagh, “Nanohole-enhanced raman scattering,” Nano Lett. 4(10), 2015–2018 (2004).
[Crossref]

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239(1-3), 61–66 (2004).
[Crossref]

2003 (1)

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Airola, M.

M. Airola, Y. Liu, and S. Blair, “Second-harmonic generation from an array of sub-wavelength metal Apertures,” J. Opt. A, Pure Appl. Opt. 7(2), S118–S123 (2005).
[Crossref]

Aizpurua, J.

D. C. Marinica, A. K. Kazansky, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum plasmonics: Nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer,” Nano Lett. 12(3), 1333–1339 (2012).
[Crossref] [PubMed]

G. W. Bryant, F. J. García de Abajo, and J. Aizpurua, “Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett. 8(2), 631–636 (2008).
[Crossref] [PubMed]

Alaverdyan, Y.

Y. Alaverdyan, B. Sepúlveda, L. Eurenius, E. Olsson, and M. Käll, “Optical antennas based on coupled nanoholes in thin metal films,” Nat. Phys. 3(12), 884–889 (2007).
[Crossref]

T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Höök, D. S. Sutherland, and M. Käll, “Plasmonic sensing characteristics of single nanometric holes,” Nano Lett. 5(11), 2335–2339 (2005).
[Crossref] [PubMed]

Amarie, D.

E.-S. Kwak, T.-D. Onuta, D. Amarie, R. Potyrailo, B. Stein, S. C. Jacobson, W. L. Schaich, and B. Dragnea, “Optical trapping with integrated near-field apertures,” J. Phys. Chem. B 108(36), 13607–13612 (2004).
[Crossref]

Anderton, C. R.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

Arctander, E.

A. G. Brolo, E. Arctander, R. Gordon, B. Leathem, and K. L. Kavanagh, “Nanohole-enhanced raman scattering,” Nano Lett. 4(10), 2015–2018 (2004).
[Crossref]

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Bharadwaj, P.

Biagioni, P.

P. Biagioni, J.-S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012).
[Crossref] [PubMed]

Blair, S.

T. Xu, X. Jiao, and S. Blair, “Third-harmonic generation from arrays of sub-wavelength metal apertures,” Opt. Express 17(26), 23582–23588 (2009).
[Crossref] [PubMed]

D. Gérard, J. Wenger, N. Bonod, E. Popov, H. Rigneault, F. Mahdavi, S. Blair, J. Dintinger, and T. W. Ebbesen, “Nanoaperture-enhanced fluorescence: Towards higher detection rates with plasmonic metals,” Phys. Rev. B 77(4), 045413 (2008).
[Crossref]

T. Xu, X. Jiao, G. P. Zhang, and S. Blair, “Second-harmonic emission from sub-wavelength apertures: Effects of aperture symmetry and lattice arrangement,” Opt. Express 15(21), 13894–13906 (2007).
[Crossref] [PubMed]

M. Airola, Y. Liu, and S. Blair, “Second-harmonic generation from an array of sub-wavelength metal Apertures,” J. Opt. A, Pure Appl. Opt. 7(2), S118–S123 (2005).
[Crossref]

Bonod, N.

D. Gérard, J. Wenger, N. Bonod, E. Popov, H. Rigneault, F. Mahdavi, S. Blair, J. Dintinger, and T. W. Ebbesen, “Nanoaperture-enhanced fluorescence: Towards higher detection rates with plasmonic metals,” Phys. Rev. B 77(4), 045413 (2008).
[Crossref]

N. Bonod, S. Enoch, L. Li, P. Evgeny, and M. Nevière, “Resonant optical transmission through thin metallic films with and without holes,” Opt. Express 11(5), 482–490 (2003).
[Crossref] [PubMed]

Borghs, G.

C. Chen, M. L. Juan, Y. Li, G. Maes, G. Borghs, P. Van Dorpe, and R. Quidant, “Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity,” Nano Lett. 12(1), 125–132 (2012).
[Crossref] [PubMed]

Borisov, A. G.

D. C. Marinica, A. K. Kazansky, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum plasmonics: Nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer,” Nano Lett. 12(3), 1333–1339 (2012).
[Crossref] [PubMed]

Braun, J.

J. Braun, B. Gompf, G. Kobiela, and M. Dressel, “How holes can obscure the view: suppressed transmission through an ultrathin metal film by a subwavelength hole array,” Phys. Rev. Lett. 103(20), 203901 (2009).
[Crossref] [PubMed]

Brolo, A.

Brolo, A. G.

R. Gordon, L. K. S. Kumar, and A. G. Brolo, “Resonant light transmission through a nanohole in a metal film,” IEEE Trans. NanoTechnol. 5(3), 291–294 (2006).
[Crossref]

A. G. Brolo, E. Arctander, R. Gordon, B. Leathem, and K. L. Kavanagh, “Nanohole-enhanced raman scattering,” Nano Lett. 4(10), 2015–2018 (2004).
[Crossref]

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Bryant, G. W.

G. W. Bryant, F. J. García de Abajo, and J. Aizpurua, “Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett. 8(2), 631–636 (2008).
[Crossref] [PubMed]

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Chen, C.

C. Chen, M. L. Juan, Y. Li, G. Maes, G. Borghs, P. Van Dorpe, and R. Quidant, “Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity,” Nano Lett. 12(1), 125–132 (2012).
[Crossref] [PubMed]

Cherukulappurath, S.

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett. 101(11), 116805 (2008).
[Crossref] [PubMed]

Choe, J.-H.

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Dahlin, A.

T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Höök, D. S. Sutherland, and M. Käll, “Plasmonic sensing characteristics of single nanometric holes,” Nano Lett. 5(11), 2335–2339 (2005).
[Crossref] [PubMed]

A. Dahlin, M. Zäch, T. Rindzevicius, M. Käll, D. S. Sutherland, and F. Höök, “Localized surface plasmon resonance sensing of lipid-membrane-mediated biorecognition events,” J. Am. Chem. Soc. 127(14), 5043–5048 (2005).
[Crossref] [PubMed]

Degiron, A.

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239(1-3), 61–66 (2004).
[Crossref]

Deutsch, B.

Dintinger, J.

D. Gérard, J. Wenger, N. Bonod, E. Popov, H. Rigneault, F. Mahdavi, S. Blair, J. Dintinger, and T. W. Ebbesen, “Nanoaperture-enhanced fluorescence: Towards higher detection rates with plasmonic metals,” Phys. Rev. B 77(4), 045413 (2008).
[Crossref]

Dragnea, B.

E.-S. Kwak, T.-D. Onuta, D. Amarie, R. Potyrailo, B. Stein, S. C. Jacobson, W. L. Schaich, and B. Dragnea, “Optical trapping with integrated near-field apertures,” J. Phys. Chem. B 108(36), 13607–13612 (2004).
[Crossref]

Dressel, M.

J. Braun, B. Gompf, G. Kobiela, and M. Dressel, “How holes can obscure the view: suppressed transmission through an ultrathin metal film by a subwavelength hole array,” Phys. Rev. Lett. 103(20), 203901 (2009).
[Crossref] [PubMed]

Ebbesen, T. W.

F. J. García-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[Crossref]

D. Gérard, J. Wenger, N. Bonod, E. Popov, H. Rigneault, F. Mahdavi, S. Blair, J. Dintinger, and T. W. Ebbesen, “Nanoaperture-enhanced fluorescence: Towards higher detection rates with plasmonic metals,” Phys. Rev. B 77(4), 045413 (2008).
[Crossref]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref] [PubMed]

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239(1-3), 61–66 (2004).
[Crossref]

Eftekhari, F.

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced Back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[Crossref]

Eisler, H.-J.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

Enoch, S.

Eurenius, L.

Y. Alaverdyan, B. Sepúlveda, L. Eurenius, E. Olsson, and M. Käll, “Optical antennas based on coupled nanoholes in thin metal films,” Nat. Phys. 3(12), 884–889 (2007).
[Crossref]

Evgeny, P.

Fainman, Y.

Fu, L.

García de Abajo, F. J.

G. W. Bryant, F. J. García de Abajo, and J. Aizpurua, “Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett. 8(2), 631–636 (2008).
[Crossref] [PubMed]

García-Vidal, F. J.

F. J. García-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[Crossref]

F. J. García-Vidal, L. Martín-Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, “Transmission of light through a single rectangular hole in a real metal,” Phys. Rev. B 74(15), 153411 (2006).
[Crossref]

F. J. García-Vidal, E. Moreno, J. A. Porto, and L. Martín-Moreno, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett. 95(10), 103901 (2005).
[Crossref] [PubMed]

Genet, C.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref] [PubMed]

Gérard, D.

D. Gérard, J. Wenger, N. Bonod, E. Popov, H. Rigneault, F. Mahdavi, S. Blair, J. Dintinger, and T. W. Ebbesen, “Nanoaperture-enhanced fluorescence: Towards higher detection rates with plasmonic metals,” Phys. Rev. B 77(4), 045413 (2008).
[Crossref]

Ghenuche, P.

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett. 101(11), 116805 (2008).
[Crossref] [PubMed]

Giessen, H.

Golden, G.

Q. Yu, P. Guan, D. Qin, G. Golden, and P. M. Wallace, “Inverted size-dependence of surface-enhanced Raman scattering on gold nanohole and nanodisk arrays,” Nano Lett. 8(7), 1923–1928 (2008).
[Crossref] [PubMed]

Gompf, B.

J. Braun, B. Gompf, G. Kobiela, and M. Dressel, “How holes can obscure the view: suppressed transmission through an ultrathin metal film by a subwavelength hole array,” Phys. Rev. Lett. 103(20), 203901 (2009).
[Crossref] [PubMed]

Gordon, R.

G. Hajisalem, M. S. Nezami, and R. Gordon, “Probing the quantum tunneling limit of plasmonic enhancement by third harmonic generation,” Nano Lett. 14(11), 6651–6654 (2014).
[Crossref] [PubMed]

A. Kotnala and R. Gordon, “Quantification of high-efficiency trapping of nanoparticles in a double nanohole optical tweezer,” Nano Lett. 14(2), 853–856 (2014).
[Crossref] [PubMed]

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced Back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[Crossref]

A. Lesuffleur, L. K. S. Kumar, and R. Gordon, “Enhanced second harmonic generation from nanoscale double-hole arrays in a gold film,” Appl. Phys. Lett. 88(26), 261104 (2006).
[Crossref]

R. Gordon, “Light in a subwavelength slit in a metal: propagation and reflection,” Phys. Rev. B 73(15), 153405 (2006).
[Crossref]

F. J. García-Vidal, L. Martín-Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, “Transmission of light through a single rectangular hole in a real metal,” Phys. Rev. B 74(15), 153411 (2006).
[Crossref]

R. Gordon, L. K. S. Kumar, and A. G. Brolo, “Resonant light transmission through a nanohole in a metal film,” IEEE Trans. NanoTechnol. 5(3), 291–294 (2006).
[Crossref]

R. Gordon and A. Brolo, “Increased cut-off wavelength for a subwavelength hole in a real metal,” Opt. Express 13(6), 1933–1938 (2005).
[Crossref] [PubMed]

A. G. Brolo, E. Arctander, R. Gordon, B. Leathem, and K. L. Kavanagh, “Nanohole-enhanced raman scattering,” Nano Lett. 4(10), 2015–2018 (2004).
[Crossref]

Gray, S. K.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

Guan, P.

Q. Yu, P. Guan, D. Qin, G. Golden, and P. M. Wallace, “Inverted size-dependence of surface-enhanced Raman scattering on gold nanohole and nanodisk arrays,” Nano Lett. 8(7), 1923–1928 (2008).
[Crossref] [PubMed]

Guo, H.

Hafner, J. H.

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[Crossref] [PubMed]

Hajisalem, G.

G. Hajisalem, M. S. Nezami, and R. Gordon, “Probing the quantum tunneling limit of plasmonic enhancement by third harmonic generation,” Nano Lett. 14(11), 6651–6654 (2014).
[Crossref] [PubMed]

Hecht, B.

P. Biagioni, J.-S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012).
[Crossref] [PubMed]

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

Hibbins, A. P.

J. R. Suckling, A. P. Hibbins, M. J. Lockyear, T. W. Preist, J. R. Sambles, and C. R. Lawrence, “Finite conductance governs the resonance transmission of thin metal slits at microwave frequencies,” Phys. Rev. Lett. 92(14), 147401 (2004).
[Crossref] [PubMed]

Höök, F.

A. Dahlin, M. Zäch, T. Rindzevicius, M. Käll, D. S. Sutherland, and F. Höök, “Localized surface plasmon resonance sensing of lipid-membrane-mediated biorecognition events,” J. Am. Chem. Soc. 127(14), 5043–5048 (2005).
[Crossref] [PubMed]

T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Höök, D. S. Sutherland, and M. Käll, “Plasmonic sensing characteristics of single nanometric holes,” Nano Lett. 5(11), 2335–2339 (2005).
[Crossref] [PubMed]

Huang, J.-S.

P. Biagioni, J.-S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012).
[Crossref] [PubMed]

Jacobson, S. C.

E.-S. Kwak, T.-D. Onuta, D. Amarie, R. Potyrailo, B. Stein, S. C. Jacobson, W. L. Schaich, and B. Dragnea, “Optical trapping with integrated near-field apertures,” J. Phys. Chem. B 108(36), 13607–13612 (2004).
[Crossref]

Jiao, X.

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Juan, M. L.

C. Chen, M. L. Juan, Y. Li, G. Maes, G. Borghs, P. Van Dorpe, and R. Quidant, “Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity,” Nano Lett. 12(1), 125–132 (2012).
[Crossref] [PubMed]

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced Back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[Crossref]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Käll, M.

Y. Alaverdyan, B. Sepúlveda, L. Eurenius, E. Olsson, and M. Käll, “Optical antennas based on coupled nanoholes in thin metal films,” Nat. Phys. 3(12), 884–889 (2007).
[Crossref]

T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Höök, D. S. Sutherland, and M. Käll, “Plasmonic sensing characteristics of single nanometric holes,” Nano Lett. 5(11), 2335–2339 (2005).
[Crossref] [PubMed]

A. Dahlin, M. Zäch, T. Rindzevicius, M. Käll, D. S. Sutherland, and F. Höök, “Localized surface plasmon resonance sensing of lipid-membrane-mediated biorecognition events,” J. Am. Chem. Soc. 127(14), 5043–5048 (2005).
[Crossref] [PubMed]

Kang, J. H.

Kavanagh, K. L.

A. G. Brolo, E. Arctander, R. Gordon, B. Leathem, and K. L. Kavanagh, “Nanohole-enhanced raman scattering,” Nano Lett. 4(10), 2015–2018 (2004).
[Crossref]

Kazansky, A. K.

D. C. Marinica, A. K. Kazansky, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum plasmonics: Nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer,” Nano Lett. 12(3), 1333–1339 (2012).
[Crossref] [PubMed]

Kim, D. S.

Kim, M. S.

M. S. Tame, K. R. McEnery, S. K. Ozdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9(6), 329–340 (2013).
[Crossref]

Kobiela, G.

J. Braun, B. Gompf, G. Kobiela, and M. Dressel, “How holes can obscure the view: suppressed transmission through an ultrathin metal film by a subwavelength hole array,” Phys. Rev. Lett. 103(20), 203901 (2009).
[Crossref] [PubMed]

Kolkowski, R.

A. Salomon, M. Zielinski, R. Kolkowski, J. Zyss, and Y. Prior, “Size and shape resonances in second harmonic generation from silver nanocavities,” J. Phys. Chem. C 117(43), 22377–22382 (2013).
[Crossref]

Kotnala, A.

A. Kotnala and R. Gordon, “Quantification of high-efficiency trapping of nanoparticles in a double nanohole optical tweezer,” Nano Lett. 14(2), 853–856 (2014).
[Crossref] [PubMed]

Kuipers, L.

F. J. García-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[Crossref]

Kumar, L. K. S.

A. Lesuffleur, L. K. S. Kumar, and R. Gordon, “Enhanced second harmonic generation from nanoscale double-hole arrays in a gold film,” Appl. Phys. Lett. 88(26), 261104 (2006).
[Crossref]

F. J. García-Vidal, L. Martín-Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, “Transmission of light through a single rectangular hole in a real metal,” Phys. Rev. B 74(15), 153411 (2006).
[Crossref]

R. Gordon, L. K. S. Kumar, and A. G. Brolo, “Resonant light transmission through a nanohole in a metal film,” IEEE Trans. NanoTechnol. 5(3), 291–294 (2006).
[Crossref]

Kwak, E.-S.

E.-S. Kwak, T.-D. Onuta, D. Amarie, R. Potyrailo, B. Stein, S. C. Jacobson, W. L. Schaich, and B. Dragnea, “Optical trapping with integrated near-field apertures,” J. Phys. Chem. B 108(36), 13607–13612 (2004).
[Crossref]

Lawrence, C. R.

J. R. Suckling, A. P. Hibbins, M. J. Lockyear, T. W. Preist, J. R. Sambles, and C. R. Lawrence, “Finite conductance governs the resonance transmission of thin metal slits at microwave frequencies,” Phys. Rev. Lett. 92(14), 147401 (2004).
[Crossref] [PubMed]

Leathem, B.

A. G. Brolo, E. Arctander, R. Gordon, B. Leathem, and K. L. Kavanagh, “Nanohole-enhanced raman scattering,” Nano Lett. 4(10), 2015–2018 (2004).
[Crossref]

Lee, J.

M. S. Tame, K. R. McEnery, S. K. Ozdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9(6), 329–340 (2013).
[Crossref]

Lesuffleur, A.

A. Lesuffleur, L. K. S. Kumar, and R. Gordon, “Enhanced second harmonic generation from nanoscale double-hole arrays in a gold film,” Appl. Phys. Lett. 88(26), 261104 (2006).
[Crossref]

Lezec, H. J.

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239(1-3), 61–66 (2004).
[Crossref]

Li, L.

Li, Y.

C. Chen, M. L. Juan, Y. Li, G. Maes, G. Borghs, P. Van Dorpe, and R. Quidant, “Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity,” Nano Lett. 12(1), 125–132 (2012).
[Crossref] [PubMed]

Li, Z. Y.

B. L. Wang, R. Wang, R. J. Liu, X. H. Lu, J. Zhao, and Z. Y. Li, “Origin of shape resonance in second-harmonic generation from metallic nanohole arrays,” Sci. Rep. 3, 2358 (2013).
[PubMed]

Liu, N.

Liu, R. J.

B. L. Wang, R. Wang, R. J. Liu, X. H. Lu, J. Zhao, and Z. Y. Li, “Origin of shape resonance in second-harmonic generation from metallic nanohole arrays,” Sci. Rep. 3, 2358 (2013).
[PubMed]

Liu, Y.

M. Airola, Y. Liu, and S. Blair, “Second-harmonic generation from an array of sub-wavelength metal Apertures,” J. Opt. A, Pure Appl. Opt. 7(2), S118–S123 (2005).
[Crossref]

Lockyear, M. J.

J. R. Suckling, A. P. Hibbins, M. J. Lockyear, T. W. Preist, J. R. Sambles, and C. R. Lawrence, “Finite conductance governs the resonance transmission of thin metal slits at microwave frequencies,” Phys. Rev. Lett. 92(14), 147401 (2004).
[Crossref] [PubMed]

Lu, X. H.

B. L. Wang, R. Wang, R. J. Liu, X. H. Lu, J. Zhao, and Z. Y. Li, “Origin of shape resonance in second-harmonic generation from metallic nanohole arrays,” Sci. Rep. 3, 2358 (2013).
[PubMed]

Maes, G.

C. Chen, M. L. Juan, Y. Li, G. Maes, G. Borghs, P. Van Dorpe, and R. Quidant, “Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity,” Nano Lett. 12(1), 125–132 (2012).
[Crossref] [PubMed]

Mahdavi, F.

D. Gérard, J. Wenger, N. Bonod, E. Popov, H. Rigneault, F. Mahdavi, S. Blair, J. Dintinger, and T. W. Ebbesen, “Nanoaperture-enhanced fluorescence: Towards higher detection rates with plasmonic metals,” Phys. Rev. B 77(4), 045413 (2008).
[Crossref]

Maier, S. A.

M. S. Tame, K. R. McEnery, S. K. Ozdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9(6), 329–340 (2013).
[Crossref]

Maria, J.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

Marinica, D. C.

D. C. Marinica, A. K. Kazansky, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum plasmonics: Nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer,” Nano Lett. 12(3), 1333–1339 (2012).
[Crossref] [PubMed]

Martin, O. J. F.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

Martin-Moreno, L.

F. J. García-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[Crossref]

Martín-Moreno, L.

F. J. García-Vidal, L. Martín-Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, “Transmission of light through a single rectangular hole in a real metal,” Phys. Rev. B 74(15), 153411 (2006).
[Crossref]

F. J. García-Vidal, E. Moreno, J. A. Porto, and L. Martín-Moreno, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett. 95(10), 103901 (2005).
[Crossref] [PubMed]

Mayer, K. M.

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[Crossref] [PubMed]

McEnery, K. R.

M. S. Tame, K. R. McEnery, S. K. Ozdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9(6), 329–340 (2013).
[Crossref]

Meyrath, T. P.

Moreno, E.

F. J. García-Vidal, L. Martín-Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, “Transmission of light through a single rectangular hole in a real metal,” Phys. Rev. B 74(15), 153411 (2006).
[Crossref]

F. J. García-Vidal, E. Moreno, J. A. Porto, and L. Martín-Moreno, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett. 95(10), 103901 (2005).
[Crossref] [PubMed]

Mühlschlegel, P.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

Nevière, M.

Nezami, M. S.

G. Hajisalem, M. S. Nezami, and R. Gordon, “Probing the quantum tunneling limit of plasmonic enhancement by third harmonic generation,” Nano Lett. 14(11), 6651–6654 (2014).
[Crossref] [PubMed]

Nordlander, P.

D. C. Marinica, A. K. Kazansky, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum plasmonics: Nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer,” Nano Lett. 12(3), 1333–1339 (2012).
[Crossref] [PubMed]

Novotny, L.

L. Novotny and N. Van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[Crossref]

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photon. 1(3), 438–483 (2009).
[Crossref]

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
[Crossref] [PubMed]

Nuzzo, R. G.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

Olsson, E.

Y. Alaverdyan, B. Sepúlveda, L. Eurenius, E. Olsson, and M. Käll, “Optical antennas based on coupled nanoholes in thin metal films,” Nat. Phys. 3(12), 884–889 (2007).
[Crossref]

Onuta, T.-D.

E.-S. Kwak, T.-D. Onuta, D. Amarie, R. Potyrailo, B. Stein, S. C. Jacobson, W. L. Schaich, and B. Dragnea, “Optical trapping with integrated near-field apertures,” J. Phys. Chem. B 108(36), 13607–13612 (2004).
[Crossref]

Ozdemir, S. K.

M. S. Tame, K. R. McEnery, S. K. Ozdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9(6), 329–340 (2013).
[Crossref]

Pang, L.

Pang, Y.

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced Back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[Crossref]

Park, Q. H.

Pohl, D. W.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

Popov, E.

D. Gérard, J. Wenger, N. Bonod, E. Popov, H. Rigneault, F. Mahdavi, S. Blair, J. Dintinger, and T. W. Ebbesen, “Nanoaperture-enhanced fluorescence: Towards higher detection rates with plasmonic metals,” Phys. Rev. B 77(4), 045413 (2008).
[Crossref]

Porto, J. A.

F. J. García-Vidal, E. Moreno, J. A. Porto, and L. Martín-Moreno, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett. 95(10), 103901 (2005).
[Crossref] [PubMed]

Potyrailo, R.

E.-S. Kwak, T.-D. Onuta, D. Amarie, R. Potyrailo, B. Stein, S. C. Jacobson, W. L. Schaich, and B. Dragnea, “Optical trapping with integrated near-field apertures,” J. Phys. Chem. B 108(36), 13607–13612 (2004).
[Crossref]

Preist, T. W.

J. R. Suckling, A. P. Hibbins, M. J. Lockyear, T. W. Preist, J. R. Sambles, and C. R. Lawrence, “Finite conductance governs the resonance transmission of thin metal slits at microwave frequencies,” Phys. Rev. Lett. 92(14), 147401 (2004).
[Crossref] [PubMed]

Prior, Y.

A. Salomon, M. Zielinski, R. Kolkowski, J. Zyss, and Y. Prior, “Size and shape resonances in second harmonic generation from silver nanocavities,” J. Phys. Chem. C 117(43), 22377–22382 (2013).
[Crossref]

Qin, D.

Q. Yu, P. Guan, D. Qin, G. Golden, and P. M. Wallace, “Inverted size-dependence of surface-enhanced Raman scattering on gold nanohole and nanodisk arrays,” Nano Lett. 8(7), 1923–1928 (2008).
[Crossref] [PubMed]

Quidant, R.

C. Chen, M. L. Juan, Y. Li, G. Maes, G. Borghs, P. Van Dorpe, and R. Quidant, “Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity,” Nano Lett. 12(1), 125–132 (2012).
[Crossref] [PubMed]

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced Back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[Crossref]

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett. 101(11), 116805 (2008).
[Crossref] [PubMed]

Righini, M.

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

Rigneault, H.

D. Gérard, J. Wenger, N. Bonod, E. Popov, H. Rigneault, F. Mahdavi, S. Blair, J. Dintinger, and T. W. Ebbesen, “Nanoaperture-enhanced fluorescence: Towards higher detection rates with plasmonic metals,” Phys. Rev. B 77(4), 045413 (2008).
[Crossref]

Rindzevicius, T.

T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Höök, D. S. Sutherland, and M. Käll, “Plasmonic sensing characteristics of single nanometric holes,” Nano Lett. 5(11), 2335–2339 (2005).
[Crossref] [PubMed]

A. Dahlin, M. Zäch, T. Rindzevicius, M. Käll, D. S. Sutherland, and F. Höök, “Localized surface plasmon resonance sensing of lipid-membrane-mediated biorecognition events,” J. Am. Chem. Soc. 127(14), 5043–5048 (2005).
[Crossref] [PubMed]

Rogers, J. A.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

Salomon, A.

A. Salomon, M. Zielinski, R. Kolkowski, J. Zyss, and Y. Prior, “Size and shape resonances in second harmonic generation from silver nanocavities,” J. Phys. Chem. C 117(43), 22377–22382 (2013).
[Crossref]

Sambles, J. R.

J. R. Suckling, A. P. Hibbins, M. J. Lockyear, T. W. Preist, J. R. Sambles, and C. R. Lawrence, “Finite conductance governs the resonance transmission of thin metal slits at microwave frequencies,” Phys. Rev. Lett. 92(14), 147401 (2004).
[Crossref] [PubMed]

Schaich, W. L.

E.-S. Kwak, T.-D. Onuta, D. Amarie, R. Potyrailo, B. Stein, S. C. Jacobson, W. L. Schaich, and B. Dragnea, “Optical trapping with integrated near-field apertures,” J. Phys. Chem. B 108(36), 13607–13612 (2004).
[Crossref]

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Schweizer, H.

Sepúlveda, B.

Y. Alaverdyan, B. Sepúlveda, L. Eurenius, E. Olsson, and M. Käll, “Optical antennas based on coupled nanoholes in thin metal films,” Nat. Phys. 3(12), 884–889 (2007).
[Crossref]

Stein, B.

E.-S. Kwak, T.-D. Onuta, D. Amarie, R. Potyrailo, B. Stein, S. C. Jacobson, W. L. Schaich, and B. Dragnea, “Optical trapping with integrated near-field apertures,” J. Phys. Chem. B 108(36), 13607–13612 (2004).
[Crossref]

Stewart, M. E.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

Suckling, J. R.

J. R. Suckling, A. P. Hibbins, M. J. Lockyear, T. W. Preist, J. R. Sambles, and C. R. Lawrence, “Finite conductance governs the resonance transmission of thin metal slits at microwave frequencies,” Phys. Rev. Lett. 92(14), 147401 (2004).
[Crossref] [PubMed]

Sutherland, D. S.

T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Höök, D. S. Sutherland, and M. Käll, “Plasmonic sensing characteristics of single nanometric holes,” Nano Lett. 5(11), 2335–2339 (2005).
[Crossref] [PubMed]

A. Dahlin, M. Zäch, T. Rindzevicius, M. Käll, D. S. Sutherland, and F. Höök, “Localized surface plasmon resonance sensing of lipid-membrane-mediated biorecognition events,” J. Am. Chem. Soc. 127(14), 5043–5048 (2005).
[Crossref] [PubMed]

Tame, M. S.

M. S. Tame, K. R. McEnery, S. K. Ozdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9(6), 329–340 (2013).
[Crossref]

Taminiau, T. H.

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett. 101(11), 116805 (2008).
[Crossref] [PubMed]

Tetz, K. A.

Thompson, L. B.

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

Van Dorpe, P.

C. Chen, M. L. Juan, Y. Li, G. Maes, G. Borghs, P. Van Dorpe, and R. Quidant, “Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity,” Nano Lett. 12(1), 125–132 (2012).
[Crossref] [PubMed]

Van Hulst, N.

L. Novotny and N. Van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[Crossref]

van Hulst, N. F.

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett. 101(11), 116805 (2008).
[Crossref] [PubMed]

Wallace, P. M.

Q. Yu, P. Guan, D. Qin, G. Golden, and P. M. Wallace, “Inverted size-dependence of surface-enhanced Raman scattering on gold nanohole and nanodisk arrays,” Nano Lett. 8(7), 1923–1928 (2008).
[Crossref] [PubMed]

Wang, B. L.

B. L. Wang, R. Wang, R. J. Liu, X. H. Lu, J. Zhao, and Z. Y. Li, “Origin of shape resonance in second-harmonic generation from metallic nanohole arrays,” Sci. Rep. 3, 2358 (2013).
[PubMed]

Wang, R.

B. L. Wang, R. Wang, R. J. Liu, X. H. Lu, J. Zhao, and Z. Y. Li, “Origin of shape resonance in second-harmonic generation from metallic nanohole arrays,” Sci. Rep. 3, 2358 (2013).
[PubMed]

Wenger, J.

D. Gérard, J. Wenger, N. Bonod, E. Popov, H. Rigneault, F. Mahdavi, S. Blair, J. Dintinger, and T. W. Ebbesen, “Nanoaperture-enhanced fluorescence: Towards higher detection rates with plasmonic metals,” Phys. Rev. B 77(4), 045413 (2008).
[Crossref]

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Xu, T.

Yamamoto, N.

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239(1-3), 61–66 (2004).
[Crossref]

Yu, Q.

Q. Yu, P. Guan, D. Qin, G. Golden, and P. M. Wallace, “Inverted size-dependence of surface-enhanced Raman scattering on gold nanohole and nanodisk arrays,” Nano Lett. 8(7), 1923–1928 (2008).
[Crossref] [PubMed]

Zäch, M.

A. Dahlin, M. Zäch, T. Rindzevicius, M. Käll, D. S. Sutherland, and F. Höök, “Localized surface plasmon resonance sensing of lipid-membrane-mediated biorecognition events,” J. Am. Chem. Soc. 127(14), 5043–5048 (2005).
[Crossref] [PubMed]

Zentgraf, T.

Zhang, G. P.

Zhao, J.

B. L. Wang, R. Wang, R. J. Liu, X. H. Lu, J. Zhao, and Z. Y. Li, “Origin of shape resonance in second-harmonic generation from metallic nanohole arrays,” Sci. Rep. 3, 2358 (2013).
[PubMed]

Zielinski, M.

A. Salomon, M. Zielinski, R. Kolkowski, J. Zyss, and Y. Prior, “Size and shape resonances in second harmonic generation from silver nanocavities,” J. Phys. Chem. C 117(43), 22377–22382 (2013).
[Crossref]

Zyss, J.

A. Salomon, M. Zielinski, R. Kolkowski, J. Zyss, and Y. Prior, “Size and shape resonances in second harmonic generation from silver nanocavities,” J. Phys. Chem. C 117(43), 22377–22382 (2013).
[Crossref]

Adv. Opt. Photon. (1)

Appl. Phys. Lett. (1)

A. Lesuffleur, L. K. S. Kumar, and R. Gordon, “Enhanced second harmonic generation from nanoscale double-hole arrays in a gold film,” Appl. Phys. Lett. 88(26), 261104 (2006).
[Crossref]

Chem. Rev. (2)

M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers, and R. G. Nuzzo, “Nanostructured plasmonic sensors,” Chem. Rev. 108(2), 494–521 (2008).
[Crossref] [PubMed]

K. M. Mayer and J. H. Hafner, “Localized surface plasmon resonance sensors,” Chem. Rev. 111(6), 3828–3857 (2011).
[Crossref] [PubMed]

IEEE Trans. NanoTechnol. (1)

R. Gordon, L. K. S. Kumar, and A. G. Brolo, “Resonant light transmission through a nanohole in a metal film,” IEEE Trans. NanoTechnol. 5(3), 291–294 (2006).
[Crossref]

J. Am. Chem. Soc. (1)

A. Dahlin, M. Zäch, T. Rindzevicius, M. Käll, D. S. Sutherland, and F. Höök, “Localized surface plasmon resonance sensing of lipid-membrane-mediated biorecognition events,” J. Am. Chem. Soc. 127(14), 5043–5048 (2005).
[Crossref] [PubMed]

J. Opt. A, Pure Appl. Opt. (1)

M. Airola, Y. Liu, and S. Blair, “Second-harmonic generation from an array of sub-wavelength metal Apertures,” J. Opt. A, Pure Appl. Opt. 7(2), S118–S123 (2005).
[Crossref]

J. Phys. Chem. B (1)

E.-S. Kwak, T.-D. Onuta, D. Amarie, R. Potyrailo, B. Stein, S. C. Jacobson, W. L. Schaich, and B. Dragnea, “Optical trapping with integrated near-field apertures,” J. Phys. Chem. B 108(36), 13607–13612 (2004).
[Crossref]

J. Phys. Chem. C (1)

A. Salomon, M. Zielinski, R. Kolkowski, J. Zyss, and Y. Prior, “Size and shape resonances in second harmonic generation from silver nanocavities,” J. Phys. Chem. C 117(43), 22377–22382 (2013).
[Crossref]

Nano Lett. (8)

T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Höök, D. S. Sutherland, and M. Käll, “Plasmonic sensing characteristics of single nanometric holes,” Nano Lett. 5(11), 2335–2339 (2005).
[Crossref] [PubMed]

A. G. Brolo, E. Arctander, R. Gordon, B. Leathem, and K. L. Kavanagh, “Nanohole-enhanced raman scattering,” Nano Lett. 4(10), 2015–2018 (2004).
[Crossref]

Q. Yu, P. Guan, D. Qin, G. Golden, and P. M. Wallace, “Inverted size-dependence of surface-enhanced Raman scattering on gold nanohole and nanodisk arrays,” Nano Lett. 8(7), 1923–1928 (2008).
[Crossref] [PubMed]

C. Chen, M. L. Juan, Y. Li, G. Maes, G. Borghs, P. Van Dorpe, and R. Quidant, “Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity,” Nano Lett. 12(1), 125–132 (2012).
[Crossref] [PubMed]

A. Kotnala and R. Gordon, “Quantification of high-efficiency trapping of nanoparticles in a double nanohole optical tweezer,” Nano Lett. 14(2), 853–856 (2014).
[Crossref] [PubMed]

G. W. Bryant, F. J. García de Abajo, and J. Aizpurua, “Mapping the plasmon resonances of metallic nanoantennas,” Nano Lett. 8(2), 631–636 (2008).
[Crossref] [PubMed]

G. Hajisalem, M. S. Nezami, and R. Gordon, “Probing the quantum tunneling limit of plasmonic enhancement by third harmonic generation,” Nano Lett. 14(11), 6651–6654 (2014).
[Crossref] [PubMed]

D. C. Marinica, A. K. Kazansky, P. Nordlander, J. Aizpurua, and A. G. Borisov, “Quantum plasmonics: Nonlinear effects in the field enhancement of a plasmonic nanoparticle dimer,” Nano Lett. 12(3), 1333–1339 (2012).
[Crossref] [PubMed]

Nat. Mater. (1)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9(3), 193–204 (2010).
[Crossref] [PubMed]

Nat. Photonics (2)

L. Novotny and N. Van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011).
[Crossref]

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011).
[Crossref]

Nat. Phys. (3)

M. L. Juan, R. Gordon, Y. Pang, F. Eftekhari, and R. Quidant, “Self-induced Back-action optical trapping of dielectric nanoparticles,” Nat. Phys. 5(12), 915–919 (2009).
[Crossref]

Y. Alaverdyan, B. Sepúlveda, L. Eurenius, E. Olsson, and M. Käll, “Optical antennas based on coupled nanoholes in thin metal films,” Nat. Phys. 3(12), 884–889 (2007).
[Crossref]

M. S. Tame, K. R. McEnery, S. K. Ozdemir, J. Lee, S. A. Maier, and M. S. Kim, “Quantum plasmonics,” Nat. Phys. 9(6), 329–340 (2013).
[Crossref]

Nature (1)

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref] [PubMed]

Opt. Commun. (1)

A. Degiron, H. J. Lezec, N. Yamamoto, and T. W. Ebbesen, “Optical transmission properties of a single subwavelength aperture in a real metal,” Opt. Commun. 239(1-3), 61–66 (2004).
[Crossref]

Opt. Express (6)

Opt. Lett. (1)

Phys. Rev. B (4)

F. J. García-Vidal, L. Martín-Moreno, E. Moreno, L. K. S. Kumar, and R. Gordon, “Transmission of light through a single rectangular hole in a real metal,” Phys. Rev. B 74(15), 153411 (2006).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

R. Gordon, “Light in a subwavelength slit in a metal: propagation and reflection,” Phys. Rev. B 73(15), 153405 (2006).
[Crossref]

D. Gérard, J. Wenger, N. Bonod, E. Popov, H. Rigneault, F. Mahdavi, S. Blair, J. Dintinger, and T. W. Ebbesen, “Nanoaperture-enhanced fluorescence: Towards higher detection rates with plasmonic metals,” Phys. Rev. B 77(4), 045413 (2008).
[Crossref]

Phys. Rev. Lett. (5)

F. J. García-Vidal, E. Moreno, J. A. Porto, and L. Martín-Moreno, “Transmission of light through a single rectangular hole,” Phys. Rev. Lett. 95(10), 103901 (2005).
[Crossref] [PubMed]

J. R. Suckling, A. P. Hibbins, M. J. Lockyear, T. W. Preist, J. R. Sambles, and C. R. Lawrence, “Finite conductance governs the resonance transmission of thin metal slits at microwave frequencies,” Phys. Rev. Lett. 92(14), 147401 (2004).
[Crossref] [PubMed]

P. Ghenuche, S. Cherukulappurath, T. H. Taminiau, N. F. van Hulst, and R. Quidant, “Spectroscopic mode mapping of resonant plasmon nanoantennas,” Phys. Rev. Lett. 101(11), 116805 (2008).
[Crossref] [PubMed]

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
[Crossref] [PubMed]

J. Braun, B. Gompf, G. Kobiela, and M. Dressel, “How holes can obscure the view: suppressed transmission through an ultrathin metal film by a subwavelength hole array,” Phys. Rev. Lett. 103(20), 203901 (2009).
[Crossref] [PubMed]

Rep. Prog. Phys. (1)

P. Biagioni, J.-S. Huang, and B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

F. J. García-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[Crossref]

Sci. Rep. (1)

B. L. Wang, R. Wang, R. J. Liu, X. H. Lu, J. Zhao, and Z. Y. Li, “Origin of shape resonance in second-harmonic generation from metallic nanohole arrays,” Sci. Rep. 3, 2358 (2013).
[PubMed]

Science (1)

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science 308(5728), 1607–1609 (2005).
[Crossref] [PubMed]

Other (1)

A. Kumar and H. D. Hristov, Microwave Cavity Antennas (Academic, 1989).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Diagram of a single rectangular aperture of sides W and L in a metal of thickness T, with co-ordinates shown. The structure is illuminated by a normally incident plane wave with its E-field vector pointing along the x axis. The inset is E-field amplitude evaluated at the resonant wavelength. The lowest-order mode is analyzed for TM mode along the x axis. The TE mode component along the y axis with the effective dielectric is then calculated.
Fig. 2
Fig. 2 (a) The effective wavelength versus free-space wavelength for rectangular aperture with four different values of W = 30, 50, 300 and 500 nm in gold. The black lines are theory results calculated from Eqs. (1)-(5). The red lines are the linear approximation to the theory results. The vertical green lines represent the positon where the skin depth is equal to the width of aperture. (b) The effective wavelength for rectangular holes as calculated using the effective index method. The ■ points give the result from numerical simulations.
Fig. 3
Fig. 3 Effective wavelength for rectangular aperture with two different width W = 50 nm and 500 nm in gold. The log-log scale plot is used. The black curve is calculated according to Eqs. (1)-(5). The red curve is simple scaling law according to Eq. (11). The green curve is the simple linear scaling according to Eq. (12). (a) The comparison regime is from 500 nm-500 μm. (b) The comparison regime is from 500 nm-50 μm.
Fig. 4
Fig. 4 Effective wavelength for rectangular aperture with two different width W = 50 nm and 500 nm in gold for THZ wavelength (100 μm-1000 μm). The log-log scale plot is used. The black curve is calculated according to Eqs. (1)-(5). The red curve is simple scaling law according to Eq. (14).
Fig. 5
Fig. 5 Effective wavelength for rectangular aperture with two different width W = 50 nm and 500 nm in gold for wide wavelength ranging from the visible to the THz. The log-log scale plot is used. The black curve is calculated according to Eqs. (1)-(5). The red curve is calculated according to Eq. (10). The green curve is calculated according to Eq. (13).
Fig. 6
Fig. 6 (a) The effective wavelength versus free-space wavelength for rectangular aperture with W = 20 nm (as calculated from Eq. (11)). (b) Normalized resonant transmission (T) versus wavelength for rectangular apertures with W = 20 nm, L = 149 nm, 500 nm, 1000 nm and T = 100 nm in the simulation.

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

tan( k 0 2 ε d β TE 2 L 2 )= β TE 2 k 0 2 ε m k 0 2 ε d β TE 2
L= 2 k 0 ε d arctan( ε m ε d )
λ eff =2L= 4 β TM arctan( k 0 β TM - ε m )
tanh( β TM 2 k 0 2 ε air W 2 )= ε air ε m β TM 2 k 0 2 ε m β TM 2 k 0 2 ε air
ε m = ε ω p 2 ω 2 +iγω
1- 2 1 +e -W β TM 2 k 0 2 = ε air ε m β TM 2 k 0 2 ε m β TM 2 k 0 2 ε air
β TM 2 = k 0 2 + 2 W 2 ε m 2 2 W ε m 1 W 2 ε m 2 +( 1 ε m ) k 0 2
ε m = ε λ 2 λ P 2
β TM 2 = k 0 2 + 2 W 2 ε m 2 4π W ε m λ p 2( 1 ε )π λ p W ε m λ 2
λ eff = 4 β TM ( π 2 arctan( β TM k 0 - ε m )) 2π β TM ( π+0.75 ) k 0 - ε m
λ eff = λ a 1 + a 2 1 λ ε a 3   λ λ ε  
a 1 = 1 λ P 2 + 1 π λ P W
a 2 = ( ε +1 ) 2Wπ λ P
a 3 = ( π+0.75 ) λ P
λ eff = 1 λ P a 1 λ a 3  
ε m =i ω p 2 τ ω   
λ eff = λ 2+2 a 1 λ 1 1+ 1 ( 1 a 1 λ +1) 2 + 1 1+ 1 ( 1 a 1 λ +1) 2 a 2 λ  
a 1 = c W ω p πτ
a 2 = ( π+0.75 ) 2 ω p c πτ
λ eff = 1 λ p a 1 λ a 3 ε λ p 2 4Wπ a 1 1 λ ε λ p 2 a 3 2 1 λ 2
β TE T+Φ=mπ
Δ β TE = Φ T

Metrics