Abstract

We experimentally demonstrated a free-standing two-dimensional (2-D) photonic crystal (PhC) aluminum nitride (AlN) membrane to function as a free space (or out-of-plane) reflector working in the mid infrared region. By etching circular holes of radius 620nm in a 330nm thick AlN slab, greater than 90% reflection was measured from 3.08μm to 3.78μm, with the peak reflection of 96% at 3.16μm. Due to the relatively low refractive index of AlN, we also investigated the importance of employing methods such as sacrificial layer release to enhance the performance of the PhC. In addition, characterization of the AlN based PhC was also done up to 450°C to examine the impact of thermo-optic effect on the performance. Despite the high temperature operation, the redshift in the peak reflection wavelengths of the device was estimated to be only 14.1nm. This equates to a relatively low thermo-optic coefficient 2.22 × 10−5 K−1 for AlN. Such insensitivity to thermo-optic effect makes AlN based 2-D PhC a promising technology to be used as photonic components for high temperature applications such as Fabry-Perot interferometer used for gas sensing in down-hole oil drilling and ruggedized electronics.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Design and analysis of a gallium nitride-on-sapphire tunable photonic crystal directional coupler

Erman Engin, Jeremy L. O’Brien, and Martin J. Cryan
J. Opt. Soc. Am. B 29(6) 1157-1164 (2012)

Proposal for enhancing the transmission efficiency of photonic crystal 60° waveguide bends by means of optofluidic infiltration

Sarah Bakhshi, Mohammad K. Moravvej-Farshi, and Majid Ebnali-Heidari
Appl. Opt. 50(21) 4048-4053 (2011)

Optomechanical and photothermal interactions in suspended photonic crystal membranes

David Woolf, Pui-Chuen Hui, Eiji Iwase, Mughees Khan, Alejandro W. Rodriguez, Parag Deotare, Irfan Bulu, Steven G. Johnson, Federico Capasso, and Marko Loncar
Opt. Express 21(6) 7258-7275 (2013)

References

  • View by:
  • |
  • |
  • |

  1. T. M. Jordan, J. C. Partridge, and N. W. Roberts, “Non-polarizing broadband multilayer reflectors in fish,” Nat. Photonics 6(11), 759–763 (2012).
    [Crossref] [PubMed]
  2. T. D. Corrigan, D. H. Park, H. D. Drew, S.-H. Guo, P. W. Kolb, W. N. Herman, and R. J. Phaneuf, “Broadband and mid-infrared absorber based on dielectric-thin metal film multilayers,” Appl. Opt. 51(8), 1109–1114 (2012).
    [PubMed]
  3. W. Shen, X. Sun, Y. Zhang, Z. Luo, X. Liu, and P. Gu, “Narrow band filters in both transmission and reflection with metal/dielectric thin films,” Opt. Commun. 2(282), 242–246 (2009).
    [Crossref]
  4. A. S. Chadha, D. Zhao, S. Chuwongin, Z. Ma, and W. Zhou, “Polarization- and angle-dependent characteristics in two dimensional photonic crystal membrane reflectors,” Appl. Phys. Lett. 103(21), 211107 (2013).
    [Crossref]
  5. Y. Shuai, D. Zhao, A. S. Chadha, J. H. Seo, H. Yang, S. Fan, Z. Ma, and W. Zhou, “Coupled double-layer Fano resonance photonic crystal filters with lattice displacement,” Appl. Phys. Lett. 103(24), 241106 (2013).
    [Crossref]
  6. F. L. Hsiao and Y. T. Ren, “Computational study of slot photonic crystal ring-resonator for refractive index sensing,” Sens. Actuators A Phys. 205, 53–57 (2014).
    [Crossref]
  7. H. Li, L. Yan, Z. Guo, W. Pan, K. Wen, H. Li, and X. Luo, “Enhanced focusing properties using surface plasmon multilayer gratings,” IEEE Photon. J. 4(1), 57–64 (2012).
    [Crossref]
  8. M. Carras, G. Maisons, B. Simozrag, M. Garcia, O. Parillaud, J. Massies, and X. Marcadet, “Room-temperature continuous-wave metal grating distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 96(16), 161105 (2010).
    [Crossref]
  9. L. Lu, F. Li, M. Xu, T. Wang, J. Wu, L. Zhou, and Y. Su, “Mode-selective hybrid plasmonic Bragg grating reflector,” IEEE Photon. Technol. Lett. 24(19), 1765–1767 (2012).
    [Crossref]
  10. Z. Yu, P. Deshpande, W. Wu, J. Wang, and S. Y. Chou, “Reflective polarizer based on a stacked double-layer subwavelength metal grating structure fabricated using nanoimprint lithography,” Appl. Phys. Lett. 77(7), 927–929 (2000).
    [Crossref]
  11. A. Liu, F. Fu, Y. Wang, B. Jiang, and W. Zheng, “Polarization-insensitive subwavelength grating reflector based on a semiconductor-insulator-metal structure,” Opt. Express 20(14), 14991–15000 (2012).
    [PubMed]
  12. Y. Shuai, D. Zhao, G. Medhi, R. Peale, Z. Ma, W. Buchwald, R. Soref, and W. D. Zhou, “Fano-resonance photonic crystal membrane reflectors at mid- and far-Infrared,” IEEE Photon. J. 5(1), 4700206 (2013).
    [Crossref]
  13. Z. X. Qiang, H. Yang, S. Chuwongin, D. Zhao, Z. Ma, and W. D. Zhou, “Design of Fano broadband reflectors on SOI,” IEEE Photon. Technol. Lett. 22(15), 1108–1110 (2010).
    [Crossref]
  14. S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002).
    [Crossref]
  15. C. P. Ho, P. Pitchappa, P. Kropelnicki, J. Wang, Y. Gu, and C. Lee, “Development of Polycrystalline Silicon Based Photonic Crystal Membrane for Mid-Infrared Applications,” IEEE J. Sel. Top. Quantum Electron. 20(4), 94–100 (2014).
    [Crossref]
  16. C. Xiong, W. H. Pernice, and H. X. Tang, “Low-loss, silicon integrated, aluminum nitride photonic circuits and their use for electro-optic signal processing,” Nano Lett. 12(7), 3562–3568 (2012).
    [Crossref] [PubMed]
  17. S. Ghosh and G. Piazza, “Photonic microdisk resonators in aluminum nitride,” J. Appl. Phys. 113(1), 016101 (2013).
    [Crossref]
  18. M. Stegmaier and W. H. Pernice, “Broadband directional coupling in aluminum nitride nanophotonic circuits,” Opt. Express 21(6), 7304–7315 (2013).
    [Crossref] [PubMed]
  19. C. P. Ho, P. Pitchappa, P. Kropelnicki, J. Wang, Y. Gu, and C. Lee, “Characterization of polycrystalline silicon based photonic crystal suspended membrane for high temperature applications,” J. Nanophotonics 8(1), 084096 (2014).
    [Crossref]
  20. J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, X. Han, M. Zhao, G. Morthier, and R. Baets, “Athermal Silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides,” Opt. Express 17(17), 14627–14633 (2009).
    [Crossref] [PubMed]
  21. M. Han and A. Wang, “Temperature compensation of optical microresonators using a surface layer with negative thermo-optic coefficient,” Opt. Lett. 32(13), 1800–1802 (2007).
    [Crossref] [PubMed]
  22. E. S. Kang, W. S. Kim, D. J. Kim, and B. S. Bae, “Reducing the thermal dependence of silica-based arrayed-waveguide grating using inorganic-organic hybrid materials,” IEEE Photon. Technol. Lett. 16(12), 2625–2627 (2004).
    [Crossref]
  23. B. Guha, J. Cardenas, and M. Lipson, “Athermal silicon microring resonators with titanium oxide cladding,” Opt. Express 21(22), 26557–26563 (2013).
    [Crossref] [PubMed]
  24. N. Wang, F. L. Hsiao, J. M. Tsai, M. Palaniapan, D. L. Kwong, and C. Lee, “Numerical and experimental study on silicon microresonators based on phononic crystal slabs with reduced central-hole radii,” J. Micromech. Microeng. 23(6), 065030 (2013).
    [Crossref]
  25. T. Wang, X. Mu, P. Kropelnicki, A. B. Randles, and C. Lee, “Viscosity and density decoupling method by using higher order Lamb wave sensor,” J. Micromech. Microeng. 24(7), 075002 (2014).
    [Crossref]
  26. D. B. Nash, “Mid-infrared reflectance spectra (2.3-22 µm) of sulfur, gold, KBr, MgO, and halon,” Appl. Opt. 25(14), 2427–2433 (1986).
    [Crossref] [PubMed]

2014 (4)

F. L. Hsiao and Y. T. Ren, “Computational study of slot photonic crystal ring-resonator for refractive index sensing,” Sens. Actuators A Phys. 205, 53–57 (2014).
[Crossref]

C. P. Ho, P. Pitchappa, P. Kropelnicki, J. Wang, Y. Gu, and C. Lee, “Development of Polycrystalline Silicon Based Photonic Crystal Membrane for Mid-Infrared Applications,” IEEE J. Sel. Top. Quantum Electron. 20(4), 94–100 (2014).
[Crossref]

C. P. Ho, P. Pitchappa, P. Kropelnicki, J. Wang, Y. Gu, and C. Lee, “Characterization of polycrystalline silicon based photonic crystal suspended membrane for high temperature applications,” J. Nanophotonics 8(1), 084096 (2014).
[Crossref]

T. Wang, X. Mu, P. Kropelnicki, A. B. Randles, and C. Lee, “Viscosity and density decoupling method by using higher order Lamb wave sensor,” J. Micromech. Microeng. 24(7), 075002 (2014).
[Crossref]

2013 (7)

S. Ghosh and G. Piazza, “Photonic microdisk resonators in aluminum nitride,” J. Appl. Phys. 113(1), 016101 (2013).
[Crossref]

M. Stegmaier and W. H. Pernice, “Broadband directional coupling in aluminum nitride nanophotonic circuits,” Opt. Express 21(6), 7304–7315 (2013).
[Crossref] [PubMed]

B. Guha, J. Cardenas, and M. Lipson, “Athermal silicon microring resonators with titanium oxide cladding,” Opt. Express 21(22), 26557–26563 (2013).
[Crossref] [PubMed]

N. Wang, F. L. Hsiao, J. M. Tsai, M. Palaniapan, D. L. Kwong, and C. Lee, “Numerical and experimental study on silicon microresonators based on phononic crystal slabs with reduced central-hole radii,” J. Micromech. Microeng. 23(6), 065030 (2013).
[Crossref]

Y. Shuai, D. Zhao, G. Medhi, R. Peale, Z. Ma, W. Buchwald, R. Soref, and W. D. Zhou, “Fano-resonance photonic crystal membrane reflectors at mid- and far-Infrared,” IEEE Photon. J. 5(1), 4700206 (2013).
[Crossref]

A. S. Chadha, D. Zhao, S. Chuwongin, Z. Ma, and W. Zhou, “Polarization- and angle-dependent characteristics in two dimensional photonic crystal membrane reflectors,” Appl. Phys. Lett. 103(21), 211107 (2013).
[Crossref]

Y. Shuai, D. Zhao, A. S. Chadha, J. H. Seo, H. Yang, S. Fan, Z. Ma, and W. Zhou, “Coupled double-layer Fano resonance photonic crystal filters with lattice displacement,” Appl. Phys. Lett. 103(24), 241106 (2013).
[Crossref]

2012 (6)

T. M. Jordan, J. C. Partridge, and N. W. Roberts, “Non-polarizing broadband multilayer reflectors in fish,” Nat. Photonics 6(11), 759–763 (2012).
[Crossref] [PubMed]

T. D. Corrigan, D. H. Park, H. D. Drew, S.-H. Guo, P. W. Kolb, W. N. Herman, and R. J. Phaneuf, “Broadband and mid-infrared absorber based on dielectric-thin metal film multilayers,” Appl. Opt. 51(8), 1109–1114 (2012).
[PubMed]

H. Li, L. Yan, Z. Guo, W. Pan, K. Wen, H. Li, and X. Luo, “Enhanced focusing properties using surface plasmon multilayer gratings,” IEEE Photon. J. 4(1), 57–64 (2012).
[Crossref]

L. Lu, F. Li, M. Xu, T. Wang, J. Wu, L. Zhou, and Y. Su, “Mode-selective hybrid plasmonic Bragg grating reflector,” IEEE Photon. Technol. Lett. 24(19), 1765–1767 (2012).
[Crossref]

C. Xiong, W. H. Pernice, and H. X. Tang, “Low-loss, silicon integrated, aluminum nitride photonic circuits and their use for electro-optic signal processing,” Nano Lett. 12(7), 3562–3568 (2012).
[Crossref] [PubMed]

A. Liu, F. Fu, Y. Wang, B. Jiang, and W. Zheng, “Polarization-insensitive subwavelength grating reflector based on a semiconductor-insulator-metal structure,” Opt. Express 20(14), 14991–15000 (2012).
[PubMed]

2010 (2)

Z. X. Qiang, H. Yang, S. Chuwongin, D. Zhao, Z. Ma, and W. D. Zhou, “Design of Fano broadband reflectors on SOI,” IEEE Photon. Technol. Lett. 22(15), 1108–1110 (2010).
[Crossref]

M. Carras, G. Maisons, B. Simozrag, M. Garcia, O. Parillaud, J. Massies, and X. Marcadet, “Room-temperature continuous-wave metal grating distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 96(16), 161105 (2010).
[Crossref]

2009 (2)

W. Shen, X. Sun, Y. Zhang, Z. Luo, X. Liu, and P. Gu, “Narrow band filters in both transmission and reflection with metal/dielectric thin films,” Opt. Commun. 2(282), 242–246 (2009).
[Crossref]

J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, X. Han, M. Zhao, G. Morthier, and R. Baets, “Athermal Silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides,” Opt. Express 17(17), 14627–14633 (2009).
[Crossref] [PubMed]

2007 (1)

2004 (1)

E. S. Kang, W. S. Kim, D. J. Kim, and B. S. Bae, “Reducing the thermal dependence of silica-based arrayed-waveguide grating using inorganic-organic hybrid materials,” IEEE Photon. Technol. Lett. 16(12), 2625–2627 (2004).
[Crossref]

2002 (1)

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002).
[Crossref]

2000 (1)

Z. Yu, P. Deshpande, W. Wu, J. Wang, and S. Y. Chou, “Reflective polarizer based on a stacked double-layer subwavelength metal grating structure fabricated using nanoimprint lithography,” Appl. Phys. Lett. 77(7), 927–929 (2000).
[Crossref]

1986 (1)

Bae, B. S.

E. S. Kang, W. S. Kim, D. J. Kim, and B. S. Bae, “Reducing the thermal dependence of silica-based arrayed-waveguide grating using inorganic-organic hybrid materials,” IEEE Photon. Technol. Lett. 16(12), 2625–2627 (2004).
[Crossref]

Baets, R.

Bogaerts, W.

Buchwald, W.

Y. Shuai, D. Zhao, G. Medhi, R. Peale, Z. Ma, W. Buchwald, R. Soref, and W. D. Zhou, “Fano-resonance photonic crystal membrane reflectors at mid- and far-Infrared,” IEEE Photon. J. 5(1), 4700206 (2013).
[Crossref]

Cardenas, J.

Carras, M.

M. Carras, G. Maisons, B. Simozrag, M. Garcia, O. Parillaud, J. Massies, and X. Marcadet, “Room-temperature continuous-wave metal grating distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 96(16), 161105 (2010).
[Crossref]

Chadha, A. S.

Y. Shuai, D. Zhao, A. S. Chadha, J. H. Seo, H. Yang, S. Fan, Z. Ma, and W. Zhou, “Coupled double-layer Fano resonance photonic crystal filters with lattice displacement,” Appl. Phys. Lett. 103(24), 241106 (2013).
[Crossref]

A. S. Chadha, D. Zhao, S. Chuwongin, Z. Ma, and W. Zhou, “Polarization- and angle-dependent characteristics in two dimensional photonic crystal membrane reflectors,” Appl. Phys. Lett. 103(21), 211107 (2013).
[Crossref]

Chou, S. Y.

Z. Yu, P. Deshpande, W. Wu, J. Wang, and S. Y. Chou, “Reflective polarizer based on a stacked double-layer subwavelength metal grating structure fabricated using nanoimprint lithography,” Appl. Phys. Lett. 77(7), 927–929 (2000).
[Crossref]

Chuwongin, S.

A. S. Chadha, D. Zhao, S. Chuwongin, Z. Ma, and W. Zhou, “Polarization- and angle-dependent characteristics in two dimensional photonic crystal membrane reflectors,” Appl. Phys. Lett. 103(21), 211107 (2013).
[Crossref]

Z. X. Qiang, H. Yang, S. Chuwongin, D. Zhao, Z. Ma, and W. D. Zhou, “Design of Fano broadband reflectors on SOI,” IEEE Photon. Technol. Lett. 22(15), 1108–1110 (2010).
[Crossref]

Corrigan, T. D.

Deshpande, P.

Z. Yu, P. Deshpande, W. Wu, J. Wang, and S. Y. Chou, “Reflective polarizer based on a stacked double-layer subwavelength metal grating structure fabricated using nanoimprint lithography,” Appl. Phys. Lett. 77(7), 927–929 (2000).
[Crossref]

Drew, H. D.

Dumon, P.

Fan, S.

Y. Shuai, D. Zhao, A. S. Chadha, J. H. Seo, H. Yang, S. Fan, Z. Ma, and W. Zhou, “Coupled double-layer Fano resonance photonic crystal filters with lattice displacement,” Appl. Phys. Lett. 103(24), 241106 (2013).
[Crossref]

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002).
[Crossref]

Fu, F.

Garcia, M.

M. Carras, G. Maisons, B. Simozrag, M. Garcia, O. Parillaud, J. Massies, and X. Marcadet, “Room-temperature continuous-wave metal grating distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 96(16), 161105 (2010).
[Crossref]

Ghosh, S.

S. Ghosh and G. Piazza, “Photonic microdisk resonators in aluminum nitride,” J. Appl. Phys. 113(1), 016101 (2013).
[Crossref]

Gu, P.

W. Shen, X. Sun, Y. Zhang, Z. Luo, X. Liu, and P. Gu, “Narrow band filters in both transmission and reflection with metal/dielectric thin films,” Opt. Commun. 2(282), 242–246 (2009).
[Crossref]

Gu, Y.

C. P. Ho, P. Pitchappa, P. Kropelnicki, J. Wang, Y. Gu, and C. Lee, “Development of Polycrystalline Silicon Based Photonic Crystal Membrane for Mid-Infrared Applications,” IEEE J. Sel. Top. Quantum Electron. 20(4), 94–100 (2014).
[Crossref]

C. P. Ho, P. Pitchappa, P. Kropelnicki, J. Wang, Y. Gu, and C. Lee, “Characterization of polycrystalline silicon based photonic crystal suspended membrane for high temperature applications,” J. Nanophotonics 8(1), 084096 (2014).
[Crossref]

Guha, B.

Guo, S.-H.

Guo, Z.

H. Li, L. Yan, Z. Guo, W. Pan, K. Wen, H. Li, and X. Luo, “Enhanced focusing properties using surface plasmon multilayer gratings,” IEEE Photon. J. 4(1), 57–64 (2012).
[Crossref]

Han, M.

Han, X.

Herman, W. N.

Ho, C. P.

C. P. Ho, P. Pitchappa, P. Kropelnicki, J. Wang, Y. Gu, and C. Lee, “Characterization of polycrystalline silicon based photonic crystal suspended membrane for high temperature applications,” J. Nanophotonics 8(1), 084096 (2014).
[Crossref]

C. P. Ho, P. Pitchappa, P. Kropelnicki, J. Wang, Y. Gu, and C. Lee, “Development of Polycrystalline Silicon Based Photonic Crystal Membrane for Mid-Infrared Applications,” IEEE J. Sel. Top. Quantum Electron. 20(4), 94–100 (2014).
[Crossref]

Hsiao, F. L.

F. L. Hsiao and Y. T. Ren, “Computational study of slot photonic crystal ring-resonator for refractive index sensing,” Sens. Actuators A Phys. 205, 53–57 (2014).
[Crossref]

N. Wang, F. L. Hsiao, J. M. Tsai, M. Palaniapan, D. L. Kwong, and C. Lee, “Numerical and experimental study on silicon microresonators based on phononic crystal slabs with reduced central-hole radii,” J. Micromech. Microeng. 23(6), 065030 (2013).
[Crossref]

Jian, X.

Jiang, B.

Joannopoulos, J. D.

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002).
[Crossref]

Jordan, T. M.

T. M. Jordan, J. C. Partridge, and N. W. Roberts, “Non-polarizing broadband multilayer reflectors in fish,” Nat. Photonics 6(11), 759–763 (2012).
[Crossref] [PubMed]

Kang, E. S.

E. S. Kang, W. S. Kim, D. J. Kim, and B. S. Bae, “Reducing the thermal dependence of silica-based arrayed-waveguide grating using inorganic-organic hybrid materials,” IEEE Photon. Technol. Lett. 16(12), 2625–2627 (2004).
[Crossref]

Kim, D. J.

E. S. Kang, W. S. Kim, D. J. Kim, and B. S. Bae, “Reducing the thermal dependence of silica-based arrayed-waveguide grating using inorganic-organic hybrid materials,” IEEE Photon. Technol. Lett. 16(12), 2625–2627 (2004).
[Crossref]

Kim, W. S.

E. S. Kang, W. S. Kim, D. J. Kim, and B. S. Bae, “Reducing the thermal dependence of silica-based arrayed-waveguide grating using inorganic-organic hybrid materials,” IEEE Photon. Technol. Lett. 16(12), 2625–2627 (2004).
[Crossref]

Kolb, P. W.

Kropelnicki, P.

C. P. Ho, P. Pitchappa, P. Kropelnicki, J. Wang, Y. Gu, and C. Lee, “Characterization of polycrystalline silicon based photonic crystal suspended membrane for high temperature applications,” J. Nanophotonics 8(1), 084096 (2014).
[Crossref]

C. P. Ho, P. Pitchappa, P. Kropelnicki, J. Wang, Y. Gu, and C. Lee, “Development of Polycrystalline Silicon Based Photonic Crystal Membrane for Mid-Infrared Applications,” IEEE J. Sel. Top. Quantum Electron. 20(4), 94–100 (2014).
[Crossref]

T. Wang, X. Mu, P. Kropelnicki, A. B. Randles, and C. Lee, “Viscosity and density decoupling method by using higher order Lamb wave sensor,” J. Micromech. Microeng. 24(7), 075002 (2014).
[Crossref]

Kwong, D. L.

N. Wang, F. L. Hsiao, J. M. Tsai, M. Palaniapan, D. L. Kwong, and C. Lee, “Numerical and experimental study on silicon microresonators based on phononic crystal slabs with reduced central-hole radii,” J. Micromech. Microeng. 23(6), 065030 (2013).
[Crossref]

Lee, C.

T. Wang, X. Mu, P. Kropelnicki, A. B. Randles, and C. Lee, “Viscosity and density decoupling method by using higher order Lamb wave sensor,” J. Micromech. Microeng. 24(7), 075002 (2014).
[Crossref]

C. P. Ho, P. Pitchappa, P. Kropelnicki, J. Wang, Y. Gu, and C. Lee, “Development of Polycrystalline Silicon Based Photonic Crystal Membrane for Mid-Infrared Applications,” IEEE J. Sel. Top. Quantum Electron. 20(4), 94–100 (2014).
[Crossref]

C. P. Ho, P. Pitchappa, P. Kropelnicki, J. Wang, Y. Gu, and C. Lee, “Characterization of polycrystalline silicon based photonic crystal suspended membrane for high temperature applications,” J. Nanophotonics 8(1), 084096 (2014).
[Crossref]

N. Wang, F. L. Hsiao, J. M. Tsai, M. Palaniapan, D. L. Kwong, and C. Lee, “Numerical and experimental study on silicon microresonators based on phononic crystal slabs with reduced central-hole radii,” J. Micromech. Microeng. 23(6), 065030 (2013).
[Crossref]

Li, F.

L. Lu, F. Li, M. Xu, T. Wang, J. Wu, L. Zhou, and Y. Su, “Mode-selective hybrid plasmonic Bragg grating reflector,” IEEE Photon. Technol. Lett. 24(19), 1765–1767 (2012).
[Crossref]

Li, H.

H. Li, L. Yan, Z. Guo, W. Pan, K. Wen, H. Li, and X. Luo, “Enhanced focusing properties using surface plasmon multilayer gratings,” IEEE Photon. J. 4(1), 57–64 (2012).
[Crossref]

H. Li, L. Yan, Z. Guo, W. Pan, K. Wen, H. Li, and X. Luo, “Enhanced focusing properties using surface plasmon multilayer gratings,” IEEE Photon. J. 4(1), 57–64 (2012).
[Crossref]

Lipson, M.

Liu, A.

Liu, X.

W. Shen, X. Sun, Y. Zhang, Z. Luo, X. Liu, and P. Gu, “Narrow band filters in both transmission and reflection with metal/dielectric thin films,” Opt. Commun. 2(282), 242–246 (2009).
[Crossref]

Lu, L.

L. Lu, F. Li, M. Xu, T. Wang, J. Wu, L. Zhou, and Y. Su, “Mode-selective hybrid plasmonic Bragg grating reflector,” IEEE Photon. Technol. Lett. 24(19), 1765–1767 (2012).
[Crossref]

Luo, X.

H. Li, L. Yan, Z. Guo, W. Pan, K. Wen, H. Li, and X. Luo, “Enhanced focusing properties using surface plasmon multilayer gratings,” IEEE Photon. J. 4(1), 57–64 (2012).
[Crossref]

Luo, Z.

W. Shen, X. Sun, Y. Zhang, Z. Luo, X. Liu, and P. Gu, “Narrow band filters in both transmission and reflection with metal/dielectric thin films,” Opt. Commun. 2(282), 242–246 (2009).
[Crossref]

Ma, Z.

A. S. Chadha, D. Zhao, S. Chuwongin, Z. Ma, and W. Zhou, “Polarization- and angle-dependent characteristics in two dimensional photonic crystal membrane reflectors,” Appl. Phys. Lett. 103(21), 211107 (2013).
[Crossref]

Y. Shuai, D. Zhao, A. S. Chadha, J. H. Seo, H. Yang, S. Fan, Z. Ma, and W. Zhou, “Coupled double-layer Fano resonance photonic crystal filters with lattice displacement,” Appl. Phys. Lett. 103(24), 241106 (2013).
[Crossref]

Y. Shuai, D. Zhao, G. Medhi, R. Peale, Z. Ma, W. Buchwald, R. Soref, and W. D. Zhou, “Fano-resonance photonic crystal membrane reflectors at mid- and far-Infrared,” IEEE Photon. J. 5(1), 4700206 (2013).
[Crossref]

Z. X. Qiang, H. Yang, S. Chuwongin, D. Zhao, Z. Ma, and W. D. Zhou, “Design of Fano broadband reflectors on SOI,” IEEE Photon. Technol. Lett. 22(15), 1108–1110 (2010).
[Crossref]

Maisons, G.

M. Carras, G. Maisons, B. Simozrag, M. Garcia, O. Parillaud, J. Massies, and X. Marcadet, “Room-temperature continuous-wave metal grating distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 96(16), 161105 (2010).
[Crossref]

Marcadet, X.

M. Carras, G. Maisons, B. Simozrag, M. Garcia, O. Parillaud, J. Massies, and X. Marcadet, “Room-temperature continuous-wave metal grating distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 96(16), 161105 (2010).
[Crossref]

Massies, J.

M. Carras, G. Maisons, B. Simozrag, M. Garcia, O. Parillaud, J. Massies, and X. Marcadet, “Room-temperature continuous-wave metal grating distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 96(16), 161105 (2010).
[Crossref]

Medhi, G.

Y. Shuai, D. Zhao, G. Medhi, R. Peale, Z. Ma, W. Buchwald, R. Soref, and W. D. Zhou, “Fano-resonance photonic crystal membrane reflectors at mid- and far-Infrared,” IEEE Photon. J. 5(1), 4700206 (2013).
[Crossref]

Morthier, G.

Mu, X.

T. Wang, X. Mu, P. Kropelnicki, A. B. Randles, and C. Lee, “Viscosity and density decoupling method by using higher order Lamb wave sensor,” J. Micromech. Microeng. 24(7), 075002 (2014).
[Crossref]

Nash, D. B.

Palaniapan, M.

N. Wang, F. L. Hsiao, J. M. Tsai, M. Palaniapan, D. L. Kwong, and C. Lee, “Numerical and experimental study on silicon microresonators based on phononic crystal slabs with reduced central-hole radii,” J. Micromech. Microeng. 23(6), 065030 (2013).
[Crossref]

Pan, W.

H. Li, L. Yan, Z. Guo, W. Pan, K. Wen, H. Li, and X. Luo, “Enhanced focusing properties using surface plasmon multilayer gratings,” IEEE Photon. J. 4(1), 57–64 (2012).
[Crossref]

Parillaud, O.

M. Carras, G. Maisons, B. Simozrag, M. Garcia, O. Parillaud, J. Massies, and X. Marcadet, “Room-temperature continuous-wave metal grating distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 96(16), 161105 (2010).
[Crossref]

Park, D. H.

Partridge, J. C.

T. M. Jordan, J. C. Partridge, and N. W. Roberts, “Non-polarizing broadband multilayer reflectors in fish,” Nat. Photonics 6(11), 759–763 (2012).
[Crossref] [PubMed]

Peale, R.

Y. Shuai, D. Zhao, G. Medhi, R. Peale, Z. Ma, W. Buchwald, R. Soref, and W. D. Zhou, “Fano-resonance photonic crystal membrane reflectors at mid- and far-Infrared,” IEEE Photon. J. 5(1), 4700206 (2013).
[Crossref]

Pernice, W. H.

M. Stegmaier and W. H. Pernice, “Broadband directional coupling in aluminum nitride nanophotonic circuits,” Opt. Express 21(6), 7304–7315 (2013).
[Crossref] [PubMed]

C. Xiong, W. H. Pernice, and H. X. Tang, “Low-loss, silicon integrated, aluminum nitride photonic circuits and their use for electro-optic signal processing,” Nano Lett. 12(7), 3562–3568 (2012).
[Crossref] [PubMed]

Phaneuf, R. J.

Piazza, G.

S. Ghosh and G. Piazza, “Photonic microdisk resonators in aluminum nitride,” J. Appl. Phys. 113(1), 016101 (2013).
[Crossref]

Pitchappa, P.

C. P. Ho, P. Pitchappa, P. Kropelnicki, J. Wang, Y. Gu, and C. Lee, “Characterization of polycrystalline silicon based photonic crystal suspended membrane for high temperature applications,” J. Nanophotonics 8(1), 084096 (2014).
[Crossref]

C. P. Ho, P. Pitchappa, P. Kropelnicki, J. Wang, Y. Gu, and C. Lee, “Development of Polycrystalline Silicon Based Photonic Crystal Membrane for Mid-Infrared Applications,” IEEE J. Sel. Top. Quantum Electron. 20(4), 94–100 (2014).
[Crossref]

Qiang, Z. X.

Z. X. Qiang, H. Yang, S. Chuwongin, D. Zhao, Z. Ma, and W. D. Zhou, “Design of Fano broadband reflectors on SOI,” IEEE Photon. Technol. Lett. 22(15), 1108–1110 (2010).
[Crossref]

Randles, A. B.

T. Wang, X. Mu, P. Kropelnicki, A. B. Randles, and C. Lee, “Viscosity and density decoupling method by using higher order Lamb wave sensor,” J. Micromech. Microeng. 24(7), 075002 (2014).
[Crossref]

Ren, Y. T.

F. L. Hsiao and Y. T. Ren, “Computational study of slot photonic crystal ring-resonator for refractive index sensing,” Sens. Actuators A Phys. 205, 53–57 (2014).
[Crossref]

Roberts, N. W.

T. M. Jordan, J. C. Partridge, and N. W. Roberts, “Non-polarizing broadband multilayer reflectors in fish,” Nat. Photonics 6(11), 759–763 (2012).
[Crossref] [PubMed]

Seo, J. H.

Y. Shuai, D. Zhao, A. S. Chadha, J. H. Seo, H. Yang, S. Fan, Z. Ma, and W. Zhou, “Coupled double-layer Fano resonance photonic crystal filters with lattice displacement,” Appl. Phys. Lett. 103(24), 241106 (2013).
[Crossref]

Shen, W.

W. Shen, X. Sun, Y. Zhang, Z. Luo, X. Liu, and P. Gu, “Narrow band filters in both transmission and reflection with metal/dielectric thin films,” Opt. Commun. 2(282), 242–246 (2009).
[Crossref]

Shuai, Y.

Y. Shuai, D. Zhao, A. S. Chadha, J. H. Seo, H. Yang, S. Fan, Z. Ma, and W. Zhou, “Coupled double-layer Fano resonance photonic crystal filters with lattice displacement,” Appl. Phys. Lett. 103(24), 241106 (2013).
[Crossref]

Y. Shuai, D. Zhao, G. Medhi, R. Peale, Z. Ma, W. Buchwald, R. Soref, and W. D. Zhou, “Fano-resonance photonic crystal membrane reflectors at mid- and far-Infrared,” IEEE Photon. J. 5(1), 4700206 (2013).
[Crossref]

Simozrag, B.

M. Carras, G. Maisons, B. Simozrag, M. Garcia, O. Parillaud, J. Massies, and X. Marcadet, “Room-temperature continuous-wave metal grating distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 96(16), 161105 (2010).
[Crossref]

Soref, R.

Y. Shuai, D. Zhao, G. Medhi, R. Peale, Z. Ma, W. Buchwald, R. Soref, and W. D. Zhou, “Fano-resonance photonic crystal membrane reflectors at mid- and far-Infrared,” IEEE Photon. J. 5(1), 4700206 (2013).
[Crossref]

Stegmaier, M.

Su, Y.

L. Lu, F. Li, M. Xu, T. Wang, J. Wu, L. Zhou, and Y. Su, “Mode-selective hybrid plasmonic Bragg grating reflector,” IEEE Photon. Technol. Lett. 24(19), 1765–1767 (2012).
[Crossref]

Sun, X.

W. Shen, X. Sun, Y. Zhang, Z. Luo, X. Liu, and P. Gu, “Narrow band filters in both transmission and reflection with metal/dielectric thin films,” Opt. Commun. 2(282), 242–246 (2009).
[Crossref]

Tang, H. X.

C. Xiong, W. H. Pernice, and H. X. Tang, “Low-loss, silicon integrated, aluminum nitride photonic circuits and their use for electro-optic signal processing,” Nano Lett. 12(7), 3562–3568 (2012).
[Crossref] [PubMed]

Teng, J.

Tsai, J. M.

N. Wang, F. L. Hsiao, J. M. Tsai, M. Palaniapan, D. L. Kwong, and C. Lee, “Numerical and experimental study on silicon microresonators based on phononic crystal slabs with reduced central-hole radii,” J. Micromech. Microeng. 23(6), 065030 (2013).
[Crossref]

Wang, A.

Wang, J.

C. P. Ho, P. Pitchappa, P. Kropelnicki, J. Wang, Y. Gu, and C. Lee, “Characterization of polycrystalline silicon based photonic crystal suspended membrane for high temperature applications,” J. Nanophotonics 8(1), 084096 (2014).
[Crossref]

C. P. Ho, P. Pitchappa, P. Kropelnicki, J. Wang, Y. Gu, and C. Lee, “Development of Polycrystalline Silicon Based Photonic Crystal Membrane for Mid-Infrared Applications,” IEEE J. Sel. Top. Quantum Electron. 20(4), 94–100 (2014).
[Crossref]

Z. Yu, P. Deshpande, W. Wu, J. Wang, and S. Y. Chou, “Reflective polarizer based on a stacked double-layer subwavelength metal grating structure fabricated using nanoimprint lithography,” Appl. Phys. Lett. 77(7), 927–929 (2000).
[Crossref]

Wang, N.

N. Wang, F. L. Hsiao, J. M. Tsai, M. Palaniapan, D. L. Kwong, and C. Lee, “Numerical and experimental study on silicon microresonators based on phononic crystal slabs with reduced central-hole radii,” J. Micromech. Microeng. 23(6), 065030 (2013).
[Crossref]

Wang, T.

T. Wang, X. Mu, P. Kropelnicki, A. B. Randles, and C. Lee, “Viscosity and density decoupling method by using higher order Lamb wave sensor,” J. Micromech. Microeng. 24(7), 075002 (2014).
[Crossref]

L. Lu, F. Li, M. Xu, T. Wang, J. Wu, L. Zhou, and Y. Su, “Mode-selective hybrid plasmonic Bragg grating reflector,” IEEE Photon. Technol. Lett. 24(19), 1765–1767 (2012).
[Crossref]

Wang, Y.

Wen, K.

H. Li, L. Yan, Z. Guo, W. Pan, K. Wen, H. Li, and X. Luo, “Enhanced focusing properties using surface plasmon multilayer gratings,” IEEE Photon. J. 4(1), 57–64 (2012).
[Crossref]

Wu, J.

L. Lu, F. Li, M. Xu, T. Wang, J. Wu, L. Zhou, and Y. Su, “Mode-selective hybrid plasmonic Bragg grating reflector,” IEEE Photon. Technol. Lett. 24(19), 1765–1767 (2012).
[Crossref]

Wu, W.

Z. Yu, P. Deshpande, W. Wu, J. Wang, and S. Y. Chou, “Reflective polarizer based on a stacked double-layer subwavelength metal grating structure fabricated using nanoimprint lithography,” Appl. Phys. Lett. 77(7), 927–929 (2000).
[Crossref]

Xiong, C.

C. Xiong, W. H. Pernice, and H. X. Tang, “Low-loss, silicon integrated, aluminum nitride photonic circuits and their use for electro-optic signal processing,” Nano Lett. 12(7), 3562–3568 (2012).
[Crossref] [PubMed]

Xu, M.

L. Lu, F. Li, M. Xu, T. Wang, J. Wu, L. Zhou, and Y. Su, “Mode-selective hybrid plasmonic Bragg grating reflector,” IEEE Photon. Technol. Lett. 24(19), 1765–1767 (2012).
[Crossref]

Yan, L.

H. Li, L. Yan, Z. Guo, W. Pan, K. Wen, H. Li, and X. Luo, “Enhanced focusing properties using surface plasmon multilayer gratings,” IEEE Photon. J. 4(1), 57–64 (2012).
[Crossref]

Yang, H.

Y. Shuai, D. Zhao, A. S. Chadha, J. H. Seo, H. Yang, S. Fan, Z. Ma, and W. Zhou, “Coupled double-layer Fano resonance photonic crystal filters with lattice displacement,” Appl. Phys. Lett. 103(24), 241106 (2013).
[Crossref]

Z. X. Qiang, H. Yang, S. Chuwongin, D. Zhao, Z. Ma, and W. D. Zhou, “Design of Fano broadband reflectors on SOI,” IEEE Photon. Technol. Lett. 22(15), 1108–1110 (2010).
[Crossref]

Yu, Z.

Z. Yu, P. Deshpande, W. Wu, J. Wang, and S. Y. Chou, “Reflective polarizer based on a stacked double-layer subwavelength metal grating structure fabricated using nanoimprint lithography,” Appl. Phys. Lett. 77(7), 927–929 (2000).
[Crossref]

Zhang, H.

Zhang, Y.

W. Shen, X. Sun, Y. Zhang, Z. Luo, X. Liu, and P. Gu, “Narrow band filters in both transmission and reflection with metal/dielectric thin films,” Opt. Commun. 2(282), 242–246 (2009).
[Crossref]

Zhao, D.

A. S. Chadha, D. Zhao, S. Chuwongin, Z. Ma, and W. Zhou, “Polarization- and angle-dependent characteristics in two dimensional photonic crystal membrane reflectors,” Appl. Phys. Lett. 103(21), 211107 (2013).
[Crossref]

Y. Shuai, D. Zhao, A. S. Chadha, J. H. Seo, H. Yang, S. Fan, Z. Ma, and W. Zhou, “Coupled double-layer Fano resonance photonic crystal filters with lattice displacement,” Appl. Phys. Lett. 103(24), 241106 (2013).
[Crossref]

Y. Shuai, D. Zhao, G. Medhi, R. Peale, Z. Ma, W. Buchwald, R. Soref, and W. D. Zhou, “Fano-resonance photonic crystal membrane reflectors at mid- and far-Infrared,” IEEE Photon. J. 5(1), 4700206 (2013).
[Crossref]

Z. X. Qiang, H. Yang, S. Chuwongin, D. Zhao, Z. Ma, and W. D. Zhou, “Design of Fano broadband reflectors on SOI,” IEEE Photon. Technol. Lett. 22(15), 1108–1110 (2010).
[Crossref]

Zhao, M.

Zheng, W.

Zhou, L.

L. Lu, F. Li, M. Xu, T. Wang, J. Wu, L. Zhou, and Y. Su, “Mode-selective hybrid plasmonic Bragg grating reflector,” IEEE Photon. Technol. Lett. 24(19), 1765–1767 (2012).
[Crossref]

Zhou, W.

Y. Shuai, D. Zhao, A. S. Chadha, J. H. Seo, H. Yang, S. Fan, Z. Ma, and W. Zhou, “Coupled double-layer Fano resonance photonic crystal filters with lattice displacement,” Appl. Phys. Lett. 103(24), 241106 (2013).
[Crossref]

A. S. Chadha, D. Zhao, S. Chuwongin, Z. Ma, and W. Zhou, “Polarization- and angle-dependent characteristics in two dimensional photonic crystal membrane reflectors,” Appl. Phys. Lett. 103(21), 211107 (2013).
[Crossref]

Zhou, W. D.

Y. Shuai, D. Zhao, G. Medhi, R. Peale, Z. Ma, W. Buchwald, R. Soref, and W. D. Zhou, “Fano-resonance photonic crystal membrane reflectors at mid- and far-Infrared,” IEEE Photon. J. 5(1), 4700206 (2013).
[Crossref]

Z. X. Qiang, H. Yang, S. Chuwongin, D. Zhao, Z. Ma, and W. D. Zhou, “Design of Fano broadband reflectors on SOI,” IEEE Photon. Technol. Lett. 22(15), 1108–1110 (2010).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (4)

A. S. Chadha, D. Zhao, S. Chuwongin, Z. Ma, and W. Zhou, “Polarization- and angle-dependent characteristics in two dimensional photonic crystal membrane reflectors,” Appl. Phys. Lett. 103(21), 211107 (2013).
[Crossref]

Y. Shuai, D. Zhao, A. S. Chadha, J. H. Seo, H. Yang, S. Fan, Z. Ma, and W. Zhou, “Coupled double-layer Fano resonance photonic crystal filters with lattice displacement,” Appl. Phys. Lett. 103(24), 241106 (2013).
[Crossref]

M. Carras, G. Maisons, B. Simozrag, M. Garcia, O. Parillaud, J. Massies, and X. Marcadet, “Room-temperature continuous-wave metal grating distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 96(16), 161105 (2010).
[Crossref]

Z. Yu, P. Deshpande, W. Wu, J. Wang, and S. Y. Chou, “Reflective polarizer based on a stacked double-layer subwavelength metal grating structure fabricated using nanoimprint lithography,” Appl. Phys. Lett. 77(7), 927–929 (2000).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

C. P. Ho, P. Pitchappa, P. Kropelnicki, J. Wang, Y. Gu, and C. Lee, “Development of Polycrystalline Silicon Based Photonic Crystal Membrane for Mid-Infrared Applications,” IEEE J. Sel. Top. Quantum Electron. 20(4), 94–100 (2014).
[Crossref]

IEEE Photon. J. (2)

Y. Shuai, D. Zhao, G. Medhi, R. Peale, Z. Ma, W. Buchwald, R. Soref, and W. D. Zhou, “Fano-resonance photonic crystal membrane reflectors at mid- and far-Infrared,” IEEE Photon. J. 5(1), 4700206 (2013).
[Crossref]

H. Li, L. Yan, Z. Guo, W. Pan, K. Wen, H. Li, and X. Luo, “Enhanced focusing properties using surface plasmon multilayer gratings,” IEEE Photon. J. 4(1), 57–64 (2012).
[Crossref]

IEEE Photon. Technol. Lett. (3)

L. Lu, F. Li, M. Xu, T. Wang, J. Wu, L. Zhou, and Y. Su, “Mode-selective hybrid plasmonic Bragg grating reflector,” IEEE Photon. Technol. Lett. 24(19), 1765–1767 (2012).
[Crossref]

Z. X. Qiang, H. Yang, S. Chuwongin, D. Zhao, Z. Ma, and W. D. Zhou, “Design of Fano broadband reflectors on SOI,” IEEE Photon. Technol. Lett. 22(15), 1108–1110 (2010).
[Crossref]

E. S. Kang, W. S. Kim, D. J. Kim, and B. S. Bae, “Reducing the thermal dependence of silica-based arrayed-waveguide grating using inorganic-organic hybrid materials,” IEEE Photon. Technol. Lett. 16(12), 2625–2627 (2004).
[Crossref]

J. Appl. Phys. (1)

S. Ghosh and G. Piazza, “Photonic microdisk resonators in aluminum nitride,” J. Appl. Phys. 113(1), 016101 (2013).
[Crossref]

J. Micromech. Microeng. (2)

N. Wang, F. L. Hsiao, J. M. Tsai, M. Palaniapan, D. L. Kwong, and C. Lee, “Numerical and experimental study on silicon microresonators based on phononic crystal slabs with reduced central-hole radii,” J. Micromech. Microeng. 23(6), 065030 (2013).
[Crossref]

T. Wang, X. Mu, P. Kropelnicki, A. B. Randles, and C. Lee, “Viscosity and density decoupling method by using higher order Lamb wave sensor,” J. Micromech. Microeng. 24(7), 075002 (2014).
[Crossref]

J. Nanophotonics (1)

C. P. Ho, P. Pitchappa, P. Kropelnicki, J. Wang, Y. Gu, and C. Lee, “Characterization of polycrystalline silicon based photonic crystal suspended membrane for high temperature applications,” J. Nanophotonics 8(1), 084096 (2014).
[Crossref]

Nano Lett. (1)

C. Xiong, W. H. Pernice, and H. X. Tang, “Low-loss, silicon integrated, aluminum nitride photonic circuits and their use for electro-optic signal processing,” Nano Lett. 12(7), 3562–3568 (2012).
[Crossref] [PubMed]

Nat. Photonics (1)

T. M. Jordan, J. C. Partridge, and N. W. Roberts, “Non-polarizing broadband multilayer reflectors in fish,” Nat. Photonics 6(11), 759–763 (2012).
[Crossref] [PubMed]

Opt. Commun. (1)

W. Shen, X. Sun, Y. Zhang, Z. Luo, X. Liu, and P. Gu, “Narrow band filters in both transmission and reflection with metal/dielectric thin films,” Opt. Commun. 2(282), 242–246 (2009).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Phys. Rev. B (1)

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002).
[Crossref]

Sens. Actuators A Phys. (1)

F. L. Hsiao and Y. T. Ren, “Computational study of slot photonic crystal ring-resonator for refractive index sensing,” Sens. Actuators A Phys. 205, 53–57 (2014).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Schematic drawing of the suspended AlN PhC slab, and (b) SEM image of the fabricated AlN PhC slab.
Fig. 2
Fig. 2 (a) FDTD simulation of the AlN based PhC with various air hole radii and (b) experimental measurement of the AlN based PhC device with underlying BOX and without the BOX layer.
Fig. 3
Fig. 3 (a) Experimental measurement of the effect of the change in the air hole radius on the performance of the AlN based PhC device (a) with underlying BOX and (b) without the BOX layer.
Fig. 4
Fig. 4 Measurement of the AlN based PhC of air hole radius of 620nm under various temperatures.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δλ=ΔT( λ 0 n 0 )( Δn ΔT ),

Metrics