Abstract

A self-optimizing approach to intra-cavity spectral shaping of external cavity mode-locked semiconductor lasers using edge-emitting multi-section diodes is presented. An evolutionary algorithm generates spectrally resolved phase- and amplitude masks that lead to the utilization of a large part of the net gain spectrum for mode-locked operation. Using these masks as a spectral amplitude and phase filter, a bandwidth of the optical intensity spectrum of 3.7 THz is achieved and Fourier-limited pulses of 216 fs duration are generated after further external compression.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Mode-locked semiconductor laser system with intracavity spatial light modulator for linear and nonlinear dispersion management

Jan C. Balzer, Benjamin Döpke, Carsten Brenner, Andreas Klehr, Götz Erbert, Günther Tränkle, and Martin R. Hofmann
Opt. Express 22(15) 18093-18100 (2014)

Self-starting stretched-pulse fiber laser mode locked and stabilized with slow and fast semiconductor saturable absorbers

M. Guina, N. Xiang, A. Vainionpää, O. G. Okhotnikov, T. Sajavaara, and J. Keinonen
Opt. Lett. 26(22) 1809-1811 (2001)

Gigahertz self-referenceable frequency comb from a semiconductor disk laser

Christian A. Zaugg, Alexander Klenner, Mario Mangold, Aline S. Mayer, Sandro M. Link, Florian Emaury, Matthias Golling, Emilio Gini, Clara J. Saraceno, Bauke W. Tilma, and Ursula Keller
Opt. Express 22(13) 16445-16455 (2014)

References

  • View by:
  • |
  • |
  • |

  1. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
    [Crossref] [PubMed]
  2. T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
    [Crossref] [PubMed]
  3. A. M. Weiner, “Fourier information optics for the ultrafast time domain,” Appl. Opt. 47(4), A88–A96 (2008).
    [Crossref] [PubMed]
  4. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
    [Crossref]
  5. W. Sibbett, A. A. Lagatsky, and C. T. A. Brown, “The development and application of femtosecond laser systems,” Opt. Express 20(7), 6989–7001 (2012).
    [Crossref] [PubMed]
  6. S. Gee, G. A. Alphonse, J. C. Connolly, C. Barty, and P. J. Delfyett, “Ultrashort pulse generation by intracavity spectral shaping and phase compensation of external-cavity modelocked semiconductor lasers,” IEEE J. Quantum Electron. 36(9), 1035–1040 (2000).
    [Crossref]
  7. T. Schlauch, J. C. Balzer, A. Klehr, G. Erbert, G. Tränkle, and M. R. Hofmann, “Femtosecond passively modelocked diode laser with intracavity dispersion management,” Opt. Express 18(23), 24316–24324 (2010).
    [Crossref] [PubMed]
  8. S. Kono, H. Watanabe, R. Koda, T. Miyajima, and M. Kuramoto, “200-fs pulse generation from a GaInN semiconductor laser diode passively mode-locked in a dispersion-compensated external cavity,” Appl. Phys. Lett. 101(8), 081121 (2012).
    [Crossref]
  9. J. C. Balzer, T. Schlauch, A. Klehr, G. Erbert, G. Tränkle, and M. R. Hofmann, “High peak power pulses from dispersion optimised modelocked semiconductor laser,” Electron. Lett. 49(13), 838–839 (2013).
    [Crossref]
  10. J. C. Balzer, B. Döpke, C. Brenner, A. Klehr, G. Erbert, G. Tränkle, and M. R. Hofmann, “Mode-locked semiconductor laser system with intracavity spatial light modulator for linear and nonlinear dispersion management,” Opt. Express 22(15), 18093–18100 (2014).
    [Crossref] [PubMed]
  11. A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, “Programmable femtosecond pulse shaping by use of a multielement liquid-crystal phase modulator,” Opt. Lett. 15(6), 326–328 (1990).
    [Crossref] [PubMed]
  12. E. B. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. 5(9), 454–458 (1969).
    [Crossref]
  13. A. Knauer, G. Erbert, R. Staske, B. Sumpf, H. Wenzel, and M. Weyers, “High-power 808 nm lasers with a super-large optical cavity,” Semicond. Sci. Technol. 20(6), 621–624 (2005).
    [Crossref]
  14. M. M. Wefers and K. A. Nelson, “Generation of high-fidelity programmable ultrafast optical waveforms,” Opt. Lett. 20(9), 1047–1049 (1995).
    [Crossref] [PubMed]
  15. H. P. Schwefel, Evolution and Optimum Seeking (Wiley Interscience, 1995).
  16. E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics 1(7), 395–401 (2007).
    [Crossref]
  17. C. Jördens, T. Schlauch, M. Li, M. R. Hofmann, M. Bieler, and M. Koch, “All-semiconductor laser driven terahertz time-domain spectrometer,” Appl. Phys. B 93(2–3), 515–520 (2008).
    [Crossref]
  18. V. Pervak, C. Teisset, A. Sugita, S. Naumov, F. Krausz, and A. Apolonski, “High-dispersive mirrors for femtosecond lasers,” Opt. Express 16(14), 10220–10233 (2008).
    [Crossref] [PubMed]

2014 (1)

2013 (1)

J. C. Balzer, T. Schlauch, A. Klehr, G. Erbert, G. Tränkle, and M. R. Hofmann, “High peak power pulses from dispersion optimised modelocked semiconductor laser,” Electron. Lett. 49(13), 838–839 (2013).
[Crossref]

2012 (2)

W. Sibbett, A. A. Lagatsky, and C. T. A. Brown, “The development and application of femtosecond laser systems,” Opt. Express 20(7), 6989–7001 (2012).
[Crossref] [PubMed]

S. Kono, H. Watanabe, R. Koda, T. Miyajima, and M. Kuramoto, “200-fs pulse generation from a GaInN semiconductor laser diode passively mode-locked in a dispersion-compensated external cavity,” Appl. Phys. Lett. 101(8), 081121 (2012).
[Crossref]

2010 (1)

2008 (4)

A. M. Weiner, “Fourier information optics for the ultrafast time domain,” Appl. Opt. 47(4), A88–A96 (2008).
[Crossref] [PubMed]

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

C. Jördens, T. Schlauch, M. Li, M. R. Hofmann, M. Bieler, and M. Koch, “All-semiconductor laser driven terahertz time-domain spectrometer,” Appl. Phys. B 93(2–3), 515–520 (2008).
[Crossref]

V. Pervak, C. Teisset, A. Sugita, S. Naumov, F. Krausz, and A. Apolonski, “High-dispersive mirrors for femtosecond lasers,” Opt. Express 16(14), 10220–10233 (2008).
[Crossref] [PubMed]

2007 (1)

E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics 1(7), 395–401 (2007).
[Crossref]

2005 (1)

A. Knauer, G. Erbert, R. Staske, B. Sumpf, H. Wenzel, and M. Weyers, “High-power 808 nm lasers with a super-large optical cavity,” Semicond. Sci. Technol. 20(6), 621–624 (2005).
[Crossref]

2002 (1)

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref] [PubMed]

2000 (1)

S. Gee, G. A. Alphonse, J. C. Connolly, C. Barty, and P. J. Delfyett, “Ultrashort pulse generation by intracavity spectral shaping and phase compensation of external-cavity modelocked semiconductor lasers,” IEEE J. Quantum Electron. 36(9), 1035–1040 (2000).
[Crossref]

1995 (1)

1990 (2)

1969 (1)

E. B. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. 5(9), 454–458 (1969).
[Crossref]

Alphonse, G. A.

S. Gee, G. A. Alphonse, J. C. Connolly, C. Barty, and P. J. Delfyett, “Ultrashort pulse generation by intracavity spectral shaping and phase compensation of external-cavity modelocked semiconductor lasers,” IEEE J. Quantum Electron. 36(9), 1035–1040 (2000).
[Crossref]

Apolonski, A.

Balzer, J. C.

Barty, C.

S. Gee, G. A. Alphonse, J. C. Connolly, C. Barty, and P. J. Delfyett, “Ultrashort pulse generation by intracavity spectral shaping and phase compensation of external-cavity modelocked semiconductor lasers,” IEEE J. Quantum Electron. 36(9), 1035–1040 (2000).
[Crossref]

Bieler, M.

C. Jördens, T. Schlauch, M. Li, M. R. Hofmann, M. Bieler, and M. Koch, “All-semiconductor laser driven terahertz time-domain spectrometer,” Appl. Phys. B 93(2–3), 515–520 (2008).
[Crossref]

Brenner, C.

Brown, C. T. A.

Cataluna, M. A.

E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics 1(7), 395–401 (2007).
[Crossref]

Connolly, J. C.

S. Gee, G. A. Alphonse, J. C. Connolly, C. Barty, and P. J. Delfyett, “Ultrashort pulse generation by intracavity spectral shaping and phase compensation of external-cavity modelocked semiconductor lasers,” IEEE J. Quantum Electron. 36(9), 1035–1040 (2000).
[Crossref]

Delfyett, P. J.

S. Gee, G. A. Alphonse, J. C. Connolly, C. Barty, and P. J. Delfyett, “Ultrashort pulse generation by intracavity spectral shaping and phase compensation of external-cavity modelocked semiconductor lasers,” IEEE J. Quantum Electron. 36(9), 1035–1040 (2000).
[Crossref]

Denk, W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Döpke, B.

Erbert, G.

J. C. Balzer, B. Döpke, C. Brenner, A. Klehr, G. Erbert, G. Tränkle, and M. R. Hofmann, “Mode-locked semiconductor laser system with intracavity spatial light modulator for linear and nonlinear dispersion management,” Opt. Express 22(15), 18093–18100 (2014).
[Crossref] [PubMed]

J. C. Balzer, T. Schlauch, A. Klehr, G. Erbert, G. Tränkle, and M. R. Hofmann, “High peak power pulses from dispersion optimised modelocked semiconductor laser,” Electron. Lett. 49(13), 838–839 (2013).
[Crossref]

T. Schlauch, J. C. Balzer, A. Klehr, G. Erbert, G. Tränkle, and M. R. Hofmann, “Femtosecond passively modelocked diode laser with intracavity dispersion management,” Opt. Express 18(23), 24316–24324 (2010).
[Crossref] [PubMed]

A. Knauer, G. Erbert, R. Staske, B. Sumpf, H. Wenzel, and M. Weyers, “High-power 808 nm lasers with a super-large optical cavity,” Semicond. Sci. Technol. 20(6), 621–624 (2005).
[Crossref]

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Gee, S.

S. Gee, G. A. Alphonse, J. C. Connolly, C. Barty, and P. J. Delfyett, “Ultrashort pulse generation by intracavity spectral shaping and phase compensation of external-cavity modelocked semiconductor lasers,” IEEE J. Quantum Electron. 36(9), 1035–1040 (2000).
[Crossref]

Hänsch, T. W.

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref] [PubMed]

Hofmann, M. R.

J. C. Balzer, B. Döpke, C. Brenner, A. Klehr, G. Erbert, G. Tränkle, and M. R. Hofmann, “Mode-locked semiconductor laser system with intracavity spatial light modulator for linear and nonlinear dispersion management,” Opt. Express 22(15), 18093–18100 (2014).
[Crossref] [PubMed]

J. C. Balzer, T. Schlauch, A. Klehr, G. Erbert, G. Tränkle, and M. R. Hofmann, “High peak power pulses from dispersion optimised modelocked semiconductor laser,” Electron. Lett. 49(13), 838–839 (2013).
[Crossref]

T. Schlauch, J. C. Balzer, A. Klehr, G. Erbert, G. Tränkle, and M. R. Hofmann, “Femtosecond passively modelocked diode laser with intracavity dispersion management,” Opt. Express 18(23), 24316–24324 (2010).
[Crossref] [PubMed]

C. Jördens, T. Schlauch, M. Li, M. R. Hofmann, M. Bieler, and M. Koch, “All-semiconductor laser driven terahertz time-domain spectrometer,” Appl. Phys. B 93(2–3), 515–520 (2008).
[Crossref]

Holzwarth, R.

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref] [PubMed]

Jördens, C.

C. Jördens, T. Schlauch, M. Li, M. R. Hofmann, M. Bieler, and M. Koch, “All-semiconductor laser driven terahertz time-domain spectrometer,” Appl. Phys. B 93(2–3), 515–520 (2008).
[Crossref]

Klehr, A.

Knauer, A.

A. Knauer, G. Erbert, R. Staske, B. Sumpf, H. Wenzel, and M. Weyers, “High-power 808 nm lasers with a super-large optical cavity,” Semicond. Sci. Technol. 20(6), 621–624 (2005).
[Crossref]

Koch, M.

C. Jördens, T. Schlauch, M. Li, M. R. Hofmann, M. Bieler, and M. Koch, “All-semiconductor laser driven terahertz time-domain spectrometer,” Appl. Phys. B 93(2–3), 515–520 (2008).
[Crossref]

Koda, R.

S. Kono, H. Watanabe, R. Koda, T. Miyajima, and M. Kuramoto, “200-fs pulse generation from a GaInN semiconductor laser diode passively mode-locked in a dispersion-compensated external cavity,” Appl. Phys. Lett. 101(8), 081121 (2012).
[Crossref]

Kono, S.

S. Kono, H. Watanabe, R. Koda, T. Miyajima, and M. Kuramoto, “200-fs pulse generation from a GaInN semiconductor laser diode passively mode-locked in a dispersion-compensated external cavity,” Appl. Phys. Lett. 101(8), 081121 (2012).
[Crossref]

Krausz, F.

Kuramoto, M.

S. Kono, H. Watanabe, R. Koda, T. Miyajima, and M. Kuramoto, “200-fs pulse generation from a GaInN semiconductor laser diode passively mode-locked in a dispersion-compensated external cavity,” Appl. Phys. Lett. 101(8), 081121 (2012).
[Crossref]

Lagatsky, A. A.

Leaird, D. E.

Li, M.

C. Jördens, T. Schlauch, M. Li, M. R. Hofmann, M. Bieler, and M. Koch, “All-semiconductor laser driven terahertz time-domain spectrometer,” Appl. Phys. B 93(2–3), 515–520 (2008).
[Crossref]

Mazur, E.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

Miyajima, T.

S. Kono, H. Watanabe, R. Koda, T. Miyajima, and M. Kuramoto, “200-fs pulse generation from a GaInN semiconductor laser diode passively mode-locked in a dispersion-compensated external cavity,” Appl. Phys. Lett. 101(8), 081121 (2012).
[Crossref]

Naumov, S.

Nelson, K. A.

Patel, J. S.

Pervak, V.

Rafailov, E. U.

E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics 1(7), 395–401 (2007).
[Crossref]

Schlauch, T.

J. C. Balzer, T. Schlauch, A. Klehr, G. Erbert, G. Tränkle, and M. R. Hofmann, “High peak power pulses from dispersion optimised modelocked semiconductor laser,” Electron. Lett. 49(13), 838–839 (2013).
[Crossref]

T. Schlauch, J. C. Balzer, A. Klehr, G. Erbert, G. Tränkle, and M. R. Hofmann, “Femtosecond passively modelocked diode laser with intracavity dispersion management,” Opt. Express 18(23), 24316–24324 (2010).
[Crossref] [PubMed]

C. Jördens, T. Schlauch, M. Li, M. R. Hofmann, M. Bieler, and M. Koch, “All-semiconductor laser driven terahertz time-domain spectrometer,” Appl. Phys. B 93(2–3), 515–520 (2008).
[Crossref]

Sibbett, W.

W. Sibbett, A. A. Lagatsky, and C. T. A. Brown, “The development and application of femtosecond laser systems,” Opt. Express 20(7), 6989–7001 (2012).
[Crossref] [PubMed]

E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics 1(7), 395–401 (2007).
[Crossref]

Staske, R.

A. Knauer, G. Erbert, R. Staske, B. Sumpf, H. Wenzel, and M. Weyers, “High-power 808 nm lasers with a super-large optical cavity,” Semicond. Sci. Technol. 20(6), 621–624 (2005).
[Crossref]

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Sugita, A.

Sumpf, B.

A. Knauer, G. Erbert, R. Staske, B. Sumpf, H. Wenzel, and M. Weyers, “High-power 808 nm lasers with a super-large optical cavity,” Semicond. Sci. Technol. 20(6), 621–624 (2005).
[Crossref]

Teisset, C.

Tränkle, G.

Treacy, E. B.

E. B. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. 5(9), 454–458 (1969).
[Crossref]

Udem, T.

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref] [PubMed]

Watanabe, H.

S. Kono, H. Watanabe, R. Koda, T. Miyajima, and M. Kuramoto, “200-fs pulse generation from a GaInN semiconductor laser diode passively mode-locked in a dispersion-compensated external cavity,” Appl. Phys. Lett. 101(8), 081121 (2012).
[Crossref]

Webb, W. W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Wefers, M. M.

Weiner, A. M.

Wenzel, H.

A. Knauer, G. Erbert, R. Staske, B. Sumpf, H. Wenzel, and M. Weyers, “High-power 808 nm lasers with a super-large optical cavity,” Semicond. Sci. Technol. 20(6), 621–624 (2005).
[Crossref]

Weyers, M.

A. Knauer, G. Erbert, R. Staske, B. Sumpf, H. Wenzel, and M. Weyers, “High-power 808 nm lasers with a super-large optical cavity,” Semicond. Sci. Technol. 20(6), 621–624 (2005).
[Crossref]

Wullert, J. R.

Appl. Opt. (1)

Appl. Phys. B (1)

C. Jördens, T. Schlauch, M. Li, M. R. Hofmann, M. Bieler, and M. Koch, “All-semiconductor laser driven terahertz time-domain spectrometer,” Appl. Phys. B 93(2–3), 515–520 (2008).
[Crossref]

Appl. Phys. Lett. (1)

S. Kono, H. Watanabe, R. Koda, T. Miyajima, and M. Kuramoto, “200-fs pulse generation from a GaInN semiconductor laser diode passively mode-locked in a dispersion-compensated external cavity,” Appl. Phys. Lett. 101(8), 081121 (2012).
[Crossref]

Electron. Lett. (1)

J. C. Balzer, T. Schlauch, A. Klehr, G. Erbert, G. Tränkle, and M. R. Hofmann, “High peak power pulses from dispersion optimised modelocked semiconductor laser,” Electron. Lett. 49(13), 838–839 (2013).
[Crossref]

IEEE J. Quantum Electron. (2)

S. Gee, G. A. Alphonse, J. C. Connolly, C. Barty, and P. J. Delfyett, “Ultrashort pulse generation by intracavity spectral shaping and phase compensation of external-cavity modelocked semiconductor lasers,” IEEE J. Quantum Electron. 36(9), 1035–1040 (2000).
[Crossref]

E. B. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. 5(9), 454–458 (1969).
[Crossref]

Nat. Photonics (2)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2(4), 219–225 (2008).
[Crossref]

E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics 1(7), 395–401 (2007).
[Crossref]

Nature (1)

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (2)

Science (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[Crossref] [PubMed]

Semicond. Sci. Technol. (1)

A. Knauer, G. Erbert, R. Staske, B. Sumpf, H. Wenzel, and M. Weyers, “High-power 808 nm lasers with a super-large optical cavity,” Semicond. Sci. Technol. 20(6), 621–624 (2005).
[Crossref]

Other (1)

H. P. Schwefel, Evolution and Optimum Seeking (Wiley Interscience, 1995).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Experimental setup. The beam is coupled out of the AR-coated facet (AR) of a multi-section laser diode and collimated with an aspheric lens (L1). The spectral components are diffracted into the −1’st diffraction order by the reflection grating (RG), focused with the achromatic lens (L2) and modulated by the spatial light modulator (SLM). The cavity is formed by the back facet of the laser diode and the mirror (M) behind the SLM. The 0th diffraction order is used to couple the beam out into a folded transmission grating compressor (TG), the beam reflected back from the compressor is separated from the incoming beam with a pickoff-mirror (PM). Spectra and autocorrelations are measured behind the output.
Fig. 2
Fig. 2 Optimization using an evolutionary algorithm. (a), spectrum of the laser diode in a conventional external cavity using an output coupler as end mirror (red solid line); spectrum of the laser in the SLM system without an applied mask (black solid line); spectrally resolved threshold currents (blue rectangles). (b), evolution of the maximum fitness per generation for a run of the evolutionary algorithm over 100 generations. (c), optical spectra for the best individuals of generations 1, 15, 30, 45 and 60.
Fig. 3
Fig. 3 Comparison between masks, spectrum and spectrally resolved threshold after optimization. Phase mask applied to the SLM (green solid line); optical spectrum of the laser at threshold (grey solid line); amplitude mask applied to the SLM (red solid line); spectrally resolved threshold currents, also shown in Fig. 2(a) (blue rectangles).
Fig. 4
Fig. 4 Autocorrelation trace and electrical spectrum for the optimized resonator. Intensity autocorrelation after external compression of the laser pulse found for the best individual of generation 100 of the evolutionary algorithm run depicted in Fig. 2(a) (black solid curve); autocorrelation of the Fourier transform of the optical spectrum (red solid curve). Inset: electrical spectrum taken by a fast photo-diode.

Metrics