Abstract

In this paper, a novel approach to implement switchable and tunable microwave frequency multiplication has been proposed and experimentally demonstrated. High order harmonics of microwave signal with external modulation technique can be selected by using a novel switchable dual-passband microwave photonic filter (MPF) based on a modified fiber Mach-Zehnder interferometer (FMZI) and a dispersive medium. By adjusting the polarization controllers in the modified FMZI, the passbands of the MPF can switch between lower frequency, higher frequency or dual-passband states, and by changing the length of the variable optical delay line (VODL) in the modified FMZI, the central frequencies of these passbands can also be tuned. Therefore, tunable and switchable microwave signal frequency multiplication can be achieved. The experimental results show that by modulating a driving signal with frequency of 2.5 GHz, a signal with frequency of 7.5 GHz, which is three times of the driving frequency, the other one with the frequency of 15 GHz, which is six times of the driving frequency can be generated and freely switchable between two frequencies and dual frequency states by simply adjusting the polarization controllers in the modified FMZI.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Tunable multiple-passband microwave photonic filter based on external optical injected Fabry-Pérot laser

Wenxuan Wang, Long Huang, Ji Tao, Huatao Zhu, Xinwei Du, Lijun Hao, Changyuan Yu, and Xiangfei Chen
Opt. Express 27(9) 12491-12503 (2019)

Microwave photonic filter with multiple independently tunable passbands based on a broadband optical source

Long Huang, Dalei Chen, Fangzheng Zhang, Peng Xiang, Tingting Zhang, Peng Wang, Linlin Lu, Tao Pu, and Xiangfei Chen
Opt. Express 23(20) 25539-25552 (2015)

Tunable dual-passband microwave photonic filter with a fixed frequency interval using phase-to-intensity modulation conversion by stimulated Brillouin scattering

Zhengkai Li, Zhiyao Zhang, Zhen Zeng, Jun Yuan, Shangjian Zhang, Yali Zhang, Zhengping Zhang, and Yong Liu
Appl. Opt. 58(8) 1961-1965 (2019)

References

  • View by:
  • |
  • |
  • |

  1. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
    [Crossref]
  2. J. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
    [Crossref]
  3. J. Yu, Z. Jia, L. Yi, Y. Su, G. K. Chang, and T. Wang, “Optical millimeter-wave generation or up-conversion using external modulators,” IEEE Photon. Technol. Lett. 18(1), 265–267 (2006).
    [Crossref]
  4. Z. Jia, J. Yu, G. Ellinas, and G. K. Chang, “Key enabling technologies for optical–wireless networks: optical millimeter-wave generation, wavelength reuse, and architecture,” J. Lightwave Technol. 25(11), 3452–3471 (2007).
    [Crossref]
  5. W. Li and J. Yao, “Investigation of photonically assisted microwave frequency multiplication based on external modulation,” IEEE Trans. Microw. Theory Tech. 58(11), 3259–3268 (2010).
    [Crossref]
  6. B. Vidal, A. Bockelt, and J. Palaci, “Cascaded four-wave mixing for microwave photonic harmonic multiplication,” IEEE Photon. Technol. Lett. 25(1), 100–103 (2013).
    [Crossref]
  7. H. Ou, C. Ye, K. Zhu, Y. Hu, and H. Fu, “Millimeter-wave harmonic signal generation and distribution using a tunable single-resonance microwave photonic filter,” J. Lightwave Technol. 28(16), 2337–2342 (2010).
    [Crossref]
  8. G. J. Schneider, J. A. Murakowski, C. A. Schuetz, S. Shi, and D. W. Prather, “Radiofrequency signal-generation system with over seven octaves of continuous tuning,” Nat. Photonics 7(2), 118–122 (2013).
    [Crossref]
  9. L. Gao, W. Liu, X. Chen, and J. Yao, “Photonic-assisted microwave frequency multiplication with a tunable multiplication factor,” Opt. Lett. 38(21), 4487–4490 (2013).
    [Crossref] [PubMed]
  10. J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” J. Lightwave Technol. 31(4), 571–586 (2013).
    [Crossref]
  11. J. Mora, B. Ortega, A. Díez, J. L. Cruz, M. V. Andrés, J. Capmany, and D. Pastor, “Photonic microwave tunable single-bandpass filter based on a Mach-Zehnder interferometer,” J. Lightwave Technol. 24(7), 2500–2509 (2006).
    [Crossref]
  12. H. Fu, K. Zhu, H. Ou, and S. He, “A tunable single-passband microwave photonic filter with positive and negative taps using a fiber Mach–Zehnder interferometer and phase modulation,” Opt. Laser Technol. 42(1), 81–84 (2010).
    [Crossref]
  13. T. X. H. Huang, X. Yi, and R. A. Minasian, “Single passband microwave photonic filter using continuous-time impulse response,” Opt. Express 19(7), 6231–6242 (2011).
    [Crossref] [PubMed]
  14. Y. Jiang, P. P. Shum, P. Zu, J. Zhou, G. Bai, J. Xu, Z. Zhou, H. Li, and S. Wang, “A Selectable Multiband Bandpass Microwave Photonic Filter,” IEEE Photon. J. 5(3), 5500509 (2013).
    [Crossref]
  15. A. P. Luo, Z. C. Luo, and W. C. Xu, “Tunable and switchable multiwavelength erbium-doped fiber ring laser based on a modified dual-pass Mach-Zehnder interferometer,” Opt. Lett. 34(14), 2135–2137 (2009).
    [Crossref] [PubMed]

2013 (5)

G. J. Schneider, J. A. Murakowski, C. A. Schuetz, S. Shi, and D. W. Prather, “Radiofrequency signal-generation system with over seven octaves of continuous tuning,” Nat. Photonics 7(2), 118–122 (2013).
[Crossref]

L. Gao, W. Liu, X. Chen, and J. Yao, “Photonic-assisted microwave frequency multiplication with a tunable multiplication factor,” Opt. Lett. 38(21), 4487–4490 (2013).
[Crossref] [PubMed]

J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” J. Lightwave Technol. 31(4), 571–586 (2013).
[Crossref]

B. Vidal, A. Bockelt, and J. Palaci, “Cascaded four-wave mixing for microwave photonic harmonic multiplication,” IEEE Photon. Technol. Lett. 25(1), 100–103 (2013).
[Crossref]

Y. Jiang, P. P. Shum, P. Zu, J. Zhou, G. Bai, J. Xu, Z. Zhou, H. Li, and S. Wang, “A Selectable Multiband Bandpass Microwave Photonic Filter,” IEEE Photon. J. 5(3), 5500509 (2013).
[Crossref]

2011 (1)

2010 (3)

H. Ou, C. Ye, K. Zhu, Y. Hu, and H. Fu, “Millimeter-wave harmonic signal generation and distribution using a tunable single-resonance microwave photonic filter,” J. Lightwave Technol. 28(16), 2337–2342 (2010).
[Crossref]

W. Li and J. Yao, “Investigation of photonically assisted microwave frequency multiplication based on external modulation,” IEEE Trans. Microw. Theory Tech. 58(11), 3259–3268 (2010).
[Crossref]

H. Fu, K. Zhu, H. Ou, and S. He, “A tunable single-passband microwave photonic filter with positive and negative taps using a fiber Mach–Zehnder interferometer and phase modulation,” Opt. Laser Technol. 42(1), 81–84 (2010).
[Crossref]

2009 (2)

2007 (2)

2006 (2)

J. Yu, Z. Jia, L. Yi, Y. Su, G. K. Chang, and T. Wang, “Optical millimeter-wave generation or up-conversion using external modulators,” IEEE Photon. Technol. Lett. 18(1), 265–267 (2006).
[Crossref]

J. Mora, B. Ortega, A. Díez, J. L. Cruz, M. V. Andrés, J. Capmany, and D. Pastor, “Photonic microwave tunable single-bandpass filter based on a Mach-Zehnder interferometer,” J. Lightwave Technol. 24(7), 2500–2509 (2006).
[Crossref]

Andrés, M. V.

Bai, G.

Y. Jiang, P. P. Shum, P. Zu, J. Zhou, G. Bai, J. Xu, Z. Zhou, H. Li, and S. Wang, “A Selectable Multiband Bandpass Microwave Photonic Filter,” IEEE Photon. J. 5(3), 5500509 (2013).
[Crossref]

Bockelt, A.

B. Vidal, A. Bockelt, and J. Palaci, “Cascaded four-wave mixing for microwave photonic harmonic multiplication,” IEEE Photon. Technol. Lett. 25(1), 100–103 (2013).
[Crossref]

Capmany, J.

Chang, G. K.

Z. Jia, J. Yu, G. Ellinas, and G. K. Chang, “Key enabling technologies for optical–wireless networks: optical millimeter-wave generation, wavelength reuse, and architecture,” J. Lightwave Technol. 25(11), 3452–3471 (2007).
[Crossref]

J. Yu, Z. Jia, L. Yi, Y. Su, G. K. Chang, and T. Wang, “Optical millimeter-wave generation or up-conversion using external modulators,” IEEE Photon. Technol. Lett. 18(1), 265–267 (2006).
[Crossref]

Chen, X.

Cruz, J. L.

Díez, A.

Ellinas, G.

Fu, H.

H. Ou, C. Ye, K. Zhu, Y. Hu, and H. Fu, “Millimeter-wave harmonic signal generation and distribution using a tunable single-resonance microwave photonic filter,” J. Lightwave Technol. 28(16), 2337–2342 (2010).
[Crossref]

H. Fu, K. Zhu, H. Ou, and S. He, “A tunable single-passband microwave photonic filter with positive and negative taps using a fiber Mach–Zehnder interferometer and phase modulation,” Opt. Laser Technol. 42(1), 81–84 (2010).
[Crossref]

Gao, L.

Gasulla, I.

He, S.

H. Fu, K. Zhu, H. Ou, and S. He, “A tunable single-passband microwave photonic filter with positive and negative taps using a fiber Mach–Zehnder interferometer and phase modulation,” Opt. Laser Technol. 42(1), 81–84 (2010).
[Crossref]

Hu, Y.

Huang, T. X. H.

Jia, Z.

Z. Jia, J. Yu, G. Ellinas, and G. K. Chang, “Key enabling technologies for optical–wireless networks: optical millimeter-wave generation, wavelength reuse, and architecture,” J. Lightwave Technol. 25(11), 3452–3471 (2007).
[Crossref]

J. Yu, Z. Jia, L. Yi, Y. Su, G. K. Chang, and T. Wang, “Optical millimeter-wave generation or up-conversion using external modulators,” IEEE Photon. Technol. Lett. 18(1), 265–267 (2006).
[Crossref]

Jiang, Y.

Y. Jiang, P. P. Shum, P. Zu, J. Zhou, G. Bai, J. Xu, Z. Zhou, H. Li, and S. Wang, “A Selectable Multiband Bandpass Microwave Photonic Filter,” IEEE Photon. J. 5(3), 5500509 (2013).
[Crossref]

Li, H.

Y. Jiang, P. P. Shum, P. Zu, J. Zhou, G. Bai, J. Xu, Z. Zhou, H. Li, and S. Wang, “A Selectable Multiband Bandpass Microwave Photonic Filter,” IEEE Photon. J. 5(3), 5500509 (2013).
[Crossref]

Li, W.

W. Li and J. Yao, “Investigation of photonically assisted microwave frequency multiplication based on external modulation,” IEEE Trans. Microw. Theory Tech. 58(11), 3259–3268 (2010).
[Crossref]

Liu, W.

Lloret, J.

Luo, A. P.

Luo, Z. C.

Minasian, R. A.

Mora, J.

Murakowski, J. A.

G. J. Schneider, J. A. Murakowski, C. A. Schuetz, S. Shi, and D. W. Prather, “Radiofrequency signal-generation system with over seven octaves of continuous tuning,” Nat. Photonics 7(2), 118–122 (2013).
[Crossref]

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Ortega, B.

Ou, H.

H. Fu, K. Zhu, H. Ou, and S. He, “A tunable single-passband microwave photonic filter with positive and negative taps using a fiber Mach–Zehnder interferometer and phase modulation,” Opt. Laser Technol. 42(1), 81–84 (2010).
[Crossref]

H. Ou, C. Ye, K. Zhu, Y. Hu, and H. Fu, “Millimeter-wave harmonic signal generation and distribution using a tunable single-resonance microwave photonic filter,” J. Lightwave Technol. 28(16), 2337–2342 (2010).
[Crossref]

Palaci, J.

B. Vidal, A. Bockelt, and J. Palaci, “Cascaded four-wave mixing for microwave photonic harmonic multiplication,” IEEE Photon. Technol. Lett. 25(1), 100–103 (2013).
[Crossref]

Pastor, D.

Prather, D. W.

G. J. Schneider, J. A. Murakowski, C. A. Schuetz, S. Shi, and D. W. Prather, “Radiofrequency signal-generation system with over seven octaves of continuous tuning,” Nat. Photonics 7(2), 118–122 (2013).
[Crossref]

Sales, S.

Sancho, J.

Schneider, G. J.

G. J. Schneider, J. A. Murakowski, C. A. Schuetz, S. Shi, and D. W. Prather, “Radiofrequency signal-generation system with over seven octaves of continuous tuning,” Nat. Photonics 7(2), 118–122 (2013).
[Crossref]

Schuetz, C. A.

G. J. Schneider, J. A. Murakowski, C. A. Schuetz, S. Shi, and D. W. Prather, “Radiofrequency signal-generation system with over seven octaves of continuous tuning,” Nat. Photonics 7(2), 118–122 (2013).
[Crossref]

Shi, S.

G. J. Schneider, J. A. Murakowski, C. A. Schuetz, S. Shi, and D. W. Prather, “Radiofrequency signal-generation system with over seven octaves of continuous tuning,” Nat. Photonics 7(2), 118–122 (2013).
[Crossref]

Shum, P. P.

Y. Jiang, P. P. Shum, P. Zu, J. Zhou, G. Bai, J. Xu, Z. Zhou, H. Li, and S. Wang, “A Selectable Multiband Bandpass Microwave Photonic Filter,” IEEE Photon. J. 5(3), 5500509 (2013).
[Crossref]

Su, Y.

J. Yu, Z. Jia, L. Yi, Y. Su, G. K. Chang, and T. Wang, “Optical millimeter-wave generation or up-conversion using external modulators,” IEEE Photon. Technol. Lett. 18(1), 265–267 (2006).
[Crossref]

Vidal, B.

B. Vidal, A. Bockelt, and J. Palaci, “Cascaded four-wave mixing for microwave photonic harmonic multiplication,” IEEE Photon. Technol. Lett. 25(1), 100–103 (2013).
[Crossref]

Wang, S.

Y. Jiang, P. P. Shum, P. Zu, J. Zhou, G. Bai, J. Xu, Z. Zhou, H. Li, and S. Wang, “A Selectable Multiband Bandpass Microwave Photonic Filter,” IEEE Photon. J. 5(3), 5500509 (2013).
[Crossref]

Wang, T.

J. Yu, Z. Jia, L. Yi, Y. Su, G. K. Chang, and T. Wang, “Optical millimeter-wave generation or up-conversion using external modulators,” IEEE Photon. Technol. Lett. 18(1), 265–267 (2006).
[Crossref]

Xu, J.

Y. Jiang, P. P. Shum, P. Zu, J. Zhou, G. Bai, J. Xu, Z. Zhou, H. Li, and S. Wang, “A Selectable Multiband Bandpass Microwave Photonic Filter,” IEEE Photon. J. 5(3), 5500509 (2013).
[Crossref]

Xu, W. C.

Yao, J.

Ye, C.

Yi, L.

J. Yu, Z. Jia, L. Yi, Y. Su, G. K. Chang, and T. Wang, “Optical millimeter-wave generation or up-conversion using external modulators,” IEEE Photon. Technol. Lett. 18(1), 265–267 (2006).
[Crossref]

Yi, X.

Yu, J.

Z. Jia, J. Yu, G. Ellinas, and G. K. Chang, “Key enabling technologies for optical–wireless networks: optical millimeter-wave generation, wavelength reuse, and architecture,” J. Lightwave Technol. 25(11), 3452–3471 (2007).
[Crossref]

J. Yu, Z. Jia, L. Yi, Y. Su, G. K. Chang, and T. Wang, “Optical millimeter-wave generation or up-conversion using external modulators,” IEEE Photon. Technol. Lett. 18(1), 265–267 (2006).
[Crossref]

Zhou, J.

Y. Jiang, P. P. Shum, P. Zu, J. Zhou, G. Bai, J. Xu, Z. Zhou, H. Li, and S. Wang, “A Selectable Multiband Bandpass Microwave Photonic Filter,” IEEE Photon. J. 5(3), 5500509 (2013).
[Crossref]

Zhou, Z.

Y. Jiang, P. P. Shum, P. Zu, J. Zhou, G. Bai, J. Xu, Z. Zhou, H. Li, and S. Wang, “A Selectable Multiband Bandpass Microwave Photonic Filter,” IEEE Photon. J. 5(3), 5500509 (2013).
[Crossref]

Zhu, K.

H. Fu, K. Zhu, H. Ou, and S. He, “A tunable single-passband microwave photonic filter with positive and negative taps using a fiber Mach–Zehnder interferometer and phase modulation,” Opt. Laser Technol. 42(1), 81–84 (2010).
[Crossref]

H. Ou, C. Ye, K. Zhu, Y. Hu, and H. Fu, “Millimeter-wave harmonic signal generation and distribution using a tunable single-resonance microwave photonic filter,” J. Lightwave Technol. 28(16), 2337–2342 (2010).
[Crossref]

Zu, P.

Y. Jiang, P. P. Shum, P. Zu, J. Zhou, G. Bai, J. Xu, Z. Zhou, H. Li, and S. Wang, “A Selectable Multiband Bandpass Microwave Photonic Filter,” IEEE Photon. J. 5(3), 5500509 (2013).
[Crossref]

IEEE Photon. J. (1)

Y. Jiang, P. P. Shum, P. Zu, J. Zhou, G. Bai, J. Xu, Z. Zhou, H. Li, and S. Wang, “A Selectable Multiband Bandpass Microwave Photonic Filter,” IEEE Photon. J. 5(3), 5500509 (2013).
[Crossref]

IEEE Photon. Technol. Lett. (2)

J. Yu, Z. Jia, L. Yi, Y. Su, G. K. Chang, and T. Wang, “Optical millimeter-wave generation or up-conversion using external modulators,” IEEE Photon. Technol. Lett. 18(1), 265–267 (2006).
[Crossref]

B. Vidal, A. Bockelt, and J. Palaci, “Cascaded four-wave mixing for microwave photonic harmonic multiplication,” IEEE Photon. Technol. Lett. 25(1), 100–103 (2013).
[Crossref]

IEEE Trans. Microw. Theory Tech. (1)

W. Li and J. Yao, “Investigation of photonically assisted microwave frequency multiplication based on external modulation,” IEEE Trans. Microw. Theory Tech. 58(11), 3259–3268 (2010).
[Crossref]

J. Lightwave Technol. (5)

Nat. Photonics (2)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

G. J. Schneider, J. A. Murakowski, C. A. Schuetz, S. Shi, and D. W. Prather, “Radiofrequency signal-generation system with over seven octaves of continuous tuning,” Nat. Photonics 7(2), 118–122 (2013).
[Crossref]

Opt. Express (1)

Opt. Laser Technol. (1)

H. Fu, K. Zhu, H. Ou, and S. He, “A tunable single-passband microwave photonic filter with positive and negative taps using a fiber Mach–Zehnder interferometer and phase modulation,” Opt. Laser Technol. 42(1), 81–84 (2010).
[Crossref]

Opt. Lett. (2)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematic diagram of the proposed switchable and tunable microwave frequency; broadband optical source: BOS; optical isolator: ISO; Mach-Zehnder modulator: MZM; photodiode: PD; electrical spectrum analyzer: ESA; optical coupler: OC; polarization controller: PC; variable optical delay line: VODL.
Fig. 2
Fig. 2 Calculated transmission spectra of the modified FMZI by adjusting PC1 and PC2.
Fig. 3
Fig. 3 Calculated frequency response of the switchable MPF.
Fig. 4
Fig. 4 Operation principle of the proposed microwave signal multiplication.
Fig. 5
Fig. 5 Frequency response of the MPF (a)(b)(c) and the corresponding transmission spectra of the spectrum slicer (d)(e)(f).
Fig. 6
Fig. 6 Measured frequency responses of the MPF for the dual-passband state with different length of VODL (a) and the relationship between the central frequencies and the length of VODL (b).
Fig. 7
Fig. 7 Measured power and frequency stability for the proposed MPF.
Fig. 8
Fig. 8 Measured microwave frequency multiplication with the driving signal at 1 GHz, 1.5 GHz, 2 GHz, 2.5 GHz, 3 GHz, respectively.
Fig. 9
Fig. 9 Measured tripled and sextuple microwave signal generation when the driving microwave signal with 2.5 GHz is applied.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

T FMZI = | E 2out E 1in | 2 =2 a 2 ( 1 a 2 )+ ( 12 a 2 ) 2 sin 2 θ sin 2 δ 2 +2 a 2 ( 1 a 2 )[( cos 2 θ sin 2 θcosδ)cos2φ+sinθsin(2α+θ)sinδsin2φ] 2(12 a 2 ) a 2 ( 1 a 2 ) sin 2 θ×cos(2α+θ)sinδsinφ
H RF ( f )= S(ω)· T FMZI ( ω )[ m 1 H * ( ω )H( ω2πf ) m 2 H( ω ) H * ( ω+2πf ) ]dω
Ω=2π f 0 = 2π βLΔω

Metrics