Abstract

We report ground-level gamma and proton radiation tests of a passively mode-locked diode-pumped solid-state laser (DPSSL) with Yb:KYW gain medium. A total gamma dose of 170 krad(H2O) applied in 5 days generates minor changes in performances while maintaining solitonic regime. Pre-irradiation specifications are fully recovered over a day to a few weeks timescale. A proton fluence of 9.76·1010 cm−2 applied in few minutes shows no alteration of the laser performances. Furthermore, complete stabilization of the laser shows excellent noise properties. From our results, we claim that the investigated femtosecond DPSSL technology can be considered rad-hard and would be suitable for generating frequency combs compatible with long duration space missions.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Orthogonal control of the frequency comb dynamics of a mode-locked laser diode

Kevin W. Holman, David J. Jones, Jun Ye, and Erich P. Ippen
Opt. Lett. 28(23) 2405-2407 (2003)

Robust optical-frequency-comb based on the hybrid mode-locked Er:fiber femtosecond laser

Yanyan Zhang, Songtao Fan, Lulu Yan, Long Zhang, Xiaofei Zhang, Wenge Guo, Shougang Zhang, and Haifeng Jiang
Opt. Express 25(18) 21719-21725 (2017)

References

  • View by:
  • |
  • |
  • |

  1. N. R. Newbury, “Searching for applications with a fine-tooth comb,” Nat. Photonics 5(4), 186–188 (2011).
    [Crossref]
  2. S. A. Diddams, “The evolving optical frequency comb,” J. Opt. Soc. Am. B 27(11), B51–B62 (2010).
  3. J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
    [Crossref]
  4. J. Ye, “Absolute measurement of a long, arbitrary distance to less than an optical fringe,” Opt. Lett. 29(10), 1153–1155 (2004).
    [Crossref] [PubMed]
  5. H. Wu, F. Zhang, S. Cao, S. Xing, and X. Qu, “Absolute distance measurement by intensity detection using a mode-locked femtosecond pulse laser,” Opt. Express 22(9), 10380–10397 (2014).
    [Crossref] [PubMed]
  6. I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
    [Crossref]
  7. T.-A. Liu, N. R. Newbury, and I. Coddington, “Sub-micron absolute distance measurements in sub-millisecond times with dual free-running femtosecond Er fiber-lasers,” Opt. Express 19(19), 18501–18509 (2011).
    [Crossref] [PubMed]
  8. F. R. Giorgetta, W. C. Swann, L. C. Sinclair, E. Baumann, I. Coddington, and N. R. Newbury, “Optical two-way time and frequency transfer over free space,” Nat. Photonics 7(6), 434–438 (2013).
    [Crossref]
  9. G. Marra, H. S. Margolis, and D. J. Richardson, “Dissemination of an optical frequency comb over fiber with 3 × 10-18 fractional accuracy,” Opt. Express 20(2), 1775–1782 (2012).
    [Crossref] [PubMed]
  10. F. Quinlan, F. N. Baynes, T. M. Fortier, Q. Zhou, A. Cross, J. C. Campbell, and S. A. Diddams, “Optical amplification and pulse interleaving for low-noise photonic microwave generation,” Opt. Lett. 39(6), 1581–1584 (2014).
    [Crossref] [PubMed]
  11. S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).
    [Crossref] [PubMed]
  12. http://sci.esa.int/ste-quest/ .
  13. S. A. Meyer, T. M. Fortier, S. Lecomte, and S. A. Diddams, “A frequency-stabilized Yb:KYW femtosecond laser frequency comb and its application to low-phase-noise microwave generation,” Appl. Phys. B 112(4), 565–570 (2013).
    [Crossref]
  14. Y.-S. Jang, J. Lee, S. Kim, K. Lee, S. Han, Y.-J. Kim, and S.-W. Kim, “Space radiation test of saturable absorber for femtosecond laser,” Opt. Lett. 39(10), 2831–2834 (2014).
    [Crossref] [PubMed]
  15. S. Girard, A. Laurent, E. Pinsard, T. Robin, B. Cadier, M. Boutillier, C. Marcandella, A. Boukenter, and Y. Ouerdane, “Radiation-hard erbium optical fiber and fiber amplifier for both low- and high-dose space missions,” Opt. Lett. 39(9), 2541–2544 (2014).
    [Crossref] [PubMed]
  16. J. Lee, K. Lee, Y.-S. Jang, H. Jang, S. Han, S.-H. Lee, K.-I. Kang, C.-W. Lim, Y.-J. Kim, and S.-W. Kim, “Testing of a femtosecond pulse laser in outer space,” Sci Rep 4, 5134 (2014).
    [PubMed]
  17. S. Kundermann, E. Portuondo-Campa, and S. Lecomte, “Ultra-low-noise 1 μm optical frequency comb,” Electron. Lett. 50(17), 1231–1232 (2014).
    [Crossref]
  18. D. C. Heinecke, A. Bartels, and S. A. Diddams, “Offset frequency dynamics and phase noise properties of a self-referenced 10 GHz Ti:sapphire frequency comb,” Opt. Express 19(19), 18440–18451 (2011).
    [Crossref] [PubMed]
  19. S. Schilt, N. Bucalovic, V. Dolgovskiy, C. Schori, M. C. Stumpf, G. Di Domenico, S. Pekarek, A. E. H. Oehler, T. Südmeyer, U. Keller, and P. Thomann, “Fully stabilized optical frequency comb with sub-radian CEO phase noise from a SESAM-modelocked 1.5-µm solid-state laser,” Opt. Express 19(24), 24171–24181 (2011).
    [Crossref] [PubMed]
  20. A. Schlatter, S. C. Zeller, R. Grange, R. Paschotta, and U. Keller, “Pulse-energy dynamics of passively mode-locked solid-state lasers above the Q -switching threshold,” J. Opt. Soc. Am. B 21(8), 1469–1478 (2004).
    [Crossref]
  21. ESA document “STE-QUEST environmental specification” issue 1 revision 0, reference js-10–12, May 2012.
  22. A. Holmes-Siedle and L. Adams, Handbook of Radiation Effects (Oxford University Press, 1994).
  23. http://www.nist.gov/pml/data/xraycoef/index.cfm .
  24. M. N. Ott, “Radiation effects data on commercially available optical fiber: database summary,” in Proceedings of IEEE Radiation Effects Data Workshop (IEEE, 2002), pp. 24–31.
    [Crossref]
  25. M. Lezius, K. Predehl, W. Stower, A. Turler, M. Greiter, C. Hoeschen, P. Thirolf, W. Assmann, D. Habs, A. Prokofiev, C. Ekstrom, T. W. Hansch, and R. Holzwarth, “Radiation Induced Absorption in Rare Earth Doped Optical Fibers,” IEEE Trans. Nucl. Sci. 59(2), 425–433 (2012).
    [Crossref]
  26. ESCC Basic Specification No. 22900, issue 4, Oct. 2010.
  27. A. H. Johnston, “Radiation Effects in Optoelectronic Devices,” IEEE Trans. Nucl. Sci. 60(3), 2054–2073 (2013).
    [Crossref]
  28. Q. F. Chen, A. Nevsky, S. Schiller, E. P. Campa, S. Lecomte, and D. Parker, “Proton irradiation robustness of dielectric mirrors for high-finesse Fabry-Pérot resonators in the near-infrared spectral range,” Appl. Phys. B 116(2), 385–391 (2014).
    [Crossref]
  29. MUlti-LAyered Shielding SImulation Software (MULASSIS), http://reat.space.qinetiq.com/mulassis/ .
  30. R. L. Pease, R. D. Schrimpf, and D. M. Fleetwood, “ELDRS in bipolar linear circuits: A review,” in Proceedings of IEEE Conference on Radiation and Its Effects on Components and Systems (RADECS) (IEEE, 2008), pp. 18–32.
    [Crossref]

2014 (7)

J. Lee, K. Lee, Y.-S. Jang, H. Jang, S. Han, S.-H. Lee, K.-I. Kang, C.-W. Lim, Y.-J. Kim, and S.-W. Kim, “Testing of a femtosecond pulse laser in outer space,” Sci Rep 4, 5134 (2014).
[PubMed]

S. Kundermann, E. Portuondo-Campa, and S. Lecomte, “Ultra-low-noise 1 μm optical frequency comb,” Electron. Lett. 50(17), 1231–1232 (2014).
[Crossref]

Q. F. Chen, A. Nevsky, S. Schiller, E. P. Campa, S. Lecomte, and D. Parker, “Proton irradiation robustness of dielectric mirrors for high-finesse Fabry-Pérot resonators in the near-infrared spectral range,” Appl. Phys. B 116(2), 385–391 (2014).
[Crossref]

F. Quinlan, F. N. Baynes, T. M. Fortier, Q. Zhou, A. Cross, J. C. Campbell, and S. A. Diddams, “Optical amplification and pulse interleaving for low-noise photonic microwave generation,” Opt. Lett. 39(6), 1581–1584 (2014).
[Crossref] [PubMed]

S. Girard, A. Laurent, E. Pinsard, T. Robin, B. Cadier, M. Boutillier, C. Marcandella, A. Boukenter, and Y. Ouerdane, “Radiation-hard erbium optical fiber and fiber amplifier for both low- and high-dose space missions,” Opt. Lett. 39(9), 2541–2544 (2014).
[Crossref] [PubMed]

H. Wu, F. Zhang, S. Cao, S. Xing, and X. Qu, “Absolute distance measurement by intensity detection using a mode-locked femtosecond pulse laser,” Opt. Express 22(9), 10380–10397 (2014).
[Crossref] [PubMed]

Y.-S. Jang, J. Lee, S. Kim, K. Lee, S. Han, Y.-J. Kim, and S.-W. Kim, “Space radiation test of saturable absorber for femtosecond laser,” Opt. Lett. 39(10), 2831–2834 (2014).
[Crossref] [PubMed]

2013 (3)

S. A. Meyer, T. M. Fortier, S. Lecomte, and S. A. Diddams, “A frequency-stabilized Yb:KYW femtosecond laser frequency comb and its application to low-phase-noise microwave generation,” Appl. Phys. B 112(4), 565–570 (2013).
[Crossref]

F. R. Giorgetta, W. C. Swann, L. C. Sinclair, E. Baumann, I. Coddington, and N. R. Newbury, “Optical two-way time and frequency transfer over free space,” Nat. Photonics 7(6), 434–438 (2013).
[Crossref]

A. H. Johnston, “Radiation Effects in Optoelectronic Devices,” IEEE Trans. Nucl. Sci. 60(3), 2054–2073 (2013).
[Crossref]

2012 (2)

M. Lezius, K. Predehl, W. Stower, A. Turler, M. Greiter, C. Hoeschen, P. Thirolf, W. Assmann, D. Habs, A. Prokofiev, C. Ekstrom, T. W. Hansch, and R. Holzwarth, “Radiation Induced Absorption in Rare Earth Doped Optical Fibers,” IEEE Trans. Nucl. Sci. 59(2), 425–433 (2012).
[Crossref]

G. Marra, H. S. Margolis, and D. J. Richardson, “Dissemination of an optical frequency comb over fiber with 3 × 10-18 fractional accuracy,” Opt. Express 20(2), 1775–1782 (2012).
[Crossref] [PubMed]

2011 (4)

2010 (2)

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[Crossref]

S. A. Diddams, “The evolving optical frequency comb,” J. Opt. Soc. Am. B 27(11), B51–B62 (2010).

2009 (1)

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

2007 (1)

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).
[Crossref] [PubMed]

2004 (2)

Assmann, W.

M. Lezius, K. Predehl, W. Stower, A. Turler, M. Greiter, C. Hoeschen, P. Thirolf, W. Assmann, D. Habs, A. Prokofiev, C. Ekstrom, T. W. Hansch, and R. Holzwarth, “Radiation Induced Absorption in Rare Earth Doped Optical Fibers,” IEEE Trans. Nucl. Sci. 59(2), 425–433 (2012).
[Crossref]

Bartels, A.

Baumann, E.

F. R. Giorgetta, W. C. Swann, L. C. Sinclair, E. Baumann, I. Coddington, and N. R. Newbury, “Optical two-way time and frequency transfer over free space,” Nat. Photonics 7(6), 434–438 (2013).
[Crossref]

Baynes, F. N.

Boukenter, A.

Boutillier, M.

Bucalovic, N.

Cadier, B.

Campa, E. P.

Q. F. Chen, A. Nevsky, S. Schiller, E. P. Campa, S. Lecomte, and D. Parker, “Proton irradiation robustness of dielectric mirrors for high-finesse Fabry-Pérot resonators in the near-infrared spectral range,” Appl. Phys. B 116(2), 385–391 (2014).
[Crossref]

Campbell, J. C.

Cao, S.

Chen, Q. F.

Q. F. Chen, A. Nevsky, S. Schiller, E. P. Campa, S. Lecomte, and D. Parker, “Proton irradiation robustness of dielectric mirrors for high-finesse Fabry-Pérot resonators in the near-infrared spectral range,” Appl. Phys. B 116(2), 385–391 (2014).
[Crossref]

Coddington, I.

F. R. Giorgetta, W. C. Swann, L. C. Sinclair, E. Baumann, I. Coddington, and N. R. Newbury, “Optical two-way time and frequency transfer over free space,” Nat. Photonics 7(6), 434–438 (2013).
[Crossref]

T.-A. Liu, N. R. Newbury, and I. Coddington, “Sub-micron absolute distance measurements in sub-millisecond times with dual free-running femtosecond Er fiber-lasers,” Opt. Express 19(19), 18501–18509 (2011).
[Crossref] [PubMed]

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

Cross, A.

Di Domenico, G.

Diddams, S. A.

F. Quinlan, F. N. Baynes, T. M. Fortier, Q. Zhou, A. Cross, J. C. Campbell, and S. A. Diddams, “Optical amplification and pulse interleaving for low-noise photonic microwave generation,” Opt. Lett. 39(6), 1581–1584 (2014).
[Crossref] [PubMed]

S. A. Meyer, T. M. Fortier, S. Lecomte, and S. A. Diddams, “A frequency-stabilized Yb:KYW femtosecond laser frequency comb and its application to low-phase-noise microwave generation,” Appl. Phys. B 112(4), 565–570 (2013).
[Crossref]

D. C. Heinecke, A. Bartels, and S. A. Diddams, “Offset frequency dynamics and phase noise properties of a self-referenced 10 GHz Ti:sapphire frequency comb,” Opt. Express 19(19), 18440–18451 (2011).
[Crossref] [PubMed]

S. A. Diddams, “The evolving optical frequency comb,” J. Opt. Soc. Am. B 27(11), B51–B62 (2010).

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).
[Crossref] [PubMed]

Dolgovskiy, V.

Ekstrom, C.

M. Lezius, K. Predehl, W. Stower, A. Turler, M. Greiter, C. Hoeschen, P. Thirolf, W. Assmann, D. Habs, A. Prokofiev, C. Ekstrom, T. W. Hansch, and R. Holzwarth, “Radiation Induced Absorption in Rare Earth Doped Optical Fibers,” IEEE Trans. Nucl. Sci. 59(2), 425–433 (2012).
[Crossref]

Fleetwood, D. M.

R. L. Pease, R. D. Schrimpf, and D. M. Fleetwood, “ELDRS in bipolar linear circuits: A review,” in Proceedings of IEEE Conference on Radiation and Its Effects on Components and Systems (RADECS) (IEEE, 2008), pp. 18–32.
[Crossref]

Fortier, T. M.

F. Quinlan, F. N. Baynes, T. M. Fortier, Q. Zhou, A. Cross, J. C. Campbell, and S. A. Diddams, “Optical amplification and pulse interleaving for low-noise photonic microwave generation,” Opt. Lett. 39(6), 1581–1584 (2014).
[Crossref] [PubMed]

S. A. Meyer, T. M. Fortier, S. Lecomte, and S. A. Diddams, “A frequency-stabilized Yb:KYW femtosecond laser frequency comb and its application to low-phase-noise microwave generation,” Appl. Phys. B 112(4), 565–570 (2013).
[Crossref]

Giorgetta, F. R.

F. R. Giorgetta, W. C. Swann, L. C. Sinclair, E. Baumann, I. Coddington, and N. R. Newbury, “Optical two-way time and frequency transfer over free space,” Nat. Photonics 7(6), 434–438 (2013).
[Crossref]

Girard, S.

Grange, R.

Greiter, M.

M. Lezius, K. Predehl, W. Stower, A. Turler, M. Greiter, C. Hoeschen, P. Thirolf, W. Assmann, D. Habs, A. Prokofiev, C. Ekstrom, T. W. Hansch, and R. Holzwarth, “Radiation Induced Absorption in Rare Earth Doped Optical Fibers,” IEEE Trans. Nucl. Sci. 59(2), 425–433 (2012).
[Crossref]

Habs, D.

M. Lezius, K. Predehl, W. Stower, A. Turler, M. Greiter, C. Hoeschen, P. Thirolf, W. Assmann, D. Habs, A. Prokofiev, C. Ekstrom, T. W. Hansch, and R. Holzwarth, “Radiation Induced Absorption in Rare Earth Doped Optical Fibers,” IEEE Trans. Nucl. Sci. 59(2), 425–433 (2012).
[Crossref]

Han, S.

J. Lee, K. Lee, Y.-S. Jang, H. Jang, S. Han, S.-H. Lee, K.-I. Kang, C.-W. Lim, Y.-J. Kim, and S.-W. Kim, “Testing of a femtosecond pulse laser in outer space,” Sci Rep 4, 5134 (2014).
[PubMed]

Y.-S. Jang, J. Lee, S. Kim, K. Lee, S. Han, Y.-J. Kim, and S.-W. Kim, “Space radiation test of saturable absorber for femtosecond laser,” Opt. Lett. 39(10), 2831–2834 (2014).
[Crossref] [PubMed]

Hansch, T. W.

M. Lezius, K. Predehl, W. Stower, A. Turler, M. Greiter, C. Hoeschen, P. Thirolf, W. Assmann, D. Habs, A. Prokofiev, C. Ekstrom, T. W. Hansch, and R. Holzwarth, “Radiation Induced Absorption in Rare Earth Doped Optical Fibers,” IEEE Trans. Nucl. Sci. 59(2), 425–433 (2012).
[Crossref]

Heinecke, D. C.

Hoeschen, C.

M. Lezius, K. Predehl, W. Stower, A. Turler, M. Greiter, C. Hoeschen, P. Thirolf, W. Assmann, D. Habs, A. Prokofiev, C. Ekstrom, T. W. Hansch, and R. Holzwarth, “Radiation Induced Absorption in Rare Earth Doped Optical Fibers,” IEEE Trans. Nucl. Sci. 59(2), 425–433 (2012).
[Crossref]

Hollberg, L.

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).
[Crossref] [PubMed]

Holzwarth, R.

M. Lezius, K. Predehl, W. Stower, A. Turler, M. Greiter, C. Hoeschen, P. Thirolf, W. Assmann, D. Habs, A. Prokofiev, C. Ekstrom, T. W. Hansch, and R. Holzwarth, “Radiation Induced Absorption in Rare Earth Doped Optical Fibers,” IEEE Trans. Nucl. Sci. 59(2), 425–433 (2012).
[Crossref]

Jang, H.

J. Lee, K. Lee, Y.-S. Jang, H. Jang, S. Han, S.-H. Lee, K.-I. Kang, C.-W. Lim, Y.-J. Kim, and S.-W. Kim, “Testing of a femtosecond pulse laser in outer space,” Sci Rep 4, 5134 (2014).
[PubMed]

Jang, Y.-S.

J. Lee, K. Lee, Y.-S. Jang, H. Jang, S. Han, S.-H. Lee, K.-I. Kang, C.-W. Lim, Y.-J. Kim, and S.-W. Kim, “Testing of a femtosecond pulse laser in outer space,” Sci Rep 4, 5134 (2014).
[PubMed]

Y.-S. Jang, J. Lee, S. Kim, K. Lee, S. Han, Y.-J. Kim, and S.-W. Kim, “Space radiation test of saturable absorber for femtosecond laser,” Opt. Lett. 39(10), 2831–2834 (2014).
[Crossref] [PubMed]

Johnston, A. H.

A. H. Johnston, “Radiation Effects in Optoelectronic Devices,” IEEE Trans. Nucl. Sci. 60(3), 2054–2073 (2013).
[Crossref]

Kang, K.-I.

J. Lee, K. Lee, Y.-S. Jang, H. Jang, S. Han, S.-H. Lee, K.-I. Kang, C.-W. Lim, Y.-J. Kim, and S.-W. Kim, “Testing of a femtosecond pulse laser in outer space,” Sci Rep 4, 5134 (2014).
[PubMed]

Keller, U.

Kim, S.

Kim, S.-W.

Y.-S. Jang, J. Lee, S. Kim, K. Lee, S. Han, Y.-J. Kim, and S.-W. Kim, “Space radiation test of saturable absorber for femtosecond laser,” Opt. Lett. 39(10), 2831–2834 (2014).
[Crossref] [PubMed]

J. Lee, K. Lee, Y.-S. Jang, H. Jang, S. Han, S.-H. Lee, K.-I. Kang, C.-W. Lim, Y.-J. Kim, and S.-W. Kim, “Testing of a femtosecond pulse laser in outer space,” Sci Rep 4, 5134 (2014).
[PubMed]

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[Crossref]

Kim, Y.-J.

J. Lee, K. Lee, Y.-S. Jang, H. Jang, S. Han, S.-H. Lee, K.-I. Kang, C.-W. Lim, Y.-J. Kim, and S.-W. Kim, “Testing of a femtosecond pulse laser in outer space,” Sci Rep 4, 5134 (2014).
[PubMed]

Y.-S. Jang, J. Lee, S. Kim, K. Lee, S. Han, Y.-J. Kim, and S.-W. Kim, “Space radiation test of saturable absorber for femtosecond laser,” Opt. Lett. 39(10), 2831–2834 (2014).
[Crossref] [PubMed]

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[Crossref]

Kundermann, S.

S. Kundermann, E. Portuondo-Campa, and S. Lecomte, “Ultra-low-noise 1 μm optical frequency comb,” Electron. Lett. 50(17), 1231–1232 (2014).
[Crossref]

Laurent, A.

Lecomte, S.

S. Kundermann, E. Portuondo-Campa, and S. Lecomte, “Ultra-low-noise 1 μm optical frequency comb,” Electron. Lett. 50(17), 1231–1232 (2014).
[Crossref]

Q. F. Chen, A. Nevsky, S. Schiller, E. P. Campa, S. Lecomte, and D. Parker, “Proton irradiation robustness of dielectric mirrors for high-finesse Fabry-Pérot resonators in the near-infrared spectral range,” Appl. Phys. B 116(2), 385–391 (2014).
[Crossref]

S. A. Meyer, T. M. Fortier, S. Lecomte, and S. A. Diddams, “A frequency-stabilized Yb:KYW femtosecond laser frequency comb and its application to low-phase-noise microwave generation,” Appl. Phys. B 112(4), 565–570 (2013).
[Crossref]

Lee, J.

J. Lee, K. Lee, Y.-S. Jang, H. Jang, S. Han, S.-H. Lee, K.-I. Kang, C.-W. Lim, Y.-J. Kim, and S.-W. Kim, “Testing of a femtosecond pulse laser in outer space,” Sci Rep 4, 5134 (2014).
[PubMed]

Y.-S. Jang, J. Lee, S. Kim, K. Lee, S. Han, Y.-J. Kim, and S.-W. Kim, “Space radiation test of saturable absorber for femtosecond laser,” Opt. Lett. 39(10), 2831–2834 (2014).
[Crossref] [PubMed]

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[Crossref]

Lee, K.

J. Lee, K. Lee, Y.-S. Jang, H. Jang, S. Han, S.-H. Lee, K.-I. Kang, C.-W. Lim, Y.-J. Kim, and S.-W. Kim, “Testing of a femtosecond pulse laser in outer space,” Sci Rep 4, 5134 (2014).
[PubMed]

Y.-S. Jang, J. Lee, S. Kim, K. Lee, S. Han, Y.-J. Kim, and S.-W. Kim, “Space radiation test of saturable absorber for femtosecond laser,” Opt. Lett. 39(10), 2831–2834 (2014).
[Crossref] [PubMed]

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[Crossref]

Lee, S.

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[Crossref]

Lee, S.-H.

J. Lee, K. Lee, Y.-S. Jang, H. Jang, S. Han, S.-H. Lee, K.-I. Kang, C.-W. Lim, Y.-J. Kim, and S.-W. Kim, “Testing of a femtosecond pulse laser in outer space,” Sci Rep 4, 5134 (2014).
[PubMed]

Lezius, M.

M. Lezius, K. Predehl, W. Stower, A. Turler, M. Greiter, C. Hoeschen, P. Thirolf, W. Assmann, D. Habs, A. Prokofiev, C. Ekstrom, T. W. Hansch, and R. Holzwarth, “Radiation Induced Absorption in Rare Earth Doped Optical Fibers,” IEEE Trans. Nucl. Sci. 59(2), 425–433 (2012).
[Crossref]

Lim, C.-W.

J. Lee, K. Lee, Y.-S. Jang, H. Jang, S. Han, S.-H. Lee, K.-I. Kang, C.-W. Lim, Y.-J. Kim, and S.-W. Kim, “Testing of a femtosecond pulse laser in outer space,” Sci Rep 4, 5134 (2014).
[PubMed]

Liu, T.-A.

Marcandella, C.

Margolis, H. S.

Marra, G.

Mbele, V.

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).
[Crossref] [PubMed]

Meyer, S. A.

S. A. Meyer, T. M. Fortier, S. Lecomte, and S. A. Diddams, “A frequency-stabilized Yb:KYW femtosecond laser frequency comb and its application to low-phase-noise microwave generation,” Appl. Phys. B 112(4), 565–570 (2013).
[Crossref]

Nenadovic, L.

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

Nevsky, A.

Q. F. Chen, A. Nevsky, S. Schiller, E. P. Campa, S. Lecomte, and D. Parker, “Proton irradiation robustness of dielectric mirrors for high-finesse Fabry-Pérot resonators in the near-infrared spectral range,” Appl. Phys. B 116(2), 385–391 (2014).
[Crossref]

Newbury, N. R.

F. R. Giorgetta, W. C. Swann, L. C. Sinclair, E. Baumann, I. Coddington, and N. R. Newbury, “Optical two-way time and frequency transfer over free space,” Nat. Photonics 7(6), 434–438 (2013).
[Crossref]

T.-A. Liu, N. R. Newbury, and I. Coddington, “Sub-micron absolute distance measurements in sub-millisecond times with dual free-running femtosecond Er fiber-lasers,” Opt. Express 19(19), 18501–18509 (2011).
[Crossref] [PubMed]

N. R. Newbury, “Searching for applications with a fine-tooth comb,” Nat. Photonics 5(4), 186–188 (2011).
[Crossref]

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

Oehler, A. E. H.

Ott, M. N.

M. N. Ott, “Radiation effects data on commercially available optical fiber: database summary,” in Proceedings of IEEE Radiation Effects Data Workshop (IEEE, 2002), pp. 24–31.
[Crossref]

Ouerdane, Y.

Parker, D.

Q. F. Chen, A. Nevsky, S. Schiller, E. P. Campa, S. Lecomte, and D. Parker, “Proton irradiation robustness of dielectric mirrors for high-finesse Fabry-Pérot resonators in the near-infrared spectral range,” Appl. Phys. B 116(2), 385–391 (2014).
[Crossref]

Paschotta, R.

Pease, R. L.

R. L. Pease, R. D. Schrimpf, and D. M. Fleetwood, “ELDRS in bipolar linear circuits: A review,” in Proceedings of IEEE Conference on Radiation and Its Effects on Components and Systems (RADECS) (IEEE, 2008), pp. 18–32.
[Crossref]

Pekarek, S.

Pinsard, E.

Portuondo-Campa, E.

S. Kundermann, E. Portuondo-Campa, and S. Lecomte, “Ultra-low-noise 1 μm optical frequency comb,” Electron. Lett. 50(17), 1231–1232 (2014).
[Crossref]

Predehl, K.

M. Lezius, K. Predehl, W. Stower, A. Turler, M. Greiter, C. Hoeschen, P. Thirolf, W. Assmann, D. Habs, A. Prokofiev, C. Ekstrom, T. W. Hansch, and R. Holzwarth, “Radiation Induced Absorption in Rare Earth Doped Optical Fibers,” IEEE Trans. Nucl. Sci. 59(2), 425–433 (2012).
[Crossref]

Prokofiev, A.

M. Lezius, K. Predehl, W. Stower, A. Turler, M. Greiter, C. Hoeschen, P. Thirolf, W. Assmann, D. Habs, A. Prokofiev, C. Ekstrom, T. W. Hansch, and R. Holzwarth, “Radiation Induced Absorption in Rare Earth Doped Optical Fibers,” IEEE Trans. Nucl. Sci. 59(2), 425–433 (2012).
[Crossref]

Qu, X.

Quinlan, F.

Richardson, D. J.

Robin, T.

Schiller, S.

Q. F. Chen, A. Nevsky, S. Schiller, E. P. Campa, S. Lecomte, and D. Parker, “Proton irradiation robustness of dielectric mirrors for high-finesse Fabry-Pérot resonators in the near-infrared spectral range,” Appl. Phys. B 116(2), 385–391 (2014).
[Crossref]

Schilt, S.

Schlatter, A.

Schori, C.

Schrimpf, R. D.

R. L. Pease, R. D. Schrimpf, and D. M. Fleetwood, “ELDRS in bipolar linear circuits: A review,” in Proceedings of IEEE Conference on Radiation and Its Effects on Components and Systems (RADECS) (IEEE, 2008), pp. 18–32.
[Crossref]

Sinclair, L. C.

F. R. Giorgetta, W. C. Swann, L. C. Sinclair, E. Baumann, I. Coddington, and N. R. Newbury, “Optical two-way time and frequency transfer over free space,” Nat. Photonics 7(6), 434–438 (2013).
[Crossref]

Stower, W.

M. Lezius, K. Predehl, W. Stower, A. Turler, M. Greiter, C. Hoeschen, P. Thirolf, W. Assmann, D. Habs, A. Prokofiev, C. Ekstrom, T. W. Hansch, and R. Holzwarth, “Radiation Induced Absorption in Rare Earth Doped Optical Fibers,” IEEE Trans. Nucl. Sci. 59(2), 425–433 (2012).
[Crossref]

Stumpf, M. C.

Südmeyer, T.

Swann, W. C.

F. R. Giorgetta, W. C. Swann, L. C. Sinclair, E. Baumann, I. Coddington, and N. R. Newbury, “Optical two-way time and frequency transfer over free space,” Nat. Photonics 7(6), 434–438 (2013).
[Crossref]

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

Thirolf, P.

M. Lezius, K. Predehl, W. Stower, A. Turler, M. Greiter, C. Hoeschen, P. Thirolf, W. Assmann, D. Habs, A. Prokofiev, C. Ekstrom, T. W. Hansch, and R. Holzwarth, “Radiation Induced Absorption in Rare Earth Doped Optical Fibers,” IEEE Trans. Nucl. Sci. 59(2), 425–433 (2012).
[Crossref]

Thomann, P.

Turler, A.

M. Lezius, K. Predehl, W. Stower, A. Turler, M. Greiter, C. Hoeschen, P. Thirolf, W. Assmann, D. Habs, A. Prokofiev, C. Ekstrom, T. W. Hansch, and R. Holzwarth, “Radiation Induced Absorption in Rare Earth Doped Optical Fibers,” IEEE Trans. Nucl. Sci. 59(2), 425–433 (2012).
[Crossref]

Wu, H.

Xing, S.

Ye, J.

Zeller, S. C.

Zhang, F.

Zhou, Q.

Appl. Phys. B (2)

S. A. Meyer, T. M. Fortier, S. Lecomte, and S. A. Diddams, “A frequency-stabilized Yb:KYW femtosecond laser frequency comb and its application to low-phase-noise microwave generation,” Appl. Phys. B 112(4), 565–570 (2013).
[Crossref]

Q. F. Chen, A. Nevsky, S. Schiller, E. P. Campa, S. Lecomte, and D. Parker, “Proton irradiation robustness of dielectric mirrors for high-finesse Fabry-Pérot resonators in the near-infrared spectral range,” Appl. Phys. B 116(2), 385–391 (2014).
[Crossref]

Electron. Lett. (1)

S. Kundermann, E. Portuondo-Campa, and S. Lecomte, “Ultra-low-noise 1 μm optical frequency comb,” Electron. Lett. 50(17), 1231–1232 (2014).
[Crossref]

IEEE Trans. Nucl. Sci. (2)

A. H. Johnston, “Radiation Effects in Optoelectronic Devices,” IEEE Trans. Nucl. Sci. 60(3), 2054–2073 (2013).
[Crossref]

M. Lezius, K. Predehl, W. Stower, A. Turler, M. Greiter, C. Hoeschen, P. Thirolf, W. Assmann, D. Habs, A. Prokofiev, C. Ekstrom, T. W. Hansch, and R. Holzwarth, “Radiation Induced Absorption in Rare Earth Doped Optical Fibers,” IEEE Trans. Nucl. Sci. 59(2), 425–433 (2012).
[Crossref]

J. Opt. Soc. Am. B (2)

Nat. Photonics (4)

N. R. Newbury, “Searching for applications with a fine-tooth comb,” Nat. Photonics 5(4), 186–188 (2011).
[Crossref]

J. Lee, Y.-J. Kim, K. Lee, S. Lee, and S.-W. Kim, “Time-of-flight measurement with femtosecond light pulses,” Nat. Photonics 4(10), 716–720 (2010).
[Crossref]

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

F. R. Giorgetta, W. C. Swann, L. C. Sinclair, E. Baumann, I. Coddington, and N. R. Newbury, “Optical two-way time and frequency transfer over free space,” Nat. Photonics 7(6), 434–438 (2013).
[Crossref]

Nature (1)

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (4)

Sci Rep (1)

J. Lee, K. Lee, Y.-S. Jang, H. Jang, S. Han, S.-H. Lee, K.-I. Kang, C.-W. Lim, Y.-J. Kim, and S.-W. Kim, “Testing of a femtosecond pulse laser in outer space,” Sci Rep 4, 5134 (2014).
[PubMed]

Other (8)

ESCC Basic Specification No. 22900, issue 4, Oct. 2010.

MUlti-LAyered Shielding SImulation Software (MULASSIS), http://reat.space.qinetiq.com/mulassis/ .

R. L. Pease, R. D. Schrimpf, and D. M. Fleetwood, “ELDRS in bipolar linear circuits: A review,” in Proceedings of IEEE Conference on Radiation and Its Effects on Components and Systems (RADECS) (IEEE, 2008), pp. 18–32.
[Crossref]

http://sci.esa.int/ste-quest/ .

ESA document “STE-QUEST environmental specification” issue 1 revision 0, reference js-10–12, May 2012.

A. Holmes-Siedle and L. Adams, Handbook of Radiation Effects (Oxford University Press, 1994).

http://www.nist.gov/pml/data/xraycoef/index.cfm .

M. N. Ott, “Radiation effects data on commercially available optical fiber: database summary,” in Proceedings of IEEE Radiation Effects Data Workshop (IEEE, 2002), pp. 24–31.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic of the stabilized optical frequency comb. PZT: piezoelectric transducer; PM: Polarization maintaining; SM: single-mode; HNLF: highly nonlinear fiber; H-maser: active hydrogen maser
Fig. 2
Fig. 2 (a) RF spectrum of the stabilized fCEO beat note at 282 MHz (resolution bandwidth of 30 Hz, 100 traces averaging). (b) Residual phase noise of the stabilized fCEO for a carrier frequency of 282 MHz. (c) fCEO beat note (282 MHz) Allan deviation. (d) RIN measurements for free running and fully-stabilized laser #1
Fig. 3
Fig. 3 Dose in Si as a function of spherical Al shielding as calculated by SHIELDOSE for the STE-QUEST mission (adapted from [21] p.36)
Fig. 4
Fig. 4 Schematics of the test setup used at the ESA-ESTEC 60Co test facility. MSA: Microwave Spectrum Analyzer; PD: Photodiode; OSA; Optical Spectrum Analyzer; PBS: Polarizing beam splitter.
Fig. 5
Fig. 5 a) Power measured on one arm of the PBS in Fig. 4(a) as a function of time. The irradiation period is delimited by the two vertical dashed blue lines. The data gap after about 1 hour is due to the transfer of the setup from the control to the irradiation room. The one around 40 hours is due to a logging failure which happened over night. b) Power at the output of the laser logged for about 21 hours, ~5 days after 170 krad of TID had been deposited in the laser.
Fig. 6
Fig. 6 Spectrum (adapted from [21]) of integral proton fluence averaged over the STE-QUEST orbit (black line) for 5 years mission. Corresponding spectrum behind 5 mm Aluminum shield (blue line), integral fluence applied in our irradiation experiment (red line).
Fig. 7
Fig. 7 Main laser parameters monitoring. Large rhombic points indicate the performance immediately after a position change and before any further irradiation is applied. The series of 8 small filled circular points represent the performance after each of the 8 irradiation runs applied to each zone of the laser. After the last irradiation, the laser setup was removed from the beam line and its performance was recorded 0, 15, 30 and 60 minutes afterwards.

Tables (4)

Tables Icon

Table 1 Relevant laser parameters measured before the test campaign

Tables Icon

Table 2 Repetition rate (frep), wavelength (λ), power at the laser head (Pout), room temperature (Tr), pulse duration (tp), spectral width (Δλ) and time-bandwidth product (Δτ·Δν) measured at different times over the whole test process.

Tables Icon

Table 3 Laser components present in the irradiated zones

Tables Icon

Table 4 Proton fluences applied at each irradiated zone of the laser

Metrics