Abstract

We report a high-efficiency hard-X-ray resonator with inclined-incidence geometry. A beam incident at 36.87° with respect to [3 1 0] excites Bragg back diffraction along (12 4 0) at 14.4388 keV for resonance in a Si-based resonator to produce intense resonance fringes. The experimental results showed the visibility enhanced by nearly 30 times compared with normal incidence. Also numerical calculations of the inclined-incidence resonator demonstrate ultrahigh efficiency and extremely narrow resolving power (sub-meV) with low background. This geometry surpasses the intrinsic limits of normal-incidence crystal-based resonators and enables ultrahigh-resolution X-ray optics for X-ray diffraction, spectroscopy, and imaging applications.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-resolution interference-monochromator for hard X-rays

Yi-Wei Tsai, Ying-Yi Chang, Yu-Hsin Wu, Kun-Yuan Lee, Shih-Lun Liu, and Shih-Lin Chang
Opt. Express 24(26) 30360-30367 (2016)

High-resolution monochromator using a high-efficiency single-mode x-ray resonator at Laue incidence

Yu-Hsin Wu, Yi-Wei Tsai, Wen-Chung Liu, Yu-Chieh Chih, and Shih-Lin Chang
Opt. Lett. 42(13) 2575-2578 (2017)

Single-mode selection for hard x-ray cavity resonance

Yi-Wei Tsai, Ying-Yi Chang, Yu-Hsin Wu, Wen-Chung Liu, Chou-Chi Peng, Wen-Feng Hsieh, and Shih-Lin Chang
Opt. Lett. 40(13) 2969-2972 (2015)

References

  • View by:
  • |
  • |
  • |

  1. C. Fabry and A. Perot, “Théorie et applications d’une nouvelle methode de spectroscopie interférentielle,” Ann. Chim. Phys. 16(7), 115–146 (1899).
  2. J. M. Vaughan, The Fabry-Perot Interferometer: History, Theory, Practice and Applications (Taylor & Francis, 1989).
  3. N. M. Ceglio, D. P. Gaines, J. E. Trebes, R. A. London, and D. G. Stearns, “Time-resolved measurement of double-pass amplification of soft x rays,” Appl. Opt. 27(24), 5022–5025 (1988).
    [Crossref] [PubMed]
  4. W. L. Bond, M. A. Duguay, and P. M. Rentzepis, “Proposed resonator for an X-ray laser,” Appl. Phys. Lett. 10(8), 216–218 (1967).
    [Crossref]
  5. R. D. Deslattes, “X-ray monochromators and resonators from single crystals,” Appl. Phys. Lett. 12(4), 133–135 (1968).
    [Crossref]
  6. M. Hart, “Bragg reflection x ray optics,” Rep. Prog. Phys. 34(2), 435(1971).
    [Crossref]
  7. A. Steyerl and K.-A. Steinhauser, “Proposal of a Fabry-Perot-type interferometer for X-rays,” Z. Phys. B 34(2), 221–227 (1979).
    [Crossref]
  8. A. Caticha and S. Caticha-Ellis, “Dynamical theory of x-ray diffraction at Bragg angles near π/2,” Phys. Rev. B 25(2), 971–983 (1982).
    [Crossref]
  9. R. Colella and A. Luccio, “Proposal for a free electron laser in the X-ray region,” Opt. Commun. 50(1), 41–44 (1984).
    [Crossref]
  10. A. Caticha and S. Caticha-Ellis, “A Fabry-Perot interferometer for hard X-rays,” Phy. Status Solidi A 119(2), 643–654 (1990).
    [Crossref]
  11. S. Kikuta, Y. Imai, T. Iizuka, Y. Yoda, X.-W. Zhang, and K. Hirano, “X-ray diffraction with a Bragg angle near π/2 and its applications,” J. Synchrotron Radiat. 5(Pt 3), 670–672 (1998).
    [Crossref] [PubMed]
  12. V. G. Kohn, Yu. V. Shvyd’ko, and E. Gerdau, “On the theory of an X-ray Fabry-Perot interferometer,” Phys. Status Solidi B 221(2), 597–615 (2000).
    [Crossref]
  13. Y. V. Shvyd’ko, M. Lerche, H.-C. Wille, E. Gerdau, M. Lucht, H. D. Rüter, E. E. Alp, and R. Khachatryan, “X-ray interferometry with microelectronvolt resolution,” Phys. Rev. Lett. 90(1), 013904 (2003).
    [Crossref] [PubMed]
  14. X. R. Huang, D. P. Siddons, A. T. Macrander, R. W. Peng, and X. S. Wu, “Multicavity X-ray Fabry-Perot resonance with ultrahigh resolution and contrast,” Phys. Rev. Lett. 108(22), 224801 (2012).
    [Crossref] [PubMed]
  15. S.-L. Chang, Y. P. Stetsko, M.-T. Tang, Y.-R. Lee, W.-H. Sun, M. Yabashi, and T. Ishikawa, “X-ray resonance in crystal cavities: realization of Fabry-Perot resonator for hard x rays,” Phys. Rev. Lett. 94(17), 174801 (2005).
    [Crossref] [PubMed]
  16. S.-L. Chang, Yu. P. Stetsko, M.-T. Tang, Y.-R. Lee, W.-H. Sun, M. Yabashi, T. Ishikawa, H.-H. Wu, B.-Y. Shew, Y.-H. Lin, T.-T. Kuo, K. Tamasaku, D. Miwa, S.-Y. Chen, Y.-Y. Chang, and J.-T. Shy, “Crystal cavity resonance for hard x rays: a diffraction experiment,” Phys. Rev. B 74(13), 134111 (2006).
    [Crossref]
  17. J. P. Sutter, E. E. Alp, M. Y. Hu, P. L. Lee, H. Sinn, W. Sturhahn, and T. S. Toellner, “Multiple-beam X-ray diffraction near exact Backscattering in silicon,” Phys. Rev. B 63(9), 094111 (2001).
  18. M. Yabashi, K. Tamasaku, S. Kikuta, and T. Ishikawa, “X-ray monochromator with an energy resolution of 8 × 10−9 at 14.41 keV,” Rev. Sci. Instrum. 72(11), 4080–4083 (2001).
    [Crossref]
  19. Yu. V. Shvyd’ko, X-Ray Optics: High-Energy-Resolution Applications (Springer, 2004).
  20. A. Authier, Dynamical Theory of X-Ray Diffraction (Oxford University Press, 2001).
  21. S.-L. Chang, X-ray Multiple-Wave Diffraction: Theory and Application (Springer, 2004).

2012 (1)

X. R. Huang, D. P. Siddons, A. T. Macrander, R. W. Peng, and X. S. Wu, “Multicavity X-ray Fabry-Perot resonance with ultrahigh resolution and contrast,” Phys. Rev. Lett. 108(22), 224801 (2012).
[Crossref] [PubMed]

2006 (1)

S.-L. Chang, Yu. P. Stetsko, M.-T. Tang, Y.-R. Lee, W.-H. Sun, M. Yabashi, T. Ishikawa, H.-H. Wu, B.-Y. Shew, Y.-H. Lin, T.-T. Kuo, K. Tamasaku, D. Miwa, S.-Y. Chen, Y.-Y. Chang, and J.-T. Shy, “Crystal cavity resonance for hard x rays: a diffraction experiment,” Phys. Rev. B 74(13), 134111 (2006).
[Crossref]

2005 (1)

S.-L. Chang, Y. P. Stetsko, M.-T. Tang, Y.-R. Lee, W.-H. Sun, M. Yabashi, and T. Ishikawa, “X-ray resonance in crystal cavities: realization of Fabry-Perot resonator for hard x rays,” Phys. Rev. Lett. 94(17), 174801 (2005).
[Crossref] [PubMed]

2003 (1)

Y. V. Shvyd’ko, M. Lerche, H.-C. Wille, E. Gerdau, M. Lucht, H. D. Rüter, E. E. Alp, and R. Khachatryan, “X-ray interferometry with microelectronvolt resolution,” Phys. Rev. Lett. 90(1), 013904 (2003).
[Crossref] [PubMed]

2001 (2)

J. P. Sutter, E. E. Alp, M. Y. Hu, P. L. Lee, H. Sinn, W. Sturhahn, and T. S. Toellner, “Multiple-beam X-ray diffraction near exact Backscattering in silicon,” Phys. Rev. B 63(9), 094111 (2001).

M. Yabashi, K. Tamasaku, S. Kikuta, and T. Ishikawa, “X-ray monochromator with an energy resolution of 8 × 10−9 at 14.41 keV,” Rev. Sci. Instrum. 72(11), 4080–4083 (2001).
[Crossref]

2000 (1)

V. G. Kohn, Yu. V. Shvyd’ko, and E. Gerdau, “On the theory of an X-ray Fabry-Perot interferometer,” Phys. Status Solidi B 221(2), 597–615 (2000).
[Crossref]

1998 (1)

S. Kikuta, Y. Imai, T. Iizuka, Y. Yoda, X.-W. Zhang, and K. Hirano, “X-ray diffraction with a Bragg angle near π/2 and its applications,” J. Synchrotron Radiat. 5(Pt 3), 670–672 (1998).
[Crossref] [PubMed]

1990 (1)

A. Caticha and S. Caticha-Ellis, “A Fabry-Perot interferometer for hard X-rays,” Phy. Status Solidi A 119(2), 643–654 (1990).
[Crossref]

1988 (1)

1984 (1)

R. Colella and A. Luccio, “Proposal for a free electron laser in the X-ray region,” Opt. Commun. 50(1), 41–44 (1984).
[Crossref]

1982 (1)

A. Caticha and S. Caticha-Ellis, “Dynamical theory of x-ray diffraction at Bragg angles near π/2,” Phys. Rev. B 25(2), 971–983 (1982).
[Crossref]

1979 (1)

A. Steyerl and K.-A. Steinhauser, “Proposal of a Fabry-Perot-type interferometer for X-rays,” Z. Phys. B 34(2), 221–227 (1979).
[Crossref]

1971 (1)

M. Hart, “Bragg reflection x ray optics,” Rep. Prog. Phys. 34(2), 435(1971).
[Crossref]

1968 (1)

R. D. Deslattes, “X-ray monochromators and resonators from single crystals,” Appl. Phys. Lett. 12(4), 133–135 (1968).
[Crossref]

1967 (1)

W. L. Bond, M. A. Duguay, and P. M. Rentzepis, “Proposed resonator for an X-ray laser,” Appl. Phys. Lett. 10(8), 216–218 (1967).
[Crossref]

1899 (1)

C. Fabry and A. Perot, “Théorie et applications d’une nouvelle methode de spectroscopie interférentielle,” Ann. Chim. Phys. 16(7), 115–146 (1899).

Alp, E. E.

Y. V. Shvyd’ko, M. Lerche, H.-C. Wille, E. Gerdau, M. Lucht, H. D. Rüter, E. E. Alp, and R. Khachatryan, “X-ray interferometry with microelectronvolt resolution,” Phys. Rev. Lett. 90(1), 013904 (2003).
[Crossref] [PubMed]

J. P. Sutter, E. E. Alp, M. Y. Hu, P. L. Lee, H. Sinn, W. Sturhahn, and T. S. Toellner, “Multiple-beam X-ray diffraction near exact Backscattering in silicon,” Phys. Rev. B 63(9), 094111 (2001).

Bond, W. L.

W. L. Bond, M. A. Duguay, and P. M. Rentzepis, “Proposed resonator for an X-ray laser,” Appl. Phys. Lett. 10(8), 216–218 (1967).
[Crossref]

Caticha, A.

A. Caticha and S. Caticha-Ellis, “A Fabry-Perot interferometer for hard X-rays,” Phy. Status Solidi A 119(2), 643–654 (1990).
[Crossref]

A. Caticha and S. Caticha-Ellis, “Dynamical theory of x-ray diffraction at Bragg angles near π/2,” Phys. Rev. B 25(2), 971–983 (1982).
[Crossref]

Caticha-Ellis, S.

A. Caticha and S. Caticha-Ellis, “A Fabry-Perot interferometer for hard X-rays,” Phy. Status Solidi A 119(2), 643–654 (1990).
[Crossref]

A. Caticha and S. Caticha-Ellis, “Dynamical theory of x-ray diffraction at Bragg angles near π/2,” Phys. Rev. B 25(2), 971–983 (1982).
[Crossref]

Ceglio, N. M.

Chang, S.-L.

S.-L. Chang, Yu. P. Stetsko, M.-T. Tang, Y.-R. Lee, W.-H. Sun, M. Yabashi, T. Ishikawa, H.-H. Wu, B.-Y. Shew, Y.-H. Lin, T.-T. Kuo, K. Tamasaku, D. Miwa, S.-Y. Chen, Y.-Y. Chang, and J.-T. Shy, “Crystal cavity resonance for hard x rays: a diffraction experiment,” Phys. Rev. B 74(13), 134111 (2006).
[Crossref]

S.-L. Chang, Y. P. Stetsko, M.-T. Tang, Y.-R. Lee, W.-H. Sun, M. Yabashi, and T. Ishikawa, “X-ray resonance in crystal cavities: realization of Fabry-Perot resonator for hard x rays,” Phys. Rev. Lett. 94(17), 174801 (2005).
[Crossref] [PubMed]

Chang, Y.-Y.

S.-L. Chang, Yu. P. Stetsko, M.-T. Tang, Y.-R. Lee, W.-H. Sun, M. Yabashi, T. Ishikawa, H.-H. Wu, B.-Y. Shew, Y.-H. Lin, T.-T. Kuo, K. Tamasaku, D. Miwa, S.-Y. Chen, Y.-Y. Chang, and J.-T. Shy, “Crystal cavity resonance for hard x rays: a diffraction experiment,” Phys. Rev. B 74(13), 134111 (2006).
[Crossref]

Chen, S.-Y.

S.-L. Chang, Yu. P. Stetsko, M.-T. Tang, Y.-R. Lee, W.-H. Sun, M. Yabashi, T. Ishikawa, H.-H. Wu, B.-Y. Shew, Y.-H. Lin, T.-T. Kuo, K. Tamasaku, D. Miwa, S.-Y. Chen, Y.-Y. Chang, and J.-T. Shy, “Crystal cavity resonance for hard x rays: a diffraction experiment,” Phys. Rev. B 74(13), 134111 (2006).
[Crossref]

Colella, R.

R. Colella and A. Luccio, “Proposal for a free electron laser in the X-ray region,” Opt. Commun. 50(1), 41–44 (1984).
[Crossref]

Deslattes, R. D.

R. D. Deslattes, “X-ray monochromators and resonators from single crystals,” Appl. Phys. Lett. 12(4), 133–135 (1968).
[Crossref]

Duguay, M. A.

W. L. Bond, M. A. Duguay, and P. M. Rentzepis, “Proposed resonator for an X-ray laser,” Appl. Phys. Lett. 10(8), 216–218 (1967).
[Crossref]

Fabry, C.

C. Fabry and A. Perot, “Théorie et applications d’une nouvelle methode de spectroscopie interférentielle,” Ann. Chim. Phys. 16(7), 115–146 (1899).

Gaines, D. P.

Gerdau, E.

Y. V. Shvyd’ko, M. Lerche, H.-C. Wille, E. Gerdau, M. Lucht, H. D. Rüter, E. E. Alp, and R. Khachatryan, “X-ray interferometry with microelectronvolt resolution,” Phys. Rev. Lett. 90(1), 013904 (2003).
[Crossref] [PubMed]

V. G. Kohn, Yu. V. Shvyd’ko, and E. Gerdau, “On the theory of an X-ray Fabry-Perot interferometer,” Phys. Status Solidi B 221(2), 597–615 (2000).
[Crossref]

Hart, M.

M. Hart, “Bragg reflection x ray optics,” Rep. Prog. Phys. 34(2), 435(1971).
[Crossref]

Hirano, K.

S. Kikuta, Y. Imai, T. Iizuka, Y. Yoda, X.-W. Zhang, and K. Hirano, “X-ray diffraction with a Bragg angle near π/2 and its applications,” J. Synchrotron Radiat. 5(Pt 3), 670–672 (1998).
[Crossref] [PubMed]

Hu, M. Y.

J. P. Sutter, E. E. Alp, M. Y. Hu, P. L. Lee, H. Sinn, W. Sturhahn, and T. S. Toellner, “Multiple-beam X-ray diffraction near exact Backscattering in silicon,” Phys. Rev. B 63(9), 094111 (2001).

Huang, X. R.

X. R. Huang, D. P. Siddons, A. T. Macrander, R. W. Peng, and X. S. Wu, “Multicavity X-ray Fabry-Perot resonance with ultrahigh resolution and contrast,” Phys. Rev. Lett. 108(22), 224801 (2012).
[Crossref] [PubMed]

Iizuka, T.

S. Kikuta, Y. Imai, T. Iizuka, Y. Yoda, X.-W. Zhang, and K. Hirano, “X-ray diffraction with a Bragg angle near π/2 and its applications,” J. Synchrotron Radiat. 5(Pt 3), 670–672 (1998).
[Crossref] [PubMed]

Imai, Y.

S. Kikuta, Y. Imai, T. Iizuka, Y. Yoda, X.-W. Zhang, and K. Hirano, “X-ray diffraction with a Bragg angle near π/2 and its applications,” J. Synchrotron Radiat. 5(Pt 3), 670–672 (1998).
[Crossref] [PubMed]

Ishikawa, T.

S.-L. Chang, Yu. P. Stetsko, M.-T. Tang, Y.-R. Lee, W.-H. Sun, M. Yabashi, T. Ishikawa, H.-H. Wu, B.-Y. Shew, Y.-H. Lin, T.-T. Kuo, K. Tamasaku, D. Miwa, S.-Y. Chen, Y.-Y. Chang, and J.-T. Shy, “Crystal cavity resonance for hard x rays: a diffraction experiment,” Phys. Rev. B 74(13), 134111 (2006).
[Crossref]

S.-L. Chang, Y. P. Stetsko, M.-T. Tang, Y.-R. Lee, W.-H. Sun, M. Yabashi, and T. Ishikawa, “X-ray resonance in crystal cavities: realization of Fabry-Perot resonator for hard x rays,” Phys. Rev. Lett. 94(17), 174801 (2005).
[Crossref] [PubMed]

M. Yabashi, K. Tamasaku, S. Kikuta, and T. Ishikawa, “X-ray monochromator with an energy resolution of 8 × 10−9 at 14.41 keV,” Rev. Sci. Instrum. 72(11), 4080–4083 (2001).
[Crossref]

Khachatryan, R.

Y. V. Shvyd’ko, M. Lerche, H.-C. Wille, E. Gerdau, M. Lucht, H. D. Rüter, E. E. Alp, and R. Khachatryan, “X-ray interferometry with microelectronvolt resolution,” Phys. Rev. Lett. 90(1), 013904 (2003).
[Crossref] [PubMed]

Kikuta, S.

M. Yabashi, K. Tamasaku, S. Kikuta, and T. Ishikawa, “X-ray monochromator with an energy resolution of 8 × 10−9 at 14.41 keV,” Rev. Sci. Instrum. 72(11), 4080–4083 (2001).
[Crossref]

S. Kikuta, Y. Imai, T. Iizuka, Y. Yoda, X.-W. Zhang, and K. Hirano, “X-ray diffraction with a Bragg angle near π/2 and its applications,” J. Synchrotron Radiat. 5(Pt 3), 670–672 (1998).
[Crossref] [PubMed]

Kohn, V. G.

V. G. Kohn, Yu. V. Shvyd’ko, and E. Gerdau, “On the theory of an X-ray Fabry-Perot interferometer,” Phys. Status Solidi B 221(2), 597–615 (2000).
[Crossref]

Kuo, T.-T.

S.-L. Chang, Yu. P. Stetsko, M.-T. Tang, Y.-R. Lee, W.-H. Sun, M. Yabashi, T. Ishikawa, H.-H. Wu, B.-Y. Shew, Y.-H. Lin, T.-T. Kuo, K. Tamasaku, D. Miwa, S.-Y. Chen, Y.-Y. Chang, and J.-T. Shy, “Crystal cavity resonance for hard x rays: a diffraction experiment,” Phys. Rev. B 74(13), 134111 (2006).
[Crossref]

Lee, P. L.

J. P. Sutter, E. E. Alp, M. Y. Hu, P. L. Lee, H. Sinn, W. Sturhahn, and T. S. Toellner, “Multiple-beam X-ray diffraction near exact Backscattering in silicon,” Phys. Rev. B 63(9), 094111 (2001).

Lee, Y.-R.

S.-L. Chang, Yu. P. Stetsko, M.-T. Tang, Y.-R. Lee, W.-H. Sun, M. Yabashi, T. Ishikawa, H.-H. Wu, B.-Y. Shew, Y.-H. Lin, T.-T. Kuo, K. Tamasaku, D. Miwa, S.-Y. Chen, Y.-Y. Chang, and J.-T. Shy, “Crystal cavity resonance for hard x rays: a diffraction experiment,” Phys. Rev. B 74(13), 134111 (2006).
[Crossref]

S.-L. Chang, Y. P. Stetsko, M.-T. Tang, Y.-R. Lee, W.-H. Sun, M. Yabashi, and T. Ishikawa, “X-ray resonance in crystal cavities: realization of Fabry-Perot resonator for hard x rays,” Phys. Rev. Lett. 94(17), 174801 (2005).
[Crossref] [PubMed]

Lerche, M.

Y. V. Shvyd’ko, M. Lerche, H.-C. Wille, E. Gerdau, M. Lucht, H. D. Rüter, E. E. Alp, and R. Khachatryan, “X-ray interferometry with microelectronvolt resolution,” Phys. Rev. Lett. 90(1), 013904 (2003).
[Crossref] [PubMed]

Lin, Y.-H.

S.-L. Chang, Yu. P. Stetsko, M.-T. Tang, Y.-R. Lee, W.-H. Sun, M. Yabashi, T. Ishikawa, H.-H. Wu, B.-Y. Shew, Y.-H. Lin, T.-T. Kuo, K. Tamasaku, D. Miwa, S.-Y. Chen, Y.-Y. Chang, and J.-T. Shy, “Crystal cavity resonance for hard x rays: a diffraction experiment,” Phys. Rev. B 74(13), 134111 (2006).
[Crossref]

London, R. A.

Luccio, A.

R. Colella and A. Luccio, “Proposal for a free electron laser in the X-ray region,” Opt. Commun. 50(1), 41–44 (1984).
[Crossref]

Lucht, M.

Y. V. Shvyd’ko, M. Lerche, H.-C. Wille, E. Gerdau, M. Lucht, H. D. Rüter, E. E. Alp, and R. Khachatryan, “X-ray interferometry with microelectronvolt resolution,” Phys. Rev. Lett. 90(1), 013904 (2003).
[Crossref] [PubMed]

Macrander, A. T.

X. R. Huang, D. P. Siddons, A. T. Macrander, R. W. Peng, and X. S. Wu, “Multicavity X-ray Fabry-Perot resonance with ultrahigh resolution and contrast,” Phys. Rev. Lett. 108(22), 224801 (2012).
[Crossref] [PubMed]

Miwa, D.

S.-L. Chang, Yu. P. Stetsko, M.-T. Tang, Y.-R. Lee, W.-H. Sun, M. Yabashi, T. Ishikawa, H.-H. Wu, B.-Y. Shew, Y.-H. Lin, T.-T. Kuo, K. Tamasaku, D. Miwa, S.-Y. Chen, Y.-Y. Chang, and J.-T. Shy, “Crystal cavity resonance for hard x rays: a diffraction experiment,” Phys. Rev. B 74(13), 134111 (2006).
[Crossref]

Peng, R. W.

X. R. Huang, D. P. Siddons, A. T. Macrander, R. W. Peng, and X. S. Wu, “Multicavity X-ray Fabry-Perot resonance with ultrahigh resolution and contrast,” Phys. Rev. Lett. 108(22), 224801 (2012).
[Crossref] [PubMed]

Perot, A.

C. Fabry and A. Perot, “Théorie et applications d’une nouvelle methode de spectroscopie interférentielle,” Ann. Chim. Phys. 16(7), 115–146 (1899).

Rentzepis, P. M.

W. L. Bond, M. A. Duguay, and P. M. Rentzepis, “Proposed resonator for an X-ray laser,” Appl. Phys. Lett. 10(8), 216–218 (1967).
[Crossref]

Rüter, H. D.

Y. V. Shvyd’ko, M. Lerche, H.-C. Wille, E. Gerdau, M. Lucht, H. D. Rüter, E. E. Alp, and R. Khachatryan, “X-ray interferometry with microelectronvolt resolution,” Phys. Rev. Lett. 90(1), 013904 (2003).
[Crossref] [PubMed]

Shew, B.-Y.

S.-L. Chang, Yu. P. Stetsko, M.-T. Tang, Y.-R. Lee, W.-H. Sun, M. Yabashi, T. Ishikawa, H.-H. Wu, B.-Y. Shew, Y.-H. Lin, T.-T. Kuo, K. Tamasaku, D. Miwa, S.-Y. Chen, Y.-Y. Chang, and J.-T. Shy, “Crystal cavity resonance for hard x rays: a diffraction experiment,” Phys. Rev. B 74(13), 134111 (2006).
[Crossref]

Shvyd’ko, Y. V.

Y. V. Shvyd’ko, M. Lerche, H.-C. Wille, E. Gerdau, M. Lucht, H. D. Rüter, E. E. Alp, and R. Khachatryan, “X-ray interferometry with microelectronvolt resolution,” Phys. Rev. Lett. 90(1), 013904 (2003).
[Crossref] [PubMed]

Shvyd’ko, Yu. V.

V. G. Kohn, Yu. V. Shvyd’ko, and E. Gerdau, “On the theory of an X-ray Fabry-Perot interferometer,” Phys. Status Solidi B 221(2), 597–615 (2000).
[Crossref]

Shy, J.-T.

S.-L. Chang, Yu. P. Stetsko, M.-T. Tang, Y.-R. Lee, W.-H. Sun, M. Yabashi, T. Ishikawa, H.-H. Wu, B.-Y. Shew, Y.-H. Lin, T.-T. Kuo, K. Tamasaku, D. Miwa, S.-Y. Chen, Y.-Y. Chang, and J.-T. Shy, “Crystal cavity resonance for hard x rays: a diffraction experiment,” Phys. Rev. B 74(13), 134111 (2006).
[Crossref]

Siddons, D. P.

X. R. Huang, D. P. Siddons, A. T. Macrander, R. W. Peng, and X. S. Wu, “Multicavity X-ray Fabry-Perot resonance with ultrahigh resolution and contrast,” Phys. Rev. Lett. 108(22), 224801 (2012).
[Crossref] [PubMed]

Sinn, H.

J. P. Sutter, E. E. Alp, M. Y. Hu, P. L. Lee, H. Sinn, W. Sturhahn, and T. S. Toellner, “Multiple-beam X-ray diffraction near exact Backscattering in silicon,” Phys. Rev. B 63(9), 094111 (2001).

Stearns, D. G.

Steinhauser, K.-A.

A. Steyerl and K.-A. Steinhauser, “Proposal of a Fabry-Perot-type interferometer for X-rays,” Z. Phys. B 34(2), 221–227 (1979).
[Crossref]

Stetsko, Y. P.

S.-L. Chang, Y. P. Stetsko, M.-T. Tang, Y.-R. Lee, W.-H. Sun, M. Yabashi, and T. Ishikawa, “X-ray resonance in crystal cavities: realization of Fabry-Perot resonator for hard x rays,” Phys. Rev. Lett. 94(17), 174801 (2005).
[Crossref] [PubMed]

Stetsko, Yu. P.

S.-L. Chang, Yu. P. Stetsko, M.-T. Tang, Y.-R. Lee, W.-H. Sun, M. Yabashi, T. Ishikawa, H.-H. Wu, B.-Y. Shew, Y.-H. Lin, T.-T. Kuo, K. Tamasaku, D. Miwa, S.-Y. Chen, Y.-Y. Chang, and J.-T. Shy, “Crystal cavity resonance for hard x rays: a diffraction experiment,” Phys. Rev. B 74(13), 134111 (2006).
[Crossref]

Steyerl, A.

A. Steyerl and K.-A. Steinhauser, “Proposal of a Fabry-Perot-type interferometer for X-rays,” Z. Phys. B 34(2), 221–227 (1979).
[Crossref]

Sturhahn, W.

J. P. Sutter, E. E. Alp, M. Y. Hu, P. L. Lee, H. Sinn, W. Sturhahn, and T. S. Toellner, “Multiple-beam X-ray diffraction near exact Backscattering in silicon,” Phys. Rev. B 63(9), 094111 (2001).

Sun, W.-H.

S.-L. Chang, Yu. P. Stetsko, M.-T. Tang, Y.-R. Lee, W.-H. Sun, M. Yabashi, T. Ishikawa, H.-H. Wu, B.-Y. Shew, Y.-H. Lin, T.-T. Kuo, K. Tamasaku, D. Miwa, S.-Y. Chen, Y.-Y. Chang, and J.-T. Shy, “Crystal cavity resonance for hard x rays: a diffraction experiment,” Phys. Rev. B 74(13), 134111 (2006).
[Crossref]

S.-L. Chang, Y. P. Stetsko, M.-T. Tang, Y.-R. Lee, W.-H. Sun, M. Yabashi, and T. Ishikawa, “X-ray resonance in crystal cavities: realization of Fabry-Perot resonator for hard x rays,” Phys. Rev. Lett. 94(17), 174801 (2005).
[Crossref] [PubMed]

Sutter, J. P.

J. P. Sutter, E. E. Alp, M. Y. Hu, P. L. Lee, H. Sinn, W. Sturhahn, and T. S. Toellner, “Multiple-beam X-ray diffraction near exact Backscattering in silicon,” Phys. Rev. B 63(9), 094111 (2001).

Tamasaku, K.

S.-L. Chang, Yu. P. Stetsko, M.-T. Tang, Y.-R. Lee, W.-H. Sun, M. Yabashi, T. Ishikawa, H.-H. Wu, B.-Y. Shew, Y.-H. Lin, T.-T. Kuo, K. Tamasaku, D. Miwa, S.-Y. Chen, Y.-Y. Chang, and J.-T. Shy, “Crystal cavity resonance for hard x rays: a diffraction experiment,” Phys. Rev. B 74(13), 134111 (2006).
[Crossref]

M. Yabashi, K. Tamasaku, S. Kikuta, and T. Ishikawa, “X-ray monochromator with an energy resolution of 8 × 10−9 at 14.41 keV,” Rev. Sci. Instrum. 72(11), 4080–4083 (2001).
[Crossref]

Tang, M.-T.

S.-L. Chang, Yu. P. Stetsko, M.-T. Tang, Y.-R. Lee, W.-H. Sun, M. Yabashi, T. Ishikawa, H.-H. Wu, B.-Y. Shew, Y.-H. Lin, T.-T. Kuo, K. Tamasaku, D. Miwa, S.-Y. Chen, Y.-Y. Chang, and J.-T. Shy, “Crystal cavity resonance for hard x rays: a diffraction experiment,” Phys. Rev. B 74(13), 134111 (2006).
[Crossref]

S.-L. Chang, Y. P. Stetsko, M.-T. Tang, Y.-R. Lee, W.-H. Sun, M. Yabashi, and T. Ishikawa, “X-ray resonance in crystal cavities: realization of Fabry-Perot resonator for hard x rays,” Phys. Rev. Lett. 94(17), 174801 (2005).
[Crossref] [PubMed]

Toellner, T. S.

J. P. Sutter, E. E. Alp, M. Y. Hu, P. L. Lee, H. Sinn, W. Sturhahn, and T. S. Toellner, “Multiple-beam X-ray diffraction near exact Backscattering in silicon,” Phys. Rev. B 63(9), 094111 (2001).

Trebes, J. E.

Wille, H.-C.

Y. V. Shvyd’ko, M. Lerche, H.-C. Wille, E. Gerdau, M. Lucht, H. D. Rüter, E. E. Alp, and R. Khachatryan, “X-ray interferometry with microelectronvolt resolution,” Phys. Rev. Lett. 90(1), 013904 (2003).
[Crossref] [PubMed]

Wu, H.-H.

S.-L. Chang, Yu. P. Stetsko, M.-T. Tang, Y.-R. Lee, W.-H. Sun, M. Yabashi, T. Ishikawa, H.-H. Wu, B.-Y. Shew, Y.-H. Lin, T.-T. Kuo, K. Tamasaku, D. Miwa, S.-Y. Chen, Y.-Y. Chang, and J.-T. Shy, “Crystal cavity resonance for hard x rays: a diffraction experiment,” Phys. Rev. B 74(13), 134111 (2006).
[Crossref]

Wu, X. S.

X. R. Huang, D. P. Siddons, A. T. Macrander, R. W. Peng, and X. S. Wu, “Multicavity X-ray Fabry-Perot resonance with ultrahigh resolution and contrast,” Phys. Rev. Lett. 108(22), 224801 (2012).
[Crossref] [PubMed]

Yabashi, M.

S.-L. Chang, Yu. P. Stetsko, M.-T. Tang, Y.-R. Lee, W.-H. Sun, M. Yabashi, T. Ishikawa, H.-H. Wu, B.-Y. Shew, Y.-H. Lin, T.-T. Kuo, K. Tamasaku, D. Miwa, S.-Y. Chen, Y.-Y. Chang, and J.-T. Shy, “Crystal cavity resonance for hard x rays: a diffraction experiment,” Phys. Rev. B 74(13), 134111 (2006).
[Crossref]

S.-L. Chang, Y. P. Stetsko, M.-T. Tang, Y.-R. Lee, W.-H. Sun, M. Yabashi, and T. Ishikawa, “X-ray resonance in crystal cavities: realization of Fabry-Perot resonator for hard x rays,” Phys. Rev. Lett. 94(17), 174801 (2005).
[Crossref] [PubMed]

M. Yabashi, K. Tamasaku, S. Kikuta, and T. Ishikawa, “X-ray monochromator with an energy resolution of 8 × 10−9 at 14.41 keV,” Rev. Sci. Instrum. 72(11), 4080–4083 (2001).
[Crossref]

Yoda, Y.

S. Kikuta, Y. Imai, T. Iizuka, Y. Yoda, X.-W. Zhang, and K. Hirano, “X-ray diffraction with a Bragg angle near π/2 and its applications,” J. Synchrotron Radiat. 5(Pt 3), 670–672 (1998).
[Crossref] [PubMed]

Zhang, X.-W.

S. Kikuta, Y. Imai, T. Iizuka, Y. Yoda, X.-W. Zhang, and K. Hirano, “X-ray diffraction with a Bragg angle near π/2 and its applications,” J. Synchrotron Radiat. 5(Pt 3), 670–672 (1998).
[Crossref] [PubMed]

Ann. Chim. Phys. (1)

C. Fabry and A. Perot, “Théorie et applications d’une nouvelle methode de spectroscopie interférentielle,” Ann. Chim. Phys. 16(7), 115–146 (1899).

Appl. Opt. (1)

Appl. Phys. Lett. (2)

W. L. Bond, M. A. Duguay, and P. M. Rentzepis, “Proposed resonator for an X-ray laser,” Appl. Phys. Lett. 10(8), 216–218 (1967).
[Crossref]

R. D. Deslattes, “X-ray monochromators and resonators from single crystals,” Appl. Phys. Lett. 12(4), 133–135 (1968).
[Crossref]

J. Synchrotron Radiat. (1)

S. Kikuta, Y. Imai, T. Iizuka, Y. Yoda, X.-W. Zhang, and K. Hirano, “X-ray diffraction with a Bragg angle near π/2 and its applications,” J. Synchrotron Radiat. 5(Pt 3), 670–672 (1998).
[Crossref] [PubMed]

Opt. Commun. (1)

R. Colella and A. Luccio, “Proposal for a free electron laser in the X-ray region,” Opt. Commun. 50(1), 41–44 (1984).
[Crossref]

Phy. Status Solidi A (1)

A. Caticha and S. Caticha-Ellis, “A Fabry-Perot interferometer for hard X-rays,” Phy. Status Solidi A 119(2), 643–654 (1990).
[Crossref]

Phys. Rev. B (3)

S.-L. Chang, Yu. P. Stetsko, M.-T. Tang, Y.-R. Lee, W.-H. Sun, M. Yabashi, T. Ishikawa, H.-H. Wu, B.-Y. Shew, Y.-H. Lin, T.-T. Kuo, K. Tamasaku, D. Miwa, S.-Y. Chen, Y.-Y. Chang, and J.-T. Shy, “Crystal cavity resonance for hard x rays: a diffraction experiment,” Phys. Rev. B 74(13), 134111 (2006).
[Crossref]

J. P. Sutter, E. E. Alp, M. Y. Hu, P. L. Lee, H. Sinn, W. Sturhahn, and T. S. Toellner, “Multiple-beam X-ray diffraction near exact Backscattering in silicon,” Phys. Rev. B 63(9), 094111 (2001).

A. Caticha and S. Caticha-Ellis, “Dynamical theory of x-ray diffraction at Bragg angles near π/2,” Phys. Rev. B 25(2), 971–983 (1982).
[Crossref]

Phys. Rev. Lett. (3)

Y. V. Shvyd’ko, M. Lerche, H.-C. Wille, E. Gerdau, M. Lucht, H. D. Rüter, E. E. Alp, and R. Khachatryan, “X-ray interferometry with microelectronvolt resolution,” Phys. Rev. Lett. 90(1), 013904 (2003).
[Crossref] [PubMed]

X. R. Huang, D. P. Siddons, A. T. Macrander, R. W. Peng, and X. S. Wu, “Multicavity X-ray Fabry-Perot resonance with ultrahigh resolution and contrast,” Phys. Rev. Lett. 108(22), 224801 (2012).
[Crossref] [PubMed]

S.-L. Chang, Y. P. Stetsko, M.-T. Tang, Y.-R. Lee, W.-H. Sun, M. Yabashi, and T. Ishikawa, “X-ray resonance in crystal cavities: realization of Fabry-Perot resonator for hard x rays,” Phys. Rev. Lett. 94(17), 174801 (2005).
[Crossref] [PubMed]

Phys. Status Solidi B (1)

V. G. Kohn, Yu. V. Shvyd’ko, and E. Gerdau, “On the theory of an X-ray Fabry-Perot interferometer,” Phys. Status Solidi B 221(2), 597–615 (2000).
[Crossref]

Rep. Prog. Phys. (1)

M. Hart, “Bragg reflection x ray optics,” Rep. Prog. Phys. 34(2), 435(1971).
[Crossref]

Rev. Sci. Instrum. (1)

M. Yabashi, K. Tamasaku, S. Kikuta, and T. Ishikawa, “X-ray monochromator with an energy resolution of 8 × 10−9 at 14.41 keV,” Rev. Sci. Instrum. 72(11), 4080–4083 (2001).
[Crossref]

Z. Phys. B (1)

A. Steyerl and K.-A. Steinhauser, “Proposal of a Fabry-Perot-type interferometer for X-rays,” Z. Phys. B 34(2), 221–227 (1979).
[Crossref]

Other (4)

J. M. Vaughan, The Fabry-Perot Interferometer: History, Theory, Practice and Applications (Taylor & Francis, 1989).

Yu. V. Shvyd’ko, X-Ray Optics: High-Energy-Resolution Applications (Springer, 2004).

A. Authier, Dynamical Theory of X-Ray Diffraction (Oxford University Press, 2001).

S.-L. Chang, X-ray Multiple-Wave Diffraction: Theory and Application (Springer, 2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Comparison of the incident path of a conventional normal-incidence cavity (left) and an inclined incidence cavity (right). At normal incidence, the light is injected into the cavity at 90°. At inclined incidence, the incident beam is injected along the reversed direction of one of the multiply diffracted beams, − K L .
Fig. 2
Fig. 2 Experimental setup for the inclined resonator.
Fig. 3
Fig. 3 Design and orientation of a normal-incidence (a) and an inclined-incidence resonator (b) in real space. (c) and (d): Top view of the diffracted wave vector and lattice point in reciprocal space for the cavity shown in (a) and (b). The upper figures depict the normal-incidence geometry and the lower ones depict the inclined incidence.
Fig. 4
Fig. 4 The experimental results of the energy scan in the transmission of the 200 μm/240 μm/100 μm resonator: (a) inclined incidence; (b) normal incidence. δE is E - 14.4388 keV. The inclined-incidence resonator showed intense resonance fringes.
Fig. 5
Fig. 5 Simulation of transmissivity of the 200 μm/240 μm/100 μm resonator in (a) inclined and (b) normal incidence. Normal incidence yields a low efficiency of 4% because of the absorption of 300 µm in Si, whereas the resonance at inclined incidence exhibits an efficiency (peak transmission) exceeding 200%.
Fig. 6
Fig. 6 Comparison of resonators (A) 200 μm/240 μm/100 μm at normal incidence and (B)200 μm/240 μm/100 μm at inclined incidence: the injecting source of the resonators are 0.8% of t1240(200 μm) in (A), 57% of r1200(100 μm) in (B).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

t 1240 ( d 1 )× t 1240 ( d 2 )× e iϕ' 1( r ˜ 1240 ( d 1 )× r 1240 ( d 2 )× e iϕ ) (in normal incidence),
r 040 ( d 2 )+ r 1200 ( d 2 )× r ˜ 1240 ( d 1 )× t 1240 ( d 2 )× e iϕ 1( r ˜ 1240 ( d 1 )× r 1240 ( d 2 )× e iϕ ) (in inclined incidence),

Metrics