Abstract

We report on the single mode emission power enhancement of 1.3-μm VCSELs by adjusting the reflectivity of the top GaAs-based DBR for output coupling optimization using selective removal of Bragg reflector layers. Devices with record single mode power of 6.8-mW at room temperature and 2.8-mW at 80°C, with more than 30 dB single mode suppression ratio, have been obtained.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
8 mW fundamental mode output of wafer-fused VCSELs emitting in the 1550-nm band

Andrei Caliman, Alexandru Mereuta, Grigore Suruceanu, Vladimir Iakovlev, Alexei Sirbu, and Eli Kapon
Opt. Express 19(18) 16996-17001 (2011)

10-Gb/s and 10-km error-free transmission up to 100°C with 1.3-μm wavelength wafer-fused VCSELs

Alexandru Mereuta, Grigore Suruceanu, Andrei Caliman, Vladimir Iacovlev, Alexei Sirbu, and Eli Kapon
Opt. Express 17(15) 12981-12986 (2009)

Surface micromachined tunable 1.55 μm-VCSEL with 102 nm continuous single-mode tuning

C. Gierl, T. Gruendl, P. Debernardi, K. Zogal, C. Grasse, H. A. Davani, G. Böhm, S. Jatta, F. Küppers, P. Meißner, and M.-C. Amann
Opt. Express 19(18) 17336-17343 (2011)

References

  • View by:
  • |
  • |
  • |

  1. A. Larsson and J. S. Gustavsson, VCSELs: Fundamentals, Technology and Applications of Vertical-Cavity Surface-Emitting Lasers, (Springer, 2013).
  2. P. Werle, “A review of recent advances in semiconductor laser based gas monitors,” Spectrochem. Acta A, Mol. Bimol. Spectrosc. 54(2), 197–236 (1998).
    [Crossref]
  3. M. Lepère, A. Henry, A. Valentin, and C. Camy-Peyret, “Diode-laser spectroscopy: line profiles of H(2)O in the region of 1.39-μm,” J. Mol. Spectrosc. 208(1), 25–31 (2001).
    [Crossref] [PubMed]
  4. B. Parvitte, V. Zéninari, I. Puochet, and G. Durry, “Diode laser spectroscopy of H2O in the 7165-7185 cm-1 range for atmospheric applications,” J. Quant. Spectrosc. Radiat. Transf. 75(4), 493–505 (2002).
    [Crossref]
  5. J. L. Jewell, J. P. Harbison, A. Scherer, Y. H. Lee, and L. T. Florez, “Vertical-cavity surface-emitting lasers: design, growth, fabrication, characterization,” IEEE J. Quantum Electron. 27(6), 1332–1346 (1991).
    [Crossref]
  6. M. Rainer, “Fundamentals, technology and applications of vertical-cavity surface-emitting lasers,” Springer Series in Optical Sciences 166, 560 (2013).
  7. F. Koyama, “Recent advances of VCSEL photonics,” J. Lightwave Technol. 24(12), 4502–4513 (2006).
    [Crossref]
  8. G. Boehm, M. Ortsiefer, R. Shau, J. Rosskopf, C. Lauer, M. Maute, F. Köhler, F. Mederer, R. Meyer, and M.-C. Amann, “InP-based VCSEL technology covering the wavelength range from 1.3 to 2.0-μm,” J. Cryst. Growth 251(1–4), 217–220 (2003).
  9. A. Syrbu, A. Mircea, A. Mereuta, A. Caliman, C.-A. Berseth, G. Suruceanu, V. Iakovlev, M. Achtenhagen, A. Rudra, and E. Kapon, “1.5 mW single-mode operation of wafer-fused 1550 nm VCSELs,” IEEE Photon. Technol. Lett. 14, 738–740 (2004).
  10. V. Iakovlev, G. Suruceanu, A. Caliman, A. Mereuta, C.-A. Berseth, A. Syrbu, A. Rudra, and E. Kapon, “High-performance single-mode VCSELs in the 1310-nm waveband,” IEEE Photon. Technol. Lett. 17(5), 947–949 (2005).
    [Crossref]
  11. A. Caliman, A. Mereuta, G. Suruceanu, V. Iakovlev, A. Sirbu, and E. Kapon, “8 mW fundamental mode output of wafer-fused VCSELs emitting in the 1550-nm band,” Opt. Express 19(18), 16996–17001 (2011).
    [Crossref] [PubMed]
  12. T. Gruendl, P. Debernardi, M. Nueller, C. Grasse, P. Ebert, K. Geiger, M. Ortsiefer, G. Boehm, R. Meyer, and M. C. Amann, “Record Single-Mode, High-Power VCSELs by Inhibition of Spatial Burning,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1700913 (2013).
    [Crossref]
  13. A. Mircea, A. Caliman, V. Iakovlev, A. Mereuta, G. Suruceanu, C.-A. Berseth, P. Royo, A. Syrbu, and E. Kapon, “Cavity mode—gain peak trade-off for 1320-nm wafer-fused VCSELs with 3-mW single-mode emission power and 10-Gb/s modulation speed up to 70°C,” IEEE Photon. Technol. Lett. 19(2), 121–123 (2007).
    [Crossref]
  14. Å. Haglund, J. S. Gustavsson, J. Vukusic, P. Modh, and A. Larsson, “Single fundamental mode output power exceeding 6 mW from VCSELs with a shallow surface relief,” IEEE Photon. Technol. Lett. 16(2), 368–370 (2004).
    [Crossref]
  15. A. Sirbu, V. Iakovelv, A. Mereuta, A. Caliman, G. Suruceanu, and E. Kapon, “Wafer-fused heterostructures: application to vertical cavity surface-emitting lasers emitting in the 1310 nm band,” Semicond. Sci. Technol. 26(1), 014016 (2011).
    [Crossref]
  16. P. Westbergh, J. S. Gustavsson, B. Kögel, A. Haglund, and A. Larsson, “Impact of photon lifetime on high-speed VCSEL performance,” J. Sel. Top. Quantum Electron. 17(6), 1603–1613 (2011).
    [Crossref]
  17. G. P. Agrawal, Fiber-Optic Communication Systems, Third Edition (Wiley-Interscience, 2002).
  18. N. Volet, T. Czyszanowski, J. Walczak, L. Mutter, B. Dwir, Z. Micković, P. Gallo, A. Caliman, A. Sirbu, A. Mereuta, V. Iakovlev, and E. Kapon, “Transverse mode discrimination in long-wavelength wafer-fused vertical-cavity surface-emitting lasers by intra-cavity patterning,” Opt. Express 21(22), 26983–26989 (2013).
    [Crossref] [PubMed]

2013 (3)

M. Rainer, “Fundamentals, technology and applications of vertical-cavity surface-emitting lasers,” Springer Series in Optical Sciences 166, 560 (2013).

T. Gruendl, P. Debernardi, M. Nueller, C. Grasse, P. Ebert, K. Geiger, M. Ortsiefer, G. Boehm, R. Meyer, and M. C. Amann, “Record Single-Mode, High-Power VCSELs by Inhibition of Spatial Burning,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1700913 (2013).
[Crossref]

N. Volet, T. Czyszanowski, J. Walczak, L. Mutter, B. Dwir, Z. Micković, P. Gallo, A. Caliman, A. Sirbu, A. Mereuta, V. Iakovlev, and E. Kapon, “Transverse mode discrimination in long-wavelength wafer-fused vertical-cavity surface-emitting lasers by intra-cavity patterning,” Opt. Express 21(22), 26983–26989 (2013).
[Crossref] [PubMed]

2011 (3)

A. Caliman, A. Mereuta, G. Suruceanu, V. Iakovlev, A. Sirbu, and E. Kapon, “8 mW fundamental mode output of wafer-fused VCSELs emitting in the 1550-nm band,” Opt. Express 19(18), 16996–17001 (2011).
[Crossref] [PubMed]

A. Sirbu, V. Iakovelv, A. Mereuta, A. Caliman, G. Suruceanu, and E. Kapon, “Wafer-fused heterostructures: application to vertical cavity surface-emitting lasers emitting in the 1310 nm band,” Semicond. Sci. Technol. 26(1), 014016 (2011).
[Crossref]

P. Westbergh, J. S. Gustavsson, B. Kögel, A. Haglund, and A. Larsson, “Impact of photon lifetime on high-speed VCSEL performance,” J. Sel. Top. Quantum Electron. 17(6), 1603–1613 (2011).
[Crossref]

2007 (1)

A. Mircea, A. Caliman, V. Iakovlev, A. Mereuta, G. Suruceanu, C.-A. Berseth, P. Royo, A. Syrbu, and E. Kapon, “Cavity mode—gain peak trade-off for 1320-nm wafer-fused VCSELs with 3-mW single-mode emission power and 10-Gb/s modulation speed up to 70°C,” IEEE Photon. Technol. Lett. 19(2), 121–123 (2007).
[Crossref]

2006 (1)

2005 (1)

V. Iakovlev, G. Suruceanu, A. Caliman, A. Mereuta, C.-A. Berseth, A. Syrbu, A. Rudra, and E. Kapon, “High-performance single-mode VCSELs in the 1310-nm waveband,” IEEE Photon. Technol. Lett. 17(5), 947–949 (2005).
[Crossref]

2004 (2)

A. Syrbu, A. Mircea, A. Mereuta, A. Caliman, C.-A. Berseth, G. Suruceanu, V. Iakovlev, M. Achtenhagen, A. Rudra, and E. Kapon, “1.5 mW single-mode operation of wafer-fused 1550 nm VCSELs,” IEEE Photon. Technol. Lett. 14, 738–740 (2004).

Å. Haglund, J. S. Gustavsson, J. Vukusic, P. Modh, and A. Larsson, “Single fundamental mode output power exceeding 6 mW from VCSELs with a shallow surface relief,” IEEE Photon. Technol. Lett. 16(2), 368–370 (2004).
[Crossref]

2003 (1)

G. Boehm, M. Ortsiefer, R. Shau, J. Rosskopf, C. Lauer, M. Maute, F. Köhler, F. Mederer, R. Meyer, and M.-C. Amann, “InP-based VCSEL technology covering the wavelength range from 1.3 to 2.0-μm,” J. Cryst. Growth 251(1–4), 217–220 (2003).

2002 (1)

B. Parvitte, V. Zéninari, I. Puochet, and G. Durry, “Diode laser spectroscopy of H2O in the 7165-7185 cm-1 range for atmospheric applications,” J. Quant. Spectrosc. Radiat. Transf. 75(4), 493–505 (2002).
[Crossref]

2001 (1)

M. Lepère, A. Henry, A. Valentin, and C. Camy-Peyret, “Diode-laser spectroscopy: line profiles of H(2)O in the region of 1.39-μm,” J. Mol. Spectrosc. 208(1), 25–31 (2001).
[Crossref] [PubMed]

1998 (1)

P. Werle, “A review of recent advances in semiconductor laser based gas monitors,” Spectrochem. Acta A, Mol. Bimol. Spectrosc. 54(2), 197–236 (1998).
[Crossref]

1991 (1)

J. L. Jewell, J. P. Harbison, A. Scherer, Y. H. Lee, and L. T. Florez, “Vertical-cavity surface-emitting lasers: design, growth, fabrication, characterization,” IEEE J. Quantum Electron. 27(6), 1332–1346 (1991).
[Crossref]

Achtenhagen, M.

A. Syrbu, A. Mircea, A. Mereuta, A. Caliman, C.-A. Berseth, G. Suruceanu, V. Iakovlev, M. Achtenhagen, A. Rudra, and E. Kapon, “1.5 mW single-mode operation of wafer-fused 1550 nm VCSELs,” IEEE Photon. Technol. Lett. 14, 738–740 (2004).

Amann, M. C.

T. Gruendl, P. Debernardi, M. Nueller, C. Grasse, P. Ebert, K. Geiger, M. Ortsiefer, G. Boehm, R. Meyer, and M. C. Amann, “Record Single-Mode, High-Power VCSELs by Inhibition of Spatial Burning,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1700913 (2013).
[Crossref]

Amann, M.-C.

G. Boehm, M. Ortsiefer, R. Shau, J. Rosskopf, C. Lauer, M. Maute, F. Köhler, F. Mederer, R. Meyer, and M.-C. Amann, “InP-based VCSEL technology covering the wavelength range from 1.3 to 2.0-μm,” J. Cryst. Growth 251(1–4), 217–220 (2003).

Berseth, C.-A.

A. Mircea, A. Caliman, V. Iakovlev, A. Mereuta, G. Suruceanu, C.-A. Berseth, P. Royo, A. Syrbu, and E. Kapon, “Cavity mode—gain peak trade-off for 1320-nm wafer-fused VCSELs with 3-mW single-mode emission power and 10-Gb/s modulation speed up to 70°C,” IEEE Photon. Technol. Lett. 19(2), 121–123 (2007).
[Crossref]

V. Iakovlev, G. Suruceanu, A. Caliman, A. Mereuta, C.-A. Berseth, A. Syrbu, A. Rudra, and E. Kapon, “High-performance single-mode VCSELs in the 1310-nm waveband,” IEEE Photon. Technol. Lett. 17(5), 947–949 (2005).
[Crossref]

A. Syrbu, A. Mircea, A. Mereuta, A. Caliman, C.-A. Berseth, G. Suruceanu, V. Iakovlev, M. Achtenhagen, A. Rudra, and E. Kapon, “1.5 mW single-mode operation of wafer-fused 1550 nm VCSELs,” IEEE Photon. Technol. Lett. 14, 738–740 (2004).

Boehm, G.

T. Gruendl, P. Debernardi, M. Nueller, C. Grasse, P. Ebert, K. Geiger, M. Ortsiefer, G. Boehm, R. Meyer, and M. C. Amann, “Record Single-Mode, High-Power VCSELs by Inhibition of Spatial Burning,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1700913 (2013).
[Crossref]

G. Boehm, M. Ortsiefer, R. Shau, J. Rosskopf, C. Lauer, M. Maute, F. Köhler, F. Mederer, R. Meyer, and M.-C. Amann, “InP-based VCSEL technology covering the wavelength range from 1.3 to 2.0-μm,” J. Cryst. Growth 251(1–4), 217–220 (2003).

Caliman, A.

N. Volet, T. Czyszanowski, J. Walczak, L. Mutter, B. Dwir, Z. Micković, P. Gallo, A. Caliman, A. Sirbu, A. Mereuta, V. Iakovlev, and E. Kapon, “Transverse mode discrimination in long-wavelength wafer-fused vertical-cavity surface-emitting lasers by intra-cavity patterning,” Opt. Express 21(22), 26983–26989 (2013).
[Crossref] [PubMed]

A. Sirbu, V. Iakovelv, A. Mereuta, A. Caliman, G. Suruceanu, and E. Kapon, “Wafer-fused heterostructures: application to vertical cavity surface-emitting lasers emitting in the 1310 nm band,” Semicond. Sci. Technol. 26(1), 014016 (2011).
[Crossref]

A. Caliman, A. Mereuta, G. Suruceanu, V. Iakovlev, A. Sirbu, and E. Kapon, “8 mW fundamental mode output of wafer-fused VCSELs emitting in the 1550-nm band,” Opt. Express 19(18), 16996–17001 (2011).
[Crossref] [PubMed]

A. Mircea, A. Caliman, V. Iakovlev, A. Mereuta, G. Suruceanu, C.-A. Berseth, P. Royo, A. Syrbu, and E. Kapon, “Cavity mode—gain peak trade-off for 1320-nm wafer-fused VCSELs with 3-mW single-mode emission power and 10-Gb/s modulation speed up to 70°C,” IEEE Photon. Technol. Lett. 19(2), 121–123 (2007).
[Crossref]

V. Iakovlev, G. Suruceanu, A. Caliman, A. Mereuta, C.-A. Berseth, A. Syrbu, A. Rudra, and E. Kapon, “High-performance single-mode VCSELs in the 1310-nm waveband,” IEEE Photon. Technol. Lett. 17(5), 947–949 (2005).
[Crossref]

A. Syrbu, A. Mircea, A. Mereuta, A. Caliman, C.-A. Berseth, G. Suruceanu, V. Iakovlev, M. Achtenhagen, A. Rudra, and E. Kapon, “1.5 mW single-mode operation of wafer-fused 1550 nm VCSELs,” IEEE Photon. Technol. Lett. 14, 738–740 (2004).

Camy-Peyret, C.

M. Lepère, A. Henry, A. Valentin, and C. Camy-Peyret, “Diode-laser spectroscopy: line profiles of H(2)O in the region of 1.39-μm,” J. Mol. Spectrosc. 208(1), 25–31 (2001).
[Crossref] [PubMed]

Czyszanowski, T.

Debernardi, P.

T. Gruendl, P. Debernardi, M. Nueller, C. Grasse, P. Ebert, K. Geiger, M. Ortsiefer, G. Boehm, R. Meyer, and M. C. Amann, “Record Single-Mode, High-Power VCSELs by Inhibition of Spatial Burning,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1700913 (2013).
[Crossref]

Durry, G.

B. Parvitte, V. Zéninari, I. Puochet, and G. Durry, “Diode laser spectroscopy of H2O in the 7165-7185 cm-1 range for atmospheric applications,” J. Quant. Spectrosc. Radiat. Transf. 75(4), 493–505 (2002).
[Crossref]

Dwir, B.

Ebert, P.

T. Gruendl, P. Debernardi, M. Nueller, C. Grasse, P. Ebert, K. Geiger, M. Ortsiefer, G. Boehm, R. Meyer, and M. C. Amann, “Record Single-Mode, High-Power VCSELs by Inhibition of Spatial Burning,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1700913 (2013).
[Crossref]

Florez, L. T.

J. L. Jewell, J. P. Harbison, A. Scherer, Y. H. Lee, and L. T. Florez, “Vertical-cavity surface-emitting lasers: design, growth, fabrication, characterization,” IEEE J. Quantum Electron. 27(6), 1332–1346 (1991).
[Crossref]

Gallo, P.

Geiger, K.

T. Gruendl, P. Debernardi, M. Nueller, C. Grasse, P. Ebert, K. Geiger, M. Ortsiefer, G. Boehm, R. Meyer, and M. C. Amann, “Record Single-Mode, High-Power VCSELs by Inhibition of Spatial Burning,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1700913 (2013).
[Crossref]

Grasse, C.

T. Gruendl, P. Debernardi, M. Nueller, C. Grasse, P. Ebert, K. Geiger, M. Ortsiefer, G. Boehm, R. Meyer, and M. C. Amann, “Record Single-Mode, High-Power VCSELs by Inhibition of Spatial Burning,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1700913 (2013).
[Crossref]

Gruendl, T.

T. Gruendl, P. Debernardi, M. Nueller, C. Grasse, P. Ebert, K. Geiger, M. Ortsiefer, G. Boehm, R. Meyer, and M. C. Amann, “Record Single-Mode, High-Power VCSELs by Inhibition of Spatial Burning,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1700913 (2013).
[Crossref]

Gustavsson, J. S.

P. Westbergh, J. S. Gustavsson, B. Kögel, A. Haglund, and A. Larsson, “Impact of photon lifetime on high-speed VCSEL performance,” J. Sel. Top. Quantum Electron. 17(6), 1603–1613 (2011).
[Crossref]

Å. Haglund, J. S. Gustavsson, J. Vukusic, P. Modh, and A. Larsson, “Single fundamental mode output power exceeding 6 mW from VCSELs with a shallow surface relief,” IEEE Photon. Technol. Lett. 16(2), 368–370 (2004).
[Crossref]

Haglund, A.

P. Westbergh, J. S. Gustavsson, B. Kögel, A. Haglund, and A. Larsson, “Impact of photon lifetime on high-speed VCSEL performance,” J. Sel. Top. Quantum Electron. 17(6), 1603–1613 (2011).
[Crossref]

Haglund, Å.

Å. Haglund, J. S. Gustavsson, J. Vukusic, P. Modh, and A. Larsson, “Single fundamental mode output power exceeding 6 mW from VCSELs with a shallow surface relief,” IEEE Photon. Technol. Lett. 16(2), 368–370 (2004).
[Crossref]

Harbison, J. P.

J. L. Jewell, J. P. Harbison, A. Scherer, Y. H. Lee, and L. T. Florez, “Vertical-cavity surface-emitting lasers: design, growth, fabrication, characterization,” IEEE J. Quantum Electron. 27(6), 1332–1346 (1991).
[Crossref]

Henry, A.

M. Lepère, A. Henry, A. Valentin, and C. Camy-Peyret, “Diode-laser spectroscopy: line profiles of H(2)O in the region of 1.39-μm,” J. Mol. Spectrosc. 208(1), 25–31 (2001).
[Crossref] [PubMed]

Iakovelv, V.

A. Sirbu, V. Iakovelv, A. Mereuta, A. Caliman, G. Suruceanu, and E. Kapon, “Wafer-fused heterostructures: application to vertical cavity surface-emitting lasers emitting in the 1310 nm band,” Semicond. Sci. Technol. 26(1), 014016 (2011).
[Crossref]

Iakovlev, V.

N. Volet, T. Czyszanowski, J. Walczak, L. Mutter, B. Dwir, Z. Micković, P. Gallo, A. Caliman, A. Sirbu, A. Mereuta, V. Iakovlev, and E. Kapon, “Transverse mode discrimination in long-wavelength wafer-fused vertical-cavity surface-emitting lasers by intra-cavity patterning,” Opt. Express 21(22), 26983–26989 (2013).
[Crossref] [PubMed]

A. Caliman, A. Mereuta, G. Suruceanu, V. Iakovlev, A. Sirbu, and E. Kapon, “8 mW fundamental mode output of wafer-fused VCSELs emitting in the 1550-nm band,” Opt. Express 19(18), 16996–17001 (2011).
[Crossref] [PubMed]

A. Mircea, A. Caliman, V. Iakovlev, A. Mereuta, G. Suruceanu, C.-A. Berseth, P. Royo, A. Syrbu, and E. Kapon, “Cavity mode—gain peak trade-off for 1320-nm wafer-fused VCSELs with 3-mW single-mode emission power and 10-Gb/s modulation speed up to 70°C,” IEEE Photon. Technol. Lett. 19(2), 121–123 (2007).
[Crossref]

V. Iakovlev, G. Suruceanu, A. Caliman, A. Mereuta, C.-A. Berseth, A. Syrbu, A. Rudra, and E. Kapon, “High-performance single-mode VCSELs in the 1310-nm waveband,” IEEE Photon. Technol. Lett. 17(5), 947–949 (2005).
[Crossref]

A. Syrbu, A. Mircea, A. Mereuta, A. Caliman, C.-A. Berseth, G. Suruceanu, V. Iakovlev, M. Achtenhagen, A. Rudra, and E. Kapon, “1.5 mW single-mode operation of wafer-fused 1550 nm VCSELs,” IEEE Photon. Technol. Lett. 14, 738–740 (2004).

Jewell, J. L.

J. L. Jewell, J. P. Harbison, A. Scherer, Y. H. Lee, and L. T. Florez, “Vertical-cavity surface-emitting lasers: design, growth, fabrication, characterization,” IEEE J. Quantum Electron. 27(6), 1332–1346 (1991).
[Crossref]

Kapon, E.

N. Volet, T. Czyszanowski, J. Walczak, L. Mutter, B. Dwir, Z. Micković, P. Gallo, A. Caliman, A. Sirbu, A. Mereuta, V. Iakovlev, and E. Kapon, “Transverse mode discrimination in long-wavelength wafer-fused vertical-cavity surface-emitting lasers by intra-cavity patterning,” Opt. Express 21(22), 26983–26989 (2013).
[Crossref] [PubMed]

A. Sirbu, V. Iakovelv, A. Mereuta, A. Caliman, G. Suruceanu, and E. Kapon, “Wafer-fused heterostructures: application to vertical cavity surface-emitting lasers emitting in the 1310 nm band,” Semicond. Sci. Technol. 26(1), 014016 (2011).
[Crossref]

A. Caliman, A. Mereuta, G. Suruceanu, V. Iakovlev, A. Sirbu, and E. Kapon, “8 mW fundamental mode output of wafer-fused VCSELs emitting in the 1550-nm band,” Opt. Express 19(18), 16996–17001 (2011).
[Crossref] [PubMed]

A. Mircea, A. Caliman, V. Iakovlev, A. Mereuta, G. Suruceanu, C.-A. Berseth, P. Royo, A. Syrbu, and E. Kapon, “Cavity mode—gain peak trade-off for 1320-nm wafer-fused VCSELs with 3-mW single-mode emission power and 10-Gb/s modulation speed up to 70°C,” IEEE Photon. Technol. Lett. 19(2), 121–123 (2007).
[Crossref]

V. Iakovlev, G. Suruceanu, A. Caliman, A. Mereuta, C.-A. Berseth, A. Syrbu, A. Rudra, and E. Kapon, “High-performance single-mode VCSELs in the 1310-nm waveband,” IEEE Photon. Technol. Lett. 17(5), 947–949 (2005).
[Crossref]

A. Syrbu, A. Mircea, A. Mereuta, A. Caliman, C.-A. Berseth, G. Suruceanu, V. Iakovlev, M. Achtenhagen, A. Rudra, and E. Kapon, “1.5 mW single-mode operation of wafer-fused 1550 nm VCSELs,” IEEE Photon. Technol. Lett. 14, 738–740 (2004).

Kögel, B.

P. Westbergh, J. S. Gustavsson, B. Kögel, A. Haglund, and A. Larsson, “Impact of photon lifetime on high-speed VCSEL performance,” J. Sel. Top. Quantum Electron. 17(6), 1603–1613 (2011).
[Crossref]

Köhler, F.

G. Boehm, M. Ortsiefer, R. Shau, J. Rosskopf, C. Lauer, M. Maute, F. Köhler, F. Mederer, R. Meyer, and M.-C. Amann, “InP-based VCSEL technology covering the wavelength range from 1.3 to 2.0-μm,” J. Cryst. Growth 251(1–4), 217–220 (2003).

Koyama, F.

Larsson, A.

P. Westbergh, J. S. Gustavsson, B. Kögel, A. Haglund, and A. Larsson, “Impact of photon lifetime on high-speed VCSEL performance,” J. Sel. Top. Quantum Electron. 17(6), 1603–1613 (2011).
[Crossref]

Å. Haglund, J. S. Gustavsson, J. Vukusic, P. Modh, and A. Larsson, “Single fundamental mode output power exceeding 6 mW from VCSELs with a shallow surface relief,” IEEE Photon. Technol. Lett. 16(2), 368–370 (2004).
[Crossref]

Lauer, C.

G. Boehm, M. Ortsiefer, R. Shau, J. Rosskopf, C. Lauer, M. Maute, F. Köhler, F. Mederer, R. Meyer, and M.-C. Amann, “InP-based VCSEL technology covering the wavelength range from 1.3 to 2.0-μm,” J. Cryst. Growth 251(1–4), 217–220 (2003).

Lee, Y. H.

J. L. Jewell, J. P. Harbison, A. Scherer, Y. H. Lee, and L. T. Florez, “Vertical-cavity surface-emitting lasers: design, growth, fabrication, characterization,” IEEE J. Quantum Electron. 27(6), 1332–1346 (1991).
[Crossref]

Lepère, M.

M. Lepère, A. Henry, A. Valentin, and C. Camy-Peyret, “Diode-laser spectroscopy: line profiles of H(2)O in the region of 1.39-μm,” J. Mol. Spectrosc. 208(1), 25–31 (2001).
[Crossref] [PubMed]

Maute, M.

G. Boehm, M. Ortsiefer, R. Shau, J. Rosskopf, C. Lauer, M. Maute, F. Köhler, F. Mederer, R. Meyer, and M.-C. Amann, “InP-based VCSEL technology covering the wavelength range from 1.3 to 2.0-μm,” J. Cryst. Growth 251(1–4), 217–220 (2003).

Mederer, F.

G. Boehm, M. Ortsiefer, R. Shau, J. Rosskopf, C. Lauer, M. Maute, F. Köhler, F. Mederer, R. Meyer, and M.-C. Amann, “InP-based VCSEL technology covering the wavelength range from 1.3 to 2.0-μm,” J. Cryst. Growth 251(1–4), 217–220 (2003).

Mereuta, A.

N. Volet, T. Czyszanowski, J. Walczak, L. Mutter, B. Dwir, Z. Micković, P. Gallo, A. Caliman, A. Sirbu, A. Mereuta, V. Iakovlev, and E. Kapon, “Transverse mode discrimination in long-wavelength wafer-fused vertical-cavity surface-emitting lasers by intra-cavity patterning,” Opt. Express 21(22), 26983–26989 (2013).
[Crossref] [PubMed]

A. Sirbu, V. Iakovelv, A. Mereuta, A. Caliman, G. Suruceanu, and E. Kapon, “Wafer-fused heterostructures: application to vertical cavity surface-emitting lasers emitting in the 1310 nm band,” Semicond. Sci. Technol. 26(1), 014016 (2011).
[Crossref]

A. Caliman, A. Mereuta, G. Suruceanu, V. Iakovlev, A. Sirbu, and E. Kapon, “8 mW fundamental mode output of wafer-fused VCSELs emitting in the 1550-nm band,” Opt. Express 19(18), 16996–17001 (2011).
[Crossref] [PubMed]

A. Mircea, A. Caliman, V. Iakovlev, A. Mereuta, G. Suruceanu, C.-A. Berseth, P. Royo, A. Syrbu, and E. Kapon, “Cavity mode—gain peak trade-off for 1320-nm wafer-fused VCSELs with 3-mW single-mode emission power and 10-Gb/s modulation speed up to 70°C,” IEEE Photon. Technol. Lett. 19(2), 121–123 (2007).
[Crossref]

V. Iakovlev, G. Suruceanu, A. Caliman, A. Mereuta, C.-A. Berseth, A. Syrbu, A. Rudra, and E. Kapon, “High-performance single-mode VCSELs in the 1310-nm waveband,” IEEE Photon. Technol. Lett. 17(5), 947–949 (2005).
[Crossref]

A. Syrbu, A. Mircea, A. Mereuta, A. Caliman, C.-A. Berseth, G. Suruceanu, V. Iakovlev, M. Achtenhagen, A. Rudra, and E. Kapon, “1.5 mW single-mode operation of wafer-fused 1550 nm VCSELs,” IEEE Photon. Technol. Lett. 14, 738–740 (2004).

Meyer, R.

T. Gruendl, P. Debernardi, M. Nueller, C. Grasse, P. Ebert, K. Geiger, M. Ortsiefer, G. Boehm, R. Meyer, and M. C. Amann, “Record Single-Mode, High-Power VCSELs by Inhibition of Spatial Burning,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1700913 (2013).
[Crossref]

G. Boehm, M. Ortsiefer, R. Shau, J. Rosskopf, C. Lauer, M. Maute, F. Köhler, F. Mederer, R. Meyer, and M.-C. Amann, “InP-based VCSEL technology covering the wavelength range from 1.3 to 2.0-μm,” J. Cryst. Growth 251(1–4), 217–220 (2003).

Mickovic, Z.

Mircea, A.

A. Mircea, A. Caliman, V. Iakovlev, A. Mereuta, G. Suruceanu, C.-A. Berseth, P. Royo, A. Syrbu, and E. Kapon, “Cavity mode—gain peak trade-off for 1320-nm wafer-fused VCSELs with 3-mW single-mode emission power and 10-Gb/s modulation speed up to 70°C,” IEEE Photon. Technol. Lett. 19(2), 121–123 (2007).
[Crossref]

A. Syrbu, A. Mircea, A. Mereuta, A. Caliman, C.-A. Berseth, G. Suruceanu, V. Iakovlev, M. Achtenhagen, A. Rudra, and E. Kapon, “1.5 mW single-mode operation of wafer-fused 1550 nm VCSELs,” IEEE Photon. Technol. Lett. 14, 738–740 (2004).

Modh, P.

Å. Haglund, J. S. Gustavsson, J. Vukusic, P. Modh, and A. Larsson, “Single fundamental mode output power exceeding 6 mW from VCSELs with a shallow surface relief,” IEEE Photon. Technol. Lett. 16(2), 368–370 (2004).
[Crossref]

Mutter, L.

Nueller, M.

T. Gruendl, P. Debernardi, M. Nueller, C. Grasse, P. Ebert, K. Geiger, M. Ortsiefer, G. Boehm, R. Meyer, and M. C. Amann, “Record Single-Mode, High-Power VCSELs by Inhibition of Spatial Burning,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1700913 (2013).
[Crossref]

Ortsiefer, M.

T. Gruendl, P. Debernardi, M. Nueller, C. Grasse, P. Ebert, K. Geiger, M. Ortsiefer, G. Boehm, R. Meyer, and M. C. Amann, “Record Single-Mode, High-Power VCSELs by Inhibition of Spatial Burning,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1700913 (2013).
[Crossref]

G. Boehm, M. Ortsiefer, R. Shau, J. Rosskopf, C. Lauer, M. Maute, F. Köhler, F. Mederer, R. Meyer, and M.-C. Amann, “InP-based VCSEL technology covering the wavelength range from 1.3 to 2.0-μm,” J. Cryst. Growth 251(1–4), 217–220 (2003).

Parvitte, B.

B. Parvitte, V. Zéninari, I. Puochet, and G. Durry, “Diode laser spectroscopy of H2O in the 7165-7185 cm-1 range for atmospheric applications,” J. Quant. Spectrosc. Radiat. Transf. 75(4), 493–505 (2002).
[Crossref]

Puochet, I.

B. Parvitte, V. Zéninari, I. Puochet, and G. Durry, “Diode laser spectroscopy of H2O in the 7165-7185 cm-1 range for atmospheric applications,” J. Quant. Spectrosc. Radiat. Transf. 75(4), 493–505 (2002).
[Crossref]

Rainer, M.

M. Rainer, “Fundamentals, technology and applications of vertical-cavity surface-emitting lasers,” Springer Series in Optical Sciences 166, 560 (2013).

Rosskopf, J.

G. Boehm, M. Ortsiefer, R. Shau, J. Rosskopf, C. Lauer, M. Maute, F. Köhler, F. Mederer, R. Meyer, and M.-C. Amann, “InP-based VCSEL technology covering the wavelength range from 1.3 to 2.0-μm,” J. Cryst. Growth 251(1–4), 217–220 (2003).

Royo, P.

A. Mircea, A. Caliman, V. Iakovlev, A. Mereuta, G. Suruceanu, C.-A. Berseth, P. Royo, A. Syrbu, and E. Kapon, “Cavity mode—gain peak trade-off for 1320-nm wafer-fused VCSELs with 3-mW single-mode emission power and 10-Gb/s modulation speed up to 70°C,” IEEE Photon. Technol. Lett. 19(2), 121–123 (2007).
[Crossref]

Rudra, A.

V. Iakovlev, G. Suruceanu, A. Caliman, A. Mereuta, C.-A. Berseth, A. Syrbu, A. Rudra, and E. Kapon, “High-performance single-mode VCSELs in the 1310-nm waveband,” IEEE Photon. Technol. Lett. 17(5), 947–949 (2005).
[Crossref]

A. Syrbu, A. Mircea, A. Mereuta, A. Caliman, C.-A. Berseth, G. Suruceanu, V. Iakovlev, M. Achtenhagen, A. Rudra, and E. Kapon, “1.5 mW single-mode operation of wafer-fused 1550 nm VCSELs,” IEEE Photon. Technol. Lett. 14, 738–740 (2004).

Scherer, A.

J. L. Jewell, J. P. Harbison, A. Scherer, Y. H. Lee, and L. T. Florez, “Vertical-cavity surface-emitting lasers: design, growth, fabrication, characterization,” IEEE J. Quantum Electron. 27(6), 1332–1346 (1991).
[Crossref]

Shau, R.

G. Boehm, M. Ortsiefer, R. Shau, J. Rosskopf, C. Lauer, M. Maute, F. Köhler, F. Mederer, R. Meyer, and M.-C. Amann, “InP-based VCSEL technology covering the wavelength range from 1.3 to 2.0-μm,” J. Cryst. Growth 251(1–4), 217–220 (2003).

Sirbu, A.

Suruceanu, G.

A. Caliman, A. Mereuta, G. Suruceanu, V. Iakovlev, A. Sirbu, and E. Kapon, “8 mW fundamental mode output of wafer-fused VCSELs emitting in the 1550-nm band,” Opt. Express 19(18), 16996–17001 (2011).
[Crossref] [PubMed]

A. Sirbu, V. Iakovelv, A. Mereuta, A. Caliman, G. Suruceanu, and E. Kapon, “Wafer-fused heterostructures: application to vertical cavity surface-emitting lasers emitting in the 1310 nm band,” Semicond. Sci. Technol. 26(1), 014016 (2011).
[Crossref]

A. Mircea, A. Caliman, V. Iakovlev, A. Mereuta, G. Suruceanu, C.-A. Berseth, P. Royo, A. Syrbu, and E. Kapon, “Cavity mode—gain peak trade-off for 1320-nm wafer-fused VCSELs with 3-mW single-mode emission power and 10-Gb/s modulation speed up to 70°C,” IEEE Photon. Technol. Lett. 19(2), 121–123 (2007).
[Crossref]

V. Iakovlev, G. Suruceanu, A. Caliman, A. Mereuta, C.-A. Berseth, A. Syrbu, A. Rudra, and E. Kapon, “High-performance single-mode VCSELs in the 1310-nm waveband,” IEEE Photon. Technol. Lett. 17(5), 947–949 (2005).
[Crossref]

A. Syrbu, A. Mircea, A. Mereuta, A. Caliman, C.-A. Berseth, G. Suruceanu, V. Iakovlev, M. Achtenhagen, A. Rudra, and E. Kapon, “1.5 mW single-mode operation of wafer-fused 1550 nm VCSELs,” IEEE Photon. Technol. Lett. 14, 738–740 (2004).

Syrbu, A.

A. Mircea, A. Caliman, V. Iakovlev, A. Mereuta, G. Suruceanu, C.-A. Berseth, P. Royo, A. Syrbu, and E. Kapon, “Cavity mode—gain peak trade-off for 1320-nm wafer-fused VCSELs with 3-mW single-mode emission power and 10-Gb/s modulation speed up to 70°C,” IEEE Photon. Technol. Lett. 19(2), 121–123 (2007).
[Crossref]

V. Iakovlev, G. Suruceanu, A. Caliman, A. Mereuta, C.-A. Berseth, A. Syrbu, A. Rudra, and E. Kapon, “High-performance single-mode VCSELs in the 1310-nm waveband,” IEEE Photon. Technol. Lett. 17(5), 947–949 (2005).
[Crossref]

A. Syrbu, A. Mircea, A. Mereuta, A. Caliman, C.-A. Berseth, G. Suruceanu, V. Iakovlev, M. Achtenhagen, A. Rudra, and E. Kapon, “1.5 mW single-mode operation of wafer-fused 1550 nm VCSELs,” IEEE Photon. Technol. Lett. 14, 738–740 (2004).

Valentin, A.

M. Lepère, A. Henry, A. Valentin, and C. Camy-Peyret, “Diode-laser spectroscopy: line profiles of H(2)O in the region of 1.39-μm,” J. Mol. Spectrosc. 208(1), 25–31 (2001).
[Crossref] [PubMed]

Volet, N.

Vukusic, J.

Å. Haglund, J. S. Gustavsson, J. Vukusic, P. Modh, and A. Larsson, “Single fundamental mode output power exceeding 6 mW from VCSELs with a shallow surface relief,” IEEE Photon. Technol. Lett. 16(2), 368–370 (2004).
[Crossref]

Walczak, J.

Werle, P.

P. Werle, “A review of recent advances in semiconductor laser based gas monitors,” Spectrochem. Acta A, Mol. Bimol. Spectrosc. 54(2), 197–236 (1998).
[Crossref]

Westbergh, P.

P. Westbergh, J. S. Gustavsson, B. Kögel, A. Haglund, and A. Larsson, “Impact of photon lifetime on high-speed VCSEL performance,” J. Sel. Top. Quantum Electron. 17(6), 1603–1613 (2011).
[Crossref]

Zéninari, V.

B. Parvitte, V. Zéninari, I. Puochet, and G. Durry, “Diode laser spectroscopy of H2O in the 7165-7185 cm-1 range for atmospheric applications,” J. Quant. Spectrosc. Radiat. Transf. 75(4), 493–505 (2002).
[Crossref]

IEEE J. Quantum Electron. (1)

J. L. Jewell, J. P. Harbison, A. Scherer, Y. H. Lee, and L. T. Florez, “Vertical-cavity surface-emitting lasers: design, growth, fabrication, characterization,” IEEE J. Quantum Electron. 27(6), 1332–1346 (1991).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

T. Gruendl, P. Debernardi, M. Nueller, C. Grasse, P. Ebert, K. Geiger, M. Ortsiefer, G. Boehm, R. Meyer, and M. C. Amann, “Record Single-Mode, High-Power VCSELs by Inhibition of Spatial Burning,” IEEE J. Sel. Top. Quantum Electron. 19(4), 1700913 (2013).
[Crossref]

IEEE Photon. Technol. Lett. (4)

A. Mircea, A. Caliman, V. Iakovlev, A. Mereuta, G. Suruceanu, C.-A. Berseth, P. Royo, A. Syrbu, and E. Kapon, “Cavity mode—gain peak trade-off for 1320-nm wafer-fused VCSELs with 3-mW single-mode emission power and 10-Gb/s modulation speed up to 70°C,” IEEE Photon. Technol. Lett. 19(2), 121–123 (2007).
[Crossref]

Å. Haglund, J. S. Gustavsson, J. Vukusic, P. Modh, and A. Larsson, “Single fundamental mode output power exceeding 6 mW from VCSELs with a shallow surface relief,” IEEE Photon. Technol. Lett. 16(2), 368–370 (2004).
[Crossref]

A. Syrbu, A. Mircea, A. Mereuta, A. Caliman, C.-A. Berseth, G. Suruceanu, V. Iakovlev, M. Achtenhagen, A. Rudra, and E. Kapon, “1.5 mW single-mode operation of wafer-fused 1550 nm VCSELs,” IEEE Photon. Technol. Lett. 14, 738–740 (2004).

V. Iakovlev, G. Suruceanu, A. Caliman, A. Mereuta, C.-A. Berseth, A. Syrbu, A. Rudra, and E. Kapon, “High-performance single-mode VCSELs in the 1310-nm waveband,” IEEE Photon. Technol. Lett. 17(5), 947–949 (2005).
[Crossref]

J. Cryst. Growth (1)

G. Boehm, M. Ortsiefer, R. Shau, J. Rosskopf, C. Lauer, M. Maute, F. Köhler, F. Mederer, R. Meyer, and M.-C. Amann, “InP-based VCSEL technology covering the wavelength range from 1.3 to 2.0-μm,” J. Cryst. Growth 251(1–4), 217–220 (2003).

J. Lightwave Technol. (1)

J. Mol. Spectrosc. (1)

M. Lepère, A. Henry, A. Valentin, and C. Camy-Peyret, “Diode-laser spectroscopy: line profiles of H(2)O in the region of 1.39-μm,” J. Mol. Spectrosc. 208(1), 25–31 (2001).
[Crossref] [PubMed]

J. Quant. Spectrosc. Radiat. Transf. (1)

B. Parvitte, V. Zéninari, I. Puochet, and G. Durry, “Diode laser spectroscopy of H2O in the 7165-7185 cm-1 range for atmospheric applications,” J. Quant. Spectrosc. Radiat. Transf. 75(4), 493–505 (2002).
[Crossref]

J. Sel. Top. Quantum Electron. (1)

P. Westbergh, J. S. Gustavsson, B. Kögel, A. Haglund, and A. Larsson, “Impact of photon lifetime on high-speed VCSEL performance,” J. Sel. Top. Quantum Electron. 17(6), 1603–1613 (2011).
[Crossref]

Opt. Express (2)

Semicond. Sci. Technol. (1)

A. Sirbu, V. Iakovelv, A. Mereuta, A. Caliman, G. Suruceanu, and E. Kapon, “Wafer-fused heterostructures: application to vertical cavity surface-emitting lasers emitting in the 1310 nm band,” Semicond. Sci. Technol. 26(1), 014016 (2011).
[Crossref]

Spectrochem. Acta A, Mol. Bimol. Spectrosc. (1)

P. Werle, “A review of recent advances in semiconductor laser based gas monitors,” Spectrochem. Acta A, Mol. Bimol. Spectrosc. 54(2), 197–236 (1998).
[Crossref]

Springer Series in Optical Sciences (1)

M. Rainer, “Fundamentals, technology and applications of vertical-cavity surface-emitting lasers,” Springer Series in Optical Sciences 166, 560 (2013).

Other (2)

A. Larsson and J. S. Gustavsson, VCSELs: Fundamentals, Technology and Applications of Vertical-Cavity Surface-Emitting Lasers, (Springer, 2013).

G. P. Agrawal, Fiber-Optic Communication Systems, Third Edition (Wiley-Interscience, 2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 VCSEL device schematic structure.
Fig. 2
Fig. 2 Light-Current (in red) and Voltage-Current (in blue) characteristics in the 0-90/100°C temperature range for VCSEL devices from samples A (a) and B (b).
Fig. 3
Fig. 3 Threshold current, SM and maximum output power in the 0-90°C temperature range for VCSEL devices from samples A (a) and B (b).
Fig. 4
Fig. 4 Room temperature emission spectra at different pumping currents for devices from samples A (a) and B (b).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Pe=ωηint αmir(IIth) 2q(αmir+αint)

Metrics