Abstract

We report on the first InP-based Mach–Zehnder modulator (MZM) employing quantum-confined Stark effect (QCSE) for operation around 2000 nm. The polarization sensitive device is based on 15 compressively strained quantum wells and achieves an electro-optic (EO) bandwidth of at least 9 GHz, with a DC extinction ratio of ~9 dB, and a VπL ~9.6 V.mm. We demonstrate back-to-back communication with a 10 Gb/s pseudo-random bit sequence (PRBS) of length 27-1 at a wavelength around 2000 nm.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
12.5-Gb/s operation with 0.29-V·cm VπL using silicon Mach-Zehnder modulator based-on forward-biased pin diode

Suguru Akiyama, Takeshi Baba, Masahiko Imai, Takeshi Akagawa, Masashi Takahashi, Naoki Hirayama, Hiroyuki Takahashi, Yoshiji Noguchi, Hideaki Okayama, Tsuyoshi Horikawa, and Tatsuya Usuki
Opt. Express 20(3) 2911-2923 (2012)

Forty Gb/s hybrid silicon Mach-Zehnder modulator with low chirp

Hui-Wen Chen, Jonathan D. Peters, and John E. Bowers
Opt. Express 19(2) 1455-1460 (2011)

High speed hybrid silicon evanescent Mach-Zehnder modulator and switch

Hui-Wen Chen, Ying-hao Kuo, and John E. Bowers
Opt. Express 16(25) 20571-20576 (2008)

References

  • View by:
  • |
  • |
  • |

  1. G. J. Koch, B. W. Barnes, M. Petros, J. Y. Beyon, F. Amzajerdian, J. Yu, R. E. Davis, S. Ismail, S. Vay, M. J. Kavaya, and U. N. Singh, “Coherent differential absorption lidar measurements of CO2.,” Appl. Opt. 43(26), 5092–5099 (2004).
    [Crossref] [PubMed]
  2. T. F. Refaat, S. Ismail, G. J. Koch, M. Rubio, T. L. Mack, A. Notari, J. E. Collins, J. Lewis, R. D. Young, C. Yonghoon, M. N. Abedin, and U. N. Singh, “Backscatter 2μm LIDAR validation for atmospheric CO2 differential absorption LIDAR applications,” IEEE Trans. Geosci. Rem. Sens. 49(1), 572–580 (2010).
  3. S. Moro, A. Danicic, N. Alic, N. G. Usechak, and S. Radic, “Widely-tunable parametric short-wave infrared transmitter for CO2 trace detection,” Opt. Express 19(9), 8173–8178 (2011).
    [Crossref] [PubMed]
  4. P. Roberts, F. Couny, H. Sabert, B. Mangan, D. Williams, L. Farr, M. Mason, A. Tomlinson, T. Birks, J. Knight, and P. St J Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13(1), 236–244 (2005).
    [Crossref] [PubMed]
  5. Z. Li, A. M. Heidt, J. M. O. Daniel, Y. Jung, S. U. Alam, and D. J. Richardson, “Thulium-doped fiber amplifier for optical communications at 2 µm,” Opt. Express 21(8), 9289–9297 (2013).
    [Crossref] [PubMed]
  6. N. M. Suibhne, Z. Li, B. Baeuerle, J. Zhao, J. Wooler, S. Alam, F. Poletti, M. Petrovich, A. Heidt, N. Wheeler, N. Baddela, E. N. Fokoua, I. Giles, D. Giles, R. Phelan, J. O’Carroll, B. Kelly, B. Corbett, D. Murphy, A. Ellis, D. Richardson, and F. G. Gunning, “WDM transmission at 2μm over low-loss hollow core photonic bandgap fiber,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, OSA Technical Digest (Optical Society of America, 2013), paper OW1I.6.
  7. H. Zhang, Z. Li, N. Kavanagh, J. Zhao, N. Ye, Y. Chen, N. V. Wheeler, J. P. Wooler, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, S. U. Alam, R. Phelan, J. O’Carroll, B. Kelly, D. J. Richardson, B. Corbett, and F. G. Gunning, “81 Gb/s WDM transmission at 2μm over 1.15 km of low-loss hollow core photonic bandgap fiber,” in Proceedings of IEEE European Conference on Optical Communication (Cannes, France, 2014), P.5.20.
  8. M. N. Petrovich, F. Poletti, J. P. Wooler, A. M. Heidt, N. K. Baddela, Z. Li, D. R. Gray, R. Slavík, F. Parmigiani, N. V. Wheeler, J. R. Hayes, E. Numkam, L. Grűner-Nielsen, B. Pálsdóttir, R. Phelan, B. Kelly, J. O’Carroll, M. Becker, N. MacSuibhne, J. Zhao, F. C. Gunning, A. D. Ellis, P. Petropoulos, S. U. Alam, and D. J. Richardson, “Demonstration of amplified data transmission at 2 µm in a low-loss wide bandwidth hollow core photonic bandgap fiber,” Opt. Express 21(23), 28559–28569 (2013).
    [Crossref] [PubMed]
  9. R. Phelan, J. O’Carroll, D. Byrne, C. Herbert, J. Somers, and B. Kelly, “In0.75Ga0.25As/InP multiple quantum-well discrete-mode laser diode emitting at 2 μm,” IEEE Photon. Technol. Lett. 24(8), 652–654 (2012).
    [Crossref]
  10. R. A. Griffin, S. K. Jones, N. Whitbread, S. C. Heck, and L. N. Langley, “InP Mach–Zehnder modulator platform for 10/40/100/200-Gb/s operation,” IEEE J. Sel. Top. Quantum Electron. 19(6), 158–166 (2013).
    [Crossref]
  11. E. Yamada, Y. Shibata, and H. Ishii, “InP-based Mach Zehnder modulators for next-generation systems,” Proc. SPIE 8284, 82840D (2012).
    [Crossref]
  12. K. Prosyk, A. Ait-Ouali, J. Chen, M. Hamacher, D. Hoffmann, R. Kaiser, R. Millett, A. Pirastu, M. Totolo, K.-O. Velthaus, and I. Woods, “Travelling wave Mach-Zehnder modulators,” in Proceedings of 25th Indium Phosphide and Related Materials (Kobe, Japan, 2013), Paper MoD3–1.
  13. N. Ye, M. Gleeson, M. Sadiq, B. Roycroft, C. Robert, H. Yang, H. Zhang, P. Morrissey, N. M. Suibhne, K. Thomas, A. Gocalinska, E. Pelucchi, R. Phelan, B. Kelly, J. O’Carroll, F. Peters, F. G. Gunning, and B. Corbett, “InP-Based active and passive components for communication systems at 2 µm,” J. Lightwave Technol. 33(5), 971–975 (2015).
    [Crossref]
  14. A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15(2), 660–668 (2007).
    [Crossref] [PubMed]
  15. C. R. Doerr, L. Zhang, P. J. Winzer, J. H. Sinsky, A. Adamiecki, N. Sauer, and G. Raybon, “Compact high speed InP DQPSK modulator,” IEEE Photon. Technol. Lett. 19(15), 1184–1186 (2007).
    [Crossref]
  16. I. Betty, “Indium phosphide-based electro-optic modulators,” in Broadband Optical Modulators Science, Technology and Applications, A. Chen and E. J. Murphy, eds. (CRC Press, 2012), pp.173–203.
  17. P. E. Morrissey, H. Yang, R. N. Sheehan, B. Corbett, and F. H. Peters, “Design and fabrication tolerance analysis of multimode interference couplers,” Opt. Commun. 340, 26–32 (2015).
    [Crossref]
  18. M. U. Sadiq, B. Roycroft, J. O'Callaghan, P. E. Morrissey, W. H. F. H. Peters, and B. Corbett, “Efficient modelling approach for an InP based Mach-Zehnder modulator,” in Proceedings of 25th Irish Signals & Systems Conference 2014 (ISSC 2014/CIICT 2014), 123–128.
  19. I. Betty, M. G. Boudreau, R. Longone, R. A. Griffin, L. Langley, A. Maestri, A. Pujol, and B. Pugh, “Zero Chirp 10 Gb/s MQW InP Mach-Zehnder transmitter with full-band tunability,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (Optical Society of America, 2007), paper OWH6.
    [Crossref]

2015 (2)

2013 (3)

2012 (2)

E. Yamada, Y. Shibata, and H. Ishii, “InP-based Mach Zehnder modulators for next-generation systems,” Proc. SPIE 8284, 82840D (2012).
[Crossref]

R. Phelan, J. O’Carroll, D. Byrne, C. Herbert, J. Somers, and B. Kelly, “In0.75Ga0.25As/InP multiple quantum-well discrete-mode laser diode emitting at 2 μm,” IEEE Photon. Technol. Lett. 24(8), 652–654 (2012).
[Crossref]

2011 (1)

2010 (1)

T. F. Refaat, S. Ismail, G. J. Koch, M. Rubio, T. L. Mack, A. Notari, J. E. Collins, J. Lewis, R. D. Young, C. Yonghoon, M. N. Abedin, and U. N. Singh, “Backscatter 2μm LIDAR validation for atmospheric CO2 differential absorption LIDAR applications,” IEEE Trans. Geosci. Rem. Sens. 49(1), 572–580 (2010).

2007 (2)

A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15(2), 660–668 (2007).
[Crossref] [PubMed]

C. R. Doerr, L. Zhang, P. J. Winzer, J. H. Sinsky, A. Adamiecki, N. Sauer, and G. Raybon, “Compact high speed InP DQPSK modulator,” IEEE Photon. Technol. Lett. 19(15), 1184–1186 (2007).
[Crossref]

2005 (1)

2004 (1)

Abedin, M. N.

T. F. Refaat, S. Ismail, G. J. Koch, M. Rubio, T. L. Mack, A. Notari, J. E. Collins, J. Lewis, R. D. Young, C. Yonghoon, M. N. Abedin, and U. N. Singh, “Backscatter 2μm LIDAR validation for atmospheric CO2 differential absorption LIDAR applications,” IEEE Trans. Geosci. Rem. Sens. 49(1), 572–580 (2010).

Adamiecki, A.

C. R. Doerr, L. Zhang, P. J. Winzer, J. H. Sinsky, A. Adamiecki, N. Sauer, and G. Raybon, “Compact high speed InP DQPSK modulator,” IEEE Photon. Technol. Lett. 19(15), 1184–1186 (2007).
[Crossref]

Alam, S. U.

Alic, N.

Amzajerdian, F.

Baddela, N. K.

Barnes, B. W.

Becker, M.

Beyon, J. Y.

Birks, T.

Byrne, D.

R. Phelan, J. O’Carroll, D. Byrne, C. Herbert, J. Somers, and B. Kelly, “In0.75Ga0.25As/InP multiple quantum-well discrete-mode laser diode emitting at 2 μm,” IEEE Photon. Technol. Lett. 24(8), 652–654 (2012).
[Crossref]

Chen, Y.

H. Zhang, Z. Li, N. Kavanagh, J. Zhao, N. Ye, Y. Chen, N. V. Wheeler, J. P. Wooler, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, S. U. Alam, R. Phelan, J. O’Carroll, B. Kelly, D. J. Richardson, B. Corbett, and F. G. Gunning, “81 Gb/s WDM transmission at 2μm over 1.15 km of low-loss hollow core photonic bandgap fiber,” in Proceedings of IEEE European Conference on Optical Communication (Cannes, France, 2014), P.5.20.

Chetrit, Y.

Ciftcioglu, B.

Collins, J. E.

T. F. Refaat, S. Ismail, G. J. Koch, M. Rubio, T. L. Mack, A. Notari, J. E. Collins, J. Lewis, R. D. Young, C. Yonghoon, M. N. Abedin, and U. N. Singh, “Backscatter 2μm LIDAR validation for atmospheric CO2 differential absorption LIDAR applications,” IEEE Trans. Geosci. Rem. Sens. 49(1), 572–580 (2010).

Corbett, B.

P. E. Morrissey, H. Yang, R. N. Sheehan, B. Corbett, and F. H. Peters, “Design and fabrication tolerance analysis of multimode interference couplers,” Opt. Commun. 340, 26–32 (2015).
[Crossref]

N. Ye, M. Gleeson, M. Sadiq, B. Roycroft, C. Robert, H. Yang, H. Zhang, P. Morrissey, N. M. Suibhne, K. Thomas, A. Gocalinska, E. Pelucchi, R. Phelan, B. Kelly, J. O’Carroll, F. Peters, F. G. Gunning, and B. Corbett, “InP-Based active and passive components for communication systems at 2 µm,” J. Lightwave Technol. 33(5), 971–975 (2015).
[Crossref]

H. Zhang, Z. Li, N. Kavanagh, J. Zhao, N. Ye, Y. Chen, N. V. Wheeler, J. P. Wooler, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, S. U. Alam, R. Phelan, J. O’Carroll, B. Kelly, D. J. Richardson, B. Corbett, and F. G. Gunning, “81 Gb/s WDM transmission at 2μm over 1.15 km of low-loss hollow core photonic bandgap fiber,” in Proceedings of IEEE European Conference on Optical Communication (Cannes, France, 2014), P.5.20.

Couny, F.

Danicic, A.

Daniel, J. M. O.

Davis, R. E.

Doerr, C. R.

C. R. Doerr, L. Zhang, P. J. Winzer, J. H. Sinsky, A. Adamiecki, N. Sauer, and G. Raybon, “Compact high speed InP DQPSK modulator,” IEEE Photon. Technol. Lett. 19(15), 1184–1186 (2007).
[Crossref]

Ellis, A. D.

Farr, L.

Gleeson, M.

Gocalinska, A.

Gray, D. R.

Griffin, R. A.

R. A. Griffin, S. K. Jones, N. Whitbread, S. C. Heck, and L. N. Langley, “InP Mach–Zehnder modulator platform for 10/40/100/200-Gb/s operation,” IEEE J. Sel. Top. Quantum Electron. 19(6), 158–166 (2013).
[Crossref]

Gruner-Nielsen, L.

Gunning, F. C.

Gunning, F. G.

N. Ye, M. Gleeson, M. Sadiq, B. Roycroft, C. Robert, H. Yang, H. Zhang, P. Morrissey, N. M. Suibhne, K. Thomas, A. Gocalinska, E. Pelucchi, R. Phelan, B. Kelly, J. O’Carroll, F. Peters, F. G. Gunning, and B. Corbett, “InP-Based active and passive components for communication systems at 2 µm,” J. Lightwave Technol. 33(5), 971–975 (2015).
[Crossref]

H. Zhang, Z. Li, N. Kavanagh, J. Zhao, N. Ye, Y. Chen, N. V. Wheeler, J. P. Wooler, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, S. U. Alam, R. Phelan, J. O’Carroll, B. Kelly, D. J. Richardson, B. Corbett, and F. G. Gunning, “81 Gb/s WDM transmission at 2μm over 1.15 km of low-loss hollow core photonic bandgap fiber,” in Proceedings of IEEE European Conference on Optical Communication (Cannes, France, 2014), P.5.20.

Hayes, J. R.

M. N. Petrovich, F. Poletti, J. P. Wooler, A. M. Heidt, N. K. Baddela, Z. Li, D. R. Gray, R. Slavík, F. Parmigiani, N. V. Wheeler, J. R. Hayes, E. Numkam, L. Grűner-Nielsen, B. Pálsdóttir, R. Phelan, B. Kelly, J. O’Carroll, M. Becker, N. MacSuibhne, J. Zhao, F. C. Gunning, A. D. Ellis, P. Petropoulos, S. U. Alam, and D. J. Richardson, “Demonstration of amplified data transmission at 2 µm in a low-loss wide bandwidth hollow core photonic bandgap fiber,” Opt. Express 21(23), 28559–28569 (2013).
[Crossref] [PubMed]

H. Zhang, Z. Li, N. Kavanagh, J. Zhao, N. Ye, Y. Chen, N. V. Wheeler, J. P. Wooler, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, S. U. Alam, R. Phelan, J. O’Carroll, B. Kelly, D. J. Richardson, B. Corbett, and F. G. Gunning, “81 Gb/s WDM transmission at 2μm over 1.15 km of low-loss hollow core photonic bandgap fiber,” in Proceedings of IEEE European Conference on Optical Communication (Cannes, France, 2014), P.5.20.

Heck, S. C.

R. A. Griffin, S. K. Jones, N. Whitbread, S. C. Heck, and L. N. Langley, “InP Mach–Zehnder modulator platform for 10/40/100/200-Gb/s operation,” IEEE J. Sel. Top. Quantum Electron. 19(6), 158–166 (2013).
[Crossref]

Heidt, A. M.

Herbert, C.

R. Phelan, J. O’Carroll, D. Byrne, C. Herbert, J. Somers, and B. Kelly, “In0.75Ga0.25As/InP multiple quantum-well discrete-mode laser diode emitting at 2 μm,” IEEE Photon. Technol. Lett. 24(8), 652–654 (2012).
[Crossref]

Ishii, H.

E. Yamada, Y. Shibata, and H. Ishii, “InP-based Mach Zehnder modulators for next-generation systems,” Proc. SPIE 8284, 82840D (2012).
[Crossref]

Ismail, S.

T. F. Refaat, S. Ismail, G. J. Koch, M. Rubio, T. L. Mack, A. Notari, J. E. Collins, J. Lewis, R. D. Young, C. Yonghoon, M. N. Abedin, and U. N. Singh, “Backscatter 2μm LIDAR validation for atmospheric CO2 differential absorption LIDAR applications,” IEEE Trans. Geosci. Rem. Sens. 49(1), 572–580 (2010).

G. J. Koch, B. W. Barnes, M. Petros, J. Y. Beyon, F. Amzajerdian, J. Yu, R. E. Davis, S. Ismail, S. Vay, M. J. Kavaya, and U. N. Singh, “Coherent differential absorption lidar measurements of CO2.,” Appl. Opt. 43(26), 5092–5099 (2004).
[Crossref] [PubMed]

Izhaky, N.

Jones, S. K.

R. A. Griffin, S. K. Jones, N. Whitbread, S. C. Heck, and L. N. Langley, “InP Mach–Zehnder modulator platform for 10/40/100/200-Gb/s operation,” IEEE J. Sel. Top. Quantum Electron. 19(6), 158–166 (2013).
[Crossref]

Jung, Y.

Kavanagh, N.

H. Zhang, Z. Li, N. Kavanagh, J. Zhao, N. Ye, Y. Chen, N. V. Wheeler, J. P. Wooler, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, S. U. Alam, R. Phelan, J. O’Carroll, B. Kelly, D. J. Richardson, B. Corbett, and F. G. Gunning, “81 Gb/s WDM transmission at 2μm over 1.15 km of low-loss hollow core photonic bandgap fiber,” in Proceedings of IEEE European Conference on Optical Communication (Cannes, France, 2014), P.5.20.

Kavaya, M. J.

Kelly, B.

N. Ye, M. Gleeson, M. Sadiq, B. Roycroft, C. Robert, H. Yang, H. Zhang, P. Morrissey, N. M. Suibhne, K. Thomas, A. Gocalinska, E. Pelucchi, R. Phelan, B. Kelly, J. O’Carroll, F. Peters, F. G. Gunning, and B. Corbett, “InP-Based active and passive components for communication systems at 2 µm,” J. Lightwave Technol. 33(5), 971–975 (2015).
[Crossref]

M. N. Petrovich, F. Poletti, J. P. Wooler, A. M. Heidt, N. K. Baddela, Z. Li, D. R. Gray, R. Slavík, F. Parmigiani, N. V. Wheeler, J. R. Hayes, E. Numkam, L. Grűner-Nielsen, B. Pálsdóttir, R. Phelan, B. Kelly, J. O’Carroll, M. Becker, N. MacSuibhne, J. Zhao, F. C. Gunning, A. D. Ellis, P. Petropoulos, S. U. Alam, and D. J. Richardson, “Demonstration of amplified data transmission at 2 µm in a low-loss wide bandwidth hollow core photonic bandgap fiber,” Opt. Express 21(23), 28559–28569 (2013).
[Crossref] [PubMed]

R. Phelan, J. O’Carroll, D. Byrne, C. Herbert, J. Somers, and B. Kelly, “In0.75Ga0.25As/InP multiple quantum-well discrete-mode laser diode emitting at 2 μm,” IEEE Photon. Technol. Lett. 24(8), 652–654 (2012).
[Crossref]

H. Zhang, Z. Li, N. Kavanagh, J. Zhao, N. Ye, Y. Chen, N. V. Wheeler, J. P. Wooler, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, S. U. Alam, R. Phelan, J. O’Carroll, B. Kelly, D. J. Richardson, B. Corbett, and F. G. Gunning, “81 Gb/s WDM transmission at 2μm over 1.15 km of low-loss hollow core photonic bandgap fiber,” in Proceedings of IEEE European Conference on Optical Communication (Cannes, France, 2014), P.5.20.

Knight, J.

Koch, G. J.

T. F. Refaat, S. Ismail, G. J. Koch, M. Rubio, T. L. Mack, A. Notari, J. E. Collins, J. Lewis, R. D. Young, C. Yonghoon, M. N. Abedin, and U. N. Singh, “Backscatter 2μm LIDAR validation for atmospheric CO2 differential absorption LIDAR applications,” IEEE Trans. Geosci. Rem. Sens. 49(1), 572–580 (2010).

G. J. Koch, B. W. Barnes, M. Petros, J. Y. Beyon, F. Amzajerdian, J. Yu, R. E. Davis, S. Ismail, S. Vay, M. J. Kavaya, and U. N. Singh, “Coherent differential absorption lidar measurements of CO2.,” Appl. Opt. 43(26), 5092–5099 (2004).
[Crossref] [PubMed]

Langley, L. N.

R. A. Griffin, S. K. Jones, N. Whitbread, S. C. Heck, and L. N. Langley, “InP Mach–Zehnder modulator platform for 10/40/100/200-Gb/s operation,” IEEE J. Sel. Top. Quantum Electron. 19(6), 158–166 (2013).
[Crossref]

Lewis, J.

T. F. Refaat, S. Ismail, G. J. Koch, M. Rubio, T. L. Mack, A. Notari, J. E. Collins, J. Lewis, R. D. Young, C. Yonghoon, M. N. Abedin, and U. N. Singh, “Backscatter 2μm LIDAR validation for atmospheric CO2 differential absorption LIDAR applications,” IEEE Trans. Geosci. Rem. Sens. 49(1), 572–580 (2010).

Li, Z.

Liao, L.

Liu, A.

Mack, T. L.

T. F. Refaat, S. Ismail, G. J. Koch, M. Rubio, T. L. Mack, A. Notari, J. E. Collins, J. Lewis, R. D. Young, C. Yonghoon, M. N. Abedin, and U. N. Singh, “Backscatter 2μm LIDAR validation for atmospheric CO2 differential absorption LIDAR applications,” IEEE Trans. Geosci. Rem. Sens. 49(1), 572–580 (2010).

MacSuibhne, N.

Mangan, B.

Mason, M.

Moro, S.

Morrissey, P.

Morrissey, P. E.

P. E. Morrissey, H. Yang, R. N. Sheehan, B. Corbett, and F. H. Peters, “Design and fabrication tolerance analysis of multimode interference couplers,” Opt. Commun. 340, 26–32 (2015).
[Crossref]

Nguyen, H.

Notari, A.

T. F. Refaat, S. Ismail, G. J. Koch, M. Rubio, T. L. Mack, A. Notari, J. E. Collins, J. Lewis, R. D. Young, C. Yonghoon, M. N. Abedin, and U. N. Singh, “Backscatter 2μm LIDAR validation for atmospheric CO2 differential absorption LIDAR applications,” IEEE Trans. Geosci. Rem. Sens. 49(1), 572–580 (2010).

Numkam, E.

O’Carroll, J.

N. Ye, M. Gleeson, M. Sadiq, B. Roycroft, C. Robert, H. Yang, H. Zhang, P. Morrissey, N. M. Suibhne, K. Thomas, A. Gocalinska, E. Pelucchi, R. Phelan, B. Kelly, J. O’Carroll, F. Peters, F. G. Gunning, and B. Corbett, “InP-Based active and passive components for communication systems at 2 µm,” J. Lightwave Technol. 33(5), 971–975 (2015).
[Crossref]

M. N. Petrovich, F. Poletti, J. P. Wooler, A. M. Heidt, N. K. Baddela, Z. Li, D. R. Gray, R. Slavík, F. Parmigiani, N. V. Wheeler, J. R. Hayes, E. Numkam, L. Grűner-Nielsen, B. Pálsdóttir, R. Phelan, B. Kelly, J. O’Carroll, M. Becker, N. MacSuibhne, J. Zhao, F. C. Gunning, A. D. Ellis, P. Petropoulos, S. U. Alam, and D. J. Richardson, “Demonstration of amplified data transmission at 2 µm in a low-loss wide bandwidth hollow core photonic bandgap fiber,” Opt. Express 21(23), 28559–28569 (2013).
[Crossref] [PubMed]

R. Phelan, J. O’Carroll, D. Byrne, C. Herbert, J. Somers, and B. Kelly, “In0.75Ga0.25As/InP multiple quantum-well discrete-mode laser diode emitting at 2 μm,” IEEE Photon. Technol. Lett. 24(8), 652–654 (2012).
[Crossref]

H. Zhang, Z. Li, N. Kavanagh, J. Zhao, N. Ye, Y. Chen, N. V. Wheeler, J. P. Wooler, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, S. U. Alam, R. Phelan, J. O’Carroll, B. Kelly, D. J. Richardson, B. Corbett, and F. G. Gunning, “81 Gb/s WDM transmission at 2μm over 1.15 km of low-loss hollow core photonic bandgap fiber,” in Proceedings of IEEE European Conference on Optical Communication (Cannes, France, 2014), P.5.20.

Pálsdóttir, B.

Paniccia, M.

Parmigiani, F.

Pelucchi, E.

Peters, F.

Peters, F. H.

P. E. Morrissey, H. Yang, R. N. Sheehan, B. Corbett, and F. H. Peters, “Design and fabrication tolerance analysis of multimode interference couplers,” Opt. Commun. 340, 26–32 (2015).
[Crossref]

Petropoulos, P.

Petros, M.

Petrovich, M. N.

M. N. Petrovich, F. Poletti, J. P. Wooler, A. M. Heidt, N. K. Baddela, Z. Li, D. R. Gray, R. Slavík, F. Parmigiani, N. V. Wheeler, J. R. Hayes, E. Numkam, L. Grűner-Nielsen, B. Pálsdóttir, R. Phelan, B. Kelly, J. O’Carroll, M. Becker, N. MacSuibhne, J. Zhao, F. C. Gunning, A. D. Ellis, P. Petropoulos, S. U. Alam, and D. J. Richardson, “Demonstration of amplified data transmission at 2 µm in a low-loss wide bandwidth hollow core photonic bandgap fiber,” Opt. Express 21(23), 28559–28569 (2013).
[Crossref] [PubMed]

H. Zhang, Z. Li, N. Kavanagh, J. Zhao, N. Ye, Y. Chen, N. V. Wheeler, J. P. Wooler, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, S. U. Alam, R. Phelan, J. O’Carroll, B. Kelly, D. J. Richardson, B. Corbett, and F. G. Gunning, “81 Gb/s WDM transmission at 2μm over 1.15 km of low-loss hollow core photonic bandgap fiber,” in Proceedings of IEEE European Conference on Optical Communication (Cannes, France, 2014), P.5.20.

Phelan, R.

N. Ye, M. Gleeson, M. Sadiq, B. Roycroft, C. Robert, H. Yang, H. Zhang, P. Morrissey, N. M. Suibhne, K. Thomas, A. Gocalinska, E. Pelucchi, R. Phelan, B. Kelly, J. O’Carroll, F. Peters, F. G. Gunning, and B. Corbett, “InP-Based active and passive components for communication systems at 2 µm,” J. Lightwave Technol. 33(5), 971–975 (2015).
[Crossref]

M. N. Petrovich, F. Poletti, J. P. Wooler, A. M. Heidt, N. K. Baddela, Z. Li, D. R. Gray, R. Slavík, F. Parmigiani, N. V. Wheeler, J. R. Hayes, E. Numkam, L. Grűner-Nielsen, B. Pálsdóttir, R. Phelan, B. Kelly, J. O’Carroll, M. Becker, N. MacSuibhne, J. Zhao, F. C. Gunning, A. D. Ellis, P. Petropoulos, S. U. Alam, and D. J. Richardson, “Demonstration of amplified data transmission at 2 µm in a low-loss wide bandwidth hollow core photonic bandgap fiber,” Opt. Express 21(23), 28559–28569 (2013).
[Crossref] [PubMed]

R. Phelan, J. O’Carroll, D. Byrne, C. Herbert, J. Somers, and B. Kelly, “In0.75Ga0.25As/InP multiple quantum-well discrete-mode laser diode emitting at 2 μm,” IEEE Photon. Technol. Lett. 24(8), 652–654 (2012).
[Crossref]

H. Zhang, Z. Li, N. Kavanagh, J. Zhao, N. Ye, Y. Chen, N. V. Wheeler, J. P. Wooler, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, S. U. Alam, R. Phelan, J. O’Carroll, B. Kelly, D. J. Richardson, B. Corbett, and F. G. Gunning, “81 Gb/s WDM transmission at 2μm over 1.15 km of low-loss hollow core photonic bandgap fiber,” in Proceedings of IEEE European Conference on Optical Communication (Cannes, France, 2014), P.5.20.

Poletti, F.

M. N. Petrovich, F. Poletti, J. P. Wooler, A. M. Heidt, N. K. Baddela, Z. Li, D. R. Gray, R. Slavík, F. Parmigiani, N. V. Wheeler, J. R. Hayes, E. Numkam, L. Grűner-Nielsen, B. Pálsdóttir, R. Phelan, B. Kelly, J. O’Carroll, M. Becker, N. MacSuibhne, J. Zhao, F. C. Gunning, A. D. Ellis, P. Petropoulos, S. U. Alam, and D. J. Richardson, “Demonstration of amplified data transmission at 2 µm in a low-loss wide bandwidth hollow core photonic bandgap fiber,” Opt. Express 21(23), 28559–28569 (2013).
[Crossref] [PubMed]

H. Zhang, Z. Li, N. Kavanagh, J. Zhao, N. Ye, Y. Chen, N. V. Wheeler, J. P. Wooler, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, S. U. Alam, R. Phelan, J. O’Carroll, B. Kelly, D. J. Richardson, B. Corbett, and F. G. Gunning, “81 Gb/s WDM transmission at 2μm over 1.15 km of low-loss hollow core photonic bandgap fiber,” in Proceedings of IEEE European Conference on Optical Communication (Cannes, France, 2014), P.5.20.

Radic, S.

Raybon, G.

C. R. Doerr, L. Zhang, P. J. Winzer, J. H. Sinsky, A. Adamiecki, N. Sauer, and G. Raybon, “Compact high speed InP DQPSK modulator,” IEEE Photon. Technol. Lett. 19(15), 1184–1186 (2007).
[Crossref]

Refaat, T. F.

T. F. Refaat, S. Ismail, G. J. Koch, M. Rubio, T. L. Mack, A. Notari, J. E. Collins, J. Lewis, R. D. Young, C. Yonghoon, M. N. Abedin, and U. N. Singh, “Backscatter 2μm LIDAR validation for atmospheric CO2 differential absorption LIDAR applications,” IEEE Trans. Geosci. Rem. Sens. 49(1), 572–580 (2010).

Richardson, D. J.

Robert, C.

Roberts, P.

Roycroft, B.

Rubin, D.

Rubio, M.

T. F. Refaat, S. Ismail, G. J. Koch, M. Rubio, T. L. Mack, A. Notari, J. E. Collins, J. Lewis, R. D. Young, C. Yonghoon, M. N. Abedin, and U. N. Singh, “Backscatter 2μm LIDAR validation for atmospheric CO2 differential absorption LIDAR applications,” IEEE Trans. Geosci. Rem. Sens. 49(1), 572–580 (2010).

Sabert, H.

Sadiq, M.

Sandoghchi, S. R.

H. Zhang, Z. Li, N. Kavanagh, J. Zhao, N. Ye, Y. Chen, N. V. Wheeler, J. P. Wooler, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, S. U. Alam, R. Phelan, J. O’Carroll, B. Kelly, D. J. Richardson, B. Corbett, and F. G. Gunning, “81 Gb/s WDM transmission at 2μm over 1.15 km of low-loss hollow core photonic bandgap fiber,” in Proceedings of IEEE European Conference on Optical Communication (Cannes, France, 2014), P.5.20.

Sauer, N.

C. R. Doerr, L. Zhang, P. J. Winzer, J. H. Sinsky, A. Adamiecki, N. Sauer, and G. Raybon, “Compact high speed InP DQPSK modulator,” IEEE Photon. Technol. Lett. 19(15), 1184–1186 (2007).
[Crossref]

Sheehan, R. N.

P. E. Morrissey, H. Yang, R. N. Sheehan, B. Corbett, and F. H. Peters, “Design and fabrication tolerance analysis of multimode interference couplers,” Opt. Commun. 340, 26–32 (2015).
[Crossref]

Shibata, Y.

E. Yamada, Y. Shibata, and H. Ishii, “InP-based Mach Zehnder modulators for next-generation systems,” Proc. SPIE 8284, 82840D (2012).
[Crossref]

Singh, U. N.

T. F. Refaat, S. Ismail, G. J. Koch, M. Rubio, T. L. Mack, A. Notari, J. E. Collins, J. Lewis, R. D. Young, C. Yonghoon, M. N. Abedin, and U. N. Singh, “Backscatter 2μm LIDAR validation for atmospheric CO2 differential absorption LIDAR applications,” IEEE Trans. Geosci. Rem. Sens. 49(1), 572–580 (2010).

G. J. Koch, B. W. Barnes, M. Petros, J. Y. Beyon, F. Amzajerdian, J. Yu, R. E. Davis, S. Ismail, S. Vay, M. J. Kavaya, and U. N. Singh, “Coherent differential absorption lidar measurements of CO2.,” Appl. Opt. 43(26), 5092–5099 (2004).
[Crossref] [PubMed]

Sinsky, J. H.

C. R. Doerr, L. Zhang, P. J. Winzer, J. H. Sinsky, A. Adamiecki, N. Sauer, and G. Raybon, “Compact high speed InP DQPSK modulator,” IEEE Photon. Technol. Lett. 19(15), 1184–1186 (2007).
[Crossref]

Slavík, R.

Somers, J.

R. Phelan, J. O’Carroll, D. Byrne, C. Herbert, J. Somers, and B. Kelly, “In0.75Ga0.25As/InP multiple quantum-well discrete-mode laser diode emitting at 2 μm,” IEEE Photon. Technol. Lett. 24(8), 652–654 (2012).
[Crossref]

St J Russell, P.

Suibhne, N. M.

Thomas, K.

Tomlinson, A.

Usechak, N. G.

Vay, S.

Wheeler, N. V.

M. N. Petrovich, F. Poletti, J. P. Wooler, A. M. Heidt, N. K. Baddela, Z. Li, D. R. Gray, R. Slavík, F. Parmigiani, N. V. Wheeler, J. R. Hayes, E. Numkam, L. Grűner-Nielsen, B. Pálsdóttir, R. Phelan, B. Kelly, J. O’Carroll, M. Becker, N. MacSuibhne, J. Zhao, F. C. Gunning, A. D. Ellis, P. Petropoulos, S. U. Alam, and D. J. Richardson, “Demonstration of amplified data transmission at 2 µm in a low-loss wide bandwidth hollow core photonic bandgap fiber,” Opt. Express 21(23), 28559–28569 (2013).
[Crossref] [PubMed]

H. Zhang, Z. Li, N. Kavanagh, J. Zhao, N. Ye, Y. Chen, N. V. Wheeler, J. P. Wooler, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, S. U. Alam, R. Phelan, J. O’Carroll, B. Kelly, D. J. Richardson, B. Corbett, and F. G. Gunning, “81 Gb/s WDM transmission at 2μm over 1.15 km of low-loss hollow core photonic bandgap fiber,” in Proceedings of IEEE European Conference on Optical Communication (Cannes, France, 2014), P.5.20.

Whitbread, N.

R. A. Griffin, S. K. Jones, N. Whitbread, S. C. Heck, and L. N. Langley, “InP Mach–Zehnder modulator platform for 10/40/100/200-Gb/s operation,” IEEE J. Sel. Top. Quantum Electron. 19(6), 158–166 (2013).
[Crossref]

Williams, D.

Winzer, P. J.

C. R. Doerr, L. Zhang, P. J. Winzer, J. H. Sinsky, A. Adamiecki, N. Sauer, and G. Raybon, “Compact high speed InP DQPSK modulator,” IEEE Photon. Technol. Lett. 19(15), 1184–1186 (2007).
[Crossref]

Wooler, J. P.

M. N. Petrovich, F. Poletti, J. P. Wooler, A. M. Heidt, N. K. Baddela, Z. Li, D. R. Gray, R. Slavík, F. Parmigiani, N. V. Wheeler, J. R. Hayes, E. Numkam, L. Grűner-Nielsen, B. Pálsdóttir, R. Phelan, B. Kelly, J. O’Carroll, M. Becker, N. MacSuibhne, J. Zhao, F. C. Gunning, A. D. Ellis, P. Petropoulos, S. U. Alam, and D. J. Richardson, “Demonstration of amplified data transmission at 2 µm in a low-loss wide bandwidth hollow core photonic bandgap fiber,” Opt. Express 21(23), 28559–28569 (2013).
[Crossref] [PubMed]

H. Zhang, Z. Li, N. Kavanagh, J. Zhao, N. Ye, Y. Chen, N. V. Wheeler, J. P. Wooler, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, S. U. Alam, R. Phelan, J. O’Carroll, B. Kelly, D. J. Richardson, B. Corbett, and F. G. Gunning, “81 Gb/s WDM transmission at 2μm over 1.15 km of low-loss hollow core photonic bandgap fiber,” in Proceedings of IEEE European Conference on Optical Communication (Cannes, France, 2014), P.5.20.

Yamada, E.

E. Yamada, Y. Shibata, and H. Ishii, “InP-based Mach Zehnder modulators for next-generation systems,” Proc. SPIE 8284, 82840D (2012).
[Crossref]

Yang, H.

Ye, N.

N. Ye, M. Gleeson, M. Sadiq, B. Roycroft, C. Robert, H. Yang, H. Zhang, P. Morrissey, N. M. Suibhne, K. Thomas, A. Gocalinska, E. Pelucchi, R. Phelan, B. Kelly, J. O’Carroll, F. Peters, F. G. Gunning, and B. Corbett, “InP-Based active and passive components for communication systems at 2 µm,” J. Lightwave Technol. 33(5), 971–975 (2015).
[Crossref]

H. Zhang, Z. Li, N. Kavanagh, J. Zhao, N. Ye, Y. Chen, N. V. Wheeler, J. P. Wooler, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, S. U. Alam, R. Phelan, J. O’Carroll, B. Kelly, D. J. Richardson, B. Corbett, and F. G. Gunning, “81 Gb/s WDM transmission at 2μm over 1.15 km of low-loss hollow core photonic bandgap fiber,” in Proceedings of IEEE European Conference on Optical Communication (Cannes, France, 2014), P.5.20.

Yonghoon, C.

T. F. Refaat, S. Ismail, G. J. Koch, M. Rubio, T. L. Mack, A. Notari, J. E. Collins, J. Lewis, R. D. Young, C. Yonghoon, M. N. Abedin, and U. N. Singh, “Backscatter 2μm LIDAR validation for atmospheric CO2 differential absorption LIDAR applications,” IEEE Trans. Geosci. Rem. Sens. 49(1), 572–580 (2010).

Young, R. D.

T. F. Refaat, S. Ismail, G. J. Koch, M. Rubio, T. L. Mack, A. Notari, J. E. Collins, J. Lewis, R. D. Young, C. Yonghoon, M. N. Abedin, and U. N. Singh, “Backscatter 2μm LIDAR validation for atmospheric CO2 differential absorption LIDAR applications,” IEEE Trans. Geosci. Rem. Sens. 49(1), 572–580 (2010).

Yu, J.

Zhang, H.

N. Ye, M. Gleeson, M. Sadiq, B. Roycroft, C. Robert, H. Yang, H. Zhang, P. Morrissey, N. M. Suibhne, K. Thomas, A. Gocalinska, E. Pelucchi, R. Phelan, B. Kelly, J. O’Carroll, F. Peters, F. G. Gunning, and B. Corbett, “InP-Based active and passive components for communication systems at 2 µm,” J. Lightwave Technol. 33(5), 971–975 (2015).
[Crossref]

H. Zhang, Z. Li, N. Kavanagh, J. Zhao, N. Ye, Y. Chen, N. V. Wheeler, J. P. Wooler, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, S. U. Alam, R. Phelan, J. O’Carroll, B. Kelly, D. J. Richardson, B. Corbett, and F. G. Gunning, “81 Gb/s WDM transmission at 2μm over 1.15 km of low-loss hollow core photonic bandgap fiber,” in Proceedings of IEEE European Conference on Optical Communication (Cannes, France, 2014), P.5.20.

Zhang, L.

C. R. Doerr, L. Zhang, P. J. Winzer, J. H. Sinsky, A. Adamiecki, N. Sauer, and G. Raybon, “Compact high speed InP DQPSK modulator,” IEEE Photon. Technol. Lett. 19(15), 1184–1186 (2007).
[Crossref]

Zhao, J.

M. N. Petrovich, F. Poletti, J. P. Wooler, A. M. Heidt, N. K. Baddela, Z. Li, D. R. Gray, R. Slavík, F. Parmigiani, N. V. Wheeler, J. R. Hayes, E. Numkam, L. Grűner-Nielsen, B. Pálsdóttir, R. Phelan, B. Kelly, J. O’Carroll, M. Becker, N. MacSuibhne, J. Zhao, F. C. Gunning, A. D. Ellis, P. Petropoulos, S. U. Alam, and D. J. Richardson, “Demonstration of amplified data transmission at 2 µm in a low-loss wide bandwidth hollow core photonic bandgap fiber,” Opt. Express 21(23), 28559–28569 (2013).
[Crossref] [PubMed]

H. Zhang, Z. Li, N. Kavanagh, J. Zhao, N. Ye, Y. Chen, N. V. Wheeler, J. P. Wooler, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, S. U. Alam, R. Phelan, J. O’Carroll, B. Kelly, D. J. Richardson, B. Corbett, and F. G. Gunning, “81 Gb/s WDM transmission at 2μm over 1.15 km of low-loss hollow core photonic bandgap fiber,” in Proceedings of IEEE European Conference on Optical Communication (Cannes, France, 2014), P.5.20.

Appl. Opt. (1)

IEEE J. Sel. Top. Quantum Electron. (1)

R. A. Griffin, S. K. Jones, N. Whitbread, S. C. Heck, and L. N. Langley, “InP Mach–Zehnder modulator platform for 10/40/100/200-Gb/s operation,” IEEE J. Sel. Top. Quantum Electron. 19(6), 158–166 (2013).
[Crossref]

IEEE Photon. Technol. Lett. (2)

R. Phelan, J. O’Carroll, D. Byrne, C. Herbert, J. Somers, and B. Kelly, “In0.75Ga0.25As/InP multiple quantum-well discrete-mode laser diode emitting at 2 μm,” IEEE Photon. Technol. Lett. 24(8), 652–654 (2012).
[Crossref]

C. R. Doerr, L. Zhang, P. J. Winzer, J. H. Sinsky, A. Adamiecki, N. Sauer, and G. Raybon, “Compact high speed InP DQPSK modulator,” IEEE Photon. Technol. Lett. 19(15), 1184–1186 (2007).
[Crossref]

IEEE Trans. Geosci. Rem. Sens. (1)

T. F. Refaat, S. Ismail, G. J. Koch, M. Rubio, T. L. Mack, A. Notari, J. E. Collins, J. Lewis, R. D. Young, C. Yonghoon, M. N. Abedin, and U. N. Singh, “Backscatter 2μm LIDAR validation for atmospheric CO2 differential absorption LIDAR applications,” IEEE Trans. Geosci. Rem. Sens. 49(1), 572–580 (2010).

J. Lightwave Technol. (1)

Opt. Commun. (1)

P. E. Morrissey, H. Yang, R. N. Sheehan, B. Corbett, and F. H. Peters, “Design and fabrication tolerance analysis of multimode interference couplers,” Opt. Commun. 340, 26–32 (2015).
[Crossref]

Opt. Express (5)

Proc. SPIE (1)

E. Yamada, Y. Shibata, and H. Ishii, “InP-based Mach Zehnder modulators for next-generation systems,” Proc. SPIE 8284, 82840D (2012).
[Crossref]

Other (6)

K. Prosyk, A. Ait-Ouali, J. Chen, M. Hamacher, D. Hoffmann, R. Kaiser, R. Millett, A. Pirastu, M. Totolo, K.-O. Velthaus, and I. Woods, “Travelling wave Mach-Zehnder modulators,” in Proceedings of 25th Indium Phosphide and Related Materials (Kobe, Japan, 2013), Paper MoD3–1.

N. M. Suibhne, Z. Li, B. Baeuerle, J. Zhao, J. Wooler, S. Alam, F. Poletti, M. Petrovich, A. Heidt, N. Wheeler, N. Baddela, E. N. Fokoua, I. Giles, D. Giles, R. Phelan, J. O’Carroll, B. Kelly, B. Corbett, D. Murphy, A. Ellis, D. Richardson, and F. G. Gunning, “WDM transmission at 2μm over low-loss hollow core photonic bandgap fiber,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, OSA Technical Digest (Optical Society of America, 2013), paper OW1I.6.

H. Zhang, Z. Li, N. Kavanagh, J. Zhao, N. Ye, Y. Chen, N. V. Wheeler, J. P. Wooler, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, S. U. Alam, R. Phelan, J. O’Carroll, B. Kelly, D. J. Richardson, B. Corbett, and F. G. Gunning, “81 Gb/s WDM transmission at 2μm over 1.15 km of low-loss hollow core photonic bandgap fiber,” in Proceedings of IEEE European Conference on Optical Communication (Cannes, France, 2014), P.5.20.

I. Betty, “Indium phosphide-based electro-optic modulators,” in Broadband Optical Modulators Science, Technology and Applications, A. Chen and E. J. Murphy, eds. (CRC Press, 2012), pp.173–203.

M. U. Sadiq, B. Roycroft, J. O'Callaghan, P. E. Morrissey, W. H. F. H. Peters, and B. Corbett, “Efficient modelling approach for an InP based Mach-Zehnder modulator,” in Proceedings of 25th Irish Signals & Systems Conference 2014 (ISSC 2014/CIICT 2014), 123–128.

I. Betty, M. G. Boudreau, R. Longone, R. A. Griffin, L. Langley, A. Maestri, A. Pujol, and B. Pugh, “Zero Chirp 10 Gb/s MQW InP Mach-Zehnder transmitter with full-band tunability,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (Optical Society of America, 2007), paper OWH6.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a): Bias dependent spectral response of 15 quantum well strain-balanced structure under surface normal illumination (b): Exciton absorption peak wavelength with the applied reverse voltage.
Fig. 2
Fig. 2 Simulation of the electric field intensity profile of an optimally designed 1 × 2 MMI with a width and length of 13μm and 135μm, respectively.
Fig. 3
Fig. 3 (a): Mask layout of a single MZM showing RF GSG pads, DC phase control electrodes, input and output MMIs. (b): Dimensions of the input/output RF G-S-G pad.
Fig. 4
Fig. 4 (a): SEM image of the fabricated devices with different lengths of phase shifting arm. (b): Measurement showing the leakage current with varying length of the phase shifting arm.
Fig. 5
Fig. 5 (a): Optical transmission characteristics of modulator as a function of DC voltage supplied to one arm of the interferometer. (b): Dual-electrode (push-pull) operation of modulator.
Fig. 6
Fig. 6 Measured Electrical S-parameters for devices with different electrode length: (a) S11 (b) S21.
Fig. 7
Fig. 7 Measured EO response of the 2 mm TWE MZM at a bias voltage of 6.74 V. Inset: Measured optical eye diagram at 10 Gb/s for 27-1 PRBS signal.

Tables (1)

Tables Icon

Table 1 Layer structure of modulator.

Metrics