Abstract

We propose and demonstrate a passively Q-switched 1900-nm thulium all-fiber laser using the mode-field-area mismatch method. A thulium fiber laser was core-pumped at 1590 nm and saturable-absorber Q-switched at 1900 nm through the use of a thulium saturable absorber fiber that had a relatively smaller mode field area than the gain medium. Sequential pulsing with a pulse energy of 12 μJ and a pulse duration of 160 ns was obtained. The pulse repetition rate was increased linearly with the applied pump power. With a pump power of 4.5 W, an average output power of 0.61 W and a pulse repetition rate of 50.7 kHz were achieved.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Saturable absorber Q- and gain-switched all-Yb3+ all-fiber laser at 976 and 1064 nm

Tzong-Yow Tsai, Yen-Cheng Fang, Huai-Min Huang, Hong-Xi Tsao, and Shih-Ting Lin
Opt. Express 18(23) 23523-23528 (2010)

Passively Q-switched erbium all-fiber lasers by use of thulium-doped saturable-absorber fibers

Tzong-Yow Tsai, Yen-Cheng Fang, and Shih-Hao Hung
Opt. Express 18(10) 10049-10054 (2010)

A self-Q-switched all-fiber erbium laser at 1530 nm using an auxiliary 1570-nm erbium laser

Tzong-Yow Tsai and Yen-Cheng Fang
Opt. Express 17(24) 21628-21633 (2009)

References

  • View by:
  • |
  • |
  • |

  1. S. D. Jackson, “Passively Q-switched Tm3+-doped silica fiber lasers,” Appl. Opt. 46(16), 3311–3317 (2007).
    [Crossref] [PubMed]
  2. Y. E. Sadovnikova, V. A. Kamynin, A. S. Kurkov, O. I. Medvedkov, A. V. Marakulin, and L. A. Minashina, “Q-switching of a thulium-doped fibre laser using a holmium-doped fibre saturable absorber,” Quantum Electron. 44(1), 4–6 (2014).
    [Crossref]
  3. Y. Tang, X. Li, and Q. J. Wang, “High-power passively Q-switched thulium fiber laser with distributed stimulated Brillouin scattering,” Opt. Lett. 38(24), 5474–5477 (2013).
    [Crossref] [PubMed]
  4. Y.-K. Kuo, M. Birnbaum, and W. Chen, “Ho:YLiF4 saturable absorber Q-switch for the 2-μm Tm,Cr:Y3Al5O12 laser,” Appl. Phys. Lett. 65(24), 3060–3062 (1994).
    [Crossref]
  5. T.-Y. Tsai, Y.-C. Fang, Z.-C. Lee, and H.-X. Tsao, “All-fiber passively Q-switched erbium laser using mismatch of mode field areas and a saturable-amplifier pump switch,” Opt. Lett. 34(19), 2891–2893 (2009).
    [Crossref] [PubMed]
  6. T.-Y. Tsai, Y.-C. Fang, H.-M. Huang, H.-X. Tsao, and S.-T. Lin, “Saturable absorber Q- and gain-switched all-Yb3+ all-fiber laser at 976 and 1064 nm,” Opt. Express 18(23), 23523–23528 (2010).
    [Crossref] [PubMed]
  7. T.-Y. Tsai, Z.-C. Lee, H.-X. Tsao, and S.-T. Lin, “Lensless intracavity focusing in a passively Q-switched all-fiber laser using the mode-field-area mismatch,” Opt. Lett. 37(13), 2610–2612 (2012).
    [Crossref] [PubMed]
  8. S. W. Moore, D. B. Soh, S. E. Bisson, B. D. Patterson, and W. L. Hsu, “400 µJ 79 ns amplified pulses from a Q-switched fiber laser using an Yb3+-doped fiber saturable absorber,” Opt. Express 20(21), 23778–23789 (2012).
    [Crossref] [PubMed]
  9. D. Jin, R. Sun, H. Shi, J. Liu, and P. Wang, “Stable passively Q-switched and gain-switched Yb-doped all-fiber laser based on a dual-cavity with fiber Bragg gratings,” Opt. Express 21(22), 26027–26033 (2013).
    [Crossref] [PubMed]
  10. S. D. Jackson, “The spectroscopic and energy transfer characteristics of the rare earth ions used for silicate glass fibre lasers operating in the shortwave infrared,” Laser Photonics Rev. 3(5), 466–482 (2009).
    [Crossref]
  11. J. Xu, M. Prabhu, J. Lu, K. Ueda, and D. Xing, “Efficient double-clad thulium-doped fiber laser with a ring cavity,” Appl. Opt. 40(12), 1983–1988 (2001).
    [Crossref] [PubMed]
  12. Y. Tang and J. Xu, “Model and characteristics of self-pulsing in Tm3+-doped silica fiber lasers,” IEEE J. Quantum Electron. 47(165), 171 (2011).
  13. S. D. Jackson and T. A. King, “Theoretical modeling of Tm-doped silica fiber lasers,” J. Lightwave Technol. 17(5), 948–956 (1999).
    [Crossref]

2014 (1)

Y. E. Sadovnikova, V. A. Kamynin, A. S. Kurkov, O. I. Medvedkov, A. V. Marakulin, and L. A. Minashina, “Q-switching of a thulium-doped fibre laser using a holmium-doped fibre saturable absorber,” Quantum Electron. 44(1), 4–6 (2014).
[Crossref]

2013 (2)

2012 (2)

2011 (1)

Y. Tang and J. Xu, “Model and characteristics of self-pulsing in Tm3+-doped silica fiber lasers,” IEEE J. Quantum Electron. 47(165), 171 (2011).

2010 (1)

2009 (2)

S. D. Jackson, “The spectroscopic and energy transfer characteristics of the rare earth ions used for silicate glass fibre lasers operating in the shortwave infrared,” Laser Photonics Rev. 3(5), 466–482 (2009).
[Crossref]

T.-Y. Tsai, Y.-C. Fang, Z.-C. Lee, and H.-X. Tsao, “All-fiber passively Q-switched erbium laser using mismatch of mode field areas and a saturable-amplifier pump switch,” Opt. Lett. 34(19), 2891–2893 (2009).
[Crossref] [PubMed]

2007 (1)

2001 (1)

1999 (1)

1994 (1)

Y.-K. Kuo, M. Birnbaum, and W. Chen, “Ho:YLiF4 saturable absorber Q-switch for the 2-μm Tm,Cr:Y3Al5O12 laser,” Appl. Phys. Lett. 65(24), 3060–3062 (1994).
[Crossref]

Birnbaum, M.

Y.-K. Kuo, M. Birnbaum, and W. Chen, “Ho:YLiF4 saturable absorber Q-switch for the 2-μm Tm,Cr:Y3Al5O12 laser,” Appl. Phys. Lett. 65(24), 3060–3062 (1994).
[Crossref]

Bisson, S. E.

Chen, W.

Y.-K. Kuo, M. Birnbaum, and W. Chen, “Ho:YLiF4 saturable absorber Q-switch for the 2-μm Tm,Cr:Y3Al5O12 laser,” Appl. Phys. Lett. 65(24), 3060–3062 (1994).
[Crossref]

Fang, Y.-C.

Hsu, W. L.

Huang, H.-M.

Jackson, S. D.

S. D. Jackson, “The spectroscopic and energy transfer characteristics of the rare earth ions used for silicate glass fibre lasers operating in the shortwave infrared,” Laser Photonics Rev. 3(5), 466–482 (2009).
[Crossref]

S. D. Jackson, “Passively Q-switched Tm3+-doped silica fiber lasers,” Appl. Opt. 46(16), 3311–3317 (2007).
[Crossref] [PubMed]

S. D. Jackson and T. A. King, “Theoretical modeling of Tm-doped silica fiber lasers,” J. Lightwave Technol. 17(5), 948–956 (1999).
[Crossref]

Jin, D.

Kamynin, V. A.

Y. E. Sadovnikova, V. A. Kamynin, A. S. Kurkov, O. I. Medvedkov, A. V. Marakulin, and L. A. Minashina, “Q-switching of a thulium-doped fibre laser using a holmium-doped fibre saturable absorber,” Quantum Electron. 44(1), 4–6 (2014).
[Crossref]

King, T. A.

Kuo, Y.-K.

Y.-K. Kuo, M. Birnbaum, and W. Chen, “Ho:YLiF4 saturable absorber Q-switch for the 2-μm Tm,Cr:Y3Al5O12 laser,” Appl. Phys. Lett. 65(24), 3060–3062 (1994).
[Crossref]

Kurkov, A. S.

Y. E. Sadovnikova, V. A. Kamynin, A. S. Kurkov, O. I. Medvedkov, A. V. Marakulin, and L. A. Minashina, “Q-switching of a thulium-doped fibre laser using a holmium-doped fibre saturable absorber,” Quantum Electron. 44(1), 4–6 (2014).
[Crossref]

Lee, Z.-C.

Li, X.

Lin, S.-T.

Liu, J.

Lu, J.

Marakulin, A. V.

Y. E. Sadovnikova, V. A. Kamynin, A. S. Kurkov, O. I. Medvedkov, A. V. Marakulin, and L. A. Minashina, “Q-switching of a thulium-doped fibre laser using a holmium-doped fibre saturable absorber,” Quantum Electron. 44(1), 4–6 (2014).
[Crossref]

Medvedkov, O. I.

Y. E. Sadovnikova, V. A. Kamynin, A. S. Kurkov, O. I. Medvedkov, A. V. Marakulin, and L. A. Minashina, “Q-switching of a thulium-doped fibre laser using a holmium-doped fibre saturable absorber,” Quantum Electron. 44(1), 4–6 (2014).
[Crossref]

Minashina, L. A.

Y. E. Sadovnikova, V. A. Kamynin, A. S. Kurkov, O. I. Medvedkov, A. V. Marakulin, and L. A. Minashina, “Q-switching of a thulium-doped fibre laser using a holmium-doped fibre saturable absorber,” Quantum Electron. 44(1), 4–6 (2014).
[Crossref]

Moore, S. W.

Patterson, B. D.

Prabhu, M.

Sadovnikova, Y. E.

Y. E. Sadovnikova, V. A. Kamynin, A. S. Kurkov, O. I. Medvedkov, A. V. Marakulin, and L. A. Minashina, “Q-switching of a thulium-doped fibre laser using a holmium-doped fibre saturable absorber,” Quantum Electron. 44(1), 4–6 (2014).
[Crossref]

Shi, H.

Soh, D. B.

Sun, R.

Tang, Y.

Y. Tang, X. Li, and Q. J. Wang, “High-power passively Q-switched thulium fiber laser with distributed stimulated Brillouin scattering,” Opt. Lett. 38(24), 5474–5477 (2013).
[Crossref] [PubMed]

Y. Tang and J. Xu, “Model and characteristics of self-pulsing in Tm3+-doped silica fiber lasers,” IEEE J. Quantum Electron. 47(165), 171 (2011).

Tsai, T.-Y.

Tsao, H.-X.

Ueda, K.

Wang, P.

Wang, Q. J.

Xing, D.

Xu, J.

Y. Tang and J. Xu, “Model and characteristics of self-pulsing in Tm3+-doped silica fiber lasers,” IEEE J. Quantum Electron. 47(165), 171 (2011).

J. Xu, M. Prabhu, J. Lu, K. Ueda, and D. Xing, “Efficient double-clad thulium-doped fiber laser with a ring cavity,” Appl. Opt. 40(12), 1983–1988 (2001).
[Crossref] [PubMed]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

Y.-K. Kuo, M. Birnbaum, and W. Chen, “Ho:YLiF4 saturable absorber Q-switch for the 2-μm Tm,Cr:Y3Al5O12 laser,” Appl. Phys. Lett. 65(24), 3060–3062 (1994).
[Crossref]

IEEE J. Quantum Electron. (1)

Y. Tang and J. Xu, “Model and characteristics of self-pulsing in Tm3+-doped silica fiber lasers,” IEEE J. Quantum Electron. 47(165), 171 (2011).

J. Lightwave Technol. (1)

Laser Photonics Rev. (1)

S. D. Jackson, “The spectroscopic and energy transfer characteristics of the rare earth ions used for silicate glass fibre lasers operating in the shortwave infrared,” Laser Photonics Rev. 3(5), 466–482 (2009).
[Crossref]

Opt. Express (3)

Opt. Lett. (3)

Quantum Electron. (1)

Y. E. Sadovnikova, V. A. Kamynin, A. S. Kurkov, O. I. Medvedkov, A. V. Marakulin, and L. A. Minashina, “Q-switching of a thulium-doped fibre laser using a holmium-doped fibre saturable absorber,” Quantum Electron. 44(1), 4–6 (2014).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic of the 1900-nm passively Q-switched all-fiber thulium laser core-pumped at 1590 nm.
Fig. 2
Fig. 2 The average output powers of a 1900-nm (a) CW and (b) passively Q-switched thulium all-fiber laser by core-pumping a heavily thulium-doped gain fiber (TFGH, blue) and a relatively lightly thulium-doped gain fiber (TFGH, red) at 1590 nm. The CW thresholds, THCWH and THCWL, were 0.72 and 0.28 W, respectively, and the Q-switching thresholds, THH1, THH, THL1, and THL, were 1.25, 0.82, 0.51, and 0.33 W, respectively.
Fig. 3
Fig. 3 Passively Q- and G-switched pulses produced using (a) the heavily thulium-doped gain fiber TFGH and (b) the relatively lightly thulium-doped gain fiber TFGL.
Fig. 4
Fig. 4 Output spectrum of the passively Q- and gain-switched all-fiber thulium laser system that employed the heavily thulium-doped gain fiber TFGH.
Fig. 5
Fig. 5 (a) Dependence of the pulse repetition rates on the applied pump power (blue dots for TFGH and red dots for TFGL). (b) A typical pulse train at 25 kHz observed when using the TFGH gain fiber.

Tables (1)

Tables Icon

Table 1 Characteristics of the employed thulium doped fibers. The emission and absorption cross sections of Tm3+ fiber are from [10]. The initial absorptions were calculated and calibrated accordingly by the mode field confinements at λp and λQ.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

G s =( σ e2 / σ e1 σ a2 / σ a1 1+ σ a1 / σ e1 ) L sai ( σ e2 + σ a2 σ e1 + σ a1 ) L sa ,

Metrics