Abstract

We propose a novel fading-free direct-detection optical orthogonal frequency division multiplexing (DDO-OFDM) scheme for 100-Gb/s medium-reach transmission. In the proposed scheme, we adopts two bands spaced at 100-GHz to accommodate the same complex-valued OFDM signal. However, the signals are coupled with a pair of orthogonal optical carriers. By doing so, real and imaginary parts of the complex-valued OFDM signal can be recovered from the two bands, respectively. We also propose a cost-effective scheme to generate such DDO-OFDM signal using an optical 90-degree hybrid and an optical I/Q modulator. The advantage of the proposed method is that it is fading-free, and the electrical spectral efficiency (SE) is doubled compared to traditional direct-detection method. Finally, we experimentally demonstrated a 101-Gb/s dual-band transmission over 320-km SSMF within only 30-GHz electrical bandwidth, which is highly competitive in both capacity and cost.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Transmission of 100-Gb/s DDO-OFDM/OQAM over 320-km SSMF with a single photodiode

Xuebing Zhang, Zhaohui Li, Chao Li, Ming Luo, Haibo Li, Cai Li, Qi Yang, and Shaohua Yu
Opt. Express 22(10) 12079-12086 (2014)

Single photodiode direct detection system of 100-Gb/s OFDM/OQAM-64QAM over 80-km SSMF within a 50-GHz optical grid

Chao Li, Haibo Li, Qi Yang, Ming Luo, Xuebing Zhang, Rong Hu, Zhaohui Li, Wei Li, and Shaohua Yu
Opt. Express 22(19) 22490-22497 (2014)

References

  • View by:
  • |
  • |
  • |

  1. E. Ip, A. P. T. Lau, D. J. Barros, and J. M. Kahn, “Coherent detection in optical fiber systems,” Opt. Express 16(2), 753–791 (2008).
    [Crossref] [PubMed]
  2. T. Pfau, S. Hoffmann, O. Adamczyk, R. Peveling, V. Herath, M. Porrmann, and R. Noé, “Coherent optical communication: towards realtime systems at 40 Gbit/s and beyond,” Opt. Express 16(2), 866–872 (2008).
    [Crossref] [PubMed]
  3. S. J. Savory, “Digital filters for coherent optical receivers,” Opt. Express 16(2), 804–817 (2008).
    [Crossref] [PubMed]
  4. X. Chen, A. Li, D. Che, Q. Hu, Y. Wang, J. He, and W. Shieh, “High-speed fading-free direct detection for double-sideband OFDM signal via block-wise phase switching,” in Proc. OFC’13, paper. PDP5B.7 (2013).
  5. J. L. Wei, D. G. Cunningham, R. V. Penty, and I. H. White, “Feasibility of 100G Ethernet enabled by carrierless amplitude/phase modulation and optical OFDM,” in Proc. ECOC’12, paper. P6.05 (2012).
    [Crossref]
  6. C. J. Xie, S. Spiga, P. Dong, P. Winzer, A. Gnauck, C. Gréus, M. Ortsiefer, C. Neumeyr, M. Müller, and M. C. Amann, “Generation and transmission of 100-Gb/s PDM 4-PAM using directly modulated VCSELs and coherent detection,” in Proc. OFC’14, paper. Th3K.2 (2014).
    [Crossref]
  7. R. Hu, Q. Yang, M. Lou, X. Xiao, H. B. Li, and W. Shieh, “A cost-effective 2.5 Gb/s/λ bi-directional coherent UDWDM-PON with computationally-efficient DSP,” in Proc. ECOC’14, paper. Th.2.6.4 (2014).
  8. R. Hu, Q. Yang, M. Luo, J. Li, X. Xiao, and C. Li, “Coherent OFDM-PON using intensity modulation and heterodyne detection,” in Proc. ACP’14, paper. AW4E.1 (2014).
    [Crossref]
  9. H. G. Zhang, S. M. Fu, J. W. Man, W. Chen, X. L. Song, and L. Zeng, “30km downstream transmission using 4×25Gb/s 4-PAM modulation with commercial 10Gbps TOSA and ROSA for 100Gb/s-PON,” in Proc. OFC’14, paper. M2I.3 (2014).
  10. T. Takahara, T. Tanaka, M. Nishihara, Y. Kai, L. Li, and Z. Tao, “Discrete multi-tone for 100 Gb/s optical access networks,” in Proc. OFC’14, paper. M2I.1 (2014).
    [Crossref]
  11. A. Li, D. Che, X. Chen, Q. Hu, Y. Wang, and W. Shieh, “61 Gbits/s direct-detection optical OFDM based on blockwise signal phase switching with signal-to-signal beat noise cancellation,” Opt. Lett. 38(14), 2614–2616 (2013).
    [Crossref] [PubMed]
  12. A. Di Che, Li, X. Chen, Q. Hu, Y. F. Wang, and W. Shieh, “160-Gb/s stokes vector direct detection for short reach optical communication,” in Proc. OFC’14, paper. Th5C.7 (2014)
  13. D. Che, Q. Hu, X. Chen, A. Li, and W. Shieh, “1-Tb/s stokes vector direct detection over 480-km SSMF transmission,” in Proc. OECC’14, paper. THPDP1–2 (2014).
  14. C. Li, H. Li, Q. Yang, M. Luo, X. Zhang, R. Hu, Z. Li, W. Li, and S. Yu, “Single photodiode direct detection system of 100-Gb/s OFDM/OQAM-64QAM over 80-km SSMF within a 50-GHz optical grid,” Opt. Express 22(19), 22490–22497 (2014).
    [Crossref] [PubMed]
  15. R. Hu, Q. Yang, M. Luo, S. H. Yu, Z. Zhang, and J. B. Xu, “Two orthogonal carriers assisted 82-Gb/s dual-band DDO-OFDM transmission over 320-km SSMF,” in Proc. OFC’15, paper. TH2A.25 (2015).
  16. P. Dong, C. Xie, and L. L. Buhl, “Monolithic polarization diversity coherent receiver based on 120-degree optical hybrids on silicon,” Opt. Express 22(2), 2119–2125 (2014).
    [Crossref] [PubMed]

2014 (2)

2013 (1)

2008 (3)

Adamczyk, O.

Barros, D. J.

Buhl, L. L.

Che, D.

Chen, X.

Dong, P.

Herath, V.

Hoffmann, S.

Hu, Q.

Hu, R.

Ip, E.

Kahn, J. M.

Lau, A. P. T.

Li, A.

Li, C.

Li, H.

Li, W.

Li, Z.

Luo, M.

Noé, R.

Peveling, R.

Pfau, T.

Porrmann, M.

Savory, S. J.

Shieh, W.

Wang, Y.

Xie, C.

Yang, Q.

Yu, S.

Zhang, X.

Opt. Express (5)

Opt. Lett. (1)

Other (10)

X. Chen, A. Li, D. Che, Q. Hu, Y. Wang, J. He, and W. Shieh, “High-speed fading-free direct detection for double-sideband OFDM signal via block-wise phase switching,” in Proc. OFC’13, paper. PDP5B.7 (2013).

J. L. Wei, D. G. Cunningham, R. V. Penty, and I. H. White, “Feasibility of 100G Ethernet enabled by carrierless amplitude/phase modulation and optical OFDM,” in Proc. ECOC’12, paper. P6.05 (2012).
[Crossref]

C. J. Xie, S. Spiga, P. Dong, P. Winzer, A. Gnauck, C. Gréus, M. Ortsiefer, C. Neumeyr, M. Müller, and M. C. Amann, “Generation and transmission of 100-Gb/s PDM 4-PAM using directly modulated VCSELs and coherent detection,” in Proc. OFC’14, paper. Th3K.2 (2014).
[Crossref]

R. Hu, Q. Yang, M. Lou, X. Xiao, H. B. Li, and W. Shieh, “A cost-effective 2.5 Gb/s/λ bi-directional coherent UDWDM-PON with computationally-efficient DSP,” in Proc. ECOC’14, paper. Th.2.6.4 (2014).

R. Hu, Q. Yang, M. Luo, J. Li, X. Xiao, and C. Li, “Coherent OFDM-PON using intensity modulation and heterodyne detection,” in Proc. ACP’14, paper. AW4E.1 (2014).
[Crossref]

H. G. Zhang, S. M. Fu, J. W. Man, W. Chen, X. L. Song, and L. Zeng, “30km downstream transmission using 4×25Gb/s 4-PAM modulation with commercial 10Gbps TOSA and ROSA for 100Gb/s-PON,” in Proc. OFC’14, paper. M2I.3 (2014).

T. Takahara, T. Tanaka, M. Nishihara, Y. Kai, L. Li, and Z. Tao, “Discrete multi-tone for 100 Gb/s optical access networks,” in Proc. OFC’14, paper. M2I.1 (2014).
[Crossref]

A. Di Che, Li, X. Chen, Q. Hu, Y. F. Wang, and W. Shieh, “160-Gb/s stokes vector direct detection for short reach optical communication,” in Proc. OFC’14, paper. Th5C.7 (2014)

D. Che, Q. Hu, X. Chen, A. Li, and W. Shieh, “1-Tb/s stokes vector direct detection over 480-km SSMF transmission,” in Proc. OECC’14, paper. THPDP1–2 (2014).

R. Hu, Q. Yang, M. Luo, S. H. Yu, Z. Zhang, and J. B. Xu, “Two orthogonal carriers assisted 82-Gb/s dual-band DDO-OFDM transmission over 320-km SSMF,” in Proc. OFC’15, paper. TH2A.25 (2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic diagram of the proposed direct detection method using dual-band orthogonal carriers. De-MUX: de-multiplexer.
Fig. 2
Fig. 2 (a) Proposed transmitter structure based on the 90 degree optical hybrid; (b) schematic diagram of power spectrum of the received signal.
Fig. 3
Fig. 3 The proof-of-concept experimental setup for the proposed dual-band direct detection transmission over 320-km SSMF. WSS: wavelength selective switch, EDFA: erbium-doped optical fiber amplifier, SW: switch, AWG: arbitrary waveform generator.
Fig. 4
Fig. 4 Q-factor versus CSPR measurements at back to back for transmission of 20.2-Gb/s net data rate using one sub-band, with/without SSBN compensation.
Fig. 5
Fig. 5 Q-factor versus CSPR measurements at back to back for the transmission of 101-Gb/s net data rate with SSBN compensation.
Fig. 6
Fig. 6 Q-factor versus launch power for the 101-Gb/s transmission over 320-km SSMF with SSBN compensation.

Tables (2)

Tables Icon

Table 1 Comparison between state of art direct detection methods for short/medium reach networks. S-PD: single-end photodiode; B-PD: balanced photodiode

Tables Icon

Table 2 Optimum Q-factor of each sub-band, measured at 101-Gb/s rate and over 320-km SSMF.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

I i = | E s + E c | 2 = | E c | 2 + | E s | 2 +2Re{ E s E c * },
I q = | E s +j E c | 2 = | E c | 2 + | E s | 2 +2Im{ E s E c * },
I c = I i +j I q =(1+j) | E c | 2 +(1+j) | E s | 2 +2 E s E c * .
Re{ E s E c * }=( I i | E c | 2 | E s | 2 )/2,
Im{ E s E c * }=( I q | E c | 2 | E s | 2 )/2.
I 2 = ( I i | E c | 2 ) 2 + ( I q | E c | 2 ) 2 .
| E s | 2 = [ Re{ E s E c * } ] 2 + [ Im{ E s E c * } ] 2 / | E c | 2 =( 2 | E s | 4 2( I i + I q ) | E s | 2 + I 2 )/( 4 | E c | 2 )+ | E s | 2 ,
2 | E s | 4 2( I i + I q ) | E s | 2 + I 2 =0
| E s | 2 = I 2 /2( I i + I q )

Metrics