Abstract

We introduce a novel photonic-assisted ultrabroadband radio-frequency arbitrary waveform generation setup capable of high-speed phase and amplitude modulation of the individual arbitrary waveforms. The waveform generator is based on an optical interferometer, within which a high-resolution optical pulse shaper and integrated optic phase and intensity modulators are placed, followed by frequency-to-time mapping. The phase and amplitude of each ultrabroadband waveform within the generated sequence can be continuously tuned by adjusting the driving voltages applied to the phase and intensity modulator pair, hence overcoming the slow update speed of conventional spatial light modulator-based pulse shapers. Moreover, this data modulation is completely independent from and does not interfere with RF waveform design. Programmable ultrabroadband RF sequences, spanning more than 4.7 octaves from 2 to 52 GHz, are modulated with real-time data in up to 16 level, M-ary phase-shift keying and quadrature amplitude modulation formats.

© 2015 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Photonic generation of W-band arbitrary waveforms with high time-bandwidth products enabling 3.9  mm range resolution

Yihan Li, Amir Rashidinejad, Jhih-Min Wun, Daniel E. Leaird, Jin-Wei Shi, and Andrew M. Weiner
Optica 1(6) 446-454 (2014)

Photonic synthesis of high fidelity microwave arbitrary waveforms using near field frequency to time mapping

Amir Dezfooliyan and Andrew M. Weiner
Opt. Express 21(19) 22974-22987 (2013)

Millimeter-wave arbitrary waveform generation with a direct space-to-time pulse shaper

J. D. McKinney, D. E. Leaird, and A. M. Weiner
Opt. Lett. 27(15) 1345-1347 (2002)

References

  • View by:
  • |
  • |
  • |

  1. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
    [Crossref]
  2. J. P. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
    [Crossref]
  3. M. Li, J. Azaña, N. Zhu, and J.-P. Yao, “Recent progresses on optical arbitrary waveform generation,” Frontiers of Optoelectronics 7(3), 359–375 (2014).
    [Crossref]
  4. S. Hardy, “Keysight technologies offers 65-GSa/s, 20-GHz arbitrary waveform generator,” Lightwave Online.31(5), (2014).
  5. T. Yilmaz, C. M. DePriest, T. Turpin, J. H. Abeles, and P. J. Delfyett, “Toward a photonic arbitrary waveform generator using modelocked external cavity semiconductor laser,” IEEE Photon. Technol. Lett. 14(11), 1608–1610 (2002).
    [Crossref]
  6. J. Chou, Y. Han, and B. Jalali, “Adaptive RF-photonic arbitrary waveform generator,” IEEE Photon. Technol. Lett. 15(4), 581–583 (2003).
    [Crossref]
  7. I. S. Lin, J. D. McKinney, and A. M. Weiner, “Photonic synthesis of broadband microwave arbitrary waveforms applicable to ultra-wideband communication,” IEEE Microw. Wirel. Compon. Lett. 15(4), 226–228 (2005).
    [Crossref]
  8. A. Zeitouny, S. Stepanov, O. Levinson, and M. Horowitz, “Optical generation of linearly chirped microwave pulses using fiber Bragg gratings,” IEEE Photon. Technol. Lett. 17(3), 660–662 (2005).
    [Crossref]
  9. J. Azana, N. K. Berger, B. Levit, and B. Fischer, “Broadband arbitrary waveform generation based on microwave frequency upshifting in optical fibers,” J. Lightwave Technol. 24(7), 2663–2675 (2006).
    [Crossref]
  10. Y. Dai, X. Chen, H. Ji, and S. Xie, “Optical arbitrary waveform generation based on sampled fiber Bragg gratings,” IEEE Photon. Technol. Lett. 19(23), 1916–1918 (2007).
    [Crossref]
  11. C. Wang and J. P. Yao, “Photonic generation of chirped millimeter-wave pulses based on nonlinear frequency-to-time mapping in a nonlinearly chirped fiber bragg grating,” IEEE Trans. Microw. Theory Tech. 56(2), 542–553 (2008).
    [Crossref]
  12. V. Torres-Company, J. Lancis, P. Andrés, and L. R. Chen, “20 GHz arbitrary radio-frequency waveform generator based on incoherent pulse shaping,” Opt. Express 16(26), 21564–21569 (2008).
    [Crossref] [PubMed]
  13. C. B. Huang, D. E. Leaird, and A. M. Weiner, “Synthesis of millimeter-wave power spectra using time-multiplexed optical pulse shaping,” IEEE Photon. Technol. Lett. 21(18), 1287–1289 (2009).
    [Crossref]
  14. R. Ashrafi, Y. Park, and J. Azana, “Fiber-based photonic generation of high-frequency microwave pulses with reconfigurable linear chirp control,” IEEE Trans. Microw. Theory Tech. 58(11), 3312–3319 (2010).
    [Crossref]
  15. C. Wang and J. P. Yao, “Large time-bandwidth product microwave arbitrary waveform generation using a spatially discrete chirped fiber Bragg grating,” J. Lightwave Technol. 28(11), 1652–1660 (2010).
    [Crossref]
  16. M. Li and J. P. Yao, “Photonic generation of continuously tunable chirped microwave waveforms based on a temporal interferometer incorporating an optically-pumped linearly-chirped fiber bragg grating,” IEEE Trans. Microw. Theory Tech. 59(12), 3531–3537 (2011).
    [Crossref]
  17. J. W. Shi, F. M. Kuo, C. Nan-Wei, S. Y. Set, C. B. Huang, and J. E. Bowers, “Photonic generation and wireless transmission of linearly/nonlinearly continuously tunable chirped millimeter-wave waveforms with high time-bandwidth product at W-Band,” IEEE Photon. J. 4(1), 215–223 (2012).
    [Crossref]
  18. A. Dezfooliyan and A. M. Weiner, “Photonic synthesis of high fidelity microwave arbitrary waveforms using near field frequency to time mapping,” Opt. Express 21(19), 22974–22987 (2013).
    [Crossref] [PubMed]
  19. A. Rashidinejad and A. M. Weiner, “Photonic radio-frequency arbitrary waveform generation with maximal time-bandwidth product capability,” J. Lightwave Technol. 32(20), 3383–3393 (2014).
    [Crossref]
  20. T. Kleine-Ostmann and T. Nagatsuma, “A review on terahertz communications research,” J. Infrared, Millim. Terahertz Waves 32(2), 143–171 (2011).
    [Crossref]
  21. T. Nagatsuma, S. Horiguchi, Y. Minamikata, Y. Yoshimizu, S. Hisatake, S. Kuwano, N. Yoshimoto, J. Terada, and H. Takahashi, “Terahertz wireless communications based on photonics technologies,” Opt. Express 21(20), 23736–23747 (2013).
    [Crossref] [PubMed]
  22. A. J. Seeds, M. J. Fice, K. Balakier, M. Natrella, O. Mitrofanov, M. Lamponi, M. Chtioui, F. van Dijk, M. Pepper, G. Aeppli, A. G. Davies, P. Dean, E. Linfield, and C. C. Renaud, “Coherent terahertz photonics,” Opt. Express 21(19), 22988–23000 (2013).
    [Crossref] [PubMed]
  23. A. J. Seeds, “TeraHertz photonics for communications,” in Optical Fiber Communication Conference, OSA Technical Digest (online), Invited Talk Th4H.1, (2014).
    [Crossref]
  24. A. M. Weiner, A. Dezfooliyan, Y. Li, and A. Rashidinejad, “Selected advances in photonic ultrabroadband radio-frequency arbitrary waveform generation,” International Topical Meeting on Microwave Photonics (MWP)), 325–328, (2013).
    [Crossref]
  25. Y. Li, A. Dezfooliyan, and A. M. Weiner, “Photonic synthesis of spread spectrum radio frequency waveforms with arbitrarily long time apertures,” J. Lightwave Technol. 32(20), 3580–3587 (2014).
    [Crossref]
  26. Y. Li, A. Rashidinejad, J.-M. Wun, D. E. Leaird, J.-W. Shi, and A. M. Weiner, “Photonic generation of W-band arbitrary waveforms with high time-bandwidth products enabling 3.9mm Range Resolution,” Optica 1(6), 446–454 (2014).
    [Crossref]
  27. V. Torres-Company, D. E. Leaird, and A. M. Weiner, “Dispersion requirements in coherent frequency-to-time mapping,” Opt. Express 19(24), 24718–24729 (2011).
    [Crossref] [PubMed]
  28. M. D. McKinley, K. A. Remley, M. Myslinski, J. S. Kenney, D. Schreurs, and B. Nauwelaers, “EVM calculations for broadband modulated signals,” in Proceedings of 64th ARFTG Conference, (Orlando, 2004), 45–52.
  29. A. Kaneko, H. Yamazaki, and Y. Miyamoto, “Linear optical modulator,” in Optical Fiber Communication Conference, OSA Technical Digest (online), Invited Talk W3K.5, (2014).
    [Crossref]
  30. J. Proakis and M. Salehi, Digital Communications (McGraw-Hill, 2007).

2014 (4)

2013 (3)

2012 (1)

J. W. Shi, F. M. Kuo, C. Nan-Wei, S. Y. Set, C. B. Huang, and J. E. Bowers, “Photonic generation and wireless transmission of linearly/nonlinearly continuously tunable chirped millimeter-wave waveforms with high time-bandwidth product at W-Band,” IEEE Photon. J. 4(1), 215–223 (2012).
[Crossref]

2011 (3)

M. Li and J. P. Yao, “Photonic generation of continuously tunable chirped microwave waveforms based on a temporal interferometer incorporating an optically-pumped linearly-chirped fiber bragg grating,” IEEE Trans. Microw. Theory Tech. 59(12), 3531–3537 (2011).
[Crossref]

T. Kleine-Ostmann and T. Nagatsuma, “A review on terahertz communications research,” J. Infrared, Millim. Terahertz Waves 32(2), 143–171 (2011).
[Crossref]

V. Torres-Company, D. E. Leaird, and A. M. Weiner, “Dispersion requirements in coherent frequency-to-time mapping,” Opt. Express 19(24), 24718–24729 (2011).
[Crossref] [PubMed]

2010 (2)

C. Wang and J. P. Yao, “Large time-bandwidth product microwave arbitrary waveform generation using a spatially discrete chirped fiber Bragg grating,” J. Lightwave Technol. 28(11), 1652–1660 (2010).
[Crossref]

R. Ashrafi, Y. Park, and J. Azana, “Fiber-based photonic generation of high-frequency microwave pulses with reconfigurable linear chirp control,” IEEE Trans. Microw. Theory Tech. 58(11), 3312–3319 (2010).
[Crossref]

2009 (2)

C. B. Huang, D. E. Leaird, and A. M. Weiner, “Synthesis of millimeter-wave power spectra using time-multiplexed optical pulse shaping,” IEEE Photon. Technol. Lett. 21(18), 1287–1289 (2009).
[Crossref]

J. P. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
[Crossref]

2008 (2)

V. Torres-Company, J. Lancis, P. Andrés, and L. R. Chen, “20 GHz arbitrary radio-frequency waveform generator based on incoherent pulse shaping,” Opt. Express 16(26), 21564–21569 (2008).
[Crossref] [PubMed]

C. Wang and J. P. Yao, “Photonic generation of chirped millimeter-wave pulses based on nonlinear frequency-to-time mapping in a nonlinearly chirped fiber bragg grating,” IEEE Trans. Microw. Theory Tech. 56(2), 542–553 (2008).
[Crossref]

2007 (2)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Y. Dai, X. Chen, H. Ji, and S. Xie, “Optical arbitrary waveform generation based on sampled fiber Bragg gratings,” IEEE Photon. Technol. Lett. 19(23), 1916–1918 (2007).
[Crossref]

2006 (1)

2005 (2)

I. S. Lin, J. D. McKinney, and A. M. Weiner, “Photonic synthesis of broadband microwave arbitrary waveforms applicable to ultra-wideband communication,” IEEE Microw. Wirel. Compon. Lett. 15(4), 226–228 (2005).
[Crossref]

A. Zeitouny, S. Stepanov, O. Levinson, and M. Horowitz, “Optical generation of linearly chirped microwave pulses using fiber Bragg gratings,” IEEE Photon. Technol. Lett. 17(3), 660–662 (2005).
[Crossref]

2003 (1)

J. Chou, Y. Han, and B. Jalali, “Adaptive RF-photonic arbitrary waveform generator,” IEEE Photon. Technol. Lett. 15(4), 581–583 (2003).
[Crossref]

2002 (1)

T. Yilmaz, C. M. DePriest, T. Turpin, J. H. Abeles, and P. J. Delfyett, “Toward a photonic arbitrary waveform generator using modelocked external cavity semiconductor laser,” IEEE Photon. Technol. Lett. 14(11), 1608–1610 (2002).
[Crossref]

Abeles, J. H.

T. Yilmaz, C. M. DePriest, T. Turpin, J. H. Abeles, and P. J. Delfyett, “Toward a photonic arbitrary waveform generator using modelocked external cavity semiconductor laser,” IEEE Photon. Technol. Lett. 14(11), 1608–1610 (2002).
[Crossref]

Aeppli, G.

Andrés, P.

Ashrafi, R.

R. Ashrafi, Y. Park, and J. Azana, “Fiber-based photonic generation of high-frequency microwave pulses with reconfigurable linear chirp control,” IEEE Trans. Microw. Theory Tech. 58(11), 3312–3319 (2010).
[Crossref]

Azana, J.

R. Ashrafi, Y. Park, and J. Azana, “Fiber-based photonic generation of high-frequency microwave pulses with reconfigurable linear chirp control,” IEEE Trans. Microw. Theory Tech. 58(11), 3312–3319 (2010).
[Crossref]

J. Azana, N. K. Berger, B. Levit, and B. Fischer, “Broadband arbitrary waveform generation based on microwave frequency upshifting in optical fibers,” J. Lightwave Technol. 24(7), 2663–2675 (2006).
[Crossref]

Azaña, J.

M. Li, J. Azaña, N. Zhu, and J.-P. Yao, “Recent progresses on optical arbitrary waveform generation,” Frontiers of Optoelectronics 7(3), 359–375 (2014).
[Crossref]

Balakier, K.

Berger, N. K.

Bowers, J. E.

J. W. Shi, F. M. Kuo, C. Nan-Wei, S. Y. Set, C. B. Huang, and J. E. Bowers, “Photonic generation and wireless transmission of linearly/nonlinearly continuously tunable chirped millimeter-wave waveforms with high time-bandwidth product at W-Band,” IEEE Photon. J. 4(1), 215–223 (2012).
[Crossref]

Capmany, J.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Chen, L. R.

Chen, X.

Y. Dai, X. Chen, H. Ji, and S. Xie, “Optical arbitrary waveform generation based on sampled fiber Bragg gratings,” IEEE Photon. Technol. Lett. 19(23), 1916–1918 (2007).
[Crossref]

Chou, J.

J. Chou, Y. Han, and B. Jalali, “Adaptive RF-photonic arbitrary waveform generator,” IEEE Photon. Technol. Lett. 15(4), 581–583 (2003).
[Crossref]

Chtioui, M.

Dai, Y.

Y. Dai, X. Chen, H. Ji, and S. Xie, “Optical arbitrary waveform generation based on sampled fiber Bragg gratings,” IEEE Photon. Technol. Lett. 19(23), 1916–1918 (2007).
[Crossref]

Davies, A. G.

Dean, P.

Delfyett, P. J.

T. Yilmaz, C. M. DePriest, T. Turpin, J. H. Abeles, and P. J. Delfyett, “Toward a photonic arbitrary waveform generator using modelocked external cavity semiconductor laser,” IEEE Photon. Technol. Lett. 14(11), 1608–1610 (2002).
[Crossref]

DePriest, C. M.

T. Yilmaz, C. M. DePriest, T. Turpin, J. H. Abeles, and P. J. Delfyett, “Toward a photonic arbitrary waveform generator using modelocked external cavity semiconductor laser,” IEEE Photon. Technol. Lett. 14(11), 1608–1610 (2002).
[Crossref]

Dezfooliyan, A.

Fice, M. J.

Fischer, B.

Han, Y.

J. Chou, Y. Han, and B. Jalali, “Adaptive RF-photonic arbitrary waveform generator,” IEEE Photon. Technol. Lett. 15(4), 581–583 (2003).
[Crossref]

Hardy, S.

S. Hardy, “Keysight technologies offers 65-GSa/s, 20-GHz arbitrary waveform generator,” Lightwave Online.31(5), (2014).

Hisatake, S.

Horiguchi, S.

Horowitz, M.

A. Zeitouny, S. Stepanov, O. Levinson, and M. Horowitz, “Optical generation of linearly chirped microwave pulses using fiber Bragg gratings,” IEEE Photon. Technol. Lett. 17(3), 660–662 (2005).
[Crossref]

Huang, C. B.

J. W. Shi, F. M. Kuo, C. Nan-Wei, S. Y. Set, C. B. Huang, and J. E. Bowers, “Photonic generation and wireless transmission of linearly/nonlinearly continuously tunable chirped millimeter-wave waveforms with high time-bandwidth product at W-Band,” IEEE Photon. J. 4(1), 215–223 (2012).
[Crossref]

C. B. Huang, D. E. Leaird, and A. M. Weiner, “Synthesis of millimeter-wave power spectra using time-multiplexed optical pulse shaping,” IEEE Photon. Technol. Lett. 21(18), 1287–1289 (2009).
[Crossref]

Jalali, B.

J. Chou, Y. Han, and B. Jalali, “Adaptive RF-photonic arbitrary waveform generator,” IEEE Photon. Technol. Lett. 15(4), 581–583 (2003).
[Crossref]

Ji, H.

Y. Dai, X. Chen, H. Ji, and S. Xie, “Optical arbitrary waveform generation based on sampled fiber Bragg gratings,” IEEE Photon. Technol. Lett. 19(23), 1916–1918 (2007).
[Crossref]

Kenney, J. S.

M. D. McKinley, K. A. Remley, M. Myslinski, J. S. Kenney, D. Schreurs, and B. Nauwelaers, “EVM calculations for broadband modulated signals,” in Proceedings of 64th ARFTG Conference, (Orlando, 2004), 45–52.

Kleine-Ostmann, T.

T. Kleine-Ostmann and T. Nagatsuma, “A review on terahertz communications research,” J. Infrared, Millim. Terahertz Waves 32(2), 143–171 (2011).
[Crossref]

Kuo, F. M.

J. W. Shi, F. M. Kuo, C. Nan-Wei, S. Y. Set, C. B. Huang, and J. E. Bowers, “Photonic generation and wireless transmission of linearly/nonlinearly continuously tunable chirped millimeter-wave waveforms with high time-bandwidth product at W-Band,” IEEE Photon. J. 4(1), 215–223 (2012).
[Crossref]

Kuwano, S.

Lamponi, M.

Lancis, J.

Leaird, D. E.

Levinson, O.

A. Zeitouny, S. Stepanov, O. Levinson, and M. Horowitz, “Optical generation of linearly chirped microwave pulses using fiber Bragg gratings,” IEEE Photon. Technol. Lett. 17(3), 660–662 (2005).
[Crossref]

Levit, B.

Li, M.

M. Li, J. Azaña, N. Zhu, and J.-P. Yao, “Recent progresses on optical arbitrary waveform generation,” Frontiers of Optoelectronics 7(3), 359–375 (2014).
[Crossref]

M. Li and J. P. Yao, “Photonic generation of continuously tunable chirped microwave waveforms based on a temporal interferometer incorporating an optically-pumped linearly-chirped fiber bragg grating,” IEEE Trans. Microw. Theory Tech. 59(12), 3531–3537 (2011).
[Crossref]

Li, Y.

Lin, I. S.

I. S. Lin, J. D. McKinney, and A. M. Weiner, “Photonic synthesis of broadband microwave arbitrary waveforms applicable to ultra-wideband communication,” IEEE Microw. Wirel. Compon. Lett. 15(4), 226–228 (2005).
[Crossref]

Linfield, E.

McKinley, M. D.

M. D. McKinley, K. A. Remley, M. Myslinski, J. S. Kenney, D. Schreurs, and B. Nauwelaers, “EVM calculations for broadband modulated signals,” in Proceedings of 64th ARFTG Conference, (Orlando, 2004), 45–52.

McKinney, J. D.

I. S. Lin, J. D. McKinney, and A. M. Weiner, “Photonic synthesis of broadband microwave arbitrary waveforms applicable to ultra-wideband communication,” IEEE Microw. Wirel. Compon. Lett. 15(4), 226–228 (2005).
[Crossref]

Minamikata, Y.

Mitrofanov, O.

Myslinski, M.

M. D. McKinley, K. A. Remley, M. Myslinski, J. S. Kenney, D. Schreurs, and B. Nauwelaers, “EVM calculations for broadband modulated signals,” in Proceedings of 64th ARFTG Conference, (Orlando, 2004), 45–52.

Nagatsuma, T.

Nan-Wei, C.

J. W. Shi, F. M. Kuo, C. Nan-Wei, S. Y. Set, C. B. Huang, and J. E. Bowers, “Photonic generation and wireless transmission of linearly/nonlinearly continuously tunable chirped millimeter-wave waveforms with high time-bandwidth product at W-Band,” IEEE Photon. J. 4(1), 215–223 (2012).
[Crossref]

Natrella, M.

Nauwelaers, B.

M. D. McKinley, K. A. Remley, M. Myslinski, J. S. Kenney, D. Schreurs, and B. Nauwelaers, “EVM calculations for broadband modulated signals,” in Proceedings of 64th ARFTG Conference, (Orlando, 2004), 45–52.

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Park, Y.

R. Ashrafi, Y. Park, and J. Azana, “Fiber-based photonic generation of high-frequency microwave pulses with reconfigurable linear chirp control,” IEEE Trans. Microw. Theory Tech. 58(11), 3312–3319 (2010).
[Crossref]

Pepper, M.

Rashidinejad, A.

Remley, K. A.

M. D. McKinley, K. A. Remley, M. Myslinski, J. S. Kenney, D. Schreurs, and B. Nauwelaers, “EVM calculations for broadband modulated signals,” in Proceedings of 64th ARFTG Conference, (Orlando, 2004), 45–52.

Renaud, C. C.

Schreurs, D.

M. D. McKinley, K. A. Remley, M. Myslinski, J. S. Kenney, D. Schreurs, and B. Nauwelaers, “EVM calculations for broadband modulated signals,” in Proceedings of 64th ARFTG Conference, (Orlando, 2004), 45–52.

Seeds, A. J.

Set, S. Y.

J. W. Shi, F. M. Kuo, C. Nan-Wei, S. Y. Set, C. B. Huang, and J. E. Bowers, “Photonic generation and wireless transmission of linearly/nonlinearly continuously tunable chirped millimeter-wave waveforms with high time-bandwidth product at W-Band,” IEEE Photon. J. 4(1), 215–223 (2012).
[Crossref]

Shi, J. W.

J. W. Shi, F. M. Kuo, C. Nan-Wei, S. Y. Set, C. B. Huang, and J. E. Bowers, “Photonic generation and wireless transmission of linearly/nonlinearly continuously tunable chirped millimeter-wave waveforms with high time-bandwidth product at W-Band,” IEEE Photon. J. 4(1), 215–223 (2012).
[Crossref]

Shi, J.-W.

Stepanov, S.

A. Zeitouny, S. Stepanov, O. Levinson, and M. Horowitz, “Optical generation of linearly chirped microwave pulses using fiber Bragg gratings,” IEEE Photon. Technol. Lett. 17(3), 660–662 (2005).
[Crossref]

Takahashi, H.

Terada, J.

Torres-Company, V.

Turpin, T.

T. Yilmaz, C. M. DePriest, T. Turpin, J. H. Abeles, and P. J. Delfyett, “Toward a photonic arbitrary waveform generator using modelocked external cavity semiconductor laser,” IEEE Photon. Technol. Lett. 14(11), 1608–1610 (2002).
[Crossref]

van Dijk, F.

Wang, C.

C. Wang and J. P. Yao, “Large time-bandwidth product microwave arbitrary waveform generation using a spatially discrete chirped fiber Bragg grating,” J. Lightwave Technol. 28(11), 1652–1660 (2010).
[Crossref]

C. Wang and J. P. Yao, “Photonic generation of chirped millimeter-wave pulses based on nonlinear frequency-to-time mapping in a nonlinearly chirped fiber bragg grating,” IEEE Trans. Microw. Theory Tech. 56(2), 542–553 (2008).
[Crossref]

Weiner, A. M.

Y. Li, A. Rashidinejad, J.-M. Wun, D. E. Leaird, J.-W. Shi, and A. M. Weiner, “Photonic generation of W-band arbitrary waveforms with high time-bandwidth products enabling 3.9mm Range Resolution,” Optica 1(6), 446–454 (2014).
[Crossref]

A. Rashidinejad and A. M. Weiner, “Photonic radio-frequency arbitrary waveform generation with maximal time-bandwidth product capability,” J. Lightwave Technol. 32(20), 3383–3393 (2014).
[Crossref]

Y. Li, A. Dezfooliyan, and A. M. Weiner, “Photonic synthesis of spread spectrum radio frequency waveforms with arbitrarily long time apertures,” J. Lightwave Technol. 32(20), 3580–3587 (2014).
[Crossref]

A. Dezfooliyan and A. M. Weiner, “Photonic synthesis of high fidelity microwave arbitrary waveforms using near field frequency to time mapping,” Opt. Express 21(19), 22974–22987 (2013).
[Crossref] [PubMed]

V. Torres-Company, D. E. Leaird, and A. M. Weiner, “Dispersion requirements in coherent frequency-to-time mapping,” Opt. Express 19(24), 24718–24729 (2011).
[Crossref] [PubMed]

C. B. Huang, D. E. Leaird, and A. M. Weiner, “Synthesis of millimeter-wave power spectra using time-multiplexed optical pulse shaping,” IEEE Photon. Technol. Lett. 21(18), 1287–1289 (2009).
[Crossref]

I. S. Lin, J. D. McKinney, and A. M. Weiner, “Photonic synthesis of broadband microwave arbitrary waveforms applicable to ultra-wideband communication,” IEEE Microw. Wirel. Compon. Lett. 15(4), 226–228 (2005).
[Crossref]

A. M. Weiner, A. Dezfooliyan, Y. Li, and A. Rashidinejad, “Selected advances in photonic ultrabroadband radio-frequency arbitrary waveform generation,” International Topical Meeting on Microwave Photonics (MWP)), 325–328, (2013).
[Crossref]

Wun, J.-M.

Xie, S.

Y. Dai, X. Chen, H. Ji, and S. Xie, “Optical arbitrary waveform generation based on sampled fiber Bragg gratings,” IEEE Photon. Technol. Lett. 19(23), 1916–1918 (2007).
[Crossref]

Yao, J. P.

M. Li and J. P. Yao, “Photonic generation of continuously tunable chirped microwave waveforms based on a temporal interferometer incorporating an optically-pumped linearly-chirped fiber bragg grating,” IEEE Trans. Microw. Theory Tech. 59(12), 3531–3537 (2011).
[Crossref]

C. Wang and J. P. Yao, “Large time-bandwidth product microwave arbitrary waveform generation using a spatially discrete chirped fiber Bragg grating,” J. Lightwave Technol. 28(11), 1652–1660 (2010).
[Crossref]

J. P. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
[Crossref]

C. Wang and J. P. Yao, “Photonic generation of chirped millimeter-wave pulses based on nonlinear frequency-to-time mapping in a nonlinearly chirped fiber bragg grating,” IEEE Trans. Microw. Theory Tech. 56(2), 542–553 (2008).
[Crossref]

Yao, J.-P.

M. Li, J. Azaña, N. Zhu, and J.-P. Yao, “Recent progresses on optical arbitrary waveform generation,” Frontiers of Optoelectronics 7(3), 359–375 (2014).
[Crossref]

Yilmaz, T.

T. Yilmaz, C. M. DePriest, T. Turpin, J. H. Abeles, and P. J. Delfyett, “Toward a photonic arbitrary waveform generator using modelocked external cavity semiconductor laser,” IEEE Photon. Technol. Lett. 14(11), 1608–1610 (2002).
[Crossref]

Yoshimizu, Y.

Yoshimoto, N.

Zeitouny, A.

A. Zeitouny, S. Stepanov, O. Levinson, and M. Horowitz, “Optical generation of linearly chirped microwave pulses using fiber Bragg gratings,” IEEE Photon. Technol. Lett. 17(3), 660–662 (2005).
[Crossref]

Zhu, N.

M. Li, J. Azaña, N. Zhu, and J.-P. Yao, “Recent progresses on optical arbitrary waveform generation,” Frontiers of Optoelectronics 7(3), 359–375 (2014).
[Crossref]

Frontiers of Optoelectronics (1)

M. Li, J. Azaña, N. Zhu, and J.-P. Yao, “Recent progresses on optical arbitrary waveform generation,” Frontiers of Optoelectronics 7(3), 359–375 (2014).
[Crossref]

IEEE Microw. Wirel. Compon. Lett. (1)

I. S. Lin, J. D. McKinney, and A. M. Weiner, “Photonic synthesis of broadband microwave arbitrary waveforms applicable to ultra-wideband communication,” IEEE Microw. Wirel. Compon. Lett. 15(4), 226–228 (2005).
[Crossref]

IEEE Photon. J. (1)

J. W. Shi, F. M. Kuo, C. Nan-Wei, S. Y. Set, C. B. Huang, and J. E. Bowers, “Photonic generation and wireless transmission of linearly/nonlinearly continuously tunable chirped millimeter-wave waveforms with high time-bandwidth product at W-Band,” IEEE Photon. J. 4(1), 215–223 (2012).
[Crossref]

IEEE Photon. Technol. Lett. (5)

Y. Dai, X. Chen, H. Ji, and S. Xie, “Optical arbitrary waveform generation based on sampled fiber Bragg gratings,” IEEE Photon. Technol. Lett. 19(23), 1916–1918 (2007).
[Crossref]

C. B. Huang, D. E. Leaird, and A. M. Weiner, “Synthesis of millimeter-wave power spectra using time-multiplexed optical pulse shaping,” IEEE Photon. Technol. Lett. 21(18), 1287–1289 (2009).
[Crossref]

A. Zeitouny, S. Stepanov, O. Levinson, and M. Horowitz, “Optical generation of linearly chirped microwave pulses using fiber Bragg gratings,” IEEE Photon. Technol. Lett. 17(3), 660–662 (2005).
[Crossref]

T. Yilmaz, C. M. DePriest, T. Turpin, J. H. Abeles, and P. J. Delfyett, “Toward a photonic arbitrary waveform generator using modelocked external cavity semiconductor laser,” IEEE Photon. Technol. Lett. 14(11), 1608–1610 (2002).
[Crossref]

J. Chou, Y. Han, and B. Jalali, “Adaptive RF-photonic arbitrary waveform generator,” IEEE Photon. Technol. Lett. 15(4), 581–583 (2003).
[Crossref]

IEEE Trans. Microw. Theory Tech. (3)

R. Ashrafi, Y. Park, and J. Azana, “Fiber-based photonic generation of high-frequency microwave pulses with reconfigurable linear chirp control,” IEEE Trans. Microw. Theory Tech. 58(11), 3312–3319 (2010).
[Crossref]

C. Wang and J. P. Yao, “Photonic generation of chirped millimeter-wave pulses based on nonlinear frequency-to-time mapping in a nonlinearly chirped fiber bragg grating,” IEEE Trans. Microw. Theory Tech. 56(2), 542–553 (2008).
[Crossref]

M. Li and J. P. Yao, “Photonic generation of continuously tunable chirped microwave waveforms based on a temporal interferometer incorporating an optically-pumped linearly-chirped fiber bragg grating,” IEEE Trans. Microw. Theory Tech. 59(12), 3531–3537 (2011).
[Crossref]

J. Infrared, Millim. Terahertz Waves (1)

T. Kleine-Ostmann and T. Nagatsuma, “A review on terahertz communications research,” J. Infrared, Millim. Terahertz Waves 32(2), 143–171 (2011).
[Crossref]

J. Lightwave Technol. (5)

Nat. Photonics (1)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Opt. Express (5)

Optica (1)

Other (6)

M. D. McKinley, K. A. Remley, M. Myslinski, J. S. Kenney, D. Schreurs, and B. Nauwelaers, “EVM calculations for broadband modulated signals,” in Proceedings of 64th ARFTG Conference, (Orlando, 2004), 45–52.

A. Kaneko, H. Yamazaki, and Y. Miyamoto, “Linear optical modulator,” in Optical Fiber Communication Conference, OSA Technical Digest (online), Invited Talk W3K.5, (2014).
[Crossref]

J. Proakis and M. Salehi, Digital Communications (McGraw-Hill, 2007).

A. J. Seeds, “TeraHertz photonics for communications,” in Optical Fiber Communication Conference, OSA Technical Digest (online), Invited Talk Th4H.1, (2014).
[Crossref]

A. M. Weiner, A. Dezfooliyan, Y. Li, and A. Rashidinejad, “Selected advances in photonic ultrabroadband radio-frequency arbitrary waveform generation,” International Topical Meeting on Microwave Photonics (MWP)), 325–328, (2013).
[Crossref]

S. Hardy, “Keysight technologies offers 65-GSa/s, 20-GHz arbitrary waveform generator,” Lightwave Online.31(5), (2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Photonic-assisted RF-AWG schematic diagram.
Fig. 2
Fig. 2 Periodic repetition of ultrabroadband linear down-chirp waveform. (a) 60 ns-long real-time measurement of the generated sequence. (b) Temporal profile of an individual 4 ns-long, 50 GHz bandwidth RF chirp. (c) Normalized spectrogram plot of an individual RF chirp.
Fig. 3
Fig. 3 Zoom-in views of the generated ultrabroadband RF waveforms with (a) 0°, (b) 90°, (c) 180°, and (d) 270° phase shift.
Fig. 4
Fig. 4 Ultrabroadband BPSK measurement results – (a) Color-coded 60ns window of 4μs-long BPSK sequence. (b) Normalized bi-level electrical signal at the input of the phase modulator (Vπ = 2.9V). (c) Overlay of generated antipodal chirps and zoom-ins.
Fig. 5
Fig. 5 Calculated signal constellations from long real-time measurements of various PSK scenarios and zoom-ins: (a) BPSK, (b) QPSK, (c) 16-PSK.
Fig. 6
Fig. 6 Ultrabroadband 8-QAM measurement results – (a) Color-coded 60ns window of 4μs-long 8-QAM sequence. (b) Normalized electrical drive signal at the input of the IM (Vπ = 3.5V), and (c) normalized electrical drive signal at the input of the PM (Vπ = 2.9V).
Fig. 7
Fig. 7 Calculated signal constellation plots from long real-time measurements of various quadrature amplitude modulation scenarios and zoom-ins: (a) Rectangular 8-QAM, (b) Rectangular 16-QAM, and (c) Non-rectangular (circular) 16-QAM.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

v( t )  i A i ×| H( ( tiT ) ψ 2 ) |.cos( ( tiT )τ ψ 2 +H( ( tiT ) ψ 2 ) ϕ i )

Metrics