Abstract

We present a single mode quantum cascade laser with nearly 1 W optical power. A buried distributed feedback reflector is used on the back section for wavelength selection. The laser is 6 mm long, 3.5 μm wide, mounted episide-up and the laser facets are left uncoated. Laser emission is centered at 4.68 μm. Single-mode operation with a side mode suppression ratio of more than 30 dB is obtained in whole range of operation. Farfield measurements prove a symmetric, single transverse-mode emission in TM00-mode with typical divergences of 41° and 33° in the vertical and horizontal direction respectively. This work shows the potential for simple fabrication of high power lasers compatible with standard DFB processing.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Quantum cascade laser in a master oscillator power amplifier configuration with Watt-level optical output power

Borislav Hinkov, Mattias Beck, Emilio Gini, and Jérôme Faist
Opt. Express 21(16) 19180-19186 (2013)

High efficiency, single-lobe surface-emitting DFB/DBR quantum cascade lasers

Ying-hui Liu, Jin-chuan Zhang, Fang-liang Yan, Zhi-wei Jia, Feng-qi Liu, Ping Liang, Ning Zhuo, Shen-qiang Zhai, Li-jun Wang, Jun-qi Liu, Shu-man Liu, and Zhan-guo Wang
Opt. Express 24(17) 19545-19551 (2016)

High performance, low dissipation quantum cascade lasers across the mid-IR range

Alfredo Bismuto, Stéphane Blaser, Romain Terazzi, Tobias Gresch, and Antoine Muller
Opt. Express 23(5) 5477-5484 (2015)

References

  • View by:
  • |
  • |
  • |

  1. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
    [Crossref] [PubMed]
  2. Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98, 181102 (2011).
    [Crossref]
  3. A. Lyakh, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “Multiwatt long wavelength quantum cascade lasers based on high strain composition with 70% injection efficiency,” Opt. Express 20, 24272–24279 (2012).
    [Crossref] [PubMed]
  4. M. Troccoli, “High-power emission and single-mode operation of quantum cascade lasers for industrial applications,” IEEE J. Sel. Top. Quantum Electron. 21, 1–7 (2015).
    [Crossref]
  5. Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “2.4 W room temperature continuous wave operation of distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 98, 181106 (2011).
    [Crossref]
  6. R. Maulini, A. Lyakh, A. Tsekoun, and C. K. N. Patel, “λ 7.1 μm quantum cascade lasers with 19% wall-plug efficiency at room temperature,” Opt. Express 19, 17203–17211 (2011).
    [Crossref] [PubMed]
  7. A. Bismuto, S. Blaser, R. Terazzi, T. Gresch, and A. Muller, “High performance, low dissipation quantum cascade lasers across the mid-IR range,” Opt. Express 23, 5477 (2015).
    [Crossref] [PubMed]
  8. Y. Ma, R. Lewicki, M. Razeghi, and F. K. Tittel, “QEPAS based ppb-level detection of CO and N 2o using a high power CW DFB-QCL,” Opt. Express 21, 1008 (2013).
    [Crossref] [PubMed]
  9. R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. Pflugl, L. Diehl, F. Capasso, and C. K. N. Patel, “High power thermoelectrically cooled and uncooled quantum cascade lasers with optimized reflectivity facet coatings,” Appl. Phys. Lett. 95, 151112 (2009).
    [Crossref]
  10. M. Troccoli, X. Wang, and J. Fan, “Quantum cascade lasers: high-power emission and single-mode operation in the long-wave infrared (λ > 6 μm),” Opt. Eng. 49, 111106 (2010).
    [Crossref]
  11. B. Hinkov, M. Beck, E. Gini, and J. Faist, “Quantum cascade laser in a master oscillator power amplifier configuration with Watt-level optical output power,” Opt. Express 21, 19180 (2013).
    [Crossref] [PubMed]
  12. P. Rauter, S. Menzel, A. K. Goyal, C. A. Wang, A. Sanchez, G. Turner, and F. Capasso, “High-power arrays of quantum cascade laser master-oscillator power-amplifiers,” Opt. Express 21, 4518–4530 (2013).
    [Crossref] [PubMed]
  13. P. Rauter, S. Menzel, B. Gokden, A. K. Goyal, C. A. Wang, A. Sanchez, G. Turner, and F. Capasso, “Single-mode tapered quantum cascade lasers,” Appl. Phys. Lett. 102, 181102 (2013).
    [Crossref]
  14. A. Bismuto, T. Gresch, A. Bachle, and J. Faist, “Large cavity quantum cascade lasers with InP interstacks,” Appl. Phys. Lett. 93, 231104 (2008).
    [Crossref]
  15. A. Bismuto, Y. Bidaux, C. Tardy, R. Terazzi, T. Gresch, J. Wolf, S. Blaser, A. Muller, and J. Faist, “Extended tuning of mid-ir quantum cascade lasers using integrated resistive heaters,” Opt. Express 23, 29715 (2015).
    [Crossref] [PubMed]
  16. H. E. Tureci, A. D. Stone, and L. Ge, “Theory of the spatial structure of nonlinear lasing modes,” Phys. Rev. A 76, 013813 (2007).
    [Crossref]
  17. H. E. Tureci, A. D. Stone, L. Ge, S. Rotter, and R. J. Tandy, “Ab initio self-consistent laser theory and random lasers,” Nonlinearity 22, C1 (2009).
    [Crossref]
  18. Faist Jerome, Quantum Cascade Lasers (OUPOxford, 2013).

2015 (3)

2013 (4)

2012 (1)

2011 (3)

Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “2.4 W room temperature continuous wave operation of distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 98, 181106 (2011).
[Crossref]

R. Maulini, A. Lyakh, A. Tsekoun, and C. K. N. Patel, “λ 7.1 μm quantum cascade lasers with 19% wall-plug efficiency at room temperature,” Opt. Express 19, 17203–17211 (2011).
[Crossref] [PubMed]

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98, 181102 (2011).
[Crossref]

2010 (1)

M. Troccoli, X. Wang, and J. Fan, “Quantum cascade lasers: high-power emission and single-mode operation in the long-wave infrared (λ > 6 μm),” Opt. Eng. 49, 111106 (2010).
[Crossref]

2009 (2)

R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. Pflugl, L. Diehl, F. Capasso, and C. K. N. Patel, “High power thermoelectrically cooled and uncooled quantum cascade lasers with optimized reflectivity facet coatings,” Appl. Phys. Lett. 95, 151112 (2009).
[Crossref]

H. E. Tureci, A. D. Stone, L. Ge, S. Rotter, and R. J. Tandy, “Ab initio self-consistent laser theory and random lasers,” Nonlinearity 22, C1 (2009).
[Crossref]

2008 (1)

A. Bismuto, T. Gresch, A. Bachle, and J. Faist, “Large cavity quantum cascade lasers with InP interstacks,” Appl. Phys. Lett. 93, 231104 (2008).
[Crossref]

2007 (1)

H. E. Tureci, A. D. Stone, and L. Ge, “Theory of the spatial structure of nonlinear lasing modes,” Phys. Rev. A 76, 013813 (2007).
[Crossref]

1994 (1)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref] [PubMed]

Bachle, A.

A. Bismuto, T. Gresch, A. Bachle, and J. Faist, “Large cavity quantum cascade lasers with InP interstacks,” Appl. Phys. Lett. 93, 231104 (2008).
[Crossref]

Bai, Y.

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98, 181102 (2011).
[Crossref]

Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “2.4 W room temperature continuous wave operation of distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 98, 181106 (2011).
[Crossref]

Bandyopadhyay, N.

Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “2.4 W room temperature continuous wave operation of distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 98, 181106 (2011).
[Crossref]

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98, 181102 (2011).
[Crossref]

Beck, M.

Bidaux, Y.

Bismuto, A.

Blaser, S.

Capasso, F.

P. Rauter, S. Menzel, B. Gokden, A. K. Goyal, C. A. Wang, A. Sanchez, G. Turner, and F. Capasso, “Single-mode tapered quantum cascade lasers,” Appl. Phys. Lett. 102, 181102 (2013).
[Crossref]

P. Rauter, S. Menzel, A. K. Goyal, C. A. Wang, A. Sanchez, G. Turner, and F. Capasso, “High-power arrays of quantum cascade laser master-oscillator power-amplifiers,” Opt. Express 21, 4518–4530 (2013).
[Crossref] [PubMed]

R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. Pflugl, L. Diehl, F. Capasso, and C. K. N. Patel, “High power thermoelectrically cooled and uncooled quantum cascade lasers with optimized reflectivity facet coatings,” Appl. Phys. Lett. 95, 151112 (2009).
[Crossref]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref] [PubMed]

Cho, A. Y.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref] [PubMed]

Diehl, L.

R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. Pflugl, L. Diehl, F. Capasso, and C. K. N. Patel, “High power thermoelectrically cooled and uncooled quantum cascade lasers with optimized reflectivity facet coatings,” Appl. Phys. Lett. 95, 151112 (2009).
[Crossref]

Faist, J.

Fan, J.

M. Troccoli, X. Wang, and J. Fan, “Quantum cascade lasers: high-power emission and single-mode operation in the long-wave infrared (λ > 6 μm),” Opt. Eng. 49, 111106 (2010).
[Crossref]

Ge, L.

H. E. Tureci, A. D. Stone, L. Ge, S. Rotter, and R. J. Tandy, “Ab initio self-consistent laser theory and random lasers,” Nonlinearity 22, C1 (2009).
[Crossref]

H. E. Tureci, A. D. Stone, and L. Ge, “Theory of the spatial structure of nonlinear lasing modes,” Phys. Rev. A 76, 013813 (2007).
[Crossref]

Gini, E.

Go, R.

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “Multiwatt long wavelength quantum cascade lasers based on high strain composition with 70% injection efficiency,” Opt. Express 20, 24272–24279 (2012).
[Crossref] [PubMed]

R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. Pflugl, L. Diehl, F. Capasso, and C. K. N. Patel, “High power thermoelectrically cooled and uncooled quantum cascade lasers with optimized reflectivity facet coatings,” Appl. Phys. Lett. 95, 151112 (2009).
[Crossref]

Gokden, B.

P. Rauter, S. Menzel, B. Gokden, A. K. Goyal, C. A. Wang, A. Sanchez, G. Turner, and F. Capasso, “Single-mode tapered quantum cascade lasers,” Appl. Phys. Lett. 102, 181102 (2013).
[Crossref]

Goyal, A. K.

P. Rauter, S. Menzel, B. Gokden, A. K. Goyal, C. A. Wang, A. Sanchez, G. Turner, and F. Capasso, “Single-mode tapered quantum cascade lasers,” Appl. Phys. Lett. 102, 181102 (2013).
[Crossref]

P. Rauter, S. Menzel, A. K. Goyal, C. A. Wang, A. Sanchez, G. Turner, and F. Capasso, “High-power arrays of quantum cascade laser master-oscillator power-amplifiers,” Opt. Express 21, 4518–4530 (2013).
[Crossref] [PubMed]

Gresch, T.

Hinkov, B.

Hutchinson, A. L.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref] [PubMed]

Jerome, Faist

Faist Jerome, Quantum Cascade Lasers (OUPOxford, 2013).

Lewicki, R.

Lu, Q. Y.

Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “2.4 W room temperature continuous wave operation of distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 98, 181106 (2011).
[Crossref]

Lyakh, A.

Ma, Y.

Maulini, R.

Menzel, S.

P. Rauter, S. Menzel, B. Gokden, A. K. Goyal, C. A. Wang, A. Sanchez, G. Turner, and F. Capasso, “Single-mode tapered quantum cascade lasers,” Appl. Phys. Lett. 102, 181102 (2013).
[Crossref]

P. Rauter, S. Menzel, A. K. Goyal, C. A. Wang, A. Sanchez, G. Turner, and F. Capasso, “High-power arrays of quantum cascade laser master-oscillator power-amplifiers,” Opt. Express 21, 4518–4530 (2013).
[Crossref] [PubMed]

Muller, A.

Patel, C. K. N.

Pflugl, C.

R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. Pflugl, L. Diehl, F. Capasso, and C. K. N. Patel, “High power thermoelectrically cooled and uncooled quantum cascade lasers with optimized reflectivity facet coatings,” Appl. Phys. Lett. 95, 151112 (2009).
[Crossref]

Rauter, P.

P. Rauter, S. Menzel, B. Gokden, A. K. Goyal, C. A. Wang, A. Sanchez, G. Turner, and F. Capasso, “Single-mode tapered quantum cascade lasers,” Appl. Phys. Lett. 102, 181102 (2013).
[Crossref]

P. Rauter, S. Menzel, A. K. Goyal, C. A. Wang, A. Sanchez, G. Turner, and F. Capasso, “High-power arrays of quantum cascade laser master-oscillator power-amplifiers,” Opt. Express 21, 4518–4530 (2013).
[Crossref] [PubMed]

Razeghi, M.

Y. Ma, R. Lewicki, M. Razeghi, and F. K. Tittel, “QEPAS based ppb-level detection of CO and N 2o using a high power CW DFB-QCL,” Opt. Express 21, 1008 (2013).
[Crossref] [PubMed]

Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “2.4 W room temperature continuous wave operation of distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 98, 181106 (2011).
[Crossref]

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98, 181102 (2011).
[Crossref]

Rotter, S.

H. E. Tureci, A. D. Stone, L. Ge, S. Rotter, and R. J. Tandy, “Ab initio self-consistent laser theory and random lasers,” Nonlinearity 22, C1 (2009).
[Crossref]

Sanchez, A.

P. Rauter, S. Menzel, A. K. Goyal, C. A. Wang, A. Sanchez, G. Turner, and F. Capasso, “High-power arrays of quantum cascade laser master-oscillator power-amplifiers,” Opt. Express 21, 4518–4530 (2013).
[Crossref] [PubMed]

P. Rauter, S. Menzel, B. Gokden, A. K. Goyal, C. A. Wang, A. Sanchez, G. Turner, and F. Capasso, “Single-mode tapered quantum cascade lasers,” Appl. Phys. Lett. 102, 181102 (2013).
[Crossref]

Sirtori, C.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref] [PubMed]

Sivco, D. L.

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref] [PubMed]

Slivken, S.

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98, 181102 (2011).
[Crossref]

Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “2.4 W room temperature continuous wave operation of distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 98, 181106 (2011).
[Crossref]

Stone, A. D.

H. E. Tureci, A. D. Stone, L. Ge, S. Rotter, and R. J. Tandy, “Ab initio self-consistent laser theory and random lasers,” Nonlinearity 22, C1 (2009).
[Crossref]

H. E. Tureci, A. D. Stone, and L. Ge, “Theory of the spatial structure of nonlinear lasing modes,” Phys. Rev. A 76, 013813 (2007).
[Crossref]

Tandy, R. J.

H. E. Tureci, A. D. Stone, L. Ge, S. Rotter, and R. J. Tandy, “Ab initio self-consistent laser theory and random lasers,” Nonlinearity 22, C1 (2009).
[Crossref]

Tardy, C.

Terazzi, R.

Tittel, F. K.

Troccoli, M.

M. Troccoli, “High-power emission and single-mode operation of quantum cascade lasers for industrial applications,” IEEE J. Sel. Top. Quantum Electron. 21, 1–7 (2015).
[Crossref]

M. Troccoli, X. Wang, and J. Fan, “Quantum cascade lasers: high-power emission and single-mode operation in the long-wave infrared (λ > 6 μm),” Opt. Eng. 49, 111106 (2010).
[Crossref]

Tsao, S.

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98, 181102 (2011).
[Crossref]

Tsekoun, A.

Tureci, H. E.

H. E. Tureci, A. D. Stone, L. Ge, S. Rotter, and R. J. Tandy, “Ab initio self-consistent laser theory and random lasers,” Nonlinearity 22, C1 (2009).
[Crossref]

H. E. Tureci, A. D. Stone, and L. Ge, “Theory of the spatial structure of nonlinear lasing modes,” Phys. Rev. A 76, 013813 (2007).
[Crossref]

Turner, G.

P. Rauter, S. Menzel, A. K. Goyal, C. A. Wang, A. Sanchez, G. Turner, and F. Capasso, “High-power arrays of quantum cascade laser master-oscillator power-amplifiers,” Opt. Express 21, 4518–4530 (2013).
[Crossref] [PubMed]

P. Rauter, S. Menzel, B. Gokden, A. K. Goyal, C. A. Wang, A. Sanchez, G. Turner, and F. Capasso, “Single-mode tapered quantum cascade lasers,” Appl. Phys. Lett. 102, 181102 (2013).
[Crossref]

Wang, C. A.

P. Rauter, S. Menzel, B. Gokden, A. K. Goyal, C. A. Wang, A. Sanchez, G. Turner, and F. Capasso, “Single-mode tapered quantum cascade lasers,” Appl. Phys. Lett. 102, 181102 (2013).
[Crossref]

P. Rauter, S. Menzel, A. K. Goyal, C. A. Wang, A. Sanchez, G. Turner, and F. Capasso, “High-power arrays of quantum cascade laser master-oscillator power-amplifiers,” Opt. Express 21, 4518–4530 (2013).
[Crossref] [PubMed]

Wang, X.

M. Troccoli, X. Wang, and J. Fan, “Quantum cascade lasers: high-power emission and single-mode operation in the long-wave infrared (λ > 6 μm),” Opt. Eng. 49, 111106 (2010).
[Crossref]

Wolf, J.

Appl. Phys. Lett. (5)

Y. Bai, N. Bandyopadhyay, S. Tsao, S. Slivken, and M. Razeghi, “Room temperature quantum cascade lasers with 27% wall plug efficiency,” Appl. Phys. Lett. 98, 181102 (2011).
[Crossref]

Q. Y. Lu, Y. Bai, N. Bandyopadhyay, S. Slivken, and M. Razeghi, “2.4 W room temperature continuous wave operation of distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 98, 181106 (2011).
[Crossref]

R. Maulini, A. Lyakh, A. Tsekoun, R. Go, C. Pflugl, L. Diehl, F. Capasso, and C. K. N. Patel, “High power thermoelectrically cooled and uncooled quantum cascade lasers with optimized reflectivity facet coatings,” Appl. Phys. Lett. 95, 151112 (2009).
[Crossref]

P. Rauter, S. Menzel, B. Gokden, A. K. Goyal, C. A. Wang, A. Sanchez, G. Turner, and F. Capasso, “Single-mode tapered quantum cascade lasers,” Appl. Phys. Lett. 102, 181102 (2013).
[Crossref]

A. Bismuto, T. Gresch, A. Bachle, and J. Faist, “Large cavity quantum cascade lasers with InP interstacks,” Appl. Phys. Lett. 93, 231104 (2008).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Troccoli, “High-power emission and single-mode operation of quantum cascade lasers for industrial applications,” IEEE J. Sel. Top. Quantum Electron. 21, 1–7 (2015).
[Crossref]

Nonlinearity (1)

H. E. Tureci, A. D. Stone, L. Ge, S. Rotter, and R. J. Tandy, “Ab initio self-consistent laser theory and random lasers,” Nonlinearity 22, C1 (2009).
[Crossref]

Opt. Eng. (1)

M. Troccoli, X. Wang, and J. Fan, “Quantum cascade lasers: high-power emission and single-mode operation in the long-wave infrared (λ > 6 μm),” Opt. Eng. 49, 111106 (2010).
[Crossref]

Opt. Express (7)

B. Hinkov, M. Beck, E. Gini, and J. Faist, “Quantum cascade laser in a master oscillator power amplifier configuration with Watt-level optical output power,” Opt. Express 21, 19180 (2013).
[Crossref] [PubMed]

P. Rauter, S. Menzel, A. K. Goyal, C. A. Wang, A. Sanchez, G. Turner, and F. Capasso, “High-power arrays of quantum cascade laser master-oscillator power-amplifiers,” Opt. Express 21, 4518–4530 (2013).
[Crossref] [PubMed]

A. Bismuto, Y. Bidaux, C. Tardy, R. Terazzi, T. Gresch, J. Wolf, S. Blaser, A. Muller, and J. Faist, “Extended tuning of mid-ir quantum cascade lasers using integrated resistive heaters,” Opt. Express 23, 29715 (2015).
[Crossref] [PubMed]

A. Lyakh, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, “Multiwatt long wavelength quantum cascade lasers based on high strain composition with 70% injection efficiency,” Opt. Express 20, 24272–24279 (2012).
[Crossref] [PubMed]

R. Maulini, A. Lyakh, A. Tsekoun, and C. K. N. Patel, “λ 7.1 μm quantum cascade lasers with 19% wall-plug efficiency at room temperature,” Opt. Express 19, 17203–17211 (2011).
[Crossref] [PubMed]

A. Bismuto, S. Blaser, R. Terazzi, T. Gresch, and A. Muller, “High performance, low dissipation quantum cascade lasers across the mid-IR range,” Opt. Express 23, 5477 (2015).
[Crossref] [PubMed]

Y. Ma, R. Lewicki, M. Razeghi, and F. K. Tittel, “QEPAS based ppb-level detection of CO and N 2o using a high power CW DFB-QCL,” Opt. Express 21, 1008 (2013).
[Crossref] [PubMed]

Phys. Rev. A (1)

H. E. Tureci, A. D. Stone, and L. Ge, “Theory of the spatial structure of nonlinear lasing modes,” Phys. Rev. A 76, 013813 (2007).
[Crossref]

Science (1)

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser,” Science 264, 553–556 (1994).
[Crossref] [PubMed]

Other (1)

Faist Jerome, Quantum Cascade Lasers (OUPOxford, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Top: Sketch of the fabricated DBR-QCL device. Bottom: Light-Voltage-Current characteristics as a function of the temperature for a 6 mm long, 4.5 μm wide DBR-QC laser emitting at 4.68 μm
Fig. 2
Fig. 2 (a): Single mode emission for submount temperatures from −30° C to 50° C for a cw injection current of Il=0.8 A. A spectral coverage of over 11 cm−1 is observed. (b): Single mode spectral emission as function of the injection current for a submount temperature Ths= 0 ° C. Single mode suppression ratios of over 30 dB are observed. The spectra were measured using an FTIR Vertex 80(Bruker) with a resolution of 0.2 cm−1. and side mode suppression ratios larger than > 30 dB are observed for all the spectra. Our experience with DFB show that the linewidth is comparable with the one observed on standard DFB devices.
Fig. 3
Fig. 3 Measured far field pattern in cw for a current of 1.2A. As shown in the inset, the laser submount is on an overhanging Cu plate, which causes the vertical asymmetry.
Fig. 4
Fig. 4 (a): Longitudinal mode profile of the optical field in the DBR-QCL. The intensity is nearly constant in the FP section(in green) while decreases exponentially in the DBR section(in red). (b): Front (FP) and back (DBR) facet emission power measured at −30°C for the device presented in Fig. 1. Back facet emission power is nearly an order of magnitude lower than front facet one, in good agreement with mode profile simulations shown in the top figure.

Metrics