Abstract

The effective device photo current of organic tandem solar cells is independent of the angle of light incidence up to 65°. This feature renders these devices particularly suitable for stationary applications where they receive mainly indirect light. In a combined experimental and simulative study, we develop a fundamental understanding of the causal absorption and charge generation mechanisms in organic homo-tandem solar cells. A 3-terminal tandem device architecture is used to measure the optoelectronic properties of both subcells individually. The analysis of the angle dependent external quantum efficiencies of the subcells and the tandem device reveal an internal balancing of the wavelength dependent subcell currents elucidating the low sensitivity of the tandem device properties on the angle of incidence.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Performance optimization of tandem organic solar cells at varying incident angles based on optical analysis method

Xuenan Zhao, Ruoxi Xia, Honggang Gu, Xianhua Ke, Yating Shi, Xiuguo Chen, Hao Jiang, Hin-Lap Yip, and Shiyuan Liu
Opt. Express 28(2) 2381-2397 (2020)

Tandem organic solar cells containing plasmonic nanospheres and nanostars for enhancement in short circuit current density

Kamal Kumar, Abhijit Das, Uttam Kumar Kumawat, and Anuj Dhawan
Opt. Express 27(22) 31599-31620 (2019)

References

  • View by:
  • |
  • |
  • |

  1. G. Dennler, K. Forberich, M. C. Scharber, C. J. Brabec, I. Tomiš, K. Hingerl, and T. Fromherz, “Angle dependence of external and internal quantum efficiencies in bulk-heterojunction organic solar cells,” J. Appl. Phys. 102(5), 054516 (2007).
    [Crossref]
  2. D. Cheyns, B. P. Rand, B. Verret, J. Genoe, J. Poortmans, and P. Heremans, “The angular response of ultrathin film organic solar cells,” Appl. Phys. Lett. 92(24), 243310 (2008).
    [Crossref]
  3. A. Colsmann, J. Junge, C. Kayser, and U. Lemmer, “Organic tandem solar cells comprising polymer and small-molecule subcells,” Appl. Phys. Lett. 89(20), 203506 (2006).
    [Crossref]
  4. J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T. Q. Nguyen, M. Dante, and A. J. Heeger, “Efficient tandem polymer solar cells fabricated by all-solution processing,” Science 317(5835), 222–225 (2007).
    [Crossref] [PubMed]
  5. G. Dennler, M. C. Scharber, T. Ameri, P. Denk, K. Forberich, C. Waldauf, and C. J. Brabec, “Design rules for donors in bulk-heterojunction tandem solar cells - towards 15% energy-conversion efficiency,” Adv. Mater. 20(3), 579–583 (2008).
    [Crossref]
  6. V. S. Gevaerts, A. Furlan, M. M. Wienk, M. Turbiez, and R. A. J. Janssen, “Solution processed polymer tandem solar cell using efficient small and wide bandgap polymer:fullerene blends,” Adv. Mater. 24(16), 2130–2134 (2012).
    [Crossref] [PubMed]
  7. B. E. Lassiter, J. D. Zimmerman, and S. R. Forrest, “Tandem organic photovoltaics incorporating two solution-processed small molecule donor layers,” Appl. Phys. Lett. 103(12), 123305 (2013).
    [Crossref]
  8. B. Lechêne, G. Perrier, K. Emmanouil, S. Kennou, B. Bouthinon, and R. de Bettignies, “Design of intermediate layers for solution-processed tandem organic solar cells: guidelines from a case study on TiOx and ZnO,” Sol. Energy Mater. Sol. Cells 120, 709–715 (2014).
    [Crossref]
  9. A. Puetz, T. Stubhan, M. Reinhard, O. Loesch, E. Hammarberg, S. Wolf, C. Feldmann, H. Kalt, A. Colsmann, and U. Lemmer, “Organic solar cells incorporating buffer layers from indium zinc oxide nanoparticles,” Sol. Energy Mater. Sol. Cells 95(2), 579–585 (2011).
    [Crossref]
  10. H. Zhou, Y. Zhang, C.-K. Mai, S. D. Collins, G. C. Bazan, T.-Q. Nguyen, and A. J. Heeger, “Polymer homo-tandem solar cells with best efficiency of 11.3%,” Adv. Mater. 27(10), 1767–1773 (2015).
    [Crossref] [PubMed]
  11. J. You, C.-C. Chen, Z. Hong, K. Yoshimura, K. Ohya, R. Xu, S. Ye, J. Gao, G. Li, and Y. Yang, “10.2% power conversion efficiency polymer tandem solar cells consisting of two identical sub-cells,” Adv. Mater. 25(29), 3973–3978 (2013).
    [Crossref] [PubMed]
  12. H. Kang, S. Kee, K. Yu, J. Lee, G. Kim, J. Kim, J.-R. Kim, J. Kong, and K. Lee, “Simplified tandem polymer solar cells with an ideal self-organized recombination layer,” Adv. Mater. 27(8), 1408–1413 (2015).
    [Crossref] [PubMed]
  13. J. Gilot, M. M. Wienk, and R. A. J. Janssen, “Optimizing polymer tandem solar cells,” Adv. Mater. 22(8), E67–E71 (2010).
    [Crossref] [PubMed]
  14. G. Dennler, K. Forberich, T. Ameri, C. Waldauf, P. Denk, C. J. Brabec, K. Hingerl, and A. J. Heeger, “Design of efficient organic tandem cells: on the interplay between molecular absorption and layer sequence,” J. Appl. Phys. 102(12), 123109 (2007).
    [Crossref]
  15. A. Puetz, F. Steiner, J. Mescher, M. Reinhard, N. Christ, D. Kutsarov, H. Kalt, U. Lemmer, and A. Colsmann, “Solution processable, precursor based zinc oxide buffer layers for 4.5% efficient organic tandem solar cells,” Org. Electron. 13(11), 2696–2701 (2012).
    [Crossref]
  16. J. Gilot, I. Barbu, M. M. Wienk, and R. A. J. Janssen, “The use of ZnO as optical spacer in polymer solar cells: Theoretical and experimental study,” Appl. Phys. Lett. 91(11), 113520 (2007).
    [Crossref]
  17. F. Nickel, C. Sprau, M. F. G. Klein, P. Kapetana, N. Christ, X. Liu, S. Klinkhammer, U. Lemmer, and A. Colsmann, “Spatial mapping of photocurrents in organic solar cells comprising wedge-shaped absorber layers for an efficient material screening,” Sol. Energy Mater. Sol. Cells 104, 18–22 (2012).
    [Crossref]
  18. C. Brabec, U. Scherf, and V. Dyakonov, Organic Photovoltaics (Wiley-VCH, 2014).
  19. B. V. Andersson, U. Wuerfel, and O. Inganäs, “Full day modelling of V-shaped organic solar cell,” Sol. Energy 85(6), 1257–1263 (2011).
    [Crossref]
  20. M. Riede, C. Uhrich, J. Widmer, R. Timmreck, D. Wynands, G. Schwartz, W.-M. Gnehr, D. Hildebrandt, A. Weiss, J. Hwang, S. Sundarraj, P. Erk, M. Pfeiffer, and K. Leo, “Efficient organic tandem solar cells based on small molecules,” Adv. Funct. Mater. 21(16), 3019–3028 (2011).
    [Crossref]
  21. D. Bahro, M. Koppitz, A. Mertens, K. Glaser, J. Mescher, and A. Colsmann, “Understanding the external quantum efficiency of organic homo-tandem solar cells utilizing a three-terminal device architecture,” Adv. Energy Mater. 5(22), 1501019 (2015).
    [Crossref]
  22. J. Gilot, M. M. Wienk, and R. A. J. Janssen, “Measuring the external quantum efficiency of two-terminal polymer tandem solar cells,” Adv. Funct. Mater. 20(22), 3904–3911 (2010).
    [Crossref]
  23. N. Christ, S. W. Kettlitz, S. Züfle, S. Valouch, and U. Lemmer, “Nanosecond response of organic solar cells and photodiodes: Role of trap states,” Phys. Rev. B 83(19), 195211 (2011).
    [Crossref]
  24. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1997).
  25. A. Abdellaoui, G. Lévêque, A. Donnadieu, A. Bath, and B. Bouchikhi, “Iteratively derived optical constants of MoO3 polycrystalline thin films prepared by CVD,” Thin Solid Films 304(1–2), 39–44 (1997).
    [Crossref]
  26. R. Betancur, A. Martínez-Otero, X. Elias, P. Romero-Gómez, S. Colodrero, H. Miguez, and J. Martorell, “Optical interference for the matching of the external and internal quantum efficiencies in organic photovoltaic cells,” Sol. Energy Mater. Sol. Cells 104, 87–91 (2012).
    [Crossref]
  27. M. Stolterfoht, B. Philippa, A. Armin, A. K. Pandey, R. D. White, P. L. Burn, P. Meredith, and A. Pivrikas, “Advantage of suppressed non-Langevin recombination in low mobility organic solar cells,” Appl. Phys. Lett. 105(1), 013302 (2014).
    [Crossref]
  28. J. Yang, R. Zhu, Z. Hong, Y. He, A. Kumar, Y. Li, and Y. Yang, “A robust inter-connecting layer for achieving high performance tandem polymer solar cells,” Adv. Mater. 23(30), 3465–3470 (2011).
    [Crossref] [PubMed]

2015 (3)

H. Zhou, Y. Zhang, C.-K. Mai, S. D. Collins, G. C. Bazan, T.-Q. Nguyen, and A. J. Heeger, “Polymer homo-tandem solar cells with best efficiency of 11.3%,” Adv. Mater. 27(10), 1767–1773 (2015).
[Crossref] [PubMed]

H. Kang, S. Kee, K. Yu, J. Lee, G. Kim, J. Kim, J.-R. Kim, J. Kong, and K. Lee, “Simplified tandem polymer solar cells with an ideal self-organized recombination layer,” Adv. Mater. 27(8), 1408–1413 (2015).
[Crossref] [PubMed]

D. Bahro, M. Koppitz, A. Mertens, K. Glaser, J. Mescher, and A. Colsmann, “Understanding the external quantum efficiency of organic homo-tandem solar cells utilizing a three-terminal device architecture,” Adv. Energy Mater. 5(22), 1501019 (2015).
[Crossref]

2014 (2)

M. Stolterfoht, B. Philippa, A. Armin, A. K. Pandey, R. D. White, P. L. Burn, P. Meredith, and A. Pivrikas, “Advantage of suppressed non-Langevin recombination in low mobility organic solar cells,” Appl. Phys. Lett. 105(1), 013302 (2014).
[Crossref]

B. Lechêne, G. Perrier, K. Emmanouil, S. Kennou, B. Bouthinon, and R. de Bettignies, “Design of intermediate layers for solution-processed tandem organic solar cells: guidelines from a case study on TiOx and ZnO,” Sol. Energy Mater. Sol. Cells 120, 709–715 (2014).
[Crossref]

2013 (2)

J. You, C.-C. Chen, Z. Hong, K. Yoshimura, K. Ohya, R. Xu, S. Ye, J. Gao, G. Li, and Y. Yang, “10.2% power conversion efficiency polymer tandem solar cells consisting of two identical sub-cells,” Adv. Mater. 25(29), 3973–3978 (2013).
[Crossref] [PubMed]

B. E. Lassiter, J. D. Zimmerman, and S. R. Forrest, “Tandem organic photovoltaics incorporating two solution-processed small molecule donor layers,” Appl. Phys. Lett. 103(12), 123305 (2013).
[Crossref]

2012 (4)

R. Betancur, A. Martínez-Otero, X. Elias, P. Romero-Gómez, S. Colodrero, H. Miguez, and J. Martorell, “Optical interference for the matching of the external and internal quantum efficiencies in organic photovoltaic cells,” Sol. Energy Mater. Sol. Cells 104, 87–91 (2012).
[Crossref]

A. Puetz, F. Steiner, J. Mescher, M. Reinhard, N. Christ, D. Kutsarov, H. Kalt, U. Lemmer, and A. Colsmann, “Solution processable, precursor based zinc oxide buffer layers for 4.5% efficient organic tandem solar cells,” Org. Electron. 13(11), 2696–2701 (2012).
[Crossref]

F. Nickel, C. Sprau, M. F. G. Klein, P. Kapetana, N. Christ, X. Liu, S. Klinkhammer, U. Lemmer, and A. Colsmann, “Spatial mapping of photocurrents in organic solar cells comprising wedge-shaped absorber layers for an efficient material screening,” Sol. Energy Mater. Sol. Cells 104, 18–22 (2012).
[Crossref]

V. S. Gevaerts, A. Furlan, M. M. Wienk, M. Turbiez, and R. A. J. Janssen, “Solution processed polymer tandem solar cell using efficient small and wide bandgap polymer:fullerene blends,” Adv. Mater. 24(16), 2130–2134 (2012).
[Crossref] [PubMed]

2011 (5)

A. Puetz, T. Stubhan, M. Reinhard, O. Loesch, E. Hammarberg, S. Wolf, C. Feldmann, H. Kalt, A. Colsmann, and U. Lemmer, “Organic solar cells incorporating buffer layers from indium zinc oxide nanoparticles,” Sol. Energy Mater. Sol. Cells 95(2), 579–585 (2011).
[Crossref]

B. V. Andersson, U. Wuerfel, and O. Inganäs, “Full day modelling of V-shaped organic solar cell,” Sol. Energy 85(6), 1257–1263 (2011).
[Crossref]

M. Riede, C. Uhrich, J. Widmer, R. Timmreck, D. Wynands, G. Schwartz, W.-M. Gnehr, D. Hildebrandt, A. Weiss, J. Hwang, S. Sundarraj, P. Erk, M. Pfeiffer, and K. Leo, “Efficient organic tandem solar cells based on small molecules,” Adv. Funct. Mater. 21(16), 3019–3028 (2011).
[Crossref]

J. Yang, R. Zhu, Z. Hong, Y. He, A. Kumar, Y. Li, and Y. Yang, “A robust inter-connecting layer for achieving high performance tandem polymer solar cells,” Adv. Mater. 23(30), 3465–3470 (2011).
[Crossref] [PubMed]

N. Christ, S. W. Kettlitz, S. Züfle, S. Valouch, and U. Lemmer, “Nanosecond response of organic solar cells and photodiodes: Role of trap states,” Phys. Rev. B 83(19), 195211 (2011).
[Crossref]

2010 (2)

J. Gilot, M. M. Wienk, and R. A. J. Janssen, “Measuring the external quantum efficiency of two-terminal polymer tandem solar cells,” Adv. Funct. Mater. 20(22), 3904–3911 (2010).
[Crossref]

J. Gilot, M. M. Wienk, and R. A. J. Janssen, “Optimizing polymer tandem solar cells,” Adv. Mater. 22(8), E67–E71 (2010).
[Crossref] [PubMed]

2008 (2)

G. Dennler, M. C. Scharber, T. Ameri, P. Denk, K. Forberich, C. Waldauf, and C. J. Brabec, “Design rules for donors in bulk-heterojunction tandem solar cells - towards 15% energy-conversion efficiency,” Adv. Mater. 20(3), 579–583 (2008).
[Crossref]

D. Cheyns, B. P. Rand, B. Verret, J. Genoe, J. Poortmans, and P. Heremans, “The angular response of ultrathin film organic solar cells,” Appl. Phys. Lett. 92(24), 243310 (2008).
[Crossref]

2007 (4)

G. Dennler, K. Forberich, M. C. Scharber, C. J. Brabec, I. Tomiš, K. Hingerl, and T. Fromherz, “Angle dependence of external and internal quantum efficiencies in bulk-heterojunction organic solar cells,” J. Appl. Phys. 102(5), 054516 (2007).
[Crossref]

J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T. Q. Nguyen, M. Dante, and A. J. Heeger, “Efficient tandem polymer solar cells fabricated by all-solution processing,” Science 317(5835), 222–225 (2007).
[Crossref] [PubMed]

G. Dennler, K. Forberich, T. Ameri, C. Waldauf, P. Denk, C. J. Brabec, K. Hingerl, and A. J. Heeger, “Design of efficient organic tandem cells: on the interplay between molecular absorption and layer sequence,” J. Appl. Phys. 102(12), 123109 (2007).
[Crossref]

J. Gilot, I. Barbu, M. M. Wienk, and R. A. J. Janssen, “The use of ZnO as optical spacer in polymer solar cells: Theoretical and experimental study,” Appl. Phys. Lett. 91(11), 113520 (2007).
[Crossref]

2006 (1)

A. Colsmann, J. Junge, C. Kayser, and U. Lemmer, “Organic tandem solar cells comprising polymer and small-molecule subcells,” Appl. Phys. Lett. 89(20), 203506 (2006).
[Crossref]

1997 (1)

A. Abdellaoui, G. Lévêque, A. Donnadieu, A. Bath, and B. Bouchikhi, “Iteratively derived optical constants of MoO3 polycrystalline thin films prepared by CVD,” Thin Solid Films 304(1–2), 39–44 (1997).
[Crossref]

Abdellaoui, A.

A. Abdellaoui, G. Lévêque, A. Donnadieu, A. Bath, and B. Bouchikhi, “Iteratively derived optical constants of MoO3 polycrystalline thin films prepared by CVD,” Thin Solid Films 304(1–2), 39–44 (1997).
[Crossref]

Ameri, T.

G. Dennler, M. C. Scharber, T. Ameri, P. Denk, K. Forberich, C. Waldauf, and C. J. Brabec, “Design rules for donors in bulk-heterojunction tandem solar cells - towards 15% energy-conversion efficiency,” Adv. Mater. 20(3), 579–583 (2008).
[Crossref]

G. Dennler, K. Forberich, T. Ameri, C. Waldauf, P. Denk, C. J. Brabec, K. Hingerl, and A. J. Heeger, “Design of efficient organic tandem cells: on the interplay between molecular absorption and layer sequence,” J. Appl. Phys. 102(12), 123109 (2007).
[Crossref]

Andersson, B. V.

B. V. Andersson, U. Wuerfel, and O. Inganäs, “Full day modelling of V-shaped organic solar cell,” Sol. Energy 85(6), 1257–1263 (2011).
[Crossref]

Armin, A.

M. Stolterfoht, B. Philippa, A. Armin, A. K. Pandey, R. D. White, P. L. Burn, P. Meredith, and A. Pivrikas, “Advantage of suppressed non-Langevin recombination in low mobility organic solar cells,” Appl. Phys. Lett. 105(1), 013302 (2014).
[Crossref]

Bahro, D.

D. Bahro, M. Koppitz, A. Mertens, K. Glaser, J. Mescher, and A. Colsmann, “Understanding the external quantum efficiency of organic homo-tandem solar cells utilizing a three-terminal device architecture,” Adv. Energy Mater. 5(22), 1501019 (2015).
[Crossref]

Barbu, I.

J. Gilot, I. Barbu, M. M. Wienk, and R. A. J. Janssen, “The use of ZnO as optical spacer in polymer solar cells: Theoretical and experimental study,” Appl. Phys. Lett. 91(11), 113520 (2007).
[Crossref]

Bath, A.

A. Abdellaoui, G. Lévêque, A. Donnadieu, A. Bath, and B. Bouchikhi, “Iteratively derived optical constants of MoO3 polycrystalline thin films prepared by CVD,” Thin Solid Films 304(1–2), 39–44 (1997).
[Crossref]

Bazan, G. C.

H. Zhou, Y. Zhang, C.-K. Mai, S. D. Collins, G. C. Bazan, T.-Q. Nguyen, and A. J. Heeger, “Polymer homo-tandem solar cells with best efficiency of 11.3%,” Adv. Mater. 27(10), 1767–1773 (2015).
[Crossref] [PubMed]

Betancur, R.

R. Betancur, A. Martínez-Otero, X. Elias, P. Romero-Gómez, S. Colodrero, H. Miguez, and J. Martorell, “Optical interference for the matching of the external and internal quantum efficiencies in organic photovoltaic cells,” Sol. Energy Mater. Sol. Cells 104, 87–91 (2012).
[Crossref]

Bouchikhi, B.

A. Abdellaoui, G. Lévêque, A. Donnadieu, A. Bath, and B. Bouchikhi, “Iteratively derived optical constants of MoO3 polycrystalline thin films prepared by CVD,” Thin Solid Films 304(1–2), 39–44 (1997).
[Crossref]

Bouthinon, B.

B. Lechêne, G. Perrier, K. Emmanouil, S. Kennou, B. Bouthinon, and R. de Bettignies, “Design of intermediate layers for solution-processed tandem organic solar cells: guidelines from a case study on TiOx and ZnO,” Sol. Energy Mater. Sol. Cells 120, 709–715 (2014).
[Crossref]

Brabec, C. J.

G. Dennler, M. C. Scharber, T. Ameri, P. Denk, K. Forberich, C. Waldauf, and C. J. Brabec, “Design rules for donors in bulk-heterojunction tandem solar cells - towards 15% energy-conversion efficiency,” Adv. Mater. 20(3), 579–583 (2008).
[Crossref]

G. Dennler, K. Forberich, M. C. Scharber, C. J. Brabec, I. Tomiš, K. Hingerl, and T. Fromherz, “Angle dependence of external and internal quantum efficiencies in bulk-heterojunction organic solar cells,” J. Appl. Phys. 102(5), 054516 (2007).
[Crossref]

G. Dennler, K. Forberich, T. Ameri, C. Waldauf, P. Denk, C. J. Brabec, K. Hingerl, and A. J. Heeger, “Design of efficient organic tandem cells: on the interplay between molecular absorption and layer sequence,” J. Appl. Phys. 102(12), 123109 (2007).
[Crossref]

Burn, P. L.

M. Stolterfoht, B. Philippa, A. Armin, A. K. Pandey, R. D. White, P. L. Burn, P. Meredith, and A. Pivrikas, “Advantage of suppressed non-Langevin recombination in low mobility organic solar cells,” Appl. Phys. Lett. 105(1), 013302 (2014).
[Crossref]

Chen, C.-C.

J. You, C.-C. Chen, Z. Hong, K. Yoshimura, K. Ohya, R. Xu, S. Ye, J. Gao, G. Li, and Y. Yang, “10.2% power conversion efficiency polymer tandem solar cells consisting of two identical sub-cells,” Adv. Mater. 25(29), 3973–3978 (2013).
[Crossref] [PubMed]

Cheyns, D.

D. Cheyns, B. P. Rand, B. Verret, J. Genoe, J. Poortmans, and P. Heremans, “The angular response of ultrathin film organic solar cells,” Appl. Phys. Lett. 92(24), 243310 (2008).
[Crossref]

Christ, N.

A. Puetz, F. Steiner, J. Mescher, M. Reinhard, N. Christ, D. Kutsarov, H. Kalt, U. Lemmer, and A. Colsmann, “Solution processable, precursor based zinc oxide buffer layers for 4.5% efficient organic tandem solar cells,” Org. Electron. 13(11), 2696–2701 (2012).
[Crossref]

F. Nickel, C. Sprau, M. F. G. Klein, P. Kapetana, N. Christ, X. Liu, S. Klinkhammer, U. Lemmer, and A. Colsmann, “Spatial mapping of photocurrents in organic solar cells comprising wedge-shaped absorber layers for an efficient material screening,” Sol. Energy Mater. Sol. Cells 104, 18–22 (2012).
[Crossref]

N. Christ, S. W. Kettlitz, S. Züfle, S. Valouch, and U. Lemmer, “Nanosecond response of organic solar cells and photodiodes: Role of trap states,” Phys. Rev. B 83(19), 195211 (2011).
[Crossref]

Coates, N. E.

J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T. Q. Nguyen, M. Dante, and A. J. Heeger, “Efficient tandem polymer solar cells fabricated by all-solution processing,” Science 317(5835), 222–225 (2007).
[Crossref] [PubMed]

Collins, S. D.

H. Zhou, Y. Zhang, C.-K. Mai, S. D. Collins, G. C. Bazan, T.-Q. Nguyen, and A. J. Heeger, “Polymer homo-tandem solar cells with best efficiency of 11.3%,” Adv. Mater. 27(10), 1767–1773 (2015).
[Crossref] [PubMed]

Colodrero, S.

R. Betancur, A. Martínez-Otero, X. Elias, P. Romero-Gómez, S. Colodrero, H. Miguez, and J. Martorell, “Optical interference for the matching of the external and internal quantum efficiencies in organic photovoltaic cells,” Sol. Energy Mater. Sol. Cells 104, 87–91 (2012).
[Crossref]

Colsmann, A.

D. Bahro, M. Koppitz, A. Mertens, K. Glaser, J. Mescher, and A. Colsmann, “Understanding the external quantum efficiency of organic homo-tandem solar cells utilizing a three-terminal device architecture,” Adv. Energy Mater. 5(22), 1501019 (2015).
[Crossref]

F. Nickel, C. Sprau, M. F. G. Klein, P. Kapetana, N. Christ, X. Liu, S. Klinkhammer, U. Lemmer, and A. Colsmann, “Spatial mapping of photocurrents in organic solar cells comprising wedge-shaped absorber layers for an efficient material screening,” Sol. Energy Mater. Sol. Cells 104, 18–22 (2012).
[Crossref]

A. Puetz, F. Steiner, J. Mescher, M. Reinhard, N. Christ, D. Kutsarov, H. Kalt, U. Lemmer, and A. Colsmann, “Solution processable, precursor based zinc oxide buffer layers for 4.5% efficient organic tandem solar cells,” Org. Electron. 13(11), 2696–2701 (2012).
[Crossref]

A. Puetz, T. Stubhan, M. Reinhard, O. Loesch, E. Hammarberg, S. Wolf, C. Feldmann, H. Kalt, A. Colsmann, and U. Lemmer, “Organic solar cells incorporating buffer layers from indium zinc oxide nanoparticles,” Sol. Energy Mater. Sol. Cells 95(2), 579–585 (2011).
[Crossref]

A. Colsmann, J. Junge, C. Kayser, and U. Lemmer, “Organic tandem solar cells comprising polymer and small-molecule subcells,” Appl. Phys. Lett. 89(20), 203506 (2006).
[Crossref]

Dante, M.

J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T. Q. Nguyen, M. Dante, and A. J. Heeger, “Efficient tandem polymer solar cells fabricated by all-solution processing,” Science 317(5835), 222–225 (2007).
[Crossref] [PubMed]

de Bettignies, R.

B. Lechêne, G. Perrier, K. Emmanouil, S. Kennou, B. Bouthinon, and R. de Bettignies, “Design of intermediate layers for solution-processed tandem organic solar cells: guidelines from a case study on TiOx and ZnO,” Sol. Energy Mater. Sol. Cells 120, 709–715 (2014).
[Crossref]

Denk, P.

G. Dennler, M. C. Scharber, T. Ameri, P. Denk, K. Forberich, C. Waldauf, and C. J. Brabec, “Design rules for donors in bulk-heterojunction tandem solar cells - towards 15% energy-conversion efficiency,” Adv. Mater. 20(3), 579–583 (2008).
[Crossref]

G. Dennler, K. Forberich, T. Ameri, C. Waldauf, P. Denk, C. J. Brabec, K. Hingerl, and A. J. Heeger, “Design of efficient organic tandem cells: on the interplay between molecular absorption and layer sequence,” J. Appl. Phys. 102(12), 123109 (2007).
[Crossref]

Dennler, G.

G. Dennler, M. C. Scharber, T. Ameri, P. Denk, K. Forberich, C. Waldauf, and C. J. Brabec, “Design rules for donors in bulk-heterojunction tandem solar cells - towards 15% energy-conversion efficiency,” Adv. Mater. 20(3), 579–583 (2008).
[Crossref]

G. Dennler, K. Forberich, M. C. Scharber, C. J. Brabec, I. Tomiš, K. Hingerl, and T. Fromherz, “Angle dependence of external and internal quantum efficiencies in bulk-heterojunction organic solar cells,” J. Appl. Phys. 102(5), 054516 (2007).
[Crossref]

G. Dennler, K. Forberich, T. Ameri, C. Waldauf, P. Denk, C. J. Brabec, K. Hingerl, and A. J. Heeger, “Design of efficient organic tandem cells: on the interplay between molecular absorption and layer sequence,” J. Appl. Phys. 102(12), 123109 (2007).
[Crossref]

Donnadieu, A.

A. Abdellaoui, G. Lévêque, A. Donnadieu, A. Bath, and B. Bouchikhi, “Iteratively derived optical constants of MoO3 polycrystalline thin films prepared by CVD,” Thin Solid Films 304(1–2), 39–44 (1997).
[Crossref]

Elias, X.

R. Betancur, A. Martínez-Otero, X. Elias, P. Romero-Gómez, S. Colodrero, H. Miguez, and J. Martorell, “Optical interference for the matching of the external and internal quantum efficiencies in organic photovoltaic cells,” Sol. Energy Mater. Sol. Cells 104, 87–91 (2012).
[Crossref]

Emmanouil, K.

B. Lechêne, G. Perrier, K. Emmanouil, S. Kennou, B. Bouthinon, and R. de Bettignies, “Design of intermediate layers for solution-processed tandem organic solar cells: guidelines from a case study on TiOx and ZnO,” Sol. Energy Mater. Sol. Cells 120, 709–715 (2014).
[Crossref]

Erk, P.

M. Riede, C. Uhrich, J. Widmer, R. Timmreck, D. Wynands, G. Schwartz, W.-M. Gnehr, D. Hildebrandt, A. Weiss, J. Hwang, S. Sundarraj, P. Erk, M. Pfeiffer, and K. Leo, “Efficient organic tandem solar cells based on small molecules,” Adv. Funct. Mater. 21(16), 3019–3028 (2011).
[Crossref]

Feldmann, C.

A. Puetz, T. Stubhan, M. Reinhard, O. Loesch, E. Hammarberg, S. Wolf, C. Feldmann, H. Kalt, A. Colsmann, and U. Lemmer, “Organic solar cells incorporating buffer layers from indium zinc oxide nanoparticles,” Sol. Energy Mater. Sol. Cells 95(2), 579–585 (2011).
[Crossref]

Forberich, K.

G. Dennler, M. C. Scharber, T. Ameri, P. Denk, K. Forberich, C. Waldauf, and C. J. Brabec, “Design rules for donors in bulk-heterojunction tandem solar cells - towards 15% energy-conversion efficiency,” Adv. Mater. 20(3), 579–583 (2008).
[Crossref]

G. Dennler, K. Forberich, M. C. Scharber, C. J. Brabec, I. Tomiš, K. Hingerl, and T. Fromherz, “Angle dependence of external and internal quantum efficiencies in bulk-heterojunction organic solar cells,” J. Appl. Phys. 102(5), 054516 (2007).
[Crossref]

G. Dennler, K. Forberich, T. Ameri, C. Waldauf, P. Denk, C. J. Brabec, K. Hingerl, and A. J. Heeger, “Design of efficient organic tandem cells: on the interplay between molecular absorption and layer sequence,” J. Appl. Phys. 102(12), 123109 (2007).
[Crossref]

Forrest, S. R.

B. E. Lassiter, J. D. Zimmerman, and S. R. Forrest, “Tandem organic photovoltaics incorporating two solution-processed small molecule donor layers,” Appl. Phys. Lett. 103(12), 123305 (2013).
[Crossref]

Fromherz, T.

G. Dennler, K. Forberich, M. C. Scharber, C. J. Brabec, I. Tomiš, K. Hingerl, and T. Fromherz, “Angle dependence of external and internal quantum efficiencies in bulk-heterojunction organic solar cells,” J. Appl. Phys. 102(5), 054516 (2007).
[Crossref]

Furlan, A.

V. S. Gevaerts, A. Furlan, M. M. Wienk, M. Turbiez, and R. A. J. Janssen, “Solution processed polymer tandem solar cell using efficient small and wide bandgap polymer:fullerene blends,” Adv. Mater. 24(16), 2130–2134 (2012).
[Crossref] [PubMed]

Gao, J.

J. You, C.-C. Chen, Z. Hong, K. Yoshimura, K. Ohya, R. Xu, S. Ye, J. Gao, G. Li, and Y. Yang, “10.2% power conversion efficiency polymer tandem solar cells consisting of two identical sub-cells,” Adv. Mater. 25(29), 3973–3978 (2013).
[Crossref] [PubMed]

Genoe, J.

D. Cheyns, B. P. Rand, B. Verret, J. Genoe, J. Poortmans, and P. Heremans, “The angular response of ultrathin film organic solar cells,” Appl. Phys. Lett. 92(24), 243310 (2008).
[Crossref]

Gevaerts, V. S.

V. S. Gevaerts, A. Furlan, M. M. Wienk, M. Turbiez, and R. A. J. Janssen, “Solution processed polymer tandem solar cell using efficient small and wide bandgap polymer:fullerene blends,” Adv. Mater. 24(16), 2130–2134 (2012).
[Crossref] [PubMed]

Gilot, J.

J. Gilot, M. M. Wienk, and R. A. J. Janssen, “Optimizing polymer tandem solar cells,” Adv. Mater. 22(8), E67–E71 (2010).
[Crossref] [PubMed]

J. Gilot, M. M. Wienk, and R. A. J. Janssen, “Measuring the external quantum efficiency of two-terminal polymer tandem solar cells,” Adv. Funct. Mater. 20(22), 3904–3911 (2010).
[Crossref]

J. Gilot, I. Barbu, M. M. Wienk, and R. A. J. Janssen, “The use of ZnO as optical spacer in polymer solar cells: Theoretical and experimental study,” Appl. Phys. Lett. 91(11), 113520 (2007).
[Crossref]

Glaser, K.

D. Bahro, M. Koppitz, A. Mertens, K. Glaser, J. Mescher, and A. Colsmann, “Understanding the external quantum efficiency of organic homo-tandem solar cells utilizing a three-terminal device architecture,” Adv. Energy Mater. 5(22), 1501019 (2015).
[Crossref]

Gnehr, W.-M.

M. Riede, C. Uhrich, J. Widmer, R. Timmreck, D. Wynands, G. Schwartz, W.-M. Gnehr, D. Hildebrandt, A. Weiss, J. Hwang, S. Sundarraj, P. Erk, M. Pfeiffer, and K. Leo, “Efficient organic tandem solar cells based on small molecules,” Adv. Funct. Mater. 21(16), 3019–3028 (2011).
[Crossref]

Hammarberg, E.

A. Puetz, T. Stubhan, M. Reinhard, O. Loesch, E. Hammarberg, S. Wolf, C. Feldmann, H. Kalt, A. Colsmann, and U. Lemmer, “Organic solar cells incorporating buffer layers from indium zinc oxide nanoparticles,” Sol. Energy Mater. Sol. Cells 95(2), 579–585 (2011).
[Crossref]

He, Y.

J. Yang, R. Zhu, Z. Hong, Y. He, A. Kumar, Y. Li, and Y. Yang, “A robust inter-connecting layer for achieving high performance tandem polymer solar cells,” Adv. Mater. 23(30), 3465–3470 (2011).
[Crossref] [PubMed]

Heeger, A. J.

H. Zhou, Y. Zhang, C.-K. Mai, S. D. Collins, G. C. Bazan, T.-Q. Nguyen, and A. J. Heeger, “Polymer homo-tandem solar cells with best efficiency of 11.3%,” Adv. Mater. 27(10), 1767–1773 (2015).
[Crossref] [PubMed]

J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T. Q. Nguyen, M. Dante, and A. J. Heeger, “Efficient tandem polymer solar cells fabricated by all-solution processing,” Science 317(5835), 222–225 (2007).
[Crossref] [PubMed]

G. Dennler, K. Forberich, T. Ameri, C. Waldauf, P. Denk, C. J. Brabec, K. Hingerl, and A. J. Heeger, “Design of efficient organic tandem cells: on the interplay between molecular absorption and layer sequence,” J. Appl. Phys. 102(12), 123109 (2007).
[Crossref]

Heremans, P.

D. Cheyns, B. P. Rand, B. Verret, J. Genoe, J. Poortmans, and P. Heremans, “The angular response of ultrathin film organic solar cells,” Appl. Phys. Lett. 92(24), 243310 (2008).
[Crossref]

Hildebrandt, D.

M. Riede, C. Uhrich, J. Widmer, R. Timmreck, D. Wynands, G. Schwartz, W.-M. Gnehr, D. Hildebrandt, A. Weiss, J. Hwang, S. Sundarraj, P. Erk, M. Pfeiffer, and K. Leo, “Efficient organic tandem solar cells based on small molecules,” Adv. Funct. Mater. 21(16), 3019–3028 (2011).
[Crossref]

Hingerl, K.

G. Dennler, K. Forberich, T. Ameri, C. Waldauf, P. Denk, C. J. Brabec, K. Hingerl, and A. J. Heeger, “Design of efficient organic tandem cells: on the interplay between molecular absorption and layer sequence,” J. Appl. Phys. 102(12), 123109 (2007).
[Crossref]

G. Dennler, K. Forberich, M. C. Scharber, C. J. Brabec, I. Tomiš, K. Hingerl, and T. Fromherz, “Angle dependence of external and internal quantum efficiencies in bulk-heterojunction organic solar cells,” J. Appl. Phys. 102(5), 054516 (2007).
[Crossref]

Hong, Z.

J. You, C.-C. Chen, Z. Hong, K. Yoshimura, K. Ohya, R. Xu, S. Ye, J. Gao, G. Li, and Y. Yang, “10.2% power conversion efficiency polymer tandem solar cells consisting of two identical sub-cells,” Adv. Mater. 25(29), 3973–3978 (2013).
[Crossref] [PubMed]

J. Yang, R. Zhu, Z. Hong, Y. He, A. Kumar, Y. Li, and Y. Yang, “A robust inter-connecting layer for achieving high performance tandem polymer solar cells,” Adv. Mater. 23(30), 3465–3470 (2011).
[Crossref] [PubMed]

Hwang, J.

M. Riede, C. Uhrich, J. Widmer, R. Timmreck, D. Wynands, G. Schwartz, W.-M. Gnehr, D. Hildebrandt, A. Weiss, J. Hwang, S. Sundarraj, P. Erk, M. Pfeiffer, and K. Leo, “Efficient organic tandem solar cells based on small molecules,” Adv. Funct. Mater. 21(16), 3019–3028 (2011).
[Crossref]

Inganäs, O.

B. V. Andersson, U. Wuerfel, and O. Inganäs, “Full day modelling of V-shaped organic solar cell,” Sol. Energy 85(6), 1257–1263 (2011).
[Crossref]

Janssen, R. A. J.

V. S. Gevaerts, A. Furlan, M. M. Wienk, M. Turbiez, and R. A. J. Janssen, “Solution processed polymer tandem solar cell using efficient small and wide bandgap polymer:fullerene blends,” Adv. Mater. 24(16), 2130–2134 (2012).
[Crossref] [PubMed]

J. Gilot, M. M. Wienk, and R. A. J. Janssen, “Measuring the external quantum efficiency of two-terminal polymer tandem solar cells,” Adv. Funct. Mater. 20(22), 3904–3911 (2010).
[Crossref]

J. Gilot, M. M. Wienk, and R. A. J. Janssen, “Optimizing polymer tandem solar cells,” Adv. Mater. 22(8), E67–E71 (2010).
[Crossref] [PubMed]

J. Gilot, I. Barbu, M. M. Wienk, and R. A. J. Janssen, “The use of ZnO as optical spacer in polymer solar cells: Theoretical and experimental study,” Appl. Phys. Lett. 91(11), 113520 (2007).
[Crossref]

Junge, J.

A. Colsmann, J. Junge, C. Kayser, and U. Lemmer, “Organic tandem solar cells comprising polymer and small-molecule subcells,” Appl. Phys. Lett. 89(20), 203506 (2006).
[Crossref]

Kalt, H.

A. Puetz, F. Steiner, J. Mescher, M. Reinhard, N. Christ, D. Kutsarov, H. Kalt, U. Lemmer, and A. Colsmann, “Solution processable, precursor based zinc oxide buffer layers for 4.5% efficient organic tandem solar cells,” Org. Electron. 13(11), 2696–2701 (2012).
[Crossref]

A. Puetz, T. Stubhan, M. Reinhard, O. Loesch, E. Hammarberg, S. Wolf, C. Feldmann, H. Kalt, A. Colsmann, and U. Lemmer, “Organic solar cells incorporating buffer layers from indium zinc oxide nanoparticles,” Sol. Energy Mater. Sol. Cells 95(2), 579–585 (2011).
[Crossref]

Kang, H.

H. Kang, S. Kee, K. Yu, J. Lee, G. Kim, J. Kim, J.-R. Kim, J. Kong, and K. Lee, “Simplified tandem polymer solar cells with an ideal self-organized recombination layer,” Adv. Mater. 27(8), 1408–1413 (2015).
[Crossref] [PubMed]

Kapetana, P.

F. Nickel, C. Sprau, M. F. G. Klein, P. Kapetana, N. Christ, X. Liu, S. Klinkhammer, U. Lemmer, and A. Colsmann, “Spatial mapping of photocurrents in organic solar cells comprising wedge-shaped absorber layers for an efficient material screening,” Sol. Energy Mater. Sol. Cells 104, 18–22 (2012).
[Crossref]

Kayser, C.

A. Colsmann, J. Junge, C. Kayser, and U. Lemmer, “Organic tandem solar cells comprising polymer and small-molecule subcells,” Appl. Phys. Lett. 89(20), 203506 (2006).
[Crossref]

Kee, S.

H. Kang, S. Kee, K. Yu, J. Lee, G. Kim, J. Kim, J.-R. Kim, J. Kong, and K. Lee, “Simplified tandem polymer solar cells with an ideal self-organized recombination layer,” Adv. Mater. 27(8), 1408–1413 (2015).
[Crossref] [PubMed]

Kennou, S.

B. Lechêne, G. Perrier, K. Emmanouil, S. Kennou, B. Bouthinon, and R. de Bettignies, “Design of intermediate layers for solution-processed tandem organic solar cells: guidelines from a case study on TiOx and ZnO,” Sol. Energy Mater. Sol. Cells 120, 709–715 (2014).
[Crossref]

Kettlitz, S. W.

N. Christ, S. W. Kettlitz, S. Züfle, S. Valouch, and U. Lemmer, “Nanosecond response of organic solar cells and photodiodes: Role of trap states,” Phys. Rev. B 83(19), 195211 (2011).
[Crossref]

Kim, G.

H. Kang, S. Kee, K. Yu, J. Lee, G. Kim, J. Kim, J.-R. Kim, J. Kong, and K. Lee, “Simplified tandem polymer solar cells with an ideal self-organized recombination layer,” Adv. Mater. 27(8), 1408–1413 (2015).
[Crossref] [PubMed]

Kim, J.

H. Kang, S. Kee, K. Yu, J. Lee, G. Kim, J. Kim, J.-R. Kim, J. Kong, and K. Lee, “Simplified tandem polymer solar cells with an ideal self-organized recombination layer,” Adv. Mater. 27(8), 1408–1413 (2015).
[Crossref] [PubMed]

Kim, J. Y.

J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T. Q. Nguyen, M. Dante, and A. J. Heeger, “Efficient tandem polymer solar cells fabricated by all-solution processing,” Science 317(5835), 222–225 (2007).
[Crossref] [PubMed]

Kim, J.-R.

H. Kang, S. Kee, K. Yu, J. Lee, G. Kim, J. Kim, J.-R. Kim, J. Kong, and K. Lee, “Simplified tandem polymer solar cells with an ideal self-organized recombination layer,” Adv. Mater. 27(8), 1408–1413 (2015).
[Crossref] [PubMed]

Klein, M. F. G.

F. Nickel, C. Sprau, M. F. G. Klein, P. Kapetana, N. Christ, X. Liu, S. Klinkhammer, U. Lemmer, and A. Colsmann, “Spatial mapping of photocurrents in organic solar cells comprising wedge-shaped absorber layers for an efficient material screening,” Sol. Energy Mater. Sol. Cells 104, 18–22 (2012).
[Crossref]

Klinkhammer, S.

F. Nickel, C. Sprau, M. F. G. Klein, P. Kapetana, N. Christ, X. Liu, S. Klinkhammer, U. Lemmer, and A. Colsmann, “Spatial mapping of photocurrents in organic solar cells comprising wedge-shaped absorber layers for an efficient material screening,” Sol. Energy Mater. Sol. Cells 104, 18–22 (2012).
[Crossref]

Kong, J.

H. Kang, S. Kee, K. Yu, J. Lee, G. Kim, J. Kim, J.-R. Kim, J. Kong, and K. Lee, “Simplified tandem polymer solar cells with an ideal self-organized recombination layer,” Adv. Mater. 27(8), 1408–1413 (2015).
[Crossref] [PubMed]

Koppitz, M.

D. Bahro, M. Koppitz, A. Mertens, K. Glaser, J. Mescher, and A. Colsmann, “Understanding the external quantum efficiency of organic homo-tandem solar cells utilizing a three-terminal device architecture,” Adv. Energy Mater. 5(22), 1501019 (2015).
[Crossref]

Kumar, A.

J. Yang, R. Zhu, Z. Hong, Y. He, A. Kumar, Y. Li, and Y. Yang, “A robust inter-connecting layer for achieving high performance tandem polymer solar cells,” Adv. Mater. 23(30), 3465–3470 (2011).
[Crossref] [PubMed]

Kutsarov, D.

A. Puetz, F. Steiner, J. Mescher, M. Reinhard, N. Christ, D. Kutsarov, H. Kalt, U. Lemmer, and A. Colsmann, “Solution processable, precursor based zinc oxide buffer layers for 4.5% efficient organic tandem solar cells,” Org. Electron. 13(11), 2696–2701 (2012).
[Crossref]

Lassiter, B. E.

B. E. Lassiter, J. D. Zimmerman, and S. R. Forrest, “Tandem organic photovoltaics incorporating two solution-processed small molecule donor layers,” Appl. Phys. Lett. 103(12), 123305 (2013).
[Crossref]

Lechêne, B.

B. Lechêne, G. Perrier, K. Emmanouil, S. Kennou, B. Bouthinon, and R. de Bettignies, “Design of intermediate layers for solution-processed tandem organic solar cells: guidelines from a case study on TiOx and ZnO,” Sol. Energy Mater. Sol. Cells 120, 709–715 (2014).
[Crossref]

Lee, J.

H. Kang, S. Kee, K. Yu, J. Lee, G. Kim, J. Kim, J.-R. Kim, J. Kong, and K. Lee, “Simplified tandem polymer solar cells with an ideal self-organized recombination layer,” Adv. Mater. 27(8), 1408–1413 (2015).
[Crossref] [PubMed]

Lee, K.

H. Kang, S. Kee, K. Yu, J. Lee, G. Kim, J. Kim, J.-R. Kim, J. Kong, and K. Lee, “Simplified tandem polymer solar cells with an ideal self-organized recombination layer,” Adv. Mater. 27(8), 1408–1413 (2015).
[Crossref] [PubMed]

J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T. Q. Nguyen, M. Dante, and A. J. Heeger, “Efficient tandem polymer solar cells fabricated by all-solution processing,” Science 317(5835), 222–225 (2007).
[Crossref] [PubMed]

Lemmer, U.

A. Puetz, F. Steiner, J. Mescher, M. Reinhard, N. Christ, D. Kutsarov, H. Kalt, U. Lemmer, and A. Colsmann, “Solution processable, precursor based zinc oxide buffer layers for 4.5% efficient organic tandem solar cells,” Org. Electron. 13(11), 2696–2701 (2012).
[Crossref]

F. Nickel, C. Sprau, M. F. G. Klein, P. Kapetana, N. Christ, X. Liu, S. Klinkhammer, U. Lemmer, and A. Colsmann, “Spatial mapping of photocurrents in organic solar cells comprising wedge-shaped absorber layers for an efficient material screening,” Sol. Energy Mater. Sol. Cells 104, 18–22 (2012).
[Crossref]

N. Christ, S. W. Kettlitz, S. Züfle, S. Valouch, and U. Lemmer, “Nanosecond response of organic solar cells and photodiodes: Role of trap states,” Phys. Rev. B 83(19), 195211 (2011).
[Crossref]

A. Puetz, T. Stubhan, M. Reinhard, O. Loesch, E. Hammarberg, S. Wolf, C. Feldmann, H. Kalt, A. Colsmann, and U. Lemmer, “Organic solar cells incorporating buffer layers from indium zinc oxide nanoparticles,” Sol. Energy Mater. Sol. Cells 95(2), 579–585 (2011).
[Crossref]

A. Colsmann, J. Junge, C. Kayser, and U. Lemmer, “Organic tandem solar cells comprising polymer and small-molecule subcells,” Appl. Phys. Lett. 89(20), 203506 (2006).
[Crossref]

Leo, K.

M. Riede, C. Uhrich, J. Widmer, R. Timmreck, D. Wynands, G. Schwartz, W.-M. Gnehr, D. Hildebrandt, A. Weiss, J. Hwang, S. Sundarraj, P. Erk, M. Pfeiffer, and K. Leo, “Efficient organic tandem solar cells based on small molecules,” Adv. Funct. Mater. 21(16), 3019–3028 (2011).
[Crossref]

Lévêque, G.

A. Abdellaoui, G. Lévêque, A. Donnadieu, A. Bath, and B. Bouchikhi, “Iteratively derived optical constants of MoO3 polycrystalline thin films prepared by CVD,” Thin Solid Films 304(1–2), 39–44 (1997).
[Crossref]

Li, G.

J. You, C.-C. Chen, Z. Hong, K. Yoshimura, K. Ohya, R. Xu, S. Ye, J. Gao, G. Li, and Y. Yang, “10.2% power conversion efficiency polymer tandem solar cells consisting of two identical sub-cells,” Adv. Mater. 25(29), 3973–3978 (2013).
[Crossref] [PubMed]

Li, Y.

J. Yang, R. Zhu, Z. Hong, Y. He, A. Kumar, Y. Li, and Y. Yang, “A robust inter-connecting layer for achieving high performance tandem polymer solar cells,” Adv. Mater. 23(30), 3465–3470 (2011).
[Crossref] [PubMed]

Liu, X.

F. Nickel, C. Sprau, M. F. G. Klein, P. Kapetana, N. Christ, X. Liu, S. Klinkhammer, U. Lemmer, and A. Colsmann, “Spatial mapping of photocurrents in organic solar cells comprising wedge-shaped absorber layers for an efficient material screening,” Sol. Energy Mater. Sol. Cells 104, 18–22 (2012).
[Crossref]

Loesch, O.

A. Puetz, T. Stubhan, M. Reinhard, O. Loesch, E. Hammarberg, S. Wolf, C. Feldmann, H. Kalt, A. Colsmann, and U. Lemmer, “Organic solar cells incorporating buffer layers from indium zinc oxide nanoparticles,” Sol. Energy Mater. Sol. Cells 95(2), 579–585 (2011).
[Crossref]

Mai, C.-K.

H. Zhou, Y. Zhang, C.-K. Mai, S. D. Collins, G. C. Bazan, T.-Q. Nguyen, and A. J. Heeger, “Polymer homo-tandem solar cells with best efficiency of 11.3%,” Adv. Mater. 27(10), 1767–1773 (2015).
[Crossref] [PubMed]

Martínez-Otero, A.

R. Betancur, A. Martínez-Otero, X. Elias, P. Romero-Gómez, S. Colodrero, H. Miguez, and J. Martorell, “Optical interference for the matching of the external and internal quantum efficiencies in organic photovoltaic cells,” Sol. Energy Mater. Sol. Cells 104, 87–91 (2012).
[Crossref]

Martorell, J.

R. Betancur, A. Martínez-Otero, X. Elias, P. Romero-Gómez, S. Colodrero, H. Miguez, and J. Martorell, “Optical interference for the matching of the external and internal quantum efficiencies in organic photovoltaic cells,” Sol. Energy Mater. Sol. Cells 104, 87–91 (2012).
[Crossref]

Meredith, P.

M. Stolterfoht, B. Philippa, A. Armin, A. K. Pandey, R. D. White, P. L. Burn, P. Meredith, and A. Pivrikas, “Advantage of suppressed non-Langevin recombination in low mobility organic solar cells,” Appl. Phys. Lett. 105(1), 013302 (2014).
[Crossref]

Mertens, A.

D. Bahro, M. Koppitz, A. Mertens, K. Glaser, J. Mescher, and A. Colsmann, “Understanding the external quantum efficiency of organic homo-tandem solar cells utilizing a three-terminal device architecture,” Adv. Energy Mater. 5(22), 1501019 (2015).
[Crossref]

Mescher, J.

D. Bahro, M. Koppitz, A. Mertens, K. Glaser, J. Mescher, and A. Colsmann, “Understanding the external quantum efficiency of organic homo-tandem solar cells utilizing a three-terminal device architecture,” Adv. Energy Mater. 5(22), 1501019 (2015).
[Crossref]

A. Puetz, F. Steiner, J. Mescher, M. Reinhard, N. Christ, D. Kutsarov, H. Kalt, U. Lemmer, and A. Colsmann, “Solution processable, precursor based zinc oxide buffer layers for 4.5% efficient organic tandem solar cells,” Org. Electron. 13(11), 2696–2701 (2012).
[Crossref]

Miguez, H.

R. Betancur, A. Martínez-Otero, X. Elias, P. Romero-Gómez, S. Colodrero, H. Miguez, and J. Martorell, “Optical interference for the matching of the external and internal quantum efficiencies in organic photovoltaic cells,” Sol. Energy Mater. Sol. Cells 104, 87–91 (2012).
[Crossref]

Moses, D.

J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T. Q. Nguyen, M. Dante, and A. J. Heeger, “Efficient tandem polymer solar cells fabricated by all-solution processing,” Science 317(5835), 222–225 (2007).
[Crossref] [PubMed]

Nguyen, T. Q.

J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T. Q. Nguyen, M. Dante, and A. J. Heeger, “Efficient tandem polymer solar cells fabricated by all-solution processing,” Science 317(5835), 222–225 (2007).
[Crossref] [PubMed]

Nguyen, T.-Q.

H. Zhou, Y. Zhang, C.-K. Mai, S. D. Collins, G. C. Bazan, T.-Q. Nguyen, and A. J. Heeger, “Polymer homo-tandem solar cells with best efficiency of 11.3%,” Adv. Mater. 27(10), 1767–1773 (2015).
[Crossref] [PubMed]

Nickel, F.

F. Nickel, C. Sprau, M. F. G. Klein, P. Kapetana, N. Christ, X. Liu, S. Klinkhammer, U. Lemmer, and A. Colsmann, “Spatial mapping of photocurrents in organic solar cells comprising wedge-shaped absorber layers for an efficient material screening,” Sol. Energy Mater. Sol. Cells 104, 18–22 (2012).
[Crossref]

Ohya, K.

J. You, C.-C. Chen, Z. Hong, K. Yoshimura, K. Ohya, R. Xu, S. Ye, J. Gao, G. Li, and Y. Yang, “10.2% power conversion efficiency polymer tandem solar cells consisting of two identical sub-cells,” Adv. Mater. 25(29), 3973–3978 (2013).
[Crossref] [PubMed]

Pandey, A. K.

M. Stolterfoht, B. Philippa, A. Armin, A. K. Pandey, R. D. White, P. L. Burn, P. Meredith, and A. Pivrikas, “Advantage of suppressed non-Langevin recombination in low mobility organic solar cells,” Appl. Phys. Lett. 105(1), 013302 (2014).
[Crossref]

Perrier, G.

B. Lechêne, G. Perrier, K. Emmanouil, S. Kennou, B. Bouthinon, and R. de Bettignies, “Design of intermediate layers for solution-processed tandem organic solar cells: guidelines from a case study on TiOx and ZnO,” Sol. Energy Mater. Sol. Cells 120, 709–715 (2014).
[Crossref]

Pfeiffer, M.

M. Riede, C. Uhrich, J. Widmer, R. Timmreck, D. Wynands, G. Schwartz, W.-M. Gnehr, D. Hildebrandt, A. Weiss, J. Hwang, S. Sundarraj, P. Erk, M. Pfeiffer, and K. Leo, “Efficient organic tandem solar cells based on small molecules,” Adv. Funct. Mater. 21(16), 3019–3028 (2011).
[Crossref]

Philippa, B.

M. Stolterfoht, B. Philippa, A. Armin, A. K. Pandey, R. D. White, P. L. Burn, P. Meredith, and A. Pivrikas, “Advantage of suppressed non-Langevin recombination in low mobility organic solar cells,” Appl. Phys. Lett. 105(1), 013302 (2014).
[Crossref]

Pivrikas, A.

M. Stolterfoht, B. Philippa, A. Armin, A. K. Pandey, R. D. White, P. L. Burn, P. Meredith, and A. Pivrikas, “Advantage of suppressed non-Langevin recombination in low mobility organic solar cells,” Appl. Phys. Lett. 105(1), 013302 (2014).
[Crossref]

Poortmans, J.

D. Cheyns, B. P. Rand, B. Verret, J. Genoe, J. Poortmans, and P. Heremans, “The angular response of ultrathin film organic solar cells,” Appl. Phys. Lett. 92(24), 243310 (2008).
[Crossref]

Puetz, A.

A. Puetz, F. Steiner, J. Mescher, M. Reinhard, N. Christ, D. Kutsarov, H. Kalt, U. Lemmer, and A. Colsmann, “Solution processable, precursor based zinc oxide buffer layers for 4.5% efficient organic tandem solar cells,” Org. Electron. 13(11), 2696–2701 (2012).
[Crossref]

A. Puetz, T. Stubhan, M. Reinhard, O. Loesch, E. Hammarberg, S. Wolf, C. Feldmann, H. Kalt, A. Colsmann, and U. Lemmer, “Organic solar cells incorporating buffer layers from indium zinc oxide nanoparticles,” Sol. Energy Mater. Sol. Cells 95(2), 579–585 (2011).
[Crossref]

Rand, B. P.

D. Cheyns, B. P. Rand, B. Verret, J. Genoe, J. Poortmans, and P. Heremans, “The angular response of ultrathin film organic solar cells,” Appl. Phys. Lett. 92(24), 243310 (2008).
[Crossref]

Reinhard, M.

A. Puetz, F. Steiner, J. Mescher, M. Reinhard, N. Christ, D. Kutsarov, H. Kalt, U. Lemmer, and A. Colsmann, “Solution processable, precursor based zinc oxide buffer layers for 4.5% efficient organic tandem solar cells,” Org. Electron. 13(11), 2696–2701 (2012).
[Crossref]

A. Puetz, T. Stubhan, M. Reinhard, O. Loesch, E. Hammarberg, S. Wolf, C. Feldmann, H. Kalt, A. Colsmann, and U. Lemmer, “Organic solar cells incorporating buffer layers from indium zinc oxide nanoparticles,” Sol. Energy Mater. Sol. Cells 95(2), 579–585 (2011).
[Crossref]

Riede, M.

M. Riede, C. Uhrich, J. Widmer, R. Timmreck, D. Wynands, G. Schwartz, W.-M. Gnehr, D. Hildebrandt, A. Weiss, J. Hwang, S. Sundarraj, P. Erk, M. Pfeiffer, and K. Leo, “Efficient organic tandem solar cells based on small molecules,” Adv. Funct. Mater. 21(16), 3019–3028 (2011).
[Crossref]

Romero-Gómez, P.

R. Betancur, A. Martínez-Otero, X. Elias, P. Romero-Gómez, S. Colodrero, H. Miguez, and J. Martorell, “Optical interference for the matching of the external and internal quantum efficiencies in organic photovoltaic cells,” Sol. Energy Mater. Sol. Cells 104, 87–91 (2012).
[Crossref]

Scharber, M. C.

G. Dennler, M. C. Scharber, T. Ameri, P. Denk, K. Forberich, C. Waldauf, and C. J. Brabec, “Design rules for donors in bulk-heterojunction tandem solar cells - towards 15% energy-conversion efficiency,” Adv. Mater. 20(3), 579–583 (2008).
[Crossref]

G. Dennler, K. Forberich, M. C. Scharber, C. J. Brabec, I. Tomiš, K. Hingerl, and T. Fromherz, “Angle dependence of external and internal quantum efficiencies in bulk-heterojunction organic solar cells,” J. Appl. Phys. 102(5), 054516 (2007).
[Crossref]

Schwartz, G.

M. Riede, C. Uhrich, J. Widmer, R. Timmreck, D. Wynands, G. Schwartz, W.-M. Gnehr, D. Hildebrandt, A. Weiss, J. Hwang, S. Sundarraj, P. Erk, M. Pfeiffer, and K. Leo, “Efficient organic tandem solar cells based on small molecules,” Adv. Funct. Mater. 21(16), 3019–3028 (2011).
[Crossref]

Sprau, C.

F. Nickel, C. Sprau, M. F. G. Klein, P. Kapetana, N. Christ, X. Liu, S. Klinkhammer, U. Lemmer, and A. Colsmann, “Spatial mapping of photocurrents in organic solar cells comprising wedge-shaped absorber layers for an efficient material screening,” Sol. Energy Mater. Sol. Cells 104, 18–22 (2012).
[Crossref]

Steiner, F.

A. Puetz, F. Steiner, J. Mescher, M. Reinhard, N. Christ, D. Kutsarov, H. Kalt, U. Lemmer, and A. Colsmann, “Solution processable, precursor based zinc oxide buffer layers for 4.5% efficient organic tandem solar cells,” Org. Electron. 13(11), 2696–2701 (2012).
[Crossref]

Stolterfoht, M.

M. Stolterfoht, B. Philippa, A. Armin, A. K. Pandey, R. D. White, P. L. Burn, P. Meredith, and A. Pivrikas, “Advantage of suppressed non-Langevin recombination in low mobility organic solar cells,” Appl. Phys. Lett. 105(1), 013302 (2014).
[Crossref]

Stubhan, T.

A. Puetz, T. Stubhan, M. Reinhard, O. Loesch, E. Hammarberg, S. Wolf, C. Feldmann, H. Kalt, A. Colsmann, and U. Lemmer, “Organic solar cells incorporating buffer layers from indium zinc oxide nanoparticles,” Sol. Energy Mater. Sol. Cells 95(2), 579–585 (2011).
[Crossref]

Sundarraj, S.

M. Riede, C. Uhrich, J. Widmer, R. Timmreck, D. Wynands, G. Schwartz, W.-M. Gnehr, D. Hildebrandt, A. Weiss, J. Hwang, S. Sundarraj, P. Erk, M. Pfeiffer, and K. Leo, “Efficient organic tandem solar cells based on small molecules,” Adv. Funct. Mater. 21(16), 3019–3028 (2011).
[Crossref]

Timmreck, R.

M. Riede, C. Uhrich, J. Widmer, R. Timmreck, D. Wynands, G. Schwartz, W.-M. Gnehr, D. Hildebrandt, A. Weiss, J. Hwang, S. Sundarraj, P. Erk, M. Pfeiffer, and K. Leo, “Efficient organic tandem solar cells based on small molecules,” Adv. Funct. Mater. 21(16), 3019–3028 (2011).
[Crossref]

Tomiš, I.

G. Dennler, K. Forberich, M. C. Scharber, C. J. Brabec, I. Tomiš, K. Hingerl, and T. Fromherz, “Angle dependence of external and internal quantum efficiencies in bulk-heterojunction organic solar cells,” J. Appl. Phys. 102(5), 054516 (2007).
[Crossref]

Turbiez, M.

V. S. Gevaerts, A. Furlan, M. M. Wienk, M. Turbiez, and R. A. J. Janssen, “Solution processed polymer tandem solar cell using efficient small and wide bandgap polymer:fullerene blends,” Adv. Mater. 24(16), 2130–2134 (2012).
[Crossref] [PubMed]

Uhrich, C.

M. Riede, C. Uhrich, J. Widmer, R. Timmreck, D. Wynands, G. Schwartz, W.-M. Gnehr, D. Hildebrandt, A. Weiss, J. Hwang, S. Sundarraj, P. Erk, M. Pfeiffer, and K. Leo, “Efficient organic tandem solar cells based on small molecules,” Adv. Funct. Mater. 21(16), 3019–3028 (2011).
[Crossref]

Valouch, S.

N. Christ, S. W. Kettlitz, S. Züfle, S. Valouch, and U. Lemmer, “Nanosecond response of organic solar cells and photodiodes: Role of trap states,” Phys. Rev. B 83(19), 195211 (2011).
[Crossref]

Verret, B.

D. Cheyns, B. P. Rand, B. Verret, J. Genoe, J. Poortmans, and P. Heremans, “The angular response of ultrathin film organic solar cells,” Appl. Phys. Lett. 92(24), 243310 (2008).
[Crossref]

Waldauf, C.

G. Dennler, M. C. Scharber, T. Ameri, P. Denk, K. Forberich, C. Waldauf, and C. J. Brabec, “Design rules for donors in bulk-heterojunction tandem solar cells - towards 15% energy-conversion efficiency,” Adv. Mater. 20(3), 579–583 (2008).
[Crossref]

G. Dennler, K. Forberich, T. Ameri, C. Waldauf, P. Denk, C. J. Brabec, K. Hingerl, and A. J. Heeger, “Design of efficient organic tandem cells: on the interplay between molecular absorption and layer sequence,” J. Appl. Phys. 102(12), 123109 (2007).
[Crossref]

Weiss, A.

M. Riede, C. Uhrich, J. Widmer, R. Timmreck, D. Wynands, G. Schwartz, W.-M. Gnehr, D. Hildebrandt, A. Weiss, J. Hwang, S. Sundarraj, P. Erk, M. Pfeiffer, and K. Leo, “Efficient organic tandem solar cells based on small molecules,” Adv. Funct. Mater. 21(16), 3019–3028 (2011).
[Crossref]

White, R. D.

M. Stolterfoht, B. Philippa, A. Armin, A. K. Pandey, R. D. White, P. L. Burn, P. Meredith, and A. Pivrikas, “Advantage of suppressed non-Langevin recombination in low mobility organic solar cells,” Appl. Phys. Lett. 105(1), 013302 (2014).
[Crossref]

Widmer, J.

M. Riede, C. Uhrich, J. Widmer, R. Timmreck, D. Wynands, G. Schwartz, W.-M. Gnehr, D. Hildebrandt, A. Weiss, J. Hwang, S. Sundarraj, P. Erk, M. Pfeiffer, and K. Leo, “Efficient organic tandem solar cells based on small molecules,” Adv. Funct. Mater. 21(16), 3019–3028 (2011).
[Crossref]

Wienk, M. M.

V. S. Gevaerts, A. Furlan, M. M. Wienk, M. Turbiez, and R. A. J. Janssen, “Solution processed polymer tandem solar cell using efficient small and wide bandgap polymer:fullerene blends,” Adv. Mater. 24(16), 2130–2134 (2012).
[Crossref] [PubMed]

J. Gilot, M. M. Wienk, and R. A. J. Janssen, “Measuring the external quantum efficiency of two-terminal polymer tandem solar cells,” Adv. Funct. Mater. 20(22), 3904–3911 (2010).
[Crossref]

J. Gilot, M. M. Wienk, and R. A. J. Janssen, “Optimizing polymer tandem solar cells,” Adv. Mater. 22(8), E67–E71 (2010).
[Crossref] [PubMed]

J. Gilot, I. Barbu, M. M. Wienk, and R. A. J. Janssen, “The use of ZnO as optical spacer in polymer solar cells: Theoretical and experimental study,” Appl. Phys. Lett. 91(11), 113520 (2007).
[Crossref]

Wolf, S.

A. Puetz, T. Stubhan, M. Reinhard, O. Loesch, E. Hammarberg, S. Wolf, C. Feldmann, H. Kalt, A. Colsmann, and U. Lemmer, “Organic solar cells incorporating buffer layers from indium zinc oxide nanoparticles,” Sol. Energy Mater. Sol. Cells 95(2), 579–585 (2011).
[Crossref]

Wuerfel, U.

B. V. Andersson, U. Wuerfel, and O. Inganäs, “Full day modelling of V-shaped organic solar cell,” Sol. Energy 85(6), 1257–1263 (2011).
[Crossref]

Wynands, D.

M. Riede, C. Uhrich, J. Widmer, R. Timmreck, D. Wynands, G. Schwartz, W.-M. Gnehr, D. Hildebrandt, A. Weiss, J. Hwang, S. Sundarraj, P. Erk, M. Pfeiffer, and K. Leo, “Efficient organic tandem solar cells based on small molecules,” Adv. Funct. Mater. 21(16), 3019–3028 (2011).
[Crossref]

Xu, R.

J. You, C.-C. Chen, Z. Hong, K. Yoshimura, K. Ohya, R. Xu, S. Ye, J. Gao, G. Li, and Y. Yang, “10.2% power conversion efficiency polymer tandem solar cells consisting of two identical sub-cells,” Adv. Mater. 25(29), 3973–3978 (2013).
[Crossref] [PubMed]

Yang, J.

J. Yang, R. Zhu, Z. Hong, Y. He, A. Kumar, Y. Li, and Y. Yang, “A robust inter-connecting layer for achieving high performance tandem polymer solar cells,” Adv. Mater. 23(30), 3465–3470 (2011).
[Crossref] [PubMed]

Yang, Y.

J. You, C.-C. Chen, Z. Hong, K. Yoshimura, K. Ohya, R. Xu, S. Ye, J. Gao, G. Li, and Y. Yang, “10.2% power conversion efficiency polymer tandem solar cells consisting of two identical sub-cells,” Adv. Mater. 25(29), 3973–3978 (2013).
[Crossref] [PubMed]

J. Yang, R. Zhu, Z. Hong, Y. He, A. Kumar, Y. Li, and Y. Yang, “A robust inter-connecting layer for achieving high performance tandem polymer solar cells,” Adv. Mater. 23(30), 3465–3470 (2011).
[Crossref] [PubMed]

Ye, S.

J. You, C.-C. Chen, Z. Hong, K. Yoshimura, K. Ohya, R. Xu, S. Ye, J. Gao, G. Li, and Y. Yang, “10.2% power conversion efficiency polymer tandem solar cells consisting of two identical sub-cells,” Adv. Mater. 25(29), 3973–3978 (2013).
[Crossref] [PubMed]

Yoshimura, K.

J. You, C.-C. Chen, Z. Hong, K. Yoshimura, K. Ohya, R. Xu, S. Ye, J. Gao, G. Li, and Y. Yang, “10.2% power conversion efficiency polymer tandem solar cells consisting of two identical sub-cells,” Adv. Mater. 25(29), 3973–3978 (2013).
[Crossref] [PubMed]

You, J.

J. You, C.-C. Chen, Z. Hong, K. Yoshimura, K. Ohya, R. Xu, S. Ye, J. Gao, G. Li, and Y. Yang, “10.2% power conversion efficiency polymer tandem solar cells consisting of two identical sub-cells,” Adv. Mater. 25(29), 3973–3978 (2013).
[Crossref] [PubMed]

Yu, K.

H. Kang, S. Kee, K. Yu, J. Lee, G. Kim, J. Kim, J.-R. Kim, J. Kong, and K. Lee, “Simplified tandem polymer solar cells with an ideal self-organized recombination layer,” Adv. Mater. 27(8), 1408–1413 (2015).
[Crossref] [PubMed]

Zhang, Y.

H. Zhou, Y. Zhang, C.-K. Mai, S. D. Collins, G. C. Bazan, T.-Q. Nguyen, and A. J. Heeger, “Polymer homo-tandem solar cells with best efficiency of 11.3%,” Adv. Mater. 27(10), 1767–1773 (2015).
[Crossref] [PubMed]

Zhou, H.

H. Zhou, Y. Zhang, C.-K. Mai, S. D. Collins, G. C. Bazan, T.-Q. Nguyen, and A. J. Heeger, “Polymer homo-tandem solar cells with best efficiency of 11.3%,” Adv. Mater. 27(10), 1767–1773 (2015).
[Crossref] [PubMed]

Zhu, R.

J. Yang, R. Zhu, Z. Hong, Y. He, A. Kumar, Y. Li, and Y. Yang, “A robust inter-connecting layer for achieving high performance tandem polymer solar cells,” Adv. Mater. 23(30), 3465–3470 (2011).
[Crossref] [PubMed]

Zimmerman, J. D.

B. E. Lassiter, J. D. Zimmerman, and S. R. Forrest, “Tandem organic photovoltaics incorporating two solution-processed small molecule donor layers,” Appl. Phys. Lett. 103(12), 123305 (2013).
[Crossref]

Züfle, S.

N. Christ, S. W. Kettlitz, S. Züfle, S. Valouch, and U. Lemmer, “Nanosecond response of organic solar cells and photodiodes: Role of trap states,” Phys. Rev. B 83(19), 195211 (2011).
[Crossref]

Adv. Energy Mater. (1)

D. Bahro, M. Koppitz, A. Mertens, K. Glaser, J. Mescher, and A. Colsmann, “Understanding the external quantum efficiency of organic homo-tandem solar cells utilizing a three-terminal device architecture,” Adv. Energy Mater. 5(22), 1501019 (2015).
[Crossref]

Adv. Funct. Mater. (2)

J. Gilot, M. M. Wienk, and R. A. J. Janssen, “Measuring the external quantum efficiency of two-terminal polymer tandem solar cells,” Adv. Funct. Mater. 20(22), 3904–3911 (2010).
[Crossref]

M. Riede, C. Uhrich, J. Widmer, R. Timmreck, D. Wynands, G. Schwartz, W.-M. Gnehr, D. Hildebrandt, A. Weiss, J. Hwang, S. Sundarraj, P. Erk, M. Pfeiffer, and K. Leo, “Efficient organic tandem solar cells based on small molecules,” Adv. Funct. Mater. 21(16), 3019–3028 (2011).
[Crossref]

Adv. Mater. (7)

J. Yang, R. Zhu, Z. Hong, Y. He, A. Kumar, Y. Li, and Y. Yang, “A robust inter-connecting layer for achieving high performance tandem polymer solar cells,” Adv. Mater. 23(30), 3465–3470 (2011).
[Crossref] [PubMed]

G. Dennler, M. C. Scharber, T. Ameri, P. Denk, K. Forberich, C. Waldauf, and C. J. Brabec, “Design rules for donors in bulk-heterojunction tandem solar cells - towards 15% energy-conversion efficiency,” Adv. Mater. 20(3), 579–583 (2008).
[Crossref]

V. S. Gevaerts, A. Furlan, M. M. Wienk, M. Turbiez, and R. A. J. Janssen, “Solution processed polymer tandem solar cell using efficient small and wide bandgap polymer:fullerene blends,” Adv. Mater. 24(16), 2130–2134 (2012).
[Crossref] [PubMed]

H. Zhou, Y. Zhang, C.-K. Mai, S. D. Collins, G. C. Bazan, T.-Q. Nguyen, and A. J. Heeger, “Polymer homo-tandem solar cells with best efficiency of 11.3%,” Adv. Mater. 27(10), 1767–1773 (2015).
[Crossref] [PubMed]

J. You, C.-C. Chen, Z. Hong, K. Yoshimura, K. Ohya, R. Xu, S. Ye, J. Gao, G. Li, and Y. Yang, “10.2% power conversion efficiency polymer tandem solar cells consisting of two identical sub-cells,” Adv. Mater. 25(29), 3973–3978 (2013).
[Crossref] [PubMed]

H. Kang, S. Kee, K. Yu, J. Lee, G. Kim, J. Kim, J.-R. Kim, J. Kong, and K. Lee, “Simplified tandem polymer solar cells with an ideal self-organized recombination layer,” Adv. Mater. 27(8), 1408–1413 (2015).
[Crossref] [PubMed]

J. Gilot, M. M. Wienk, and R. A. J. Janssen, “Optimizing polymer tandem solar cells,” Adv. Mater. 22(8), E67–E71 (2010).
[Crossref] [PubMed]

Appl. Phys. Lett. (5)

B. E. Lassiter, J. D. Zimmerman, and S. R. Forrest, “Tandem organic photovoltaics incorporating two solution-processed small molecule donor layers,” Appl. Phys. Lett. 103(12), 123305 (2013).
[Crossref]

D. Cheyns, B. P. Rand, B. Verret, J. Genoe, J. Poortmans, and P. Heremans, “The angular response of ultrathin film organic solar cells,” Appl. Phys. Lett. 92(24), 243310 (2008).
[Crossref]

A. Colsmann, J. Junge, C. Kayser, and U. Lemmer, “Organic tandem solar cells comprising polymer and small-molecule subcells,” Appl. Phys. Lett. 89(20), 203506 (2006).
[Crossref]

J. Gilot, I. Barbu, M. M. Wienk, and R. A. J. Janssen, “The use of ZnO as optical spacer in polymer solar cells: Theoretical and experimental study,” Appl. Phys. Lett. 91(11), 113520 (2007).
[Crossref]

M. Stolterfoht, B. Philippa, A. Armin, A. K. Pandey, R. D. White, P. L. Burn, P. Meredith, and A. Pivrikas, “Advantage of suppressed non-Langevin recombination in low mobility organic solar cells,” Appl. Phys. Lett. 105(1), 013302 (2014).
[Crossref]

J. Appl. Phys. (2)

G. Dennler, K. Forberich, M. C. Scharber, C. J. Brabec, I. Tomiš, K. Hingerl, and T. Fromherz, “Angle dependence of external and internal quantum efficiencies in bulk-heterojunction organic solar cells,” J. Appl. Phys. 102(5), 054516 (2007).
[Crossref]

G. Dennler, K. Forberich, T. Ameri, C. Waldauf, P. Denk, C. J. Brabec, K. Hingerl, and A. J. Heeger, “Design of efficient organic tandem cells: on the interplay between molecular absorption and layer sequence,” J. Appl. Phys. 102(12), 123109 (2007).
[Crossref]

Org. Electron. (1)

A. Puetz, F. Steiner, J. Mescher, M. Reinhard, N. Christ, D. Kutsarov, H. Kalt, U. Lemmer, and A. Colsmann, “Solution processable, precursor based zinc oxide buffer layers for 4.5% efficient organic tandem solar cells,” Org. Electron. 13(11), 2696–2701 (2012).
[Crossref]

Phys. Rev. B (1)

N. Christ, S. W. Kettlitz, S. Züfle, S. Valouch, and U. Lemmer, “Nanosecond response of organic solar cells and photodiodes: Role of trap states,” Phys. Rev. B 83(19), 195211 (2011).
[Crossref]

Science (1)

J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T. Q. Nguyen, M. Dante, and A. J. Heeger, “Efficient tandem polymer solar cells fabricated by all-solution processing,” Science 317(5835), 222–225 (2007).
[Crossref] [PubMed]

Sol. Energy (1)

B. V. Andersson, U. Wuerfel, and O. Inganäs, “Full day modelling of V-shaped organic solar cell,” Sol. Energy 85(6), 1257–1263 (2011).
[Crossref]

Sol. Energy Mater. Sol. Cells (4)

R. Betancur, A. Martínez-Otero, X. Elias, P. Romero-Gómez, S. Colodrero, H. Miguez, and J. Martorell, “Optical interference for the matching of the external and internal quantum efficiencies in organic photovoltaic cells,” Sol. Energy Mater. Sol. Cells 104, 87–91 (2012).
[Crossref]

F. Nickel, C. Sprau, M. F. G. Klein, P. Kapetana, N. Christ, X. Liu, S. Klinkhammer, U. Lemmer, and A. Colsmann, “Spatial mapping of photocurrents in organic solar cells comprising wedge-shaped absorber layers for an efficient material screening,” Sol. Energy Mater. Sol. Cells 104, 18–22 (2012).
[Crossref]

B. Lechêne, G. Perrier, K. Emmanouil, S. Kennou, B. Bouthinon, and R. de Bettignies, “Design of intermediate layers for solution-processed tandem organic solar cells: guidelines from a case study on TiOx and ZnO,” Sol. Energy Mater. Sol. Cells 120, 709–715 (2014).
[Crossref]

A. Puetz, T. Stubhan, M. Reinhard, O. Loesch, E. Hammarberg, S. Wolf, C. Feldmann, H. Kalt, A. Colsmann, and U. Lemmer, “Organic solar cells incorporating buffer layers from indium zinc oxide nanoparticles,” Sol. Energy Mater. Sol. Cells 95(2), 579–585 (2011).
[Crossref]

Thin Solid Films (1)

A. Abdellaoui, G. Lévêque, A. Donnadieu, A. Bath, and B. Bouchikhi, “Iteratively derived optical constants of MoO3 polycrystalline thin films prepared by CVD,” Thin Solid Films 304(1–2), 39–44 (1997).
[Crossref]

Other (2)

C. Brabec, U. Scherf, and V. Dyakonov, Organic Photovoltaics (Wiley-VCH, 2014).

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1997).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Tandem solar cell device architecture comprising a PEDOT:PSS/ZnO recombination zone. The PEDOT:PSS layer was partly realized from conductive PEDOT:PSS to give access to the subcells. (b) Short circuit current density JSC of the tandem device versus the angle of light incidence. To account for the change of the effective solar cell size under oblique illumination, the photo current was divided by cos(θ). The tandem device generates an almost constant effective photo current J*SC(θ) up to angles of incidence θ of about 65°.
Fig. 2
Fig. 2 Measured J*SC(θ) of a typical 3-terminal tandem device (solid line), a 2-terminal reference device (dotted line), the bottom subcell of the 3-terminal tandem solar cell (dashed-dotted line) and the respective top subcell (dashed lines) versus the angle of light incidence. The squares and the triangles represent the corresponding results of the optical simulation of the two subcells. Inset: The corresponding J-V curve of the 3-terminal tandem device.
Fig. 3
Fig. 3 Spatially resolved absorption profiles of the 3-terminal devices for angles of incidence up to 85° for (a) 470 nm and (b) 700 nm incident wavelengths. While the optical field in the top cell is almost unaffected by the angle of incidence, we observe a significant shift of the absorption profile away from the anode in the bottom subcell. For 700 nm the shift of the maxima inside the absorber layer is more pronounced than for 470 nm, which leads to a blue shift of the absorption and hence the EQE. The angle dependent absorption of the two subcells is in good agreement with the measured EQEs.
Fig. 4
Fig. 4 The angle dependent EQEs of (a) the top subcell and (b) the bottom subcell. With increasing angle of light incidence, the EQE spectra flatten. Despite of the significant wavelength-dependent changes in the EQE for different angles of incidence, the angle-dependent integrated EQE is in good agreement with the angle-dependent J*SC(θ) measurements in Fig. 2. The respective simulated EQEs are provided in the Appendix, Figs. 5(c) and 5(d).
Fig. 5
Fig. 5 The angle dependent EQEs of (a) the top subcell and (b) the bottom subcell in comparison with the optical simulation (c) and (d). The simulation differs from the measurements due to minor deviations of the actual layer thicknesses in the tandem devices. We note that the overestimation of the simulated EQEs for small wavelengths originates from the spectrally flat IQE that was assumed here. Earlier investigations of PTB7:PC71BM have demonstrated a slightly wavelength dependent IQE, which is below 0.88 for wavelengths λ < 500 nm [27]. Still, the qualitative trends of both, simulation and experiment, are in well accordance.

Metrics