Abstract

Visible light communication (VLC) networks, consisting of multiple light-emitting diodes (LEDs) acting as optical access points (APs), can provide low-cost high-rate data transmission to multiple users simultaneously in indoor environments. However, the performance of VLC networks is severely limited by the interference between different users. In this paper, we establish a distributed user-centric scheduling framework based on stable marriage theory, and propose a novel decentralized scheduling method to manage interference by forming flexible amorphous cells for all users. The proposed scheduling method has provable low computational complexity and requires only the exchange of a few 1-bit messages between the APs and the users but not the feedback of the channel state information of the entire network. We further show that the proposed method can achieve both user-wise and system-wise optimality as well as a certain level of fairness. Simulation results indicate that our decentralized user-centric scheduling method outperforms existing centralized approaches in terms of throughput, fairness, and computational complexity.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Scheduling for indoor visible light communication based on graph theory

Yuyang Tao, Xiao Liang, Jiaheng Wang, and Chunming Zhao
Opt. Express 23(3) 2737-2752 (2015)

Improvement of indoor VLC network downlink scheduling and resource allocation

Yan Chen, Anthony E. Kelly, and John H. Marsh
Opt. Express 24(23) 26838-26850 (2016)

User-centric quality of experience optimized resource allocation algorithm in VLC network with multi-color LED

Xu Bao, Xinxin Gu, and Wence Zhang
Opt. Express 26(21) 27826-27841 (2018)

References

  • View by:
  • |
  • |
  • |

  1. T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron. 50(1), 100–107 (2004).
    [Crossref]
  2. S. Wu, H. Wang, and C. H. Youn, “Visible light communications for 5G wireless networking systems: from fixed to mobile communications network,” IEEE Networks 28(6), 41–45 (2014).
    [Crossref]
  3. H. Elgala, R. Mesleh, and H. Haas, “Indoor optical wireless communication: potential and state-of-the-art,” IEEE Commun. Mag. 49(9), 56–62 (2011).
    [Crossref]
  4. Z. Ghassemlooy, W. Popoola, and S. Rajbhandari, Optical Wireless Communications: System and Channel Modeling with MATLAB (CRC Press, 2012).
  5. S. Zhang, S. Watson, J. J. McKendry, D. Massoubre, A. Cogman, E. Gu, R. K. Henderson, A. E. Kelly, and M. D. Dawson, “1.5 Gbit/s multi-channel visible light communications using CMOS-controlled GaN-based LEDs,” J. Lightwave Technol. 31(8), 1211–1216 (2013).
    [Crossref]
  6. G. Cossu, A. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “3.4 Gbit/s visible optical wireless transmission based on RGB LED,” Opt. Express 20(26), B501–B506 (2012).
    [Crossref] [PubMed]
  7. J. Liu, P. W. C. Chan, D. W. K. Ng, E. S. Lo, and S. Shimamoto, “Hybrid visible light communications in Intelligent Transportation Systems with position based services,” in 2012 IEEE Globecom Workshops (IEEE, 2012), pp. 1254–1259.
  8. I. Stefan and H. Haas, “Hybrid visible light and radio frequency communication systems,” in 2014 IEEE Vehicular Technology Conference (IEEE, 2014), pp. 1–5.
  9. Y. Tao, X. Liang, J. Wang, and C. Zhao, “Scheduling for indoor visible light communication based on graph theory,” Opt. Express 23(3), 2737–2752 (2015).
    [Crossref] [PubMed]
  10. Y. L. Lee, T. C. Chuah, J. Loo, and A. Vinel, “Recent advances in radio resource management for heterogeneous LTE/LTE-A networks,” IEEE Commun. Surveys Tuts. 16(4), 2142–2180 (2014).
    [Crossref]
  11. L. Dai, S. Zhou, and Y. Yao, “Capacity analysis in CDMA distributed antenna systems,” IEEE Trans. Wireless Commun. 4(6), 2613–2620 (2005).
    [Crossref]
  12. F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, and P. Popovski, “Five disruptive technology directions for 5G,” IEEE Commun. Mag. 52(2), 74–80 (2014).
    [Crossref]
  13. D. Liu, L. Wang, Y. Chen, M. Elkashlan, K. Wong, R. Schober, and L. Hanzo, “User Association in 5G Networks: A survey and an outlook,” IEEE Commun. Surveys Tuts. 18(2), 1018–1044 (2016).
    [Crossref]
  14. R. Zhang, J. Wang, Z. Wang, Z. Xu, C. Zhao, and L. Hanzo, “Visible light communications in heterogeneous networks: paving the way for user-centric design,” IEEE Wireless Commun. 22(2), 8–16 (2015).
    [Crossref]
  15. X. Li, R. Zhang, J. Wang, and L. Hanzo, “Cell-centric and user-centric multi-user scheduling in visible light communication aided networks,” in IEEE International Conference on Communications (IEEE, 2015), pp. 5120–5125.
  16. D. Gale and L.S. Shapley, “College admissions and stability of marriage,” Amer. Math. Monthly 69(1), 9–15 (1962).
    [Crossref]
  17. J. Kahn and J. Barry, “Wireless intrared communications,” Proc. IEEE 85(2), 265–298 (1997).
    [Crossref]
  18. M. Xiao, N.B. Shroff, and E.K.-P. Chong, “A utility-based power-control scheme in wireless cellular systems,” IEEE/ACM Trans. Netw 11(2), 210–221, (2003).
    [Crossref]
  19. D. W. K. Ng and R. Schober, “Resource allocation and scheduling in multi-cell OFDMA systems with decode-and-forward relaying,” IEEE Trans. Wireless Commun. 10(7), 2246–2258 (2011).
    [Crossref]
  20. D. W. K. Ng and R. Schober, “Cross-layer scheduling for OFDMA amplify-and-forward relay networks,” IEEE Trans. Veh. Technol. 59(3), 1443–1458 (2010).
    [Crossref]
  21. X. Ling, J. Wang, X. Liang, Z. Ding, and C. Zhao, “Offset and power optimization for DCO-OFDM in visible light communication systems,” IEEE Trans. Signal Process. 64(2), 349–363 (2016).
    [Crossref]
  22. A. E. Roth, “The evolution of the labor market for medical interns and residents: a case study in game theory,” J. Polit. Econ. 2(6), 991–1016 (1984).
    [Crossref]
  23. A. Leshem, E. Zehavi, and Y. Yaffe, “Multichannel opportunistic carrier sensing for stable channel access control in cognitive radio systems,” IEEE J. Sel. Areas Commun. 30(1), 82–95 (2012).
    [Crossref]
  24. S. Boyd and L. Vandenberghe, Convex Optimization (Cambridge University Press, 2004).
    [Crossref]
  25. Z. Wang, C. Yu, W. D. Zhong, J. Chen, and W. Chen, “Performance of a novel LED lamp arrangement to reduce SNR fluctuation for multi-user visible light communication systems,” Opt. Express 20(4), 4564–4573 (2012).
    [Crossref] [PubMed]
  26. B. Bensaou, D. H. Tsang, and K. T. Chan, “Credit-based fair queueing (CBFQ): a simple service-scheduling algorithm for packet-switched networks,” IEEE/ACM Trans. Netw 9(5), 591–604 (2001).
    [Crossref]

2016 (2)

D. Liu, L. Wang, Y. Chen, M. Elkashlan, K. Wong, R. Schober, and L. Hanzo, “User Association in 5G Networks: A survey and an outlook,” IEEE Commun. Surveys Tuts. 18(2), 1018–1044 (2016).
[Crossref]

X. Ling, J. Wang, X. Liang, Z. Ding, and C. Zhao, “Offset and power optimization for DCO-OFDM in visible light communication systems,” IEEE Trans. Signal Process. 64(2), 349–363 (2016).
[Crossref]

2015 (2)

R. Zhang, J. Wang, Z. Wang, Z. Xu, C. Zhao, and L. Hanzo, “Visible light communications in heterogeneous networks: paving the way for user-centric design,” IEEE Wireless Commun. 22(2), 8–16 (2015).
[Crossref]

Y. Tao, X. Liang, J. Wang, and C. Zhao, “Scheduling for indoor visible light communication based on graph theory,” Opt. Express 23(3), 2737–2752 (2015).
[Crossref] [PubMed]

2014 (3)

Y. L. Lee, T. C. Chuah, J. Loo, and A. Vinel, “Recent advances in radio resource management for heterogeneous LTE/LTE-A networks,” IEEE Commun. Surveys Tuts. 16(4), 2142–2180 (2014).
[Crossref]

F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, and P. Popovski, “Five disruptive technology directions for 5G,” IEEE Commun. Mag. 52(2), 74–80 (2014).
[Crossref]

S. Wu, H. Wang, and C. H. Youn, “Visible light communications for 5G wireless networking systems: from fixed to mobile communications network,” IEEE Networks 28(6), 41–45 (2014).
[Crossref]

2013 (1)

2012 (3)

2011 (2)

H. Elgala, R. Mesleh, and H. Haas, “Indoor optical wireless communication: potential and state-of-the-art,” IEEE Commun. Mag. 49(9), 56–62 (2011).
[Crossref]

D. W. K. Ng and R. Schober, “Resource allocation and scheduling in multi-cell OFDMA systems with decode-and-forward relaying,” IEEE Trans. Wireless Commun. 10(7), 2246–2258 (2011).
[Crossref]

2010 (1)

D. W. K. Ng and R. Schober, “Cross-layer scheduling for OFDMA amplify-and-forward relay networks,” IEEE Trans. Veh. Technol. 59(3), 1443–1458 (2010).
[Crossref]

2005 (1)

L. Dai, S. Zhou, and Y. Yao, “Capacity analysis in CDMA distributed antenna systems,” IEEE Trans. Wireless Commun. 4(6), 2613–2620 (2005).
[Crossref]

2004 (1)

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron. 50(1), 100–107 (2004).
[Crossref]

2003 (1)

M. Xiao, N.B. Shroff, and E.K.-P. Chong, “A utility-based power-control scheme in wireless cellular systems,” IEEE/ACM Trans. Netw 11(2), 210–221, (2003).
[Crossref]

2001 (1)

B. Bensaou, D. H. Tsang, and K. T. Chan, “Credit-based fair queueing (CBFQ): a simple service-scheduling algorithm for packet-switched networks,” IEEE/ACM Trans. Netw 9(5), 591–604 (2001).
[Crossref]

1997 (1)

J. Kahn and J. Barry, “Wireless intrared communications,” Proc. IEEE 85(2), 265–298 (1997).
[Crossref]

1984 (1)

A. E. Roth, “The evolution of the labor market for medical interns and residents: a case study in game theory,” J. Polit. Econ. 2(6), 991–1016 (1984).
[Crossref]

1962 (1)

D. Gale and L.S. Shapley, “College admissions and stability of marriage,” Amer. Math. Monthly 69(1), 9–15 (1962).
[Crossref]

Barry, J.

J. Kahn and J. Barry, “Wireless intrared communications,” Proc. IEEE 85(2), 265–298 (1997).
[Crossref]

Bensaou, B.

B. Bensaou, D. H. Tsang, and K. T. Chan, “Credit-based fair queueing (CBFQ): a simple service-scheduling algorithm for packet-switched networks,” IEEE/ACM Trans. Netw 9(5), 591–604 (2001).
[Crossref]

Boccardi, F.

F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, and P. Popovski, “Five disruptive technology directions for 5G,” IEEE Commun. Mag. 52(2), 74–80 (2014).
[Crossref]

Boyd, S.

S. Boyd and L. Vandenberghe, Convex Optimization (Cambridge University Press, 2004).
[Crossref]

Chan, K. T.

B. Bensaou, D. H. Tsang, and K. T. Chan, “Credit-based fair queueing (CBFQ): a simple service-scheduling algorithm for packet-switched networks,” IEEE/ACM Trans. Netw 9(5), 591–604 (2001).
[Crossref]

Chan, P. W. C.

J. Liu, P. W. C. Chan, D. W. K. Ng, E. S. Lo, and S. Shimamoto, “Hybrid visible light communications in Intelligent Transportation Systems with position based services,” in 2012 IEEE Globecom Workshops (IEEE, 2012), pp. 1254–1259.

Chen, J.

Chen, W.

Chen, Y.

D. Liu, L. Wang, Y. Chen, M. Elkashlan, K. Wong, R. Schober, and L. Hanzo, “User Association in 5G Networks: A survey and an outlook,” IEEE Commun. Surveys Tuts. 18(2), 1018–1044 (2016).
[Crossref]

Chong, E.K.-P.

M. Xiao, N.B. Shroff, and E.K.-P. Chong, “A utility-based power-control scheme in wireless cellular systems,” IEEE/ACM Trans. Netw 11(2), 210–221, (2003).
[Crossref]

Choudhury, P.

Chuah, T. C.

Y. L. Lee, T. C. Chuah, J. Loo, and A. Vinel, “Recent advances in radio resource management for heterogeneous LTE/LTE-A networks,” IEEE Commun. Surveys Tuts. 16(4), 2142–2180 (2014).
[Crossref]

Ciaramella, E.

Cogman, A.

Corsini, R.

Cossu, G.

Dai, L.

L. Dai, S. Zhou, and Y. Yao, “Capacity analysis in CDMA distributed antenna systems,” IEEE Trans. Wireless Commun. 4(6), 2613–2620 (2005).
[Crossref]

Dawson, M. D.

Ding, Z.

X. Ling, J. Wang, X. Liang, Z. Ding, and C. Zhao, “Offset and power optimization for DCO-OFDM in visible light communication systems,” IEEE Trans. Signal Process. 64(2), 349–363 (2016).
[Crossref]

Elgala, H.

H. Elgala, R. Mesleh, and H. Haas, “Indoor optical wireless communication: potential and state-of-the-art,” IEEE Commun. Mag. 49(9), 56–62 (2011).
[Crossref]

Elkashlan, M.

D. Liu, L. Wang, Y. Chen, M. Elkashlan, K. Wong, R. Schober, and L. Hanzo, “User Association in 5G Networks: A survey and an outlook,” IEEE Commun. Surveys Tuts. 18(2), 1018–1044 (2016).
[Crossref]

Gale, D.

D. Gale and L.S. Shapley, “College admissions and stability of marriage,” Amer. Math. Monthly 69(1), 9–15 (1962).
[Crossref]

Ghassemlooy, Z.

Z. Ghassemlooy, W. Popoola, and S. Rajbhandari, Optical Wireless Communications: System and Channel Modeling with MATLAB (CRC Press, 2012).

Gu, E.

Haas, H.

H. Elgala, R. Mesleh, and H. Haas, “Indoor optical wireless communication: potential and state-of-the-art,” IEEE Commun. Mag. 49(9), 56–62 (2011).
[Crossref]

I. Stefan and H. Haas, “Hybrid visible light and radio frequency communication systems,” in 2014 IEEE Vehicular Technology Conference (IEEE, 2014), pp. 1–5.

Hanzo, L.

D. Liu, L. Wang, Y. Chen, M. Elkashlan, K. Wong, R. Schober, and L. Hanzo, “User Association in 5G Networks: A survey and an outlook,” IEEE Commun. Surveys Tuts. 18(2), 1018–1044 (2016).
[Crossref]

R. Zhang, J. Wang, Z. Wang, Z. Xu, C. Zhao, and L. Hanzo, “Visible light communications in heterogeneous networks: paving the way for user-centric design,” IEEE Wireless Commun. 22(2), 8–16 (2015).
[Crossref]

X. Li, R. Zhang, J. Wang, and L. Hanzo, “Cell-centric and user-centric multi-user scheduling in visible light communication aided networks,” in IEEE International Conference on Communications (IEEE, 2015), pp. 5120–5125.

Heath, R. W.

F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, and P. Popovski, “Five disruptive technology directions for 5G,” IEEE Commun. Mag. 52(2), 74–80 (2014).
[Crossref]

Henderson, R. K.

Kahn, J.

J. Kahn and J. Barry, “Wireless intrared communications,” Proc. IEEE 85(2), 265–298 (1997).
[Crossref]

Kelly, A. E.

Khalid, A.

Komine, T.

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron. 50(1), 100–107 (2004).
[Crossref]

Lee, Y. L.

Y. L. Lee, T. C. Chuah, J. Loo, and A. Vinel, “Recent advances in radio resource management for heterogeneous LTE/LTE-A networks,” IEEE Commun. Surveys Tuts. 16(4), 2142–2180 (2014).
[Crossref]

Leshem, A.

A. Leshem, E. Zehavi, and Y. Yaffe, “Multichannel opportunistic carrier sensing for stable channel access control in cognitive radio systems,” IEEE J. Sel. Areas Commun. 30(1), 82–95 (2012).
[Crossref]

Li, X.

X. Li, R. Zhang, J. Wang, and L. Hanzo, “Cell-centric and user-centric multi-user scheduling in visible light communication aided networks,” in IEEE International Conference on Communications (IEEE, 2015), pp. 5120–5125.

Liang, X.

X. Ling, J. Wang, X. Liang, Z. Ding, and C. Zhao, “Offset and power optimization for DCO-OFDM in visible light communication systems,” IEEE Trans. Signal Process. 64(2), 349–363 (2016).
[Crossref]

Y. Tao, X. Liang, J. Wang, and C. Zhao, “Scheduling for indoor visible light communication based on graph theory,” Opt. Express 23(3), 2737–2752 (2015).
[Crossref] [PubMed]

Ling, X.

X. Ling, J. Wang, X. Liang, Z. Ding, and C. Zhao, “Offset and power optimization for DCO-OFDM in visible light communication systems,” IEEE Trans. Signal Process. 64(2), 349–363 (2016).
[Crossref]

Liu, D.

D. Liu, L. Wang, Y. Chen, M. Elkashlan, K. Wong, R. Schober, and L. Hanzo, “User Association in 5G Networks: A survey and an outlook,” IEEE Commun. Surveys Tuts. 18(2), 1018–1044 (2016).
[Crossref]

Liu, J.

J. Liu, P. W. C. Chan, D. W. K. Ng, E. S. Lo, and S. Shimamoto, “Hybrid visible light communications in Intelligent Transportation Systems with position based services,” in 2012 IEEE Globecom Workshops (IEEE, 2012), pp. 1254–1259.

Lo, E. S.

J. Liu, P. W. C. Chan, D. W. K. Ng, E. S. Lo, and S. Shimamoto, “Hybrid visible light communications in Intelligent Transportation Systems with position based services,” in 2012 IEEE Globecom Workshops (IEEE, 2012), pp. 1254–1259.

Loo, J.

Y. L. Lee, T. C. Chuah, J. Loo, and A. Vinel, “Recent advances in radio resource management for heterogeneous LTE/LTE-A networks,” IEEE Commun. Surveys Tuts. 16(4), 2142–2180 (2014).
[Crossref]

Lozano, A.

F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, and P. Popovski, “Five disruptive technology directions for 5G,” IEEE Commun. Mag. 52(2), 74–80 (2014).
[Crossref]

Marzetta, T. L.

F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, and P. Popovski, “Five disruptive technology directions for 5G,” IEEE Commun. Mag. 52(2), 74–80 (2014).
[Crossref]

Massoubre, D.

McKendry, J. J.

Mesleh, R.

H. Elgala, R. Mesleh, and H. Haas, “Indoor optical wireless communication: potential and state-of-the-art,” IEEE Commun. Mag. 49(9), 56–62 (2011).
[Crossref]

Nakagawa, M.

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron. 50(1), 100–107 (2004).
[Crossref]

Ng, D. W. K.

D. W. K. Ng and R. Schober, “Resource allocation and scheduling in multi-cell OFDMA systems with decode-and-forward relaying,” IEEE Trans. Wireless Commun. 10(7), 2246–2258 (2011).
[Crossref]

D. W. K. Ng and R. Schober, “Cross-layer scheduling for OFDMA amplify-and-forward relay networks,” IEEE Trans. Veh. Technol. 59(3), 1443–1458 (2010).
[Crossref]

J. Liu, P. W. C. Chan, D. W. K. Ng, E. S. Lo, and S. Shimamoto, “Hybrid visible light communications in Intelligent Transportation Systems with position based services,” in 2012 IEEE Globecom Workshops (IEEE, 2012), pp. 1254–1259.

Popoola, W.

Z. Ghassemlooy, W. Popoola, and S. Rajbhandari, Optical Wireless Communications: System and Channel Modeling with MATLAB (CRC Press, 2012).

Popovski, P.

F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, and P. Popovski, “Five disruptive technology directions for 5G,” IEEE Commun. Mag. 52(2), 74–80 (2014).
[Crossref]

Rajbhandari, S.

Z. Ghassemlooy, W. Popoola, and S. Rajbhandari, Optical Wireless Communications: System and Channel Modeling with MATLAB (CRC Press, 2012).

Roth, A. E.

A. E. Roth, “The evolution of the labor market for medical interns and residents: a case study in game theory,” J. Polit. Econ. 2(6), 991–1016 (1984).
[Crossref]

Schober, R.

D. Liu, L. Wang, Y. Chen, M. Elkashlan, K. Wong, R. Schober, and L. Hanzo, “User Association in 5G Networks: A survey and an outlook,” IEEE Commun. Surveys Tuts. 18(2), 1018–1044 (2016).
[Crossref]

D. W. K. Ng and R. Schober, “Resource allocation and scheduling in multi-cell OFDMA systems with decode-and-forward relaying,” IEEE Trans. Wireless Commun. 10(7), 2246–2258 (2011).
[Crossref]

D. W. K. Ng and R. Schober, “Cross-layer scheduling for OFDMA amplify-and-forward relay networks,” IEEE Trans. Veh. Technol. 59(3), 1443–1458 (2010).
[Crossref]

Shapley, L.S.

D. Gale and L.S. Shapley, “College admissions and stability of marriage,” Amer. Math. Monthly 69(1), 9–15 (1962).
[Crossref]

Shimamoto, S.

J. Liu, P. W. C. Chan, D. W. K. Ng, E. S. Lo, and S. Shimamoto, “Hybrid visible light communications in Intelligent Transportation Systems with position based services,” in 2012 IEEE Globecom Workshops (IEEE, 2012), pp. 1254–1259.

Shroff, N.B.

M. Xiao, N.B. Shroff, and E.K.-P. Chong, “A utility-based power-control scheme in wireless cellular systems,” IEEE/ACM Trans. Netw 11(2), 210–221, (2003).
[Crossref]

Stefan, I.

I. Stefan and H. Haas, “Hybrid visible light and radio frequency communication systems,” in 2014 IEEE Vehicular Technology Conference (IEEE, 2014), pp. 1–5.

Tao, Y.

Tsang, D. H.

B. Bensaou, D. H. Tsang, and K. T. Chan, “Credit-based fair queueing (CBFQ): a simple service-scheduling algorithm for packet-switched networks,” IEEE/ACM Trans. Netw 9(5), 591–604 (2001).
[Crossref]

Vandenberghe, L.

S. Boyd and L. Vandenberghe, Convex Optimization (Cambridge University Press, 2004).
[Crossref]

Vinel, A.

Y. L. Lee, T. C. Chuah, J. Loo, and A. Vinel, “Recent advances in radio resource management for heterogeneous LTE/LTE-A networks,” IEEE Commun. Surveys Tuts. 16(4), 2142–2180 (2014).
[Crossref]

Wang, H.

S. Wu, H. Wang, and C. H. Youn, “Visible light communications for 5G wireless networking systems: from fixed to mobile communications network,” IEEE Networks 28(6), 41–45 (2014).
[Crossref]

Wang, J.

X. Ling, J. Wang, X. Liang, Z. Ding, and C. Zhao, “Offset and power optimization for DCO-OFDM in visible light communication systems,” IEEE Trans. Signal Process. 64(2), 349–363 (2016).
[Crossref]

R. Zhang, J. Wang, Z. Wang, Z. Xu, C. Zhao, and L. Hanzo, “Visible light communications in heterogeneous networks: paving the way for user-centric design,” IEEE Wireless Commun. 22(2), 8–16 (2015).
[Crossref]

Y. Tao, X. Liang, J. Wang, and C. Zhao, “Scheduling for indoor visible light communication based on graph theory,” Opt. Express 23(3), 2737–2752 (2015).
[Crossref] [PubMed]

X. Li, R. Zhang, J. Wang, and L. Hanzo, “Cell-centric and user-centric multi-user scheduling in visible light communication aided networks,” in IEEE International Conference on Communications (IEEE, 2015), pp. 5120–5125.

Wang, L.

D. Liu, L. Wang, Y. Chen, M. Elkashlan, K. Wong, R. Schober, and L. Hanzo, “User Association in 5G Networks: A survey and an outlook,” IEEE Commun. Surveys Tuts. 18(2), 1018–1044 (2016).
[Crossref]

Wang, Z.

R. Zhang, J. Wang, Z. Wang, Z. Xu, C. Zhao, and L. Hanzo, “Visible light communications in heterogeneous networks: paving the way for user-centric design,” IEEE Wireless Commun. 22(2), 8–16 (2015).
[Crossref]

Z. Wang, C. Yu, W. D. Zhong, J. Chen, and W. Chen, “Performance of a novel LED lamp arrangement to reduce SNR fluctuation for multi-user visible light communication systems,” Opt. Express 20(4), 4564–4573 (2012).
[Crossref] [PubMed]

Watson, S.

Wong, K.

D. Liu, L. Wang, Y. Chen, M. Elkashlan, K. Wong, R. Schober, and L. Hanzo, “User Association in 5G Networks: A survey and an outlook,” IEEE Commun. Surveys Tuts. 18(2), 1018–1044 (2016).
[Crossref]

Wu, S.

S. Wu, H. Wang, and C. H. Youn, “Visible light communications for 5G wireless networking systems: from fixed to mobile communications network,” IEEE Networks 28(6), 41–45 (2014).
[Crossref]

Xiao, M.

M. Xiao, N.B. Shroff, and E.K.-P. Chong, “A utility-based power-control scheme in wireless cellular systems,” IEEE/ACM Trans. Netw 11(2), 210–221, (2003).
[Crossref]

Xu, Z.

R. Zhang, J. Wang, Z. Wang, Z. Xu, C. Zhao, and L. Hanzo, “Visible light communications in heterogeneous networks: paving the way for user-centric design,” IEEE Wireless Commun. 22(2), 8–16 (2015).
[Crossref]

Yaffe, Y.

A. Leshem, E. Zehavi, and Y. Yaffe, “Multichannel opportunistic carrier sensing for stable channel access control in cognitive radio systems,” IEEE J. Sel. Areas Commun. 30(1), 82–95 (2012).
[Crossref]

Yao, Y.

L. Dai, S. Zhou, and Y. Yao, “Capacity analysis in CDMA distributed antenna systems,” IEEE Trans. Wireless Commun. 4(6), 2613–2620 (2005).
[Crossref]

Youn, C. H.

S. Wu, H. Wang, and C. H. Youn, “Visible light communications for 5G wireless networking systems: from fixed to mobile communications network,” IEEE Networks 28(6), 41–45 (2014).
[Crossref]

Yu, C.

Zehavi, E.

A. Leshem, E. Zehavi, and Y. Yaffe, “Multichannel opportunistic carrier sensing for stable channel access control in cognitive radio systems,” IEEE J. Sel. Areas Commun. 30(1), 82–95 (2012).
[Crossref]

Zhang, R.

R. Zhang, J. Wang, Z. Wang, Z. Xu, C. Zhao, and L. Hanzo, “Visible light communications in heterogeneous networks: paving the way for user-centric design,” IEEE Wireless Commun. 22(2), 8–16 (2015).
[Crossref]

X. Li, R. Zhang, J. Wang, and L. Hanzo, “Cell-centric and user-centric multi-user scheduling in visible light communication aided networks,” in IEEE International Conference on Communications (IEEE, 2015), pp. 5120–5125.

Zhang, S.

Zhao, C.

X. Ling, J. Wang, X. Liang, Z. Ding, and C. Zhao, “Offset and power optimization for DCO-OFDM in visible light communication systems,” IEEE Trans. Signal Process. 64(2), 349–363 (2016).
[Crossref]

R. Zhang, J. Wang, Z. Wang, Z. Xu, C. Zhao, and L. Hanzo, “Visible light communications in heterogeneous networks: paving the way for user-centric design,” IEEE Wireless Commun. 22(2), 8–16 (2015).
[Crossref]

Y. Tao, X. Liang, J. Wang, and C. Zhao, “Scheduling for indoor visible light communication based on graph theory,” Opt. Express 23(3), 2737–2752 (2015).
[Crossref] [PubMed]

Zhong, W. D.

Zhou, S.

L. Dai, S. Zhou, and Y. Yao, “Capacity analysis in CDMA distributed antenna systems,” IEEE Trans. Wireless Commun. 4(6), 2613–2620 (2005).
[Crossref]

Amer. Math. Monthly (1)

D. Gale and L.S. Shapley, “College admissions and stability of marriage,” Amer. Math. Monthly 69(1), 9–15 (1962).
[Crossref]

IEEE Commun. Mag. (2)

F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, and P. Popovski, “Five disruptive technology directions for 5G,” IEEE Commun. Mag. 52(2), 74–80 (2014).
[Crossref]

H. Elgala, R. Mesleh, and H. Haas, “Indoor optical wireless communication: potential and state-of-the-art,” IEEE Commun. Mag. 49(9), 56–62 (2011).
[Crossref]

IEEE Commun. Surveys Tuts. (2)

D. Liu, L. Wang, Y. Chen, M. Elkashlan, K. Wong, R. Schober, and L. Hanzo, “User Association in 5G Networks: A survey and an outlook,” IEEE Commun. Surveys Tuts. 18(2), 1018–1044 (2016).
[Crossref]

Y. L. Lee, T. C. Chuah, J. Loo, and A. Vinel, “Recent advances in radio resource management for heterogeneous LTE/LTE-A networks,” IEEE Commun. Surveys Tuts. 16(4), 2142–2180 (2014).
[Crossref]

IEEE J. Sel. Areas Commun. (1)

A. Leshem, E. Zehavi, and Y. Yaffe, “Multichannel opportunistic carrier sensing for stable channel access control in cognitive radio systems,” IEEE J. Sel. Areas Commun. 30(1), 82–95 (2012).
[Crossref]

IEEE Networks (1)

S. Wu, H. Wang, and C. H. Youn, “Visible light communications for 5G wireless networking systems: from fixed to mobile communications network,” IEEE Networks 28(6), 41–45 (2014).
[Crossref]

IEEE Trans. Consum. Electron. (1)

T. Komine and M. Nakagawa, “Fundamental analysis for visible-light communication system using LED lights,” IEEE Trans. Consum. Electron. 50(1), 100–107 (2004).
[Crossref]

IEEE Trans. Signal Process. (1)

X. Ling, J. Wang, X. Liang, Z. Ding, and C. Zhao, “Offset and power optimization for DCO-OFDM in visible light communication systems,” IEEE Trans. Signal Process. 64(2), 349–363 (2016).
[Crossref]

IEEE Trans. Veh. Technol. (1)

D. W. K. Ng and R. Schober, “Cross-layer scheduling for OFDMA amplify-and-forward relay networks,” IEEE Trans. Veh. Technol. 59(3), 1443–1458 (2010).
[Crossref]

IEEE Trans. Wireless Commun. (2)

D. W. K. Ng and R. Schober, “Resource allocation and scheduling in multi-cell OFDMA systems with decode-and-forward relaying,” IEEE Trans. Wireless Commun. 10(7), 2246–2258 (2011).
[Crossref]

L. Dai, S. Zhou, and Y. Yao, “Capacity analysis in CDMA distributed antenna systems,” IEEE Trans. Wireless Commun. 4(6), 2613–2620 (2005).
[Crossref]

IEEE Wireless Commun. (1)

R. Zhang, J. Wang, Z. Wang, Z. Xu, C. Zhao, and L. Hanzo, “Visible light communications in heterogeneous networks: paving the way for user-centric design,” IEEE Wireless Commun. 22(2), 8–16 (2015).
[Crossref]

IEEE/ACM Trans. Netw (2)

M. Xiao, N.B. Shroff, and E.K.-P. Chong, “A utility-based power-control scheme in wireless cellular systems,” IEEE/ACM Trans. Netw 11(2), 210–221, (2003).
[Crossref]

B. Bensaou, D. H. Tsang, and K. T. Chan, “Credit-based fair queueing (CBFQ): a simple service-scheduling algorithm for packet-switched networks,” IEEE/ACM Trans. Netw 9(5), 591–604 (2001).
[Crossref]

J. Lightwave Technol. (1)

J. Polit. Econ. (1)

A. E. Roth, “The evolution of the labor market for medical interns and residents: a case study in game theory,” J. Polit. Econ. 2(6), 991–1016 (1984).
[Crossref]

Opt. Express (3)

Proc. IEEE (1)

J. Kahn and J. Barry, “Wireless intrared communications,” Proc. IEEE 85(2), 265–298 (1997).
[Crossref]

Other (5)

X. Li, R. Zhang, J. Wang, and L. Hanzo, “Cell-centric and user-centric multi-user scheduling in visible light communication aided networks,” in IEEE International Conference on Communications (IEEE, 2015), pp. 5120–5125.

S. Boyd and L. Vandenberghe, Convex Optimization (Cambridge University Press, 2004).
[Crossref]

Z. Ghassemlooy, W. Popoola, and S. Rajbhandari, Optical Wireless Communications: System and Channel Modeling with MATLAB (CRC Press, 2012).

J. Liu, P. W. C. Chan, D. W. K. Ng, E. S. Lo, and S. Shimamoto, “Hybrid visible light communications in Intelligent Transportation Systems with position based services,” in 2012 IEEE Globecom Workshops (IEEE, 2012), pp. 1254–1259.

I. Stefan and H. Haas, “Hybrid visible light and radio frequency communication systems,” in 2014 IEEE Vehicular Technology Conference (IEEE, 2014), pp. 1–5.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Layout of the considered indoor VLC system.
Fig. 2
Fig. 2 An example of a stable marriage.
Fig. 3
Fig. 3 The flowchart of DSMSA.
Fig. 4
Fig. 4 Regular access point arrangement.
Fig. 5
Fig. 5 Received power distribution.
Fig. 6
Fig. 6 Sum rate performance.
Fig. 7
Fig. 7 Service fairness index.
Fig. 8
Fig. 8 Active user ratio.
Fig. 9
Fig. 9 Effects of the FOV.
Fig. 10
Fig. 10 Irregular Access Points arrangement.
Fig. 11
Fig. 11 Performance comparison for the irregular AP arrangement.
Fig. 12
Fig. 12 Impact of the FOV in the irregular AP arrangement.

Tables (3)

Tables Icon

Algorithm 1 Decentralized Stable Matching Scheduling Algorithm (DSMSA)

Tables Icon

Table 1 Parameters used in the simulation.

Tables Icon

Table 2 Comparison of the four scheduling methods.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

h i j = { ( l + 1 ) S j 2 π r i j 2 cos l ( ψ ) cos ( φ ) T s ( φ ) G ( φ ) φ φ F 0 , φ > φ F .
G ( φ ) = { R I 2 sin 2 φ F φ φ F 0 , φ > φ F ,
P ( u j , A j ) = i A j p i h i j
P c ( u j , A j ) = i A j c p i h i j .
ξ j = γ 2 P ( u j , A j ) 2 σ N 2 ( u j , A j ) + γ 2 P c ( u j , A j ) 2 ,
σ s 2 ( u j , A j ) = 2 q γ P ( u j , A j ) + 2 I b g I 2 B
σ t 2 ( u j ) = 8 π k B T k η c I 2 B 2 S j O V G + 16 π 2 k B T k Γ η c 2 B 3 I 3 S j 2 g m ,
F I j ( u j ) = 1 ( 1 + f ¯ j ) ( 1 + d j ( j ) ) ,
f ¯ j = ( 1 1 T ) f ¯ j , T + 1 T f j ,
N ( u j ) = { u u j U | a A , { ( u , a ) , ( u j , a ) } E } .
d j ( j ) = | N ( u j ) | .
( U , A , { > u } u U , { > a } a A , { q u } u U )
S F I = max i , j | r ¯ i w i r ¯ j w j | ( i L l = 1 L r ¯ l w l ) 1
S F L = max i , j L | r ¯ i r ¯ j | ( l = 1 L r ¯ l ) .
A U R = k = 1 K N k K L
oal ( u ) = { ral ( u ) , r u | q ( u ) | user u’s | q ( u ) | most preferred APs in ral ( u ) , r u > | q ( u ) |
ξ j = γ 2 P ( u j , A j ) 2 σ N 2 ( u j , A j ) + γ 2 ( C j P ( u j , A j ) ) 2

Metrics