Abstract

Ag nanoparticles are embedded in intentionally etched micro-circle p-GaN holes by means of a thermal agglomeration process to enhance the light absorption efficiency in InGaN/GaN multi-quantum-well (MQW) solar cells. The Ag nanoparticles are theoretically and experimentally verified to generate the plasmon light scattering and the localized field enhancement near the MQW absorption layer. The external quantum efficiency enhancement at a target wavelength region is demonstrated by matching the plasmon resonance of Ag nanoparticles, resulting in a Jsc improvement of 9.1%. Furthermore, the Ag-nanoparticle-embedded InGaN solar cell is effectively fabricated considering the carrier extraction that more than 70% of F.F. and 2.2 V of high Voc are simultaneously attained.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Enhancing InGaN-based solar cell efficiency through localized surface plasmon interaction by embedding Ag nanoparticles in the absorbing layer

Jyh-Yang Wang, Fu-Ji Tsai, Jeng-Jie Huang, Cheng-Yen Chen, Nola Li, Yean-Woei Kiang, and C. C. Yang
Opt. Express 18(3) 2682-2694 (2010)

Localized surface plasmon enhanced quantum efficiency of InGaN/GaN quantum wells by Ag/SiO2 nanoparticles

Lee-Woon Jang, Dae-Woo Jeon, Trilochan Sahoo, Dong-Seob Jo, Jin-Woo Ju, Seung-jae Lee, Jong-Hyeob Baek, Jin-Kyu Yang, Jung-Hoon Song, Alexander Y. Polyakov, and In-Hwan Lee
Opt. Express 20(3) 2116-2123 (2012)

Enhanced power conversion efficiency in InGaN-based solar cells via graded composition multiple quantum wells

Yu-Lin Tsai, Sheng-Wen Wang, Jhih-Kai Huang, Lung-Hsing Hsu, Ching-Hsueh Chiu, Po-Tsung Lee, Peichen Yu, Chien-Chung Lin, and Hao-Chung Kuo
Opt. Express 23(24) A1434-A1441 (2015)

References

  • View by:
  • |
  • |
  • |

  1. H. Hamzaoui, A. S. Bouazzi, and B. Rezig, “Theoretical possibilities of InxGa1-xN tandem PV structures,” Sol. Energy Mater. Sol. Cells 87(1-4), 595–603 (2005).
    [Crossref]
  2. O. Jani, I. Ferguson, C. Honsberg, and S. Kurtz, “Design and characterization of GaN/InGaN solar cells,” Appl. Phys. Lett. 91(13), 132117 (2007).
    [Crossref]
  3. R. Dahal, B. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, “InGaN/GaN multiple quantum well solar cells with long operating wavelengths,” Appl. Phys. Lett. 94(6), 063505 (2009).
    [Crossref]
  4. J. Q. Wu, “When group-III nitrides go infrared: New properties and perspectives,” J. Appl. Phys. 106(1), 011101 (2009).
    [Crossref]
  5. R. H. Horng, S. T. Lin, Y. L. Tsai, M. T. Chu, W. Y. Liao, M. H. Wu, R. M. Lin, and Y. C. Lu, “Improved Conversion Efficiency of GaN/InGaN Thin-Film Solar Cells,” IEEE Electron Device Lett. 30(7), 724–726 (2009).
    [Crossref]
  6. D. H. Lien, Y. H. Hsiao, S. G. Yang, M. L. Tsai, T. C. Wei, S. C. Lee, and J. H. He, “Harsh photovoltaics using InGaN/GaN multiple quantum well schemes,” Nano Energy 11, 104–109 (2015).
    [Crossref]
  7. R. M. Farrell, C. J. Neufeld, S. C. Cruz, J. R. Lang, M. Iza, S. Keller, S. Nakamura, S. P. DenBaars, U. K. Mishra, and J. S. Speck, “High quantum efficiency InGaN/GaN multiple quantum well solar cells with spectral response extending out to 520 nm,” Appl. Phys. Lett. 98(20), 201107 (2011).
    [Crossref]
  8. K. Y. Lai, G. J. Lin, Y. L. Lai, Y. F. Chen, and J. H. He, “Effect of indium fluctuation on the photovoltaic characteristics of InGaN/GaN multiple quantum well solar cells,” Appl. Phys. Lett. 96(8), 081103 (2010).
    [Crossref]
  9. Y. L. Tsai, S. W. Wang, J. K. Huang, L. H. Hsu, C. H. Chiu, P. T. Lee, P. Yu, C. C. Lin, and H. C. Kuo, “Enhanced power conversion efficiency in InGaN-based solar cells via graded composition multiple quantum wells,” Opt. Express 23(24), A1434–A1441 (2015).
    [Crossref] [PubMed]
  10. K. Y. Lai, G. J. Lin, Y. R. Wu, M. L. Tsai, and J. H. He, “Efficiency dip observed with InGaN-based multiple quantum well solar cells,” Opt. Express 22(S7), A1753–A1760 (2014).
    [Crossref] [PubMed]
  11. J. Bai, M. Athanasiou, and T. Wang, “Influence of the ITO current spreading layer on efficiencies of InGaN-based solar cells,” Sol. Energy Mater. Sol. Cells 145, 226–230 (2016).
    [Crossref]
  12. B. R. Jampana, C. R. Weiland, R. L. Opila, I. T. Ferguson, and C. B. Honsberg, “Optical absorption dependence on composition and thickness of InxGa1-xN (0.05 < x < 0.22) grown on GaN/sapphire,” Thin Solid Films 520(22), 6807–6812 (2012).
    [Crossref]
  13. G. Yu, G. Wang, H. Ishikawa, M. Umeno, T. Soga, T. Egawa, J. Watanabe, and T. Jimbo, “Optical properties of wurtzite structure GaN on sapphire around fundamental absorption edge (0.78-4.77 eV) by spectroscopic ellipsometry and the optical transmission method,” Appl. Phys. Lett. 70(24), 3209–3211 (1997).
    [Crossref]
  14. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
    [Crossref] [PubMed]
  15. I. M. Pryce, D. D. Koleske, A. J. Fischer, and H. A. Atwater, “Plasmonic nanoparticle enhanced photocurrent in GaN/InGaN/GaN quantum well solar cells,” Appl. Phys. Lett. 96(15), 153501 (2010).
    [Crossref]
  16. P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt. 14(2), 024002 (2012).
    [Crossref]
  17. H. Tan, R. Santbergen, A. H. M. Smets, and M. Zeman, “Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles,” Nano Lett. 12(8), 4070–4076 (2012).
    [Crossref] [PubMed]
  18. S. W. Baek, J. Noh, C. H. Lee, B. Kim, M. K. Seo, and J. Y. Lee, “Plasmonic forward scattering effect in organic solar cells: a powerful optical engineering method,” Sci. Rep. 3, 1726 (2013).
    [Crossref]
  19. W. E. I. Sha, W. C. H. Choy, Y. G. Liu, and W. C. Chew, “Near-field multiple scattering effects of plasmonic nanospheres embedded into thin-film organic solar cells,” Appl. Phys. Lett. 99(11), 113304 (2011).
    [Crossref]
  20. A. P. Kulkarni, K. M. Noone, K. Munechika, S. R. Guyer, and D. S. Ginger, “Plasmon-enhanced charge carrier generation in organic photovoltaic films using silver nanoprisms,” Nano Lett. 10(4), 1501–1505 (2010).
    [Crossref] [PubMed]
  21. J. Y. Lee and P. Peumans, “The origin of enhanced optical absorption in solar cells with metal nanoparticles embedded in the active layer,” Opt. Express 18(10), 10078–10087 (2010).
    [Crossref] [PubMed]
  22. X. Li, Z. B. Deng, Y. H. Yin, L. J. Zhu, D. H. Xu, Y. S. Wang, and F. Teng, “Efficiency enhancement of polymer solar cells with Ag nanoparticles incorporated into PEDOT:PSS layer,” J. Mater. Sci. 25, 140–145 (2014).
  23. X. J. Liu, L. J. Jia, G. P. Fan, J. Gou, S. F. Liu, and B. J. Yan, “Au nanoparticle enhanced thin-film silicon solar cells,” Sol. Energy Mater. Sol. Cells 147, 225–234 (2016).
    [Crossref]
  24. S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
    [Crossref]
  25. F. O. Lenzmann, M. C. van Lare, J. Salpakari, P. Spinelli, J. B. Notta, M. Dorenkamper, N. J. Bakker, A. W. Weeber, and A. Polman, “Plasmonic light-trapping in a-Si:H solar cells by front-side Ag nanoparticle arrays: A benchmarking study,” Phys. Status Solidi., A Appl. Mater. Sci. 210(8), 1571–1574 (2013).
    [Crossref]
  26. K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008).
    [Crossref] [PubMed]
  27. J. Y. Wang, F. J. Tsai, J. J. Huang, C. Y. Chen, N. Li, Y. W. Kiang, and C. C. Yang, “Enhancing InGaN-based solar cell efficiency through localized surface plasmon interaction by embedding Ag nanoparticles in the absorbing layer,” Opt. Express 18(3), 2682–2694 (2010).
    [Crossref] [PubMed]
  28. Y. M. Song, E. S. Choi, G. C. Park, C. Y. Park, S. J. Jang, and Y. T. Lee, “Disordered antireflective nanostructures on GaN-based light-emitting diodes using Ag nanoparticles for improved light extraction efficiency,” Appl. Phys. Lett. 97(9), 093110 (2010).
    [Crossref]
  29. D. Kim, A. L. Giermann, and C. V. Thompson, “Solid-state dewetting of patterned thin films,” Appl. Phys. Lett. 95(25), 251903 (2009).
    [Crossref]
  30. Y. Kojima and T. Kato, “Nanoparticle formation in Au thin films by electron-beam-induced dewetting,” Nanotechnology 19(25), 255605 (2008).
    [Crossref] [PubMed]
  31. J. P. Shim, D. Kim, M. Choe, T. Lee, S. J. Park, and D. S. Lee, “A self-assembled Ag nanoparticle agglomeration process on graphene for enhanced light output in GaN-based LEDs,” Nanotechnology 23(25), 255201 (2012).
    [Crossref] [PubMed]
  32. T. L. Temple, G. D. K. Mahanama, H. S. Reehal, and D. M. Bagnall, “Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Sol. Energy Mater. Sol. Cells 93(11), 1978–1985 (2009).
    [Crossref]
  33. J. H. Oh, H. Lee, D. Kim, and T. Y. Seong, “Effect of Ag nanoparticle size on the plasmonic photocatalytic properties of TiO2 thin films,” Surf. Coat. Tech. 206(1), 185–189 (2011).
    [Crossref]

2016 (2)

J. Bai, M. Athanasiou, and T. Wang, “Influence of the ITO current spreading layer on efficiencies of InGaN-based solar cells,” Sol. Energy Mater. Sol. Cells 145, 226–230 (2016).
[Crossref]

X. J. Liu, L. J. Jia, G. P. Fan, J. Gou, S. F. Liu, and B. J. Yan, “Au nanoparticle enhanced thin-film silicon solar cells,” Sol. Energy Mater. Sol. Cells 147, 225–234 (2016).
[Crossref]

2015 (2)

2014 (2)

K. Y. Lai, G. J. Lin, Y. R. Wu, M. L. Tsai, and J. H. He, “Efficiency dip observed with InGaN-based multiple quantum well solar cells,” Opt. Express 22(S7), A1753–A1760 (2014).
[Crossref] [PubMed]

X. Li, Z. B. Deng, Y. H. Yin, L. J. Zhu, D. H. Xu, Y. S. Wang, and F. Teng, “Efficiency enhancement of polymer solar cells with Ag nanoparticles incorporated into PEDOT:PSS layer,” J. Mater. Sci. 25, 140–145 (2014).

2013 (2)

F. O. Lenzmann, M. C. van Lare, J. Salpakari, P. Spinelli, J. B. Notta, M. Dorenkamper, N. J. Bakker, A. W. Weeber, and A. Polman, “Plasmonic light-trapping in a-Si:H solar cells by front-side Ag nanoparticle arrays: A benchmarking study,” Phys. Status Solidi., A Appl. Mater. Sci. 210(8), 1571–1574 (2013).
[Crossref]

S. W. Baek, J. Noh, C. H. Lee, B. Kim, M. K. Seo, and J. Y. Lee, “Plasmonic forward scattering effect in organic solar cells: a powerful optical engineering method,” Sci. Rep. 3, 1726 (2013).
[Crossref]

2012 (4)

B. R. Jampana, C. R. Weiland, R. L. Opila, I. T. Ferguson, and C. B. Honsberg, “Optical absorption dependence on composition and thickness of InxGa1-xN (0.05 < x < 0.22) grown on GaN/sapphire,” Thin Solid Films 520(22), 6807–6812 (2012).
[Crossref]

J. P. Shim, D. Kim, M. Choe, T. Lee, S. J. Park, and D. S. Lee, “A self-assembled Ag nanoparticle agglomeration process on graphene for enhanced light output in GaN-based LEDs,” Nanotechnology 23(25), 255201 (2012).
[Crossref] [PubMed]

P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt. 14(2), 024002 (2012).
[Crossref]

H. Tan, R. Santbergen, A. H. M. Smets, and M. Zeman, “Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles,” Nano Lett. 12(8), 4070–4076 (2012).
[Crossref] [PubMed]

2011 (3)

J. H. Oh, H. Lee, D. Kim, and T. Y. Seong, “Effect of Ag nanoparticle size on the plasmonic photocatalytic properties of TiO2 thin films,” Surf. Coat. Tech. 206(1), 185–189 (2011).
[Crossref]

W. E. I. Sha, W. C. H. Choy, Y. G. Liu, and W. C. Chew, “Near-field multiple scattering effects of plasmonic nanospheres embedded into thin-film organic solar cells,” Appl. Phys. Lett. 99(11), 113304 (2011).
[Crossref]

R. M. Farrell, C. J. Neufeld, S. C. Cruz, J. R. Lang, M. Iza, S. Keller, S. Nakamura, S. P. DenBaars, U. K. Mishra, and J. S. Speck, “High quantum efficiency InGaN/GaN multiple quantum well solar cells with spectral response extending out to 520 nm,” Appl. Phys. Lett. 98(20), 201107 (2011).
[Crossref]

2010 (7)

K. Y. Lai, G. J. Lin, Y. L. Lai, Y. F. Chen, and J. H. He, “Effect of indium fluctuation on the photovoltaic characteristics of InGaN/GaN multiple quantum well solar cells,” Appl. Phys. Lett. 96(8), 081103 (2010).
[Crossref]

A. P. Kulkarni, K. M. Noone, K. Munechika, S. R. Guyer, and D. S. Ginger, “Plasmon-enhanced charge carrier generation in organic photovoltaic films using silver nanoprisms,” Nano Lett. 10(4), 1501–1505 (2010).
[Crossref] [PubMed]

J. Y. Lee and P. Peumans, “The origin of enhanced optical absorption in solar cells with metal nanoparticles embedded in the active layer,” Opt. Express 18(10), 10078–10087 (2010).
[Crossref] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

I. M. Pryce, D. D. Koleske, A. J. Fischer, and H. A. Atwater, “Plasmonic nanoparticle enhanced photocurrent in GaN/InGaN/GaN quantum well solar cells,” Appl. Phys. Lett. 96(15), 153501 (2010).
[Crossref]

J. Y. Wang, F. J. Tsai, J. J. Huang, C. Y. Chen, N. Li, Y. W. Kiang, and C. C. Yang, “Enhancing InGaN-based solar cell efficiency through localized surface plasmon interaction by embedding Ag nanoparticles in the absorbing layer,” Opt. Express 18(3), 2682–2694 (2010).
[Crossref] [PubMed]

Y. M. Song, E. S. Choi, G. C. Park, C. Y. Park, S. J. Jang, and Y. T. Lee, “Disordered antireflective nanostructures on GaN-based light-emitting diodes using Ag nanoparticles for improved light extraction efficiency,” Appl. Phys. Lett. 97(9), 093110 (2010).
[Crossref]

2009 (5)

D. Kim, A. L. Giermann, and C. V. Thompson, “Solid-state dewetting of patterned thin films,” Appl. Phys. Lett. 95(25), 251903 (2009).
[Crossref]

T. L. Temple, G. D. K. Mahanama, H. S. Reehal, and D. M. Bagnall, “Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Sol. Energy Mater. Sol. Cells 93(11), 1978–1985 (2009).
[Crossref]

R. Dahal, B. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, “InGaN/GaN multiple quantum well solar cells with long operating wavelengths,” Appl. Phys. Lett. 94(6), 063505 (2009).
[Crossref]

J. Q. Wu, “When group-III nitrides go infrared: New properties and perspectives,” J. Appl. Phys. 106(1), 011101 (2009).
[Crossref]

R. H. Horng, S. T. Lin, Y. L. Tsai, M. T. Chu, W. Y. Liao, M. H. Wu, R. M. Lin, and Y. C. Lu, “Improved Conversion Efficiency of GaN/InGaN Thin-Film Solar Cells,” IEEE Electron Device Lett. 30(7), 724–726 (2009).
[Crossref]

2008 (2)

K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008).
[Crossref] [PubMed]

Y. Kojima and T. Kato, “Nanoparticle formation in Au thin films by electron-beam-induced dewetting,” Nanotechnology 19(25), 255605 (2008).
[Crossref] [PubMed]

2007 (2)

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[Crossref]

O. Jani, I. Ferguson, C. Honsberg, and S. Kurtz, “Design and characterization of GaN/InGaN solar cells,” Appl. Phys. Lett. 91(13), 132117 (2007).
[Crossref]

2005 (1)

H. Hamzaoui, A. S. Bouazzi, and B. Rezig, “Theoretical possibilities of InxGa1-xN tandem PV structures,” Sol. Energy Mater. Sol. Cells 87(1-4), 595–603 (2005).
[Crossref]

1997 (1)

G. Yu, G. Wang, H. Ishikawa, M. Umeno, T. Soga, T. Egawa, J. Watanabe, and T. Jimbo, “Optical properties of wurtzite structure GaN on sapphire around fundamental absorption edge (0.78-4.77 eV) by spectroscopic ellipsometry and the optical transmission method,” Appl. Phys. Lett. 70(24), 3209–3211 (1997).
[Crossref]

Athanasiou, M.

J. Bai, M. Athanasiou, and T. Wang, “Influence of the ITO current spreading layer on efficiencies of InGaN-based solar cells,” Sol. Energy Mater. Sol. Cells 145, 226–230 (2016).
[Crossref]

Atwater, H. A.

P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt. 14(2), 024002 (2012).
[Crossref]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

I. M. Pryce, D. D. Koleske, A. J. Fischer, and H. A. Atwater, “Plasmonic nanoparticle enhanced photocurrent in GaN/InGaN/GaN quantum well solar cells,” Appl. Phys. Lett. 96(15), 153501 (2010).
[Crossref]

Baek, S. W.

S. W. Baek, J. Noh, C. H. Lee, B. Kim, M. K. Seo, and J. Y. Lee, “Plasmonic forward scattering effect in organic solar cells: a powerful optical engineering method,” Sci. Rep. 3, 1726 (2013).
[Crossref]

Bagnall, D. M.

T. L. Temple, G. D. K. Mahanama, H. S. Reehal, and D. M. Bagnall, “Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Sol. Energy Mater. Sol. Cells 93(11), 1978–1985 (2009).
[Crossref]

Bai, J.

J. Bai, M. Athanasiou, and T. Wang, “Influence of the ITO current spreading layer on efficiencies of InGaN-based solar cells,” Sol. Energy Mater. Sol. Cells 145, 226–230 (2016).
[Crossref]

Bakker, N. J.

F. O. Lenzmann, M. C. van Lare, J. Salpakari, P. Spinelli, J. B. Notta, M. Dorenkamper, N. J. Bakker, A. W. Weeber, and A. Polman, “Plasmonic light-trapping in a-Si:H solar cells by front-side Ag nanoparticle arrays: A benchmarking study,” Phys. Status Solidi., A Appl. Mater. Sci. 210(8), 1571–1574 (2013).
[Crossref]

Bouazzi, A. S.

H. Hamzaoui, A. S. Bouazzi, and B. Rezig, “Theoretical possibilities of InxGa1-xN tandem PV structures,” Sol. Energy Mater. Sol. Cells 87(1-4), 595–603 (2005).
[Crossref]

Catchpole, K. R.

K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008).
[Crossref] [PubMed]

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[Crossref]

Chen, C. Y.

Chen, Y. F.

K. Y. Lai, G. J. Lin, Y. L. Lai, Y. F. Chen, and J. H. He, “Effect of indium fluctuation on the photovoltaic characteristics of InGaN/GaN multiple quantum well solar cells,” Appl. Phys. Lett. 96(8), 081103 (2010).
[Crossref]

Chew, W. C.

W. E. I. Sha, W. C. H. Choy, Y. G. Liu, and W. C. Chew, “Near-field multiple scattering effects of plasmonic nanospheres embedded into thin-film organic solar cells,” Appl. Phys. Lett. 99(11), 113304 (2011).
[Crossref]

Chiu, C. H.

Choe, M.

J. P. Shim, D. Kim, M. Choe, T. Lee, S. J. Park, and D. S. Lee, “A self-assembled Ag nanoparticle agglomeration process on graphene for enhanced light output in GaN-based LEDs,” Nanotechnology 23(25), 255201 (2012).
[Crossref] [PubMed]

Choi, E. S.

Y. M. Song, E. S. Choi, G. C. Park, C. Y. Park, S. J. Jang, and Y. T. Lee, “Disordered antireflective nanostructures on GaN-based light-emitting diodes using Ag nanoparticles for improved light extraction efficiency,” Appl. Phys. Lett. 97(9), 093110 (2010).
[Crossref]

Choy, W. C. H.

W. E. I. Sha, W. C. H. Choy, Y. G. Liu, and W. C. Chew, “Near-field multiple scattering effects of plasmonic nanospheres embedded into thin-film organic solar cells,” Appl. Phys. Lett. 99(11), 113304 (2011).
[Crossref]

Chu, M. T.

R. H. Horng, S. T. Lin, Y. L. Tsai, M. T. Chu, W. Y. Liao, M. H. Wu, R. M. Lin, and Y. C. Lu, “Improved Conversion Efficiency of GaN/InGaN Thin-Film Solar Cells,” IEEE Electron Device Lett. 30(7), 724–726 (2009).
[Crossref]

Cruz, S. C.

R. M. Farrell, C. J. Neufeld, S. C. Cruz, J. R. Lang, M. Iza, S. Keller, S. Nakamura, S. P. DenBaars, U. K. Mishra, and J. S. Speck, “High quantum efficiency InGaN/GaN multiple quantum well solar cells with spectral response extending out to 520 nm,” Appl. Phys. Lett. 98(20), 201107 (2011).
[Crossref]

Dahal, R.

R. Dahal, B. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, “InGaN/GaN multiple quantum well solar cells with long operating wavelengths,” Appl. Phys. Lett. 94(6), 063505 (2009).
[Crossref]

DenBaars, S. P.

R. M. Farrell, C. J. Neufeld, S. C. Cruz, J. R. Lang, M. Iza, S. Keller, S. Nakamura, S. P. DenBaars, U. K. Mishra, and J. S. Speck, “High quantum efficiency InGaN/GaN multiple quantum well solar cells with spectral response extending out to 520 nm,” Appl. Phys. Lett. 98(20), 201107 (2011).
[Crossref]

Deng, Z. B.

X. Li, Z. B. Deng, Y. H. Yin, L. J. Zhu, D. H. Xu, Y. S. Wang, and F. Teng, “Efficiency enhancement of polymer solar cells with Ag nanoparticles incorporated into PEDOT:PSS layer,” J. Mater. Sci. 25, 140–145 (2014).

Dorenkamper, M.

F. O. Lenzmann, M. C. van Lare, J. Salpakari, P. Spinelli, J. B. Notta, M. Dorenkamper, N. J. Bakker, A. W. Weeber, and A. Polman, “Plasmonic light-trapping in a-Si:H solar cells by front-side Ag nanoparticle arrays: A benchmarking study,” Phys. Status Solidi., A Appl. Mater. Sci. 210(8), 1571–1574 (2013).
[Crossref]

Egawa, T.

G. Yu, G. Wang, H. Ishikawa, M. Umeno, T. Soga, T. Egawa, J. Watanabe, and T. Jimbo, “Optical properties of wurtzite structure GaN on sapphire around fundamental absorption edge (0.78-4.77 eV) by spectroscopic ellipsometry and the optical transmission method,” Appl. Phys. Lett. 70(24), 3209–3211 (1997).
[Crossref]

Fan, G. P.

X. J. Liu, L. J. Jia, G. P. Fan, J. Gou, S. F. Liu, and B. J. Yan, “Au nanoparticle enhanced thin-film silicon solar cells,” Sol. Energy Mater. Sol. Cells 147, 225–234 (2016).
[Crossref]

Farrell, R. M.

R. M. Farrell, C. J. Neufeld, S. C. Cruz, J. R. Lang, M. Iza, S. Keller, S. Nakamura, S. P. DenBaars, U. K. Mishra, and J. S. Speck, “High quantum efficiency InGaN/GaN multiple quantum well solar cells with spectral response extending out to 520 nm,” Appl. Phys. Lett. 98(20), 201107 (2011).
[Crossref]

Ferguson, I.

O. Jani, I. Ferguson, C. Honsberg, and S. Kurtz, “Design and characterization of GaN/InGaN solar cells,” Appl. Phys. Lett. 91(13), 132117 (2007).
[Crossref]

Ferguson, I. T.

B. R. Jampana, C. R. Weiland, R. L. Opila, I. T. Ferguson, and C. B. Honsberg, “Optical absorption dependence on composition and thickness of InxGa1-xN (0.05 < x < 0.22) grown on GaN/sapphire,” Thin Solid Films 520(22), 6807–6812 (2012).
[Crossref]

Ferry, V. E.

P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt. 14(2), 024002 (2012).
[Crossref]

Fischer, A. J.

I. M. Pryce, D. D. Koleske, A. J. Fischer, and H. A. Atwater, “Plasmonic nanoparticle enhanced photocurrent in GaN/InGaN/GaN quantum well solar cells,” Appl. Phys. Lett. 96(15), 153501 (2010).
[Crossref]

Giermann, A. L.

D. Kim, A. L. Giermann, and C. V. Thompson, “Solid-state dewetting of patterned thin films,” Appl. Phys. Lett. 95(25), 251903 (2009).
[Crossref]

Ginger, D. S.

A. P. Kulkarni, K. M. Noone, K. Munechika, S. R. Guyer, and D. S. Ginger, “Plasmon-enhanced charge carrier generation in organic photovoltaic films using silver nanoprisms,” Nano Lett. 10(4), 1501–1505 (2010).
[Crossref] [PubMed]

Gou, J.

X. J. Liu, L. J. Jia, G. P. Fan, J. Gou, S. F. Liu, and B. J. Yan, “Au nanoparticle enhanced thin-film silicon solar cells,” Sol. Energy Mater. Sol. Cells 147, 225–234 (2016).
[Crossref]

Green, M. A.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[Crossref]

Guyer, S. R.

A. P. Kulkarni, K. M. Noone, K. Munechika, S. R. Guyer, and D. S. Ginger, “Plasmon-enhanced charge carrier generation in organic photovoltaic films using silver nanoprisms,” Nano Lett. 10(4), 1501–1505 (2010).
[Crossref] [PubMed]

Hamzaoui, H.

H. Hamzaoui, A. S. Bouazzi, and B. Rezig, “Theoretical possibilities of InxGa1-xN tandem PV structures,” Sol. Energy Mater. Sol. Cells 87(1-4), 595–603 (2005).
[Crossref]

He, J. H.

D. H. Lien, Y. H. Hsiao, S. G. Yang, M. L. Tsai, T. C. Wei, S. C. Lee, and J. H. He, “Harsh photovoltaics using InGaN/GaN multiple quantum well schemes,” Nano Energy 11, 104–109 (2015).
[Crossref]

K. Y. Lai, G. J. Lin, Y. R. Wu, M. L. Tsai, and J. H. He, “Efficiency dip observed with InGaN-based multiple quantum well solar cells,” Opt. Express 22(S7), A1753–A1760 (2014).
[Crossref] [PubMed]

K. Y. Lai, G. J. Lin, Y. L. Lai, Y. F. Chen, and J. H. He, “Effect of indium fluctuation on the photovoltaic characteristics of InGaN/GaN multiple quantum well solar cells,” Appl. Phys. Lett. 96(8), 081103 (2010).
[Crossref]

Honsberg, C.

O. Jani, I. Ferguson, C. Honsberg, and S. Kurtz, “Design and characterization of GaN/InGaN solar cells,” Appl. Phys. Lett. 91(13), 132117 (2007).
[Crossref]

Honsberg, C. B.

B. R. Jampana, C. R. Weiland, R. L. Opila, I. T. Ferguson, and C. B. Honsberg, “Optical absorption dependence on composition and thickness of InxGa1-xN (0.05 < x < 0.22) grown on GaN/sapphire,” Thin Solid Films 520(22), 6807–6812 (2012).
[Crossref]

Horng, R. H.

R. H. Horng, S. T. Lin, Y. L. Tsai, M. T. Chu, W. Y. Liao, M. H. Wu, R. M. Lin, and Y. C. Lu, “Improved Conversion Efficiency of GaN/InGaN Thin-Film Solar Cells,” IEEE Electron Device Lett. 30(7), 724–726 (2009).
[Crossref]

Hsiao, Y. H.

D. H. Lien, Y. H. Hsiao, S. G. Yang, M. L. Tsai, T. C. Wei, S. C. Lee, and J. H. He, “Harsh photovoltaics using InGaN/GaN multiple quantum well schemes,” Nano Energy 11, 104–109 (2015).
[Crossref]

Hsu, L. H.

Huang, J. J.

Huang, J. K.

Ishikawa, H.

G. Yu, G. Wang, H. Ishikawa, M. Umeno, T. Soga, T. Egawa, J. Watanabe, and T. Jimbo, “Optical properties of wurtzite structure GaN on sapphire around fundamental absorption edge (0.78-4.77 eV) by spectroscopic ellipsometry and the optical transmission method,” Appl. Phys. Lett. 70(24), 3209–3211 (1997).
[Crossref]

Iza, M.

R. M. Farrell, C. J. Neufeld, S. C. Cruz, J. R. Lang, M. Iza, S. Keller, S. Nakamura, S. P. DenBaars, U. K. Mishra, and J. S. Speck, “High quantum efficiency InGaN/GaN multiple quantum well solar cells with spectral response extending out to 520 nm,” Appl. Phys. Lett. 98(20), 201107 (2011).
[Crossref]

Jampana, B. R.

B. R. Jampana, C. R. Weiland, R. L. Opila, I. T. Ferguson, and C. B. Honsberg, “Optical absorption dependence on composition and thickness of InxGa1-xN (0.05 < x < 0.22) grown on GaN/sapphire,” Thin Solid Films 520(22), 6807–6812 (2012).
[Crossref]

Jang, S. J.

Y. M. Song, E. S. Choi, G. C. Park, C. Y. Park, S. J. Jang, and Y. T. Lee, “Disordered antireflective nanostructures on GaN-based light-emitting diodes using Ag nanoparticles for improved light extraction efficiency,” Appl. Phys. Lett. 97(9), 093110 (2010).
[Crossref]

Jani, O.

O. Jani, I. Ferguson, C. Honsberg, and S. Kurtz, “Design and characterization of GaN/InGaN solar cells,” Appl. Phys. Lett. 91(13), 132117 (2007).
[Crossref]

Jia, L. J.

X. J. Liu, L. J. Jia, G. P. Fan, J. Gou, S. F. Liu, and B. J. Yan, “Au nanoparticle enhanced thin-film silicon solar cells,” Sol. Energy Mater. Sol. Cells 147, 225–234 (2016).
[Crossref]

Jiang, H. X.

R. Dahal, B. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, “InGaN/GaN multiple quantum well solar cells with long operating wavelengths,” Appl. Phys. Lett. 94(6), 063505 (2009).
[Crossref]

Jimbo, T.

G. Yu, G. Wang, H. Ishikawa, M. Umeno, T. Soga, T. Egawa, J. Watanabe, and T. Jimbo, “Optical properties of wurtzite structure GaN on sapphire around fundamental absorption edge (0.78-4.77 eV) by spectroscopic ellipsometry and the optical transmission method,” Appl. Phys. Lett. 70(24), 3209–3211 (1997).
[Crossref]

Kato, T.

Y. Kojima and T. Kato, “Nanoparticle formation in Au thin films by electron-beam-induced dewetting,” Nanotechnology 19(25), 255605 (2008).
[Crossref] [PubMed]

Keller, S.

R. M. Farrell, C. J. Neufeld, S. C. Cruz, J. R. Lang, M. Iza, S. Keller, S. Nakamura, S. P. DenBaars, U. K. Mishra, and J. S. Speck, “High quantum efficiency InGaN/GaN multiple quantum well solar cells with spectral response extending out to 520 nm,” Appl. Phys. Lett. 98(20), 201107 (2011).
[Crossref]

Kiang, Y. W.

Kim, B.

S. W. Baek, J. Noh, C. H. Lee, B. Kim, M. K. Seo, and J. Y. Lee, “Plasmonic forward scattering effect in organic solar cells: a powerful optical engineering method,” Sci. Rep. 3, 1726 (2013).
[Crossref]

Kim, D.

J. P. Shim, D. Kim, M. Choe, T. Lee, S. J. Park, and D. S. Lee, “A self-assembled Ag nanoparticle agglomeration process on graphene for enhanced light output in GaN-based LEDs,” Nanotechnology 23(25), 255201 (2012).
[Crossref] [PubMed]

J. H. Oh, H. Lee, D. Kim, and T. Y. Seong, “Effect of Ag nanoparticle size on the plasmonic photocatalytic properties of TiO2 thin films,” Surf. Coat. Tech. 206(1), 185–189 (2011).
[Crossref]

D. Kim, A. L. Giermann, and C. V. Thompson, “Solid-state dewetting of patterned thin films,” Appl. Phys. Lett. 95(25), 251903 (2009).
[Crossref]

Kojima, Y.

Y. Kojima and T. Kato, “Nanoparticle formation in Au thin films by electron-beam-induced dewetting,” Nanotechnology 19(25), 255605 (2008).
[Crossref] [PubMed]

Koleske, D. D.

I. M. Pryce, D. D. Koleske, A. J. Fischer, and H. A. Atwater, “Plasmonic nanoparticle enhanced photocurrent in GaN/InGaN/GaN quantum well solar cells,” Appl. Phys. Lett. 96(15), 153501 (2010).
[Crossref]

Kulkarni, A. P.

A. P. Kulkarni, K. M. Noone, K. Munechika, S. R. Guyer, and D. S. Ginger, “Plasmon-enhanced charge carrier generation in organic photovoltaic films using silver nanoprisms,” Nano Lett. 10(4), 1501–1505 (2010).
[Crossref] [PubMed]

Kuo, H. C.

Kurtz, S.

O. Jani, I. Ferguson, C. Honsberg, and S. Kurtz, “Design and characterization of GaN/InGaN solar cells,” Appl. Phys. Lett. 91(13), 132117 (2007).
[Crossref]

Lai, K. Y.

K. Y. Lai, G. J. Lin, Y. R. Wu, M. L. Tsai, and J. H. He, “Efficiency dip observed with InGaN-based multiple quantum well solar cells,” Opt. Express 22(S7), A1753–A1760 (2014).
[Crossref] [PubMed]

K. Y. Lai, G. J. Lin, Y. L. Lai, Y. F. Chen, and J. H. He, “Effect of indium fluctuation on the photovoltaic characteristics of InGaN/GaN multiple quantum well solar cells,” Appl. Phys. Lett. 96(8), 081103 (2010).
[Crossref]

Lai, Y. L.

K. Y. Lai, G. J. Lin, Y. L. Lai, Y. F. Chen, and J. H. He, “Effect of indium fluctuation on the photovoltaic characteristics of InGaN/GaN multiple quantum well solar cells,” Appl. Phys. Lett. 96(8), 081103 (2010).
[Crossref]

Lang, J. R.

R. M. Farrell, C. J. Neufeld, S. C. Cruz, J. R. Lang, M. Iza, S. Keller, S. Nakamura, S. P. DenBaars, U. K. Mishra, and J. S. Speck, “High quantum efficiency InGaN/GaN multiple quantum well solar cells with spectral response extending out to 520 nm,” Appl. Phys. Lett. 98(20), 201107 (2011).
[Crossref]

Lee, C. H.

S. W. Baek, J. Noh, C. H. Lee, B. Kim, M. K. Seo, and J. Y. Lee, “Plasmonic forward scattering effect in organic solar cells: a powerful optical engineering method,” Sci. Rep. 3, 1726 (2013).
[Crossref]

Lee, D. S.

J. P. Shim, D. Kim, M. Choe, T. Lee, S. J. Park, and D. S. Lee, “A self-assembled Ag nanoparticle agglomeration process on graphene for enhanced light output in GaN-based LEDs,” Nanotechnology 23(25), 255201 (2012).
[Crossref] [PubMed]

Lee, H.

J. H. Oh, H. Lee, D. Kim, and T. Y. Seong, “Effect of Ag nanoparticle size on the plasmonic photocatalytic properties of TiO2 thin films,” Surf. Coat. Tech. 206(1), 185–189 (2011).
[Crossref]

Lee, J. Y.

S. W. Baek, J. Noh, C. H. Lee, B. Kim, M. K. Seo, and J. Y. Lee, “Plasmonic forward scattering effect in organic solar cells: a powerful optical engineering method,” Sci. Rep. 3, 1726 (2013).
[Crossref]

J. Y. Lee and P. Peumans, “The origin of enhanced optical absorption in solar cells with metal nanoparticles embedded in the active layer,” Opt. Express 18(10), 10078–10087 (2010).
[Crossref] [PubMed]

Lee, P. T.

Lee, S. C.

D. H. Lien, Y. H. Hsiao, S. G. Yang, M. L. Tsai, T. C. Wei, S. C. Lee, and J. H. He, “Harsh photovoltaics using InGaN/GaN multiple quantum well schemes,” Nano Energy 11, 104–109 (2015).
[Crossref]

Lee, T.

J. P. Shim, D. Kim, M. Choe, T. Lee, S. J. Park, and D. S. Lee, “A self-assembled Ag nanoparticle agglomeration process on graphene for enhanced light output in GaN-based LEDs,” Nanotechnology 23(25), 255201 (2012).
[Crossref] [PubMed]

Lee, Y. T.

Y. M. Song, E. S. Choi, G. C. Park, C. Y. Park, S. J. Jang, and Y. T. Lee, “Disordered antireflective nanostructures on GaN-based light-emitting diodes using Ag nanoparticles for improved light extraction efficiency,” Appl. Phys. Lett. 97(9), 093110 (2010).
[Crossref]

Lenzmann, F. O.

F. O. Lenzmann, M. C. van Lare, J. Salpakari, P. Spinelli, J. B. Notta, M. Dorenkamper, N. J. Bakker, A. W. Weeber, and A. Polman, “Plasmonic light-trapping in a-Si:H solar cells by front-side Ag nanoparticle arrays: A benchmarking study,” Phys. Status Solidi., A Appl. Mater. Sci. 210(8), 1571–1574 (2013).
[Crossref]

Li, J.

R. Dahal, B. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, “InGaN/GaN multiple quantum well solar cells with long operating wavelengths,” Appl. Phys. Lett. 94(6), 063505 (2009).
[Crossref]

Li, N.

Li, X.

X. Li, Z. B. Deng, Y. H. Yin, L. J. Zhu, D. H. Xu, Y. S. Wang, and F. Teng, “Efficiency enhancement of polymer solar cells with Ag nanoparticles incorporated into PEDOT:PSS layer,” J. Mater. Sci. 25, 140–145 (2014).

Liao, W. Y.

R. H. Horng, S. T. Lin, Y. L. Tsai, M. T. Chu, W. Y. Liao, M. H. Wu, R. M. Lin, and Y. C. Lu, “Improved Conversion Efficiency of GaN/InGaN Thin-Film Solar Cells,” IEEE Electron Device Lett. 30(7), 724–726 (2009).
[Crossref]

Lien, D. H.

D. H. Lien, Y. H. Hsiao, S. G. Yang, M. L. Tsai, T. C. Wei, S. C. Lee, and J. H. He, “Harsh photovoltaics using InGaN/GaN multiple quantum well schemes,” Nano Energy 11, 104–109 (2015).
[Crossref]

Lin, C. C.

Lin, G. J.

K. Y. Lai, G. J. Lin, Y. R. Wu, M. L. Tsai, and J. H. He, “Efficiency dip observed with InGaN-based multiple quantum well solar cells,” Opt. Express 22(S7), A1753–A1760 (2014).
[Crossref] [PubMed]

K. Y. Lai, G. J. Lin, Y. L. Lai, Y. F. Chen, and J. H. He, “Effect of indium fluctuation on the photovoltaic characteristics of InGaN/GaN multiple quantum well solar cells,” Appl. Phys. Lett. 96(8), 081103 (2010).
[Crossref]

Lin, J. Y.

R. Dahal, B. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, “InGaN/GaN multiple quantum well solar cells with long operating wavelengths,” Appl. Phys. Lett. 94(6), 063505 (2009).
[Crossref]

Lin, R. M.

R. H. Horng, S. T. Lin, Y. L. Tsai, M. T. Chu, W. Y. Liao, M. H. Wu, R. M. Lin, and Y. C. Lu, “Improved Conversion Efficiency of GaN/InGaN Thin-Film Solar Cells,” IEEE Electron Device Lett. 30(7), 724–726 (2009).
[Crossref]

Lin, S. T.

R. H. Horng, S. T. Lin, Y. L. Tsai, M. T. Chu, W. Y. Liao, M. H. Wu, R. M. Lin, and Y. C. Lu, “Improved Conversion Efficiency of GaN/InGaN Thin-Film Solar Cells,” IEEE Electron Device Lett. 30(7), 724–726 (2009).
[Crossref]

Liu, S. F.

X. J. Liu, L. J. Jia, G. P. Fan, J. Gou, S. F. Liu, and B. J. Yan, “Au nanoparticle enhanced thin-film silicon solar cells,” Sol. Energy Mater. Sol. Cells 147, 225–234 (2016).
[Crossref]

Liu, X. J.

X. J. Liu, L. J. Jia, G. P. Fan, J. Gou, S. F. Liu, and B. J. Yan, “Au nanoparticle enhanced thin-film silicon solar cells,” Sol. Energy Mater. Sol. Cells 147, 225–234 (2016).
[Crossref]

Liu, Y. G.

W. E. I. Sha, W. C. H. Choy, Y. G. Liu, and W. C. Chew, “Near-field multiple scattering effects of plasmonic nanospheres embedded into thin-film organic solar cells,” Appl. Phys. Lett. 99(11), 113304 (2011).
[Crossref]

Lu, Y. C.

R. H. Horng, S. T. Lin, Y. L. Tsai, M. T. Chu, W. Y. Liao, M. H. Wu, R. M. Lin, and Y. C. Lu, “Improved Conversion Efficiency of GaN/InGaN Thin-Film Solar Cells,” IEEE Electron Device Lett. 30(7), 724–726 (2009).
[Crossref]

Mahanama, G. D. K.

T. L. Temple, G. D. K. Mahanama, H. S. Reehal, and D. M. Bagnall, “Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Sol. Energy Mater. Sol. Cells 93(11), 1978–1985 (2009).
[Crossref]

Mishra, U. K.

R. M. Farrell, C. J. Neufeld, S. C. Cruz, J. R. Lang, M. Iza, S. Keller, S. Nakamura, S. P. DenBaars, U. K. Mishra, and J. S. Speck, “High quantum efficiency InGaN/GaN multiple quantum well solar cells with spectral response extending out to 520 nm,” Appl. Phys. Lett. 98(20), 201107 (2011).
[Crossref]

Munechika, K.

A. P. Kulkarni, K. M. Noone, K. Munechika, S. R. Guyer, and D. S. Ginger, “Plasmon-enhanced charge carrier generation in organic photovoltaic films using silver nanoprisms,” Nano Lett. 10(4), 1501–1505 (2010).
[Crossref] [PubMed]

Nakamura, S.

R. M. Farrell, C. J. Neufeld, S. C. Cruz, J. R. Lang, M. Iza, S. Keller, S. Nakamura, S. P. DenBaars, U. K. Mishra, and J. S. Speck, “High quantum efficiency InGaN/GaN multiple quantum well solar cells with spectral response extending out to 520 nm,” Appl. Phys. Lett. 98(20), 201107 (2011).
[Crossref]

Neufeld, C. J.

R. M. Farrell, C. J. Neufeld, S. C. Cruz, J. R. Lang, M. Iza, S. Keller, S. Nakamura, S. P. DenBaars, U. K. Mishra, and J. S. Speck, “High quantum efficiency InGaN/GaN multiple quantum well solar cells with spectral response extending out to 520 nm,” Appl. Phys. Lett. 98(20), 201107 (2011).
[Crossref]

Noh, J.

S. W. Baek, J. Noh, C. H. Lee, B. Kim, M. K. Seo, and J. Y. Lee, “Plasmonic forward scattering effect in organic solar cells: a powerful optical engineering method,” Sci. Rep. 3, 1726 (2013).
[Crossref]

Noone, K. M.

A. P. Kulkarni, K. M. Noone, K. Munechika, S. R. Guyer, and D. S. Ginger, “Plasmon-enhanced charge carrier generation in organic photovoltaic films using silver nanoprisms,” Nano Lett. 10(4), 1501–1505 (2010).
[Crossref] [PubMed]

Notta, J. B.

F. O. Lenzmann, M. C. van Lare, J. Salpakari, P. Spinelli, J. B. Notta, M. Dorenkamper, N. J. Bakker, A. W. Weeber, and A. Polman, “Plasmonic light-trapping in a-Si:H solar cells by front-side Ag nanoparticle arrays: A benchmarking study,” Phys. Status Solidi., A Appl. Mater. Sci. 210(8), 1571–1574 (2013).
[Crossref]

Oh, J. H.

J. H. Oh, H. Lee, D. Kim, and T. Y. Seong, “Effect of Ag nanoparticle size on the plasmonic photocatalytic properties of TiO2 thin films,” Surf. Coat. Tech. 206(1), 185–189 (2011).
[Crossref]

Opila, R. L.

B. R. Jampana, C. R. Weiland, R. L. Opila, I. T. Ferguson, and C. B. Honsberg, “Optical absorption dependence on composition and thickness of InxGa1-xN (0.05 < x < 0.22) grown on GaN/sapphire,” Thin Solid Films 520(22), 6807–6812 (2012).
[Crossref]

Pantha, B.

R. Dahal, B. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, “InGaN/GaN multiple quantum well solar cells with long operating wavelengths,” Appl. Phys. Lett. 94(6), 063505 (2009).
[Crossref]

Park, C. Y.

Y. M. Song, E. S. Choi, G. C. Park, C. Y. Park, S. J. Jang, and Y. T. Lee, “Disordered antireflective nanostructures on GaN-based light-emitting diodes using Ag nanoparticles for improved light extraction efficiency,” Appl. Phys. Lett. 97(9), 093110 (2010).
[Crossref]

Park, G. C.

Y. M. Song, E. S. Choi, G. C. Park, C. Y. Park, S. J. Jang, and Y. T. Lee, “Disordered antireflective nanostructures on GaN-based light-emitting diodes using Ag nanoparticles for improved light extraction efficiency,” Appl. Phys. Lett. 97(9), 093110 (2010).
[Crossref]

Park, S. J.

J. P. Shim, D. Kim, M. Choe, T. Lee, S. J. Park, and D. S. Lee, “A self-assembled Ag nanoparticle agglomeration process on graphene for enhanced light output in GaN-based LEDs,” Nanotechnology 23(25), 255201 (2012).
[Crossref] [PubMed]

Peumans, P.

Pillai, S.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[Crossref]

Polman, A.

F. O. Lenzmann, M. C. van Lare, J. Salpakari, P. Spinelli, J. B. Notta, M. Dorenkamper, N. J. Bakker, A. W. Weeber, and A. Polman, “Plasmonic light-trapping in a-Si:H solar cells by front-side Ag nanoparticle arrays: A benchmarking study,” Phys. Status Solidi., A Appl. Mater. Sci. 210(8), 1571–1574 (2013).
[Crossref]

P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt. 14(2), 024002 (2012).
[Crossref]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express 16(26), 21793–21800 (2008).
[Crossref] [PubMed]

Pryce, I. M.

I. M. Pryce, D. D. Koleske, A. J. Fischer, and H. A. Atwater, “Plasmonic nanoparticle enhanced photocurrent in GaN/InGaN/GaN quantum well solar cells,” Appl. Phys. Lett. 96(15), 153501 (2010).
[Crossref]

Reehal, H. S.

T. L. Temple, G. D. K. Mahanama, H. S. Reehal, and D. M. Bagnall, “Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Sol. Energy Mater. Sol. Cells 93(11), 1978–1985 (2009).
[Crossref]

Rezig, B.

H. Hamzaoui, A. S. Bouazzi, and B. Rezig, “Theoretical possibilities of InxGa1-xN tandem PV structures,” Sol. Energy Mater. Sol. Cells 87(1-4), 595–603 (2005).
[Crossref]

Salpakari, J.

F. O. Lenzmann, M. C. van Lare, J. Salpakari, P. Spinelli, J. B. Notta, M. Dorenkamper, N. J. Bakker, A. W. Weeber, and A. Polman, “Plasmonic light-trapping in a-Si:H solar cells by front-side Ag nanoparticle arrays: A benchmarking study,” Phys. Status Solidi., A Appl. Mater. Sci. 210(8), 1571–1574 (2013).
[Crossref]

Santbergen, R.

H. Tan, R. Santbergen, A. H. M. Smets, and M. Zeman, “Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles,” Nano Lett. 12(8), 4070–4076 (2012).
[Crossref] [PubMed]

Schropp, R. E. I.

P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt. 14(2), 024002 (2012).
[Crossref]

Seo, M. K.

S. W. Baek, J. Noh, C. H. Lee, B. Kim, M. K. Seo, and J. Y. Lee, “Plasmonic forward scattering effect in organic solar cells: a powerful optical engineering method,” Sci. Rep. 3, 1726 (2013).
[Crossref]

Seong, T. Y.

J. H. Oh, H. Lee, D. Kim, and T. Y. Seong, “Effect of Ag nanoparticle size on the plasmonic photocatalytic properties of TiO2 thin films,” Surf. Coat. Tech. 206(1), 185–189 (2011).
[Crossref]

Sha, W. E. I.

W. E. I. Sha, W. C. H. Choy, Y. G. Liu, and W. C. Chew, “Near-field multiple scattering effects of plasmonic nanospheres embedded into thin-film organic solar cells,” Appl. Phys. Lett. 99(11), 113304 (2011).
[Crossref]

Shim, J. P.

J. P. Shim, D. Kim, M. Choe, T. Lee, S. J. Park, and D. S. Lee, “A self-assembled Ag nanoparticle agglomeration process on graphene for enhanced light output in GaN-based LEDs,” Nanotechnology 23(25), 255201 (2012).
[Crossref] [PubMed]

Smets, A. H. M.

H. Tan, R. Santbergen, A. H. M. Smets, and M. Zeman, “Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles,” Nano Lett. 12(8), 4070–4076 (2012).
[Crossref] [PubMed]

Soga, T.

G. Yu, G. Wang, H. Ishikawa, M. Umeno, T. Soga, T. Egawa, J. Watanabe, and T. Jimbo, “Optical properties of wurtzite structure GaN on sapphire around fundamental absorption edge (0.78-4.77 eV) by spectroscopic ellipsometry and the optical transmission method,” Appl. Phys. Lett. 70(24), 3209–3211 (1997).
[Crossref]

Song, Y. M.

Y. M. Song, E. S. Choi, G. C. Park, C. Y. Park, S. J. Jang, and Y. T. Lee, “Disordered antireflective nanostructures on GaN-based light-emitting diodes using Ag nanoparticles for improved light extraction efficiency,” Appl. Phys. Lett. 97(9), 093110 (2010).
[Crossref]

Speck, J. S.

R. M. Farrell, C. J. Neufeld, S. C. Cruz, J. R. Lang, M. Iza, S. Keller, S. Nakamura, S. P. DenBaars, U. K. Mishra, and J. S. Speck, “High quantum efficiency InGaN/GaN multiple quantum well solar cells with spectral response extending out to 520 nm,” Appl. Phys. Lett. 98(20), 201107 (2011).
[Crossref]

Spinelli, P.

F. O. Lenzmann, M. C. van Lare, J. Salpakari, P. Spinelli, J. B. Notta, M. Dorenkamper, N. J. Bakker, A. W. Weeber, and A. Polman, “Plasmonic light-trapping in a-Si:H solar cells by front-side Ag nanoparticle arrays: A benchmarking study,” Phys. Status Solidi., A Appl. Mater. Sci. 210(8), 1571–1574 (2013).
[Crossref]

P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt. 14(2), 024002 (2012).
[Crossref]

Tan, H.

H. Tan, R. Santbergen, A. H. M. Smets, and M. Zeman, “Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles,” Nano Lett. 12(8), 4070–4076 (2012).
[Crossref] [PubMed]

Temple, T. L.

T. L. Temple, G. D. K. Mahanama, H. S. Reehal, and D. M. Bagnall, “Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Sol. Energy Mater. Sol. Cells 93(11), 1978–1985 (2009).
[Crossref]

Teng, F.

X. Li, Z. B. Deng, Y. H. Yin, L. J. Zhu, D. H. Xu, Y. S. Wang, and F. Teng, “Efficiency enhancement of polymer solar cells with Ag nanoparticles incorporated into PEDOT:PSS layer,” J. Mater. Sci. 25, 140–145 (2014).

Thompson, C. V.

D. Kim, A. L. Giermann, and C. V. Thompson, “Solid-state dewetting of patterned thin films,” Appl. Phys. Lett. 95(25), 251903 (2009).
[Crossref]

Trupke, T.

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[Crossref]

Tsai, F. J.

Tsai, M. L.

D. H. Lien, Y. H. Hsiao, S. G. Yang, M. L. Tsai, T. C. Wei, S. C. Lee, and J. H. He, “Harsh photovoltaics using InGaN/GaN multiple quantum well schemes,” Nano Energy 11, 104–109 (2015).
[Crossref]

K. Y. Lai, G. J. Lin, Y. R. Wu, M. L. Tsai, and J. H. He, “Efficiency dip observed with InGaN-based multiple quantum well solar cells,” Opt. Express 22(S7), A1753–A1760 (2014).
[Crossref] [PubMed]

Tsai, Y. L.

Y. L. Tsai, S. W. Wang, J. K. Huang, L. H. Hsu, C. H. Chiu, P. T. Lee, P. Yu, C. C. Lin, and H. C. Kuo, “Enhanced power conversion efficiency in InGaN-based solar cells via graded composition multiple quantum wells,” Opt. Express 23(24), A1434–A1441 (2015).
[Crossref] [PubMed]

R. H. Horng, S. T. Lin, Y. L. Tsai, M. T. Chu, W. Y. Liao, M. H. Wu, R. M. Lin, and Y. C. Lu, “Improved Conversion Efficiency of GaN/InGaN Thin-Film Solar Cells,” IEEE Electron Device Lett. 30(7), 724–726 (2009).
[Crossref]

Umeno, M.

G. Yu, G. Wang, H. Ishikawa, M. Umeno, T. Soga, T. Egawa, J. Watanabe, and T. Jimbo, “Optical properties of wurtzite structure GaN on sapphire around fundamental absorption edge (0.78-4.77 eV) by spectroscopic ellipsometry and the optical transmission method,” Appl. Phys. Lett. 70(24), 3209–3211 (1997).
[Crossref]

van de Groep, J.

P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt. 14(2), 024002 (2012).
[Crossref]

van Lare, M.

P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt. 14(2), 024002 (2012).
[Crossref]

van Lare, M. C.

F. O. Lenzmann, M. C. van Lare, J. Salpakari, P. Spinelli, J. B. Notta, M. Dorenkamper, N. J. Bakker, A. W. Weeber, and A. Polman, “Plasmonic light-trapping in a-Si:H solar cells by front-side Ag nanoparticle arrays: A benchmarking study,” Phys. Status Solidi., A Appl. Mater. Sci. 210(8), 1571–1574 (2013).
[Crossref]

Verschuuren, M. A.

P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt. 14(2), 024002 (2012).
[Crossref]

Wang, G.

G. Yu, G. Wang, H. Ishikawa, M. Umeno, T. Soga, T. Egawa, J. Watanabe, and T. Jimbo, “Optical properties of wurtzite structure GaN on sapphire around fundamental absorption edge (0.78-4.77 eV) by spectroscopic ellipsometry and the optical transmission method,” Appl. Phys. Lett. 70(24), 3209–3211 (1997).
[Crossref]

Wang, J. Y.

Wang, S. W.

Wang, T.

J. Bai, M. Athanasiou, and T. Wang, “Influence of the ITO current spreading layer on efficiencies of InGaN-based solar cells,” Sol. Energy Mater. Sol. Cells 145, 226–230 (2016).
[Crossref]

Wang, Y. S.

X. Li, Z. B. Deng, Y. H. Yin, L. J. Zhu, D. H. Xu, Y. S. Wang, and F. Teng, “Efficiency enhancement of polymer solar cells with Ag nanoparticles incorporated into PEDOT:PSS layer,” J. Mater. Sci. 25, 140–145 (2014).

Watanabe, J.

G. Yu, G. Wang, H. Ishikawa, M. Umeno, T. Soga, T. Egawa, J. Watanabe, and T. Jimbo, “Optical properties of wurtzite structure GaN on sapphire around fundamental absorption edge (0.78-4.77 eV) by spectroscopic ellipsometry and the optical transmission method,” Appl. Phys. Lett. 70(24), 3209–3211 (1997).
[Crossref]

Weeber, A. W.

F. O. Lenzmann, M. C. van Lare, J. Salpakari, P. Spinelli, J. B. Notta, M. Dorenkamper, N. J. Bakker, A. W. Weeber, and A. Polman, “Plasmonic light-trapping in a-Si:H solar cells by front-side Ag nanoparticle arrays: A benchmarking study,” Phys. Status Solidi., A Appl. Mater. Sci. 210(8), 1571–1574 (2013).
[Crossref]

Wei, T. C.

D. H. Lien, Y. H. Hsiao, S. G. Yang, M. L. Tsai, T. C. Wei, S. C. Lee, and J. H. He, “Harsh photovoltaics using InGaN/GaN multiple quantum well schemes,” Nano Energy 11, 104–109 (2015).
[Crossref]

Weiland, C. R.

B. R. Jampana, C. R. Weiland, R. L. Opila, I. T. Ferguson, and C. B. Honsberg, “Optical absorption dependence on composition and thickness of InxGa1-xN (0.05 < x < 0.22) grown on GaN/sapphire,” Thin Solid Films 520(22), 6807–6812 (2012).
[Crossref]

Wu, J. Q.

J. Q. Wu, “When group-III nitrides go infrared: New properties and perspectives,” J. Appl. Phys. 106(1), 011101 (2009).
[Crossref]

Wu, M. H.

R. H. Horng, S. T. Lin, Y. L. Tsai, M. T. Chu, W. Y. Liao, M. H. Wu, R. M. Lin, and Y. C. Lu, “Improved Conversion Efficiency of GaN/InGaN Thin-Film Solar Cells,” IEEE Electron Device Lett. 30(7), 724–726 (2009).
[Crossref]

Wu, Y. R.

Xu, D. H.

X. Li, Z. B. Deng, Y. H. Yin, L. J. Zhu, D. H. Xu, Y. S. Wang, and F. Teng, “Efficiency enhancement of polymer solar cells with Ag nanoparticles incorporated into PEDOT:PSS layer,” J. Mater. Sci. 25, 140–145 (2014).

Yan, B. J.

X. J. Liu, L. J. Jia, G. P. Fan, J. Gou, S. F. Liu, and B. J. Yan, “Au nanoparticle enhanced thin-film silicon solar cells,” Sol. Energy Mater. Sol. Cells 147, 225–234 (2016).
[Crossref]

Yang, C. C.

Yang, S. G.

D. H. Lien, Y. H. Hsiao, S. G. Yang, M. L. Tsai, T. C. Wei, S. C. Lee, and J. H. He, “Harsh photovoltaics using InGaN/GaN multiple quantum well schemes,” Nano Energy 11, 104–109 (2015).
[Crossref]

Yin, Y. H.

X. Li, Z. B. Deng, Y. H. Yin, L. J. Zhu, D. H. Xu, Y. S. Wang, and F. Teng, “Efficiency enhancement of polymer solar cells with Ag nanoparticles incorporated into PEDOT:PSS layer,” J. Mater. Sci. 25, 140–145 (2014).

Yu, G.

G. Yu, G. Wang, H. Ishikawa, M. Umeno, T. Soga, T. Egawa, J. Watanabe, and T. Jimbo, “Optical properties of wurtzite structure GaN on sapphire around fundamental absorption edge (0.78-4.77 eV) by spectroscopic ellipsometry and the optical transmission method,” Appl. Phys. Lett. 70(24), 3209–3211 (1997).
[Crossref]

Yu, P.

Zeman, M.

H. Tan, R. Santbergen, A. H. M. Smets, and M. Zeman, “Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles,” Nano Lett. 12(8), 4070–4076 (2012).
[Crossref] [PubMed]

Zhu, L. J.

X. Li, Z. B. Deng, Y. H. Yin, L. J. Zhu, D. H. Xu, Y. S. Wang, and F. Teng, “Efficiency enhancement of polymer solar cells with Ag nanoparticles incorporated into PEDOT:PSS layer,” J. Mater. Sci. 25, 140–145 (2014).

Appl. Phys. Lett. (9)

O. Jani, I. Ferguson, C. Honsberg, and S. Kurtz, “Design and characterization of GaN/InGaN solar cells,” Appl. Phys. Lett. 91(13), 132117 (2007).
[Crossref]

R. Dahal, B. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, “InGaN/GaN multiple quantum well solar cells with long operating wavelengths,” Appl. Phys. Lett. 94(6), 063505 (2009).
[Crossref]

R. M. Farrell, C. J. Neufeld, S. C. Cruz, J. R. Lang, M. Iza, S. Keller, S. Nakamura, S. P. DenBaars, U. K. Mishra, and J. S. Speck, “High quantum efficiency InGaN/GaN multiple quantum well solar cells with spectral response extending out to 520 nm,” Appl. Phys. Lett. 98(20), 201107 (2011).
[Crossref]

K. Y. Lai, G. J. Lin, Y. L. Lai, Y. F. Chen, and J. H. He, “Effect of indium fluctuation on the photovoltaic characteristics of InGaN/GaN multiple quantum well solar cells,” Appl. Phys. Lett. 96(8), 081103 (2010).
[Crossref]

I. M. Pryce, D. D. Koleske, A. J. Fischer, and H. A. Atwater, “Plasmonic nanoparticle enhanced photocurrent in GaN/InGaN/GaN quantum well solar cells,” Appl. Phys. Lett. 96(15), 153501 (2010).
[Crossref]

G. Yu, G. Wang, H. Ishikawa, M. Umeno, T. Soga, T. Egawa, J. Watanabe, and T. Jimbo, “Optical properties of wurtzite structure GaN on sapphire around fundamental absorption edge (0.78-4.77 eV) by spectroscopic ellipsometry and the optical transmission method,” Appl. Phys. Lett. 70(24), 3209–3211 (1997).
[Crossref]

W. E. I. Sha, W. C. H. Choy, Y. G. Liu, and W. C. Chew, “Near-field multiple scattering effects of plasmonic nanospheres embedded into thin-film organic solar cells,” Appl. Phys. Lett. 99(11), 113304 (2011).
[Crossref]

Y. M. Song, E. S. Choi, G. C. Park, C. Y. Park, S. J. Jang, and Y. T. Lee, “Disordered antireflective nanostructures on GaN-based light-emitting diodes using Ag nanoparticles for improved light extraction efficiency,” Appl. Phys. Lett. 97(9), 093110 (2010).
[Crossref]

D. Kim, A. L. Giermann, and C. V. Thompson, “Solid-state dewetting of patterned thin films,” Appl. Phys. Lett. 95(25), 251903 (2009).
[Crossref]

IEEE Electron Device Lett. (1)

R. H. Horng, S. T. Lin, Y. L. Tsai, M. T. Chu, W. Y. Liao, M. H. Wu, R. M. Lin, and Y. C. Lu, “Improved Conversion Efficiency of GaN/InGaN Thin-Film Solar Cells,” IEEE Electron Device Lett. 30(7), 724–726 (2009).
[Crossref]

J. Appl. Phys. (2)

J. Q. Wu, “When group-III nitrides go infrared: New properties and perspectives,” J. Appl. Phys. 106(1), 011101 (2009).
[Crossref]

S. Pillai, K. R. Catchpole, T. Trupke, and M. A. Green, “Surface plasmon enhanced silicon solar cells,” J. Appl. Phys. 101(9), 093105 (2007).
[Crossref]

J. Mater. Sci. (1)

X. Li, Z. B. Deng, Y. H. Yin, L. J. Zhu, D. H. Xu, Y. S. Wang, and F. Teng, “Efficiency enhancement of polymer solar cells with Ag nanoparticles incorporated into PEDOT:PSS layer,” J. Mater. Sci. 25, 140–145 (2014).

J. Opt. (1)

P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt. 14(2), 024002 (2012).
[Crossref]

Nano Energy (1)

D. H. Lien, Y. H. Hsiao, S. G. Yang, M. L. Tsai, T. C. Wei, S. C. Lee, and J. H. He, “Harsh photovoltaics using InGaN/GaN multiple quantum well schemes,” Nano Energy 11, 104–109 (2015).
[Crossref]

Nano Lett. (2)

H. Tan, R. Santbergen, A. H. M. Smets, and M. Zeman, “Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles,” Nano Lett. 12(8), 4070–4076 (2012).
[Crossref] [PubMed]

A. P. Kulkarni, K. M. Noone, K. Munechika, S. R. Guyer, and D. S. Ginger, “Plasmon-enhanced charge carrier generation in organic photovoltaic films using silver nanoprisms,” Nano Lett. 10(4), 1501–1505 (2010).
[Crossref] [PubMed]

Nanotechnology (2)

Y. Kojima and T. Kato, “Nanoparticle formation in Au thin films by electron-beam-induced dewetting,” Nanotechnology 19(25), 255605 (2008).
[Crossref] [PubMed]

J. P. Shim, D. Kim, M. Choe, T. Lee, S. J. Park, and D. S. Lee, “A self-assembled Ag nanoparticle agglomeration process on graphene for enhanced light output in GaN-based LEDs,” Nanotechnology 23(25), 255201 (2012).
[Crossref] [PubMed]

Nat. Mater. (1)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010).
[Crossref] [PubMed]

Opt. Express (5)

Phys. Status Solidi., A Appl. Mater. Sci. (1)

F. O. Lenzmann, M. C. van Lare, J. Salpakari, P. Spinelli, J. B. Notta, M. Dorenkamper, N. J. Bakker, A. W. Weeber, and A. Polman, “Plasmonic light-trapping in a-Si:H solar cells by front-side Ag nanoparticle arrays: A benchmarking study,” Phys. Status Solidi., A Appl. Mater. Sci. 210(8), 1571–1574 (2013).
[Crossref]

Sci. Rep. (1)

S. W. Baek, J. Noh, C. H. Lee, B. Kim, M. K. Seo, and J. Y. Lee, “Plasmonic forward scattering effect in organic solar cells: a powerful optical engineering method,” Sci. Rep. 3, 1726 (2013).
[Crossref]

Sol. Energy Mater. Sol. Cells (4)

J. Bai, M. Athanasiou, and T. Wang, “Influence of the ITO current spreading layer on efficiencies of InGaN-based solar cells,” Sol. Energy Mater. Sol. Cells 145, 226–230 (2016).
[Crossref]

X. J. Liu, L. J. Jia, G. P. Fan, J. Gou, S. F. Liu, and B. J. Yan, “Au nanoparticle enhanced thin-film silicon solar cells,” Sol. Energy Mater. Sol. Cells 147, 225–234 (2016).
[Crossref]

T. L. Temple, G. D. K. Mahanama, H. S. Reehal, and D. M. Bagnall, “Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Sol. Energy Mater. Sol. Cells 93(11), 1978–1985 (2009).
[Crossref]

H. Hamzaoui, A. S. Bouazzi, and B. Rezig, “Theoretical possibilities of InxGa1-xN tandem PV structures,” Sol. Energy Mater. Sol. Cells 87(1-4), 595–603 (2005).
[Crossref]

Surf. Coat. Tech. (1)

J. H. Oh, H. Lee, D. Kim, and T. Y. Seong, “Effect of Ag nanoparticle size on the plasmonic photocatalytic properties of TiO2 thin films,” Surf. Coat. Tech. 206(1), 185–189 (2011).
[Crossref]

Thin Solid Films (1)

B. R. Jampana, C. R. Weiland, R. L. Opila, I. T. Ferguson, and C. B. Honsberg, “Optical absorption dependence on composition and thickness of InxGa1-xN (0.05 < x < 0.22) grown on GaN/sapphire,” Thin Solid Films 520(22), 6807–6812 (2012).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Fabrication process of conventional SC and Ag nanoparticles embedded SP-SC. The SEM images are cross-sectional view of the SC and SP-SC, respectively.
Fig. 2
Fig. 2 SEM images of Ag films and their extinction efficiency spectra with respect to the Ag thickness. SEM images of as-deposited (upper row of a, b, and c) and annealed (lower row of a, b, and c) Ag films with the thickness of 5nm (a), 10nm (b), and 15 nm (c). (d) Extinction efficiency spectra of all as-deposited and annealed Ag films measured by an UV-VIS spectrometer.
Fig. 3
Fig. 3 Current density-voltage characteristic and external quantum efficiency. (a) Current density-voltage characteristics of SC and SP-SC under dark and illumination condition. (b) External quantum efficiency and EQE difference of SC and SP-SC.
Fig. 4
Fig. 4 (a) Distribution of Ag nanoparticles formed by annealing of a 10 nm thick Ag film. (b) simulation structure of extinction cross section. Extinction cross section of (c) 20 nm, (d) 75 nm and (e) 160 nm diameter of Ag nanoparticles.
Fig. 5
Fig. 5 Polar plots of scattering amplitude of an Ag nanoparticle captured with (a) x-y plane and (b) x-z plane.
Fig. 6
Fig. 6 (a) Electric field distributions of Ag nanoparticle of 75 nm diameter under 420 nm wavelength illumination captured on x-y plane and y-z plane, respectively. (b) normalized electric field intensity at the MQW region for varying wavelength and diameter of Ag nanoparticle.
Fig. 7
Fig. 7 Normalized electric field intensity and scattering/absorption ratio varying diameter of Ag nanoparticle.

Tables (1)

Tables Icon

Table 1 Solar cell performance parameters of SC and SP-SC

Metrics