Abstract

We report on a novel design of an on-chip optical temperature sensor based on a Mach-Zehnder interferometer configuration where the two arms consist of hybrid waveguides providing opposite temperature-dependent phase changes to enhance the temperature sensitivity of the sensor. The sensitivity of the fabricated sensor with silicon/polymer hybrid waveguides is measured to be 172 pm/°C, which is two times larger than a conventional all-silicon optical temperature sensor (~80 pm/°C). Moreover, a design with silicon/titanium dioxide hybrid waveguides is by calculation expected to have a sensitivity as high as 775 pm/°C. The proposed design is found to be design-flexible and robust to fabrication errors.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-sensitive polymeric waveguide temperature sensor based on asymmetric Mach–Zehnder interferometer

Donghai Niu, Lilei Wang, Qiang Xu, Minghui Jiang, Xibin Wang, Xiaoqiang Sun, Fei Wang, and Daming Zhang
Appl. Opt. 58(5) 1276-1280 (2019)

References

  • View by:
  • |
  • |
  • |

  1. Z. K. Nagy and R. D. Braatz, “Advances and new directions in crystallization control,” Annu. Rev. Chem. Biomol. Eng. 3(1), 55–75 (2012).
    [Crossref] [PubMed]
  2. M. Phisalaphong, N. Srirattana, and W. Tanthapanichakoon, “Mathematical modeling to investigate temperature effect on kinetic parameters of ethanol fermentation,” Biochem. Eng. J. 28(1), 36–43 (2006).
    [Crossref]
  3. T.-I. Mheen and T.-W. Kwon, “Effect of temperature and salt concentration on Kimchi fermentation,” Korean J. Food Sci. Technol. 16(4), 443–450 (1984).
  4. K. Furukawa and K. Ohsuye, “Effect of culture temperature on a recombinant CHO cell line producing a C-terminal α-amidating enzyme,” Cytotechnology 26(2), 153–164 (1998).
    [Crossref] [PubMed]
  5. T. Shimizu, M. Yamato, Y. Isoi, T. Akutsu, T. Setomaru, K. Abe, A. Kikuchi, M. Umezu, and T. Okano, “Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces,” Circ. Res. 90(3), E40–E48 (2002).
    [Crossref] [PubMed]
  6. Y.-J. Rao, D. J. Webb, L. Zhang, and I. Bennion, “In-fiber Bragg-grating temperature sensor system for medical applications,” J. Lightwave Technol. 15(5), 779–785 (1997).
    [Crossref]
  7. J. Jung, H. Nam, B. Lee, J. O. Byun, and N. S. Kim, “Fiber Bragg grating temperature sensor with controllable sensitivity,” Appl. Opt. 38(13), 2752–2754 (1999).
    [Crossref] [PubMed]
  8. H. Sun, S. Yang, J. Zhang, Q. Rong, L. Liang, Q. Xu, G. Xiang, D. Feng, Y. Du, Z. Feng, X. Qiao, and M. Hu, “Temperature and refractive index sensing characteristics of an MZI-based multimode fiber-dispersion compensation fiber-multimode fiber structure,” Opt. Fiber Technol. 18(6), 425–429 (2012).
    [Crossref]
  9. M. Sun, B. Xu, X. Dong, and Y. Li, “Optical fiber strain and temperature sensor based on an in-line Mach-Zehnder interferometer using thin-core fiber,” Opt. Commun. 285(18), 3721–3725 (2012).
    [Crossref]
  10. Q. Sun, X. Sun, W. Jia, Z. Xu, H. Luo, D. Liu, and L. Zhang, “Graphene-assisted microfiber for optical-power-based temperature sensor,” IEEE Photonics Technol. Lett. 28(4), 383–386 (2016).
    [Crossref]
  11. G.-D. Kim, H.-S. Lee, C.-H. Park, S.-S. Lee, B. T. Lim, H. K. Bae, and W.-G. Lee, “Silicon photonic temperature sensor employing a ring resonator manufactured using a standard CMOS process,” Opt. Express 18(21), 22215–22221 (2010).
    [Crossref] [PubMed]
  12. H.-S. Lee, G.-D. Kim, W.-J. Kim, S.-S. Lee, and W.-G. Lee, “Tunable-resonator based temperature sensor interrogated through optical power detection,” Appl. Phys. Express 4(10), 102201 (2011).
    [Crossref]
  13. H. Xu, M. Hafezi, J. Fan, J. M. Taylor, G. F. Strouse, and Z. Ahmed, “Ultra-sensitive chip-based photonic temperature sensor using ring resonator structures,” Opt. Express 22(3), 3098–3104 (2014).
    [Crossref] [PubMed]
  14. N. Klimov, M. Berger, and Z. Ahmed, “Towards reproducible ring resonator based temperature sensors,” Sens. Transducer 191(8), 63–66 (2015).
  15. R. Boeck, M. Caverley, L. Chrostowski, and N. A. F. Jaeger, “Grating-assisted silicon-on-insulator racetrack resonator reflector,” Opt. Express 23(20), 25509–25522 (2015).
    [Crossref] [PubMed]
  16. N. N. Klimov, S. Mittal, M. Berger, and Z. Ahmed, “On-chip silicon waveguide Bragg grating photonic temperature sensor,” Opt. Lett. 40(17), 3934–3936 (2015).
    [Crossref] [PubMed]
  17. C.-M. Chang and O. Solgaard, “Fano resonances in integrated silicon Bragg reflectors for sensing applications,” Opt. Express 21(22), 27209–27218 (2013).
    [Crossref] [PubMed]
  18. N. Klimov, T. Purdy, and Z. Ahmed, “Fabry-Perrot cavity-based silicon photonic thermometers with ultra-small footprint and high sensitivity,” in Advanced Photonics 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper SeT4C.4.
  19. A. Irace and G. Breglio, “All-silicon optical temperature sensor based on Multi-Mode Interference,” Opt. Express 11(22), 2807–2812 (2003).
    [Crossref] [PubMed]
  20. Q. Deng, X. Li, R. Chen, and Z. Zhou, “Low-cost silicon photonic temperature sensor using broadband light source,” in The 11th International Conference on Group IV Photonics(IEEE Photonics Society, Paris, France, 2014), p. P23.
  21. J. F. Tao, H. Cai, Y. D. Gu, J. Wu, and A. Q. Liu, “Demonstration of a photonic-based linear temperature sensor,” IEEE Photonics Technol. Lett. 27(7), 767–769 (2015).
    [Crossref]
  22. R. Dekker, N. Usechak, M. Forst, and A. Driessen, “Ultrafast nonlinear all-optical processes in silicon-on-insulator waveguides,” J. Phys. D Appl. Phys. 40(14), 249–271 (2007).
    [Crossref]
  23. H.-T. Kim and M. Yu, “Cascaded ring resonator-based temperature sensor with simultaneously enhanced sensitivity and range,” Opt. Express 24(9), 9501–9510 (2016).
    [Crossref] [PubMed]
  24. J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, X. Han, M. Zhao, G. Morthier, and R. Baets, “Athermal Silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides,” Opt. Express 17(17), 14627–14633 (2009).
    [Crossref] [PubMed]
  25. B. Guha, J. Cardenas, and M. Lipson, “Athermal silicon microring resonators with titanium oxide cladding,” Opt. Express 21(22), 26557–26563 (2013).
    [Crossref] [PubMed]
  26. J.-M. Lee, “Ultrahigh temperature-sensitive silicon MZI with titania cladding,” Front. Mater. 2(36), 1–4 (2015).
  27. S. Dwivedi, H. D’heer, and W. Bogaerts, “A compact all-silicon temperature insensitive filter for WDM and bio-sensing applications,” IEEE Photonics Technol. Lett. 25(22), 2167–2170 (2013).
    [Crossref]
  28. B. Yang, Y. Zhu, Y. Jiao, L. Yang, Z. Sheng, S. He, and D. Dai, “S. H and D. Dai, “Compact arrayed waveguide grating devices based on small SU-8 stripe waveguides,” J. Lightwave Technol. 29(13), 2009–2014 (2011).
    [Crossref]
  29. G. Voskerician, M. S. Shive, R. S. Shawgo, H. von Recum, J. M. Anderson, M. J. Cima, and R. Langer, “Biocompatibility and biofouling of MEMS drug delivery devices,” Biomaterials 24(11), 1959–1967 (2003).
    [Crossref] [PubMed]
  30. M. Pu, L. H. Frandsen, H. Ou, K. Yvind, and J. M. Hvam, “Low insertion loss SOI microring resonator integrated with nano-taper couplers,” the Conference on Frontiers in Optics (FiO) 2009, FThE1 (2009).
    [Crossref]
  31. J.-M. Lee, “Influence of titania cladding on SOI grating coupler and 5 μm-radius ring resonator,” Opt. Commun. 338, 101–105 (2015).
    [Crossref]
  32. M. Furuhashi, M. Fujiwara, T. Ohshiro, M. Tsutsui, K. Matsubara, M. Taniguchi, S. Takeuchi, and T. Kawai, “Development of microfabricated TiO2 channel waveguides,” AIP Adv. 1(3), 032102 (2011).
    [Crossref]

2016 (2)

Q. Sun, X. Sun, W. Jia, Z. Xu, H. Luo, D. Liu, and L. Zhang, “Graphene-assisted microfiber for optical-power-based temperature sensor,” IEEE Photonics Technol. Lett. 28(4), 383–386 (2016).
[Crossref]

H.-T. Kim and M. Yu, “Cascaded ring resonator-based temperature sensor with simultaneously enhanced sensitivity and range,” Opt. Express 24(9), 9501–9510 (2016).
[Crossref] [PubMed]

2015 (6)

J. F. Tao, H. Cai, Y. D. Gu, J. Wu, and A. Q. Liu, “Demonstration of a photonic-based linear temperature sensor,” IEEE Photonics Technol. Lett. 27(7), 767–769 (2015).
[Crossref]

J.-M. Lee, “Ultrahigh temperature-sensitive silicon MZI with titania cladding,” Front. Mater. 2(36), 1–4 (2015).

J.-M. Lee, “Influence of titania cladding on SOI grating coupler and 5 μm-radius ring resonator,” Opt. Commun. 338, 101–105 (2015).
[Crossref]

N. Klimov, M. Berger, and Z. Ahmed, “Towards reproducible ring resonator based temperature sensors,” Sens. Transducer 191(8), 63–66 (2015).

R. Boeck, M. Caverley, L. Chrostowski, and N. A. F. Jaeger, “Grating-assisted silicon-on-insulator racetrack resonator reflector,” Opt. Express 23(20), 25509–25522 (2015).
[Crossref] [PubMed]

N. N. Klimov, S. Mittal, M. Berger, and Z. Ahmed, “On-chip silicon waveguide Bragg grating photonic temperature sensor,” Opt. Lett. 40(17), 3934–3936 (2015).
[Crossref] [PubMed]

2014 (1)

2013 (3)

2012 (3)

Z. K. Nagy and R. D. Braatz, “Advances and new directions in crystallization control,” Annu. Rev. Chem. Biomol. Eng. 3(1), 55–75 (2012).
[Crossref] [PubMed]

H. Sun, S. Yang, J. Zhang, Q. Rong, L. Liang, Q. Xu, G. Xiang, D. Feng, Y. Du, Z. Feng, X. Qiao, and M. Hu, “Temperature and refractive index sensing characteristics of an MZI-based multimode fiber-dispersion compensation fiber-multimode fiber structure,” Opt. Fiber Technol. 18(6), 425–429 (2012).
[Crossref]

M. Sun, B. Xu, X. Dong, and Y. Li, “Optical fiber strain and temperature sensor based on an in-line Mach-Zehnder interferometer using thin-core fiber,” Opt. Commun. 285(18), 3721–3725 (2012).
[Crossref]

2011 (3)

H.-S. Lee, G.-D. Kim, W.-J. Kim, S.-S. Lee, and W.-G. Lee, “Tunable-resonator based temperature sensor interrogated through optical power detection,” Appl. Phys. Express 4(10), 102201 (2011).
[Crossref]

B. Yang, Y. Zhu, Y. Jiao, L. Yang, Z. Sheng, S. He, and D. Dai, “S. H and D. Dai, “Compact arrayed waveguide grating devices based on small SU-8 stripe waveguides,” J. Lightwave Technol. 29(13), 2009–2014 (2011).
[Crossref]

M. Furuhashi, M. Fujiwara, T. Ohshiro, M. Tsutsui, K. Matsubara, M. Taniguchi, S. Takeuchi, and T. Kawai, “Development of microfabricated TiO2 channel waveguides,” AIP Adv. 1(3), 032102 (2011).
[Crossref]

2010 (1)

2009 (1)

2007 (1)

R. Dekker, N. Usechak, M. Forst, and A. Driessen, “Ultrafast nonlinear all-optical processes in silicon-on-insulator waveguides,” J. Phys. D Appl. Phys. 40(14), 249–271 (2007).
[Crossref]

2006 (1)

M. Phisalaphong, N. Srirattana, and W. Tanthapanichakoon, “Mathematical modeling to investigate temperature effect on kinetic parameters of ethanol fermentation,” Biochem. Eng. J. 28(1), 36–43 (2006).
[Crossref]

2003 (2)

A. Irace and G. Breglio, “All-silicon optical temperature sensor based on Multi-Mode Interference,” Opt. Express 11(22), 2807–2812 (2003).
[Crossref] [PubMed]

G. Voskerician, M. S. Shive, R. S. Shawgo, H. von Recum, J. M. Anderson, M. J. Cima, and R. Langer, “Biocompatibility and biofouling of MEMS drug delivery devices,” Biomaterials 24(11), 1959–1967 (2003).
[Crossref] [PubMed]

2002 (1)

T. Shimizu, M. Yamato, Y. Isoi, T. Akutsu, T. Setomaru, K. Abe, A. Kikuchi, M. Umezu, and T. Okano, “Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces,” Circ. Res. 90(3), E40–E48 (2002).
[Crossref] [PubMed]

1999 (1)

1998 (1)

K. Furukawa and K. Ohsuye, “Effect of culture temperature on a recombinant CHO cell line producing a C-terminal α-amidating enzyme,” Cytotechnology 26(2), 153–164 (1998).
[Crossref] [PubMed]

1997 (1)

Y.-J. Rao, D. J. Webb, L. Zhang, and I. Bennion, “In-fiber Bragg-grating temperature sensor system for medical applications,” J. Lightwave Technol. 15(5), 779–785 (1997).
[Crossref]

1984 (1)

T.-I. Mheen and T.-W. Kwon, “Effect of temperature and salt concentration on Kimchi fermentation,” Korean J. Food Sci. Technol. 16(4), 443–450 (1984).

Abe, K.

T. Shimizu, M. Yamato, Y. Isoi, T. Akutsu, T. Setomaru, K. Abe, A. Kikuchi, M. Umezu, and T. Okano, “Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces,” Circ. Res. 90(3), E40–E48 (2002).
[Crossref] [PubMed]

Ahmed, Z.

Akutsu, T.

T. Shimizu, M. Yamato, Y. Isoi, T. Akutsu, T. Setomaru, K. Abe, A. Kikuchi, M. Umezu, and T. Okano, “Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces,” Circ. Res. 90(3), E40–E48 (2002).
[Crossref] [PubMed]

Anderson, J. M.

G. Voskerician, M. S. Shive, R. S. Shawgo, H. von Recum, J. M. Anderson, M. J. Cima, and R. Langer, “Biocompatibility and biofouling of MEMS drug delivery devices,” Biomaterials 24(11), 1959–1967 (2003).
[Crossref] [PubMed]

Bae, H. K.

Baets, R.

Bennion, I.

Y.-J. Rao, D. J. Webb, L. Zhang, and I. Bennion, “In-fiber Bragg-grating temperature sensor system for medical applications,” J. Lightwave Technol. 15(5), 779–785 (1997).
[Crossref]

Berger, M.

N. Klimov, M. Berger, and Z. Ahmed, “Towards reproducible ring resonator based temperature sensors,” Sens. Transducer 191(8), 63–66 (2015).

N. N. Klimov, S. Mittal, M. Berger, and Z. Ahmed, “On-chip silicon waveguide Bragg grating photonic temperature sensor,” Opt. Lett. 40(17), 3934–3936 (2015).
[Crossref] [PubMed]

Boeck, R.

Bogaerts, W.

S. Dwivedi, H. D’heer, and W. Bogaerts, “A compact all-silicon temperature insensitive filter for WDM and bio-sensing applications,” IEEE Photonics Technol. Lett. 25(22), 2167–2170 (2013).
[Crossref]

J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, X. Han, M. Zhao, G. Morthier, and R. Baets, “Athermal Silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides,” Opt. Express 17(17), 14627–14633 (2009).
[Crossref] [PubMed]

Braatz, R. D.

Z. K. Nagy and R. D. Braatz, “Advances and new directions in crystallization control,” Annu. Rev. Chem. Biomol. Eng. 3(1), 55–75 (2012).
[Crossref] [PubMed]

Breglio, G.

Byun, J. O.

Cai, H.

J. F. Tao, H. Cai, Y. D. Gu, J. Wu, and A. Q. Liu, “Demonstration of a photonic-based linear temperature sensor,” IEEE Photonics Technol. Lett. 27(7), 767–769 (2015).
[Crossref]

Cardenas, J.

Caverley, M.

Chang, C.-M.

Chrostowski, L.

Cima, M. J.

G. Voskerician, M. S. Shive, R. S. Shawgo, H. von Recum, J. M. Anderson, M. J. Cima, and R. Langer, “Biocompatibility and biofouling of MEMS drug delivery devices,” Biomaterials 24(11), 1959–1967 (2003).
[Crossref] [PubMed]

D’heer, H.

S. Dwivedi, H. D’heer, and W. Bogaerts, “A compact all-silicon temperature insensitive filter for WDM and bio-sensing applications,” IEEE Photonics Technol. Lett. 25(22), 2167–2170 (2013).
[Crossref]

Dai, D.

Dekker, R.

R. Dekker, N. Usechak, M. Forst, and A. Driessen, “Ultrafast nonlinear all-optical processes in silicon-on-insulator waveguides,” J. Phys. D Appl. Phys. 40(14), 249–271 (2007).
[Crossref]

Dong, X.

M. Sun, B. Xu, X. Dong, and Y. Li, “Optical fiber strain and temperature sensor based on an in-line Mach-Zehnder interferometer using thin-core fiber,” Opt. Commun. 285(18), 3721–3725 (2012).
[Crossref]

Driessen, A.

R. Dekker, N. Usechak, M. Forst, and A. Driessen, “Ultrafast nonlinear all-optical processes in silicon-on-insulator waveguides,” J. Phys. D Appl. Phys. 40(14), 249–271 (2007).
[Crossref]

Du, Y.

H. Sun, S. Yang, J. Zhang, Q. Rong, L. Liang, Q. Xu, G. Xiang, D. Feng, Y. Du, Z. Feng, X. Qiao, and M. Hu, “Temperature and refractive index sensing characteristics of an MZI-based multimode fiber-dispersion compensation fiber-multimode fiber structure,” Opt. Fiber Technol. 18(6), 425–429 (2012).
[Crossref]

Dumon, P.

Dwivedi, S.

S. Dwivedi, H. D’heer, and W. Bogaerts, “A compact all-silicon temperature insensitive filter for WDM and bio-sensing applications,” IEEE Photonics Technol. Lett. 25(22), 2167–2170 (2013).
[Crossref]

Fan, J.

Feng, D.

H. Sun, S. Yang, J. Zhang, Q. Rong, L. Liang, Q. Xu, G. Xiang, D. Feng, Y. Du, Z. Feng, X. Qiao, and M. Hu, “Temperature and refractive index sensing characteristics of an MZI-based multimode fiber-dispersion compensation fiber-multimode fiber structure,” Opt. Fiber Technol. 18(6), 425–429 (2012).
[Crossref]

Feng, Z.

H. Sun, S. Yang, J. Zhang, Q. Rong, L. Liang, Q. Xu, G. Xiang, D. Feng, Y. Du, Z. Feng, X. Qiao, and M. Hu, “Temperature and refractive index sensing characteristics of an MZI-based multimode fiber-dispersion compensation fiber-multimode fiber structure,” Opt. Fiber Technol. 18(6), 425–429 (2012).
[Crossref]

Forst, M.

R. Dekker, N. Usechak, M. Forst, and A. Driessen, “Ultrafast nonlinear all-optical processes in silicon-on-insulator waveguides,” J. Phys. D Appl. Phys. 40(14), 249–271 (2007).
[Crossref]

Fujiwara, M.

M. Furuhashi, M. Fujiwara, T. Ohshiro, M. Tsutsui, K. Matsubara, M. Taniguchi, S. Takeuchi, and T. Kawai, “Development of microfabricated TiO2 channel waveguides,” AIP Adv. 1(3), 032102 (2011).
[Crossref]

Furuhashi, M.

M. Furuhashi, M. Fujiwara, T. Ohshiro, M. Tsutsui, K. Matsubara, M. Taniguchi, S. Takeuchi, and T. Kawai, “Development of microfabricated TiO2 channel waveguides,” AIP Adv. 1(3), 032102 (2011).
[Crossref]

Furukawa, K.

K. Furukawa and K. Ohsuye, “Effect of culture temperature on a recombinant CHO cell line producing a C-terminal α-amidating enzyme,” Cytotechnology 26(2), 153–164 (1998).
[Crossref] [PubMed]

Gu, Y. D.

J. F. Tao, H. Cai, Y. D. Gu, J. Wu, and A. Q. Liu, “Demonstration of a photonic-based linear temperature sensor,” IEEE Photonics Technol. Lett. 27(7), 767–769 (2015).
[Crossref]

Guha, B.

Hafezi, M.

Han, X.

He, S.

Hu, M.

H. Sun, S. Yang, J. Zhang, Q. Rong, L. Liang, Q. Xu, G. Xiang, D. Feng, Y. Du, Z. Feng, X. Qiao, and M. Hu, “Temperature and refractive index sensing characteristics of an MZI-based multimode fiber-dispersion compensation fiber-multimode fiber structure,” Opt. Fiber Technol. 18(6), 425–429 (2012).
[Crossref]

Irace, A.

Isoi, Y.

T. Shimizu, M. Yamato, Y. Isoi, T. Akutsu, T. Setomaru, K. Abe, A. Kikuchi, M. Umezu, and T. Okano, “Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces,” Circ. Res. 90(3), E40–E48 (2002).
[Crossref] [PubMed]

Jaeger, N. A. F.

Jia, W.

Q. Sun, X. Sun, W. Jia, Z. Xu, H. Luo, D. Liu, and L. Zhang, “Graphene-assisted microfiber for optical-power-based temperature sensor,” IEEE Photonics Technol. Lett. 28(4), 383–386 (2016).
[Crossref]

Jian, X.

Jiao, Y.

Jung, J.

Kawai, T.

M. Furuhashi, M. Fujiwara, T. Ohshiro, M. Tsutsui, K. Matsubara, M. Taniguchi, S. Takeuchi, and T. Kawai, “Development of microfabricated TiO2 channel waveguides,” AIP Adv. 1(3), 032102 (2011).
[Crossref]

Kikuchi, A.

T. Shimizu, M. Yamato, Y. Isoi, T. Akutsu, T. Setomaru, K. Abe, A. Kikuchi, M. Umezu, and T. Okano, “Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces,” Circ. Res. 90(3), E40–E48 (2002).
[Crossref] [PubMed]

Kim, G.-D.

H.-S. Lee, G.-D. Kim, W.-J. Kim, S.-S. Lee, and W.-G. Lee, “Tunable-resonator based temperature sensor interrogated through optical power detection,” Appl. Phys. Express 4(10), 102201 (2011).
[Crossref]

G.-D. Kim, H.-S. Lee, C.-H. Park, S.-S. Lee, B. T. Lim, H. K. Bae, and W.-G. Lee, “Silicon photonic temperature sensor employing a ring resonator manufactured using a standard CMOS process,” Opt. Express 18(21), 22215–22221 (2010).
[Crossref] [PubMed]

Kim, H.-T.

Kim, N. S.

Kim, W.-J.

H.-S. Lee, G.-D. Kim, W.-J. Kim, S.-S. Lee, and W.-G. Lee, “Tunable-resonator based temperature sensor interrogated through optical power detection,” Appl. Phys. Express 4(10), 102201 (2011).
[Crossref]

Klimov, N.

N. Klimov, M. Berger, and Z. Ahmed, “Towards reproducible ring resonator based temperature sensors,” Sens. Transducer 191(8), 63–66 (2015).

Klimov, N. N.

Kwon, T.-W.

T.-I. Mheen and T.-W. Kwon, “Effect of temperature and salt concentration on Kimchi fermentation,” Korean J. Food Sci. Technol. 16(4), 443–450 (1984).

Langer, R.

G. Voskerician, M. S. Shive, R. S. Shawgo, H. von Recum, J. M. Anderson, M. J. Cima, and R. Langer, “Biocompatibility and biofouling of MEMS drug delivery devices,” Biomaterials 24(11), 1959–1967 (2003).
[Crossref] [PubMed]

Lee, B.

Lee, H.-S.

H.-S. Lee, G.-D. Kim, W.-J. Kim, S.-S. Lee, and W.-G. Lee, “Tunable-resonator based temperature sensor interrogated through optical power detection,” Appl. Phys. Express 4(10), 102201 (2011).
[Crossref]

G.-D. Kim, H.-S. Lee, C.-H. Park, S.-S. Lee, B. T. Lim, H. K. Bae, and W.-G. Lee, “Silicon photonic temperature sensor employing a ring resonator manufactured using a standard CMOS process,” Opt. Express 18(21), 22215–22221 (2010).
[Crossref] [PubMed]

Lee, J.-M.

J.-M. Lee, “Influence of titania cladding on SOI grating coupler and 5 μm-radius ring resonator,” Opt. Commun. 338, 101–105 (2015).
[Crossref]

J.-M. Lee, “Ultrahigh temperature-sensitive silicon MZI with titania cladding,” Front. Mater. 2(36), 1–4 (2015).

Lee, S.-S.

H.-S. Lee, G.-D. Kim, W.-J. Kim, S.-S. Lee, and W.-G. Lee, “Tunable-resonator based temperature sensor interrogated through optical power detection,” Appl. Phys. Express 4(10), 102201 (2011).
[Crossref]

G.-D. Kim, H.-S. Lee, C.-H. Park, S.-S. Lee, B. T. Lim, H. K. Bae, and W.-G. Lee, “Silicon photonic temperature sensor employing a ring resonator manufactured using a standard CMOS process,” Opt. Express 18(21), 22215–22221 (2010).
[Crossref] [PubMed]

Lee, W.-G.

H.-S. Lee, G.-D. Kim, W.-J. Kim, S.-S. Lee, and W.-G. Lee, “Tunable-resonator based temperature sensor interrogated through optical power detection,” Appl. Phys. Express 4(10), 102201 (2011).
[Crossref]

G.-D. Kim, H.-S. Lee, C.-H. Park, S.-S. Lee, B. T. Lim, H. K. Bae, and W.-G. Lee, “Silicon photonic temperature sensor employing a ring resonator manufactured using a standard CMOS process,” Opt. Express 18(21), 22215–22221 (2010).
[Crossref] [PubMed]

Li, Y.

M. Sun, B. Xu, X. Dong, and Y. Li, “Optical fiber strain and temperature sensor based on an in-line Mach-Zehnder interferometer using thin-core fiber,” Opt. Commun. 285(18), 3721–3725 (2012).
[Crossref]

Liang, L.

H. Sun, S. Yang, J. Zhang, Q. Rong, L. Liang, Q. Xu, G. Xiang, D. Feng, Y. Du, Z. Feng, X. Qiao, and M. Hu, “Temperature and refractive index sensing characteristics of an MZI-based multimode fiber-dispersion compensation fiber-multimode fiber structure,” Opt. Fiber Technol. 18(6), 425–429 (2012).
[Crossref]

Lim, B. T.

Lipson, M.

Liu, A. Q.

J. F. Tao, H. Cai, Y. D. Gu, J. Wu, and A. Q. Liu, “Demonstration of a photonic-based linear temperature sensor,” IEEE Photonics Technol. Lett. 27(7), 767–769 (2015).
[Crossref]

Liu, D.

Q. Sun, X. Sun, W. Jia, Z. Xu, H. Luo, D. Liu, and L. Zhang, “Graphene-assisted microfiber for optical-power-based temperature sensor,” IEEE Photonics Technol. Lett. 28(4), 383–386 (2016).
[Crossref]

Luo, H.

Q. Sun, X. Sun, W. Jia, Z. Xu, H. Luo, D. Liu, and L. Zhang, “Graphene-assisted microfiber for optical-power-based temperature sensor,” IEEE Photonics Technol. Lett. 28(4), 383–386 (2016).
[Crossref]

Matsubara, K.

M. Furuhashi, M. Fujiwara, T. Ohshiro, M. Tsutsui, K. Matsubara, M. Taniguchi, S. Takeuchi, and T. Kawai, “Development of microfabricated TiO2 channel waveguides,” AIP Adv. 1(3), 032102 (2011).
[Crossref]

Mheen, T.-I.

T.-I. Mheen and T.-W. Kwon, “Effect of temperature and salt concentration on Kimchi fermentation,” Korean J. Food Sci. Technol. 16(4), 443–450 (1984).

Mittal, S.

Morthier, G.

Nagy, Z. K.

Z. K. Nagy and R. D. Braatz, “Advances and new directions in crystallization control,” Annu. Rev. Chem. Biomol. Eng. 3(1), 55–75 (2012).
[Crossref] [PubMed]

Nam, H.

Ohshiro, T.

M. Furuhashi, M. Fujiwara, T. Ohshiro, M. Tsutsui, K. Matsubara, M. Taniguchi, S. Takeuchi, and T. Kawai, “Development of microfabricated TiO2 channel waveguides,” AIP Adv. 1(3), 032102 (2011).
[Crossref]

Ohsuye, K.

K. Furukawa and K. Ohsuye, “Effect of culture temperature on a recombinant CHO cell line producing a C-terminal α-amidating enzyme,” Cytotechnology 26(2), 153–164 (1998).
[Crossref] [PubMed]

Okano, T.

T. Shimizu, M. Yamato, Y. Isoi, T. Akutsu, T. Setomaru, K. Abe, A. Kikuchi, M. Umezu, and T. Okano, “Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces,” Circ. Res. 90(3), E40–E48 (2002).
[Crossref] [PubMed]

Park, C.-H.

Phisalaphong, M.

M. Phisalaphong, N. Srirattana, and W. Tanthapanichakoon, “Mathematical modeling to investigate temperature effect on kinetic parameters of ethanol fermentation,” Biochem. Eng. J. 28(1), 36–43 (2006).
[Crossref]

Qiao, X.

H. Sun, S. Yang, J. Zhang, Q. Rong, L. Liang, Q. Xu, G. Xiang, D. Feng, Y. Du, Z. Feng, X. Qiao, and M. Hu, “Temperature and refractive index sensing characteristics of an MZI-based multimode fiber-dispersion compensation fiber-multimode fiber structure,” Opt. Fiber Technol. 18(6), 425–429 (2012).
[Crossref]

Rao, Y.-J.

Y.-J. Rao, D. J. Webb, L. Zhang, and I. Bennion, “In-fiber Bragg-grating temperature sensor system for medical applications,” J. Lightwave Technol. 15(5), 779–785 (1997).
[Crossref]

Rong, Q.

H. Sun, S. Yang, J. Zhang, Q. Rong, L. Liang, Q. Xu, G. Xiang, D. Feng, Y. Du, Z. Feng, X. Qiao, and M. Hu, “Temperature and refractive index sensing characteristics of an MZI-based multimode fiber-dispersion compensation fiber-multimode fiber structure,” Opt. Fiber Technol. 18(6), 425–429 (2012).
[Crossref]

Setomaru, T.

T. Shimizu, M. Yamato, Y. Isoi, T. Akutsu, T. Setomaru, K. Abe, A. Kikuchi, M. Umezu, and T. Okano, “Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces,” Circ. Res. 90(3), E40–E48 (2002).
[Crossref] [PubMed]

Shawgo, R. S.

G. Voskerician, M. S. Shive, R. S. Shawgo, H. von Recum, J. M. Anderson, M. J. Cima, and R. Langer, “Biocompatibility and biofouling of MEMS drug delivery devices,” Biomaterials 24(11), 1959–1967 (2003).
[Crossref] [PubMed]

Sheng, Z.

Shimizu, T.

T. Shimizu, M. Yamato, Y. Isoi, T. Akutsu, T. Setomaru, K. Abe, A. Kikuchi, M. Umezu, and T. Okano, “Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces,” Circ. Res. 90(3), E40–E48 (2002).
[Crossref] [PubMed]

Shive, M. S.

G. Voskerician, M. S. Shive, R. S. Shawgo, H. von Recum, J. M. Anderson, M. J. Cima, and R. Langer, “Biocompatibility and biofouling of MEMS drug delivery devices,” Biomaterials 24(11), 1959–1967 (2003).
[Crossref] [PubMed]

Solgaard, O.

Srirattana, N.

M. Phisalaphong, N. Srirattana, and W. Tanthapanichakoon, “Mathematical modeling to investigate temperature effect on kinetic parameters of ethanol fermentation,” Biochem. Eng. J. 28(1), 36–43 (2006).
[Crossref]

Strouse, G. F.

Sun, H.

H. Sun, S. Yang, J. Zhang, Q. Rong, L. Liang, Q. Xu, G. Xiang, D. Feng, Y. Du, Z. Feng, X. Qiao, and M. Hu, “Temperature and refractive index sensing characteristics of an MZI-based multimode fiber-dispersion compensation fiber-multimode fiber structure,” Opt. Fiber Technol. 18(6), 425–429 (2012).
[Crossref]

Sun, M.

M. Sun, B. Xu, X. Dong, and Y. Li, “Optical fiber strain and temperature sensor based on an in-line Mach-Zehnder interferometer using thin-core fiber,” Opt. Commun. 285(18), 3721–3725 (2012).
[Crossref]

Sun, Q.

Q. Sun, X. Sun, W. Jia, Z. Xu, H. Luo, D. Liu, and L. Zhang, “Graphene-assisted microfiber for optical-power-based temperature sensor,” IEEE Photonics Technol. Lett. 28(4), 383–386 (2016).
[Crossref]

Sun, X.

Q. Sun, X. Sun, W. Jia, Z. Xu, H. Luo, D. Liu, and L. Zhang, “Graphene-assisted microfiber for optical-power-based temperature sensor,” IEEE Photonics Technol. Lett. 28(4), 383–386 (2016).
[Crossref]

Takeuchi, S.

M. Furuhashi, M. Fujiwara, T. Ohshiro, M. Tsutsui, K. Matsubara, M. Taniguchi, S. Takeuchi, and T. Kawai, “Development of microfabricated TiO2 channel waveguides,” AIP Adv. 1(3), 032102 (2011).
[Crossref]

Taniguchi, M.

M. Furuhashi, M. Fujiwara, T. Ohshiro, M. Tsutsui, K. Matsubara, M. Taniguchi, S. Takeuchi, and T. Kawai, “Development of microfabricated TiO2 channel waveguides,” AIP Adv. 1(3), 032102 (2011).
[Crossref]

Tanthapanichakoon, W.

M. Phisalaphong, N. Srirattana, and W. Tanthapanichakoon, “Mathematical modeling to investigate temperature effect on kinetic parameters of ethanol fermentation,” Biochem. Eng. J. 28(1), 36–43 (2006).
[Crossref]

Tao, J. F.

J. F. Tao, H. Cai, Y. D. Gu, J. Wu, and A. Q. Liu, “Demonstration of a photonic-based linear temperature sensor,” IEEE Photonics Technol. Lett. 27(7), 767–769 (2015).
[Crossref]

Taylor, J. M.

Teng, J.

Tsutsui, M.

M. Furuhashi, M. Fujiwara, T. Ohshiro, M. Tsutsui, K. Matsubara, M. Taniguchi, S. Takeuchi, and T. Kawai, “Development of microfabricated TiO2 channel waveguides,” AIP Adv. 1(3), 032102 (2011).
[Crossref]

Umezu, M.

T. Shimizu, M. Yamato, Y. Isoi, T. Akutsu, T. Setomaru, K. Abe, A. Kikuchi, M. Umezu, and T. Okano, “Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces,” Circ. Res. 90(3), E40–E48 (2002).
[Crossref] [PubMed]

Usechak, N.

R. Dekker, N. Usechak, M. Forst, and A. Driessen, “Ultrafast nonlinear all-optical processes in silicon-on-insulator waveguides,” J. Phys. D Appl. Phys. 40(14), 249–271 (2007).
[Crossref]

von Recum, H.

G. Voskerician, M. S. Shive, R. S. Shawgo, H. von Recum, J. M. Anderson, M. J. Cima, and R. Langer, “Biocompatibility and biofouling of MEMS drug delivery devices,” Biomaterials 24(11), 1959–1967 (2003).
[Crossref] [PubMed]

Voskerician, G.

G. Voskerician, M. S. Shive, R. S. Shawgo, H. von Recum, J. M. Anderson, M. J. Cima, and R. Langer, “Biocompatibility and biofouling of MEMS drug delivery devices,” Biomaterials 24(11), 1959–1967 (2003).
[Crossref] [PubMed]

Webb, D. J.

Y.-J. Rao, D. J. Webb, L. Zhang, and I. Bennion, “In-fiber Bragg-grating temperature sensor system for medical applications,” J. Lightwave Technol. 15(5), 779–785 (1997).
[Crossref]

Wu, J.

J. F. Tao, H. Cai, Y. D. Gu, J. Wu, and A. Q. Liu, “Demonstration of a photonic-based linear temperature sensor,” IEEE Photonics Technol. Lett. 27(7), 767–769 (2015).
[Crossref]

Xiang, G.

H. Sun, S. Yang, J. Zhang, Q. Rong, L. Liang, Q. Xu, G. Xiang, D. Feng, Y. Du, Z. Feng, X. Qiao, and M. Hu, “Temperature and refractive index sensing characteristics of an MZI-based multimode fiber-dispersion compensation fiber-multimode fiber structure,” Opt. Fiber Technol. 18(6), 425–429 (2012).
[Crossref]

Xu, B.

M. Sun, B. Xu, X. Dong, and Y. Li, “Optical fiber strain and temperature sensor based on an in-line Mach-Zehnder interferometer using thin-core fiber,” Opt. Commun. 285(18), 3721–3725 (2012).
[Crossref]

Xu, H.

Xu, Q.

H. Sun, S. Yang, J. Zhang, Q. Rong, L. Liang, Q. Xu, G. Xiang, D. Feng, Y. Du, Z. Feng, X. Qiao, and M. Hu, “Temperature and refractive index sensing characteristics of an MZI-based multimode fiber-dispersion compensation fiber-multimode fiber structure,” Opt. Fiber Technol. 18(6), 425–429 (2012).
[Crossref]

Xu, Z.

Q. Sun, X. Sun, W. Jia, Z. Xu, H. Luo, D. Liu, and L. Zhang, “Graphene-assisted microfiber for optical-power-based temperature sensor,” IEEE Photonics Technol. Lett. 28(4), 383–386 (2016).
[Crossref]

Yamato, M.

T. Shimizu, M. Yamato, Y. Isoi, T. Akutsu, T. Setomaru, K. Abe, A. Kikuchi, M. Umezu, and T. Okano, “Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces,” Circ. Res. 90(3), E40–E48 (2002).
[Crossref] [PubMed]

Yang, B.

Yang, L.

Yang, S.

H. Sun, S. Yang, J. Zhang, Q. Rong, L. Liang, Q. Xu, G. Xiang, D. Feng, Y. Du, Z. Feng, X. Qiao, and M. Hu, “Temperature and refractive index sensing characteristics of an MZI-based multimode fiber-dispersion compensation fiber-multimode fiber structure,” Opt. Fiber Technol. 18(6), 425–429 (2012).
[Crossref]

Yu, M.

Zhang, H.

Zhang, J.

H. Sun, S. Yang, J. Zhang, Q. Rong, L. Liang, Q. Xu, G. Xiang, D. Feng, Y. Du, Z. Feng, X. Qiao, and M. Hu, “Temperature and refractive index sensing characteristics of an MZI-based multimode fiber-dispersion compensation fiber-multimode fiber structure,” Opt. Fiber Technol. 18(6), 425–429 (2012).
[Crossref]

Zhang, L.

Q. Sun, X. Sun, W. Jia, Z. Xu, H. Luo, D. Liu, and L. Zhang, “Graphene-assisted microfiber for optical-power-based temperature sensor,” IEEE Photonics Technol. Lett. 28(4), 383–386 (2016).
[Crossref]

Y.-J. Rao, D. J. Webb, L. Zhang, and I. Bennion, “In-fiber Bragg-grating temperature sensor system for medical applications,” J. Lightwave Technol. 15(5), 779–785 (1997).
[Crossref]

Zhao, M.

Zhu, Y.

AIP Adv. (1)

M. Furuhashi, M. Fujiwara, T. Ohshiro, M. Tsutsui, K. Matsubara, M. Taniguchi, S. Takeuchi, and T. Kawai, “Development of microfabricated TiO2 channel waveguides,” AIP Adv. 1(3), 032102 (2011).
[Crossref]

Annu. Rev. Chem. Biomol. Eng. (1)

Z. K. Nagy and R. D. Braatz, “Advances and new directions in crystallization control,” Annu. Rev. Chem. Biomol. Eng. 3(1), 55–75 (2012).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Express (1)

H.-S. Lee, G.-D. Kim, W.-J. Kim, S.-S. Lee, and W.-G. Lee, “Tunable-resonator based temperature sensor interrogated through optical power detection,” Appl. Phys. Express 4(10), 102201 (2011).
[Crossref]

Biochem. Eng. J. (1)

M. Phisalaphong, N. Srirattana, and W. Tanthapanichakoon, “Mathematical modeling to investigate temperature effect on kinetic parameters of ethanol fermentation,” Biochem. Eng. J. 28(1), 36–43 (2006).
[Crossref]

Biomaterials (1)

G. Voskerician, M. S. Shive, R. S. Shawgo, H. von Recum, J. M. Anderson, M. J. Cima, and R. Langer, “Biocompatibility and biofouling of MEMS drug delivery devices,” Biomaterials 24(11), 1959–1967 (2003).
[Crossref] [PubMed]

Circ. Res. (1)

T. Shimizu, M. Yamato, Y. Isoi, T. Akutsu, T. Setomaru, K. Abe, A. Kikuchi, M. Umezu, and T. Okano, “Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces,” Circ. Res. 90(3), E40–E48 (2002).
[Crossref] [PubMed]

Cytotechnology (1)

K. Furukawa and K. Ohsuye, “Effect of culture temperature on a recombinant CHO cell line producing a C-terminal α-amidating enzyme,” Cytotechnology 26(2), 153–164 (1998).
[Crossref] [PubMed]

Front. Mater. (1)

J.-M. Lee, “Ultrahigh temperature-sensitive silicon MZI with titania cladding,” Front. Mater. 2(36), 1–4 (2015).

IEEE Photonics Technol. Lett. (3)

S. Dwivedi, H. D’heer, and W. Bogaerts, “A compact all-silicon temperature insensitive filter for WDM and bio-sensing applications,” IEEE Photonics Technol. Lett. 25(22), 2167–2170 (2013).
[Crossref]

J. F. Tao, H. Cai, Y. D. Gu, J. Wu, and A. Q. Liu, “Demonstration of a photonic-based linear temperature sensor,” IEEE Photonics Technol. Lett. 27(7), 767–769 (2015).
[Crossref]

Q. Sun, X. Sun, W. Jia, Z. Xu, H. Luo, D. Liu, and L. Zhang, “Graphene-assisted microfiber for optical-power-based temperature sensor,” IEEE Photonics Technol. Lett. 28(4), 383–386 (2016).
[Crossref]

J. Lightwave Technol. (2)

Y.-J. Rao, D. J. Webb, L. Zhang, and I. Bennion, “In-fiber Bragg-grating temperature sensor system for medical applications,” J. Lightwave Technol. 15(5), 779–785 (1997).
[Crossref]

B. Yang, Y. Zhu, Y. Jiao, L. Yang, Z. Sheng, S. He, and D. Dai, “S. H and D. Dai, “Compact arrayed waveguide grating devices based on small SU-8 stripe waveguides,” J. Lightwave Technol. 29(13), 2009–2014 (2011).
[Crossref]

J. Phys. D Appl. Phys. (1)

R. Dekker, N. Usechak, M. Forst, and A. Driessen, “Ultrafast nonlinear all-optical processes in silicon-on-insulator waveguides,” J. Phys. D Appl. Phys. 40(14), 249–271 (2007).
[Crossref]

Korean J. Food Sci. Technol. (1)

T.-I. Mheen and T.-W. Kwon, “Effect of temperature and salt concentration on Kimchi fermentation,” Korean J. Food Sci. Technol. 16(4), 443–450 (1984).

Opt. Commun. (2)

M. Sun, B. Xu, X. Dong, and Y. Li, “Optical fiber strain and temperature sensor based on an in-line Mach-Zehnder interferometer using thin-core fiber,” Opt. Commun. 285(18), 3721–3725 (2012).
[Crossref]

J.-M. Lee, “Influence of titania cladding on SOI grating coupler and 5 μm-radius ring resonator,” Opt. Commun. 338, 101–105 (2015).
[Crossref]

Opt. Express (8)

B. Guha, J. Cardenas, and M. Lipson, “Athermal silicon microring resonators with titanium oxide cladding,” Opt. Express 21(22), 26557–26563 (2013).
[Crossref] [PubMed]

J. Teng, P. Dumon, W. Bogaerts, H. Zhang, X. Jian, X. Han, M. Zhao, G. Morthier, and R. Baets, “Athermal Silicon-on-insulator ring resonators by overlaying a polymer cladding on narrowed waveguides,” Opt. Express 17(17), 14627–14633 (2009).
[Crossref] [PubMed]

A. Irace and G. Breglio, “All-silicon optical temperature sensor based on Multi-Mode Interference,” Opt. Express 11(22), 2807–2812 (2003).
[Crossref] [PubMed]

R. Boeck, M. Caverley, L. Chrostowski, and N. A. F. Jaeger, “Grating-assisted silicon-on-insulator racetrack resonator reflector,” Opt. Express 23(20), 25509–25522 (2015).
[Crossref] [PubMed]

H.-T. Kim and M. Yu, “Cascaded ring resonator-based temperature sensor with simultaneously enhanced sensitivity and range,” Opt. Express 24(9), 9501–9510 (2016).
[Crossref] [PubMed]

G.-D. Kim, H.-S. Lee, C.-H. Park, S.-S. Lee, B. T. Lim, H. K. Bae, and W.-G. Lee, “Silicon photonic temperature sensor employing a ring resonator manufactured using a standard CMOS process,” Opt. Express 18(21), 22215–22221 (2010).
[Crossref] [PubMed]

C.-M. Chang and O. Solgaard, “Fano resonances in integrated silicon Bragg reflectors for sensing applications,” Opt. Express 21(22), 27209–27218 (2013).
[Crossref] [PubMed]

H. Xu, M. Hafezi, J. Fan, J. M. Taylor, G. F. Strouse, and Z. Ahmed, “Ultra-sensitive chip-based photonic temperature sensor using ring resonator structures,” Opt. Express 22(3), 3098–3104 (2014).
[Crossref] [PubMed]

Opt. Fiber Technol. (1)

H. Sun, S. Yang, J. Zhang, Q. Rong, L. Liang, Q. Xu, G. Xiang, D. Feng, Y. Du, Z. Feng, X. Qiao, and M. Hu, “Temperature and refractive index sensing characteristics of an MZI-based multimode fiber-dispersion compensation fiber-multimode fiber structure,” Opt. Fiber Technol. 18(6), 425–429 (2012).
[Crossref]

Opt. Lett. (1)

Sens. Transducer (1)

N. Klimov, M. Berger, and Z. Ahmed, “Towards reproducible ring resonator based temperature sensors,” Sens. Transducer 191(8), 63–66 (2015).

Other (3)

N. Klimov, T. Purdy, and Z. Ahmed, “Fabry-Perrot cavity-based silicon photonic thermometers with ultra-small footprint and high sensitivity,” in Advanced Photonics 2015, OSA Technical Digest (online) (Optical Society of America, 2015), paper SeT4C.4.

Q. Deng, X. Li, R. Chen, and Z. Zhou, “Low-cost silicon photonic temperature sensor using broadband light source,” in The 11th International Conference on Group IV Photonics(IEEE Photonics Society, Paris, France, 2014), p. P23.

M. Pu, L. H. Frandsen, H. Ou, K. Yvind, and J. M. Hvam, “Low insertion loss SOI microring resonator integrated with nano-taper couplers,” the Conference on Frontiers in Optics (FiO) 2009, FThE1 (2009).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Schematic of the proposed MZI-based temperature sensor with Si/SU-8 hybrid waveguides. Insets (a) and (b) show the cross section and the mode (power) distribution of the waveguides in arm 1 and in the narrow nanowire part of arm 2, respectively.
Fig. 2
Fig. 2 The group index (a) and the effective index variation with the temperature changes (b) as a function of the waveguide width in arm 1 or arm 2. The FSR (c) and the temperature sensitivity (d) of the proposed temperature sensor as a function of the width of the silicon nanowire in arm 2, when the width of arm 1 is 300 nm (blue diamond), 360nm (red square) and 460 nm (green circle). Here, the wavelength is 1550 nm.
Fig. 3
Fig. 3 SEM image of the proposed temperature sensor with (a) Si/SU-8 hybrid waveguides and (b) the all-Si temperature sensor for reference. The inserted SEM image in the green frame in (a) shows the close-up view of the interface part of the Si waveguide and the Si/SU-8 waveguide.
Fig. 4
Fig. 4 Measured and normalized spectra of the proposed temperature sensor with (a) Si/SU-8 hybrid waveguides and (b) the reference all-Si temperature sensors recorded at different temperatures. (c) The shift of the interference wavelength as a function of the temperature for the proposed (red circle) and the reference (blue square) sensors. Here, the wavelengths for the proposed and the reference sensors are 1543.7 nm and 1544.6 at 24.1 °C, respectively.
Fig. 5
Fig. 5 Measured and normalized spectra of the proposed temperature sensor with Si/SU-8 hybrid waveguides at different temperatures for the width of the narrow nanowire of arm 2 is 40 nm (a) and 90 nm (b), respectively. Here, the length of the narrow nanowire L is 290 μm.
Fig. 6
Fig. 6 Calculated FSR and temperature sensitivity of the proposed temperature sensor with Si/TiO2 hybrid waveguides as a function of the TiO2 waveguide width at different TiO2 waveguide heights. Here, the arm lengths are 30 μm and w2 = 40 nm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

S= Δλ ΔT =λ (d n eff1 /dT) L 1 (d n eff2 /dT) L 2 n g1 L 1 n g2 L 2

Metrics