Abstract

The combination of femtosecond laser filament ablation and emission spectroscopy is a potential analytical tool for standoff characterization of samples of interest. We compare the emission features and physical conditions of plasmas generated from metal targets using either by loosely focused femtosecond filaments or by lens-free filaments. Our results show that the filament generation conditions influence the plasma properties appreciably which include the atomic and molecular emission features, persistence and plasma fundamentals (temperature and density). The loosely focused fs pulse filaments are found to generate ablation plumes with higher temperature and density along with increased persistence compared to plumes generated by lens-free filaments.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Plasma temperature clamping in filamentation laser induced breakdown spectroscopy

S. S. Harilal, J. Yeak, and M. C. Phillips
Opt. Express 23(21) 27113-27122 (2015)

Femtosecond laser induced breakdown spectroscopy based standoff detection of explosives and discrimination using principal component analysis

Abdul Kalam Shaik, Nageswara Rao Epuru, Hamad Syed, Chandu Byram, and Venugopal Rao Soma
Opt. Express 26(7) 8069-8083 (2018)

References

  • View by:
  • |
  • |
  • |

  1. E. G. Gamaly, Femtosecond Laser-Matter Interaction: Theory, Experiments and Applications (Pan Stanford, 2011).
  2. K. K. Anoop, M. Polek, R. Bruzzese, S. Amoruso, and S. S. Harilal, “Multi-diagnostics analysis of ion dynamics in ultrafast laser ablation of metals over a large fluence range,” J. Appl. Phys. 117(8), 083108 (2015).
    [Crossref]
  3. T. A. Labutin, V. N. Lednev, A. A. Ilyin, and A. M. Popov, “Femtosecond laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 31(1), 90–118 (2016).
    [Crossref]
  4. N. LaHaye, M. C. Phillips, A. Duffin, G. Eiden, and S. S. Harilal, “The influence of ns- and fs-LA plume local conditions on the performance of a combined LIBS/LA-ICP-MS sensor,” J. Anal. At. Spectrom. 31(2), 515–522 (2016).
    [Crossref]
  5. E. L. Gurevich and R. Hergenröder, “Femtosecond laser-induced breakdown spectroscopy: physics, applications, and perspectives,” Appl. Spectrosc. 61(10), 233–242 (2007).
    [Crossref] [PubMed]
  6. K. Stelmaszczyk, P. Rohwetter, G. Mejean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J. P. Wolf, and L. Woste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85(18), 3977–3979 (2004).
    [Crossref]
  7. M. Weidman, K. Lim, M. Ramme, M. Durand, M. Baudelet, and M. Richardson, “Stand-off filament-induced ablation of gallium arsenide,” Appl. Phys. Lett. 101(3), 034101 (2012).
    [Crossref]
  8. A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441(2-4), 47–189 (2007).
    [Crossref]
  9. M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J. P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(3), 036607 (2004).
    [Crossref] [PubMed]
  10. A. Valenzuela, C. Munson, A. Porwitzky, M. Weidman, and M. Richardson, “Comparison between geometrically focused pulses versus filaments in femtosecond laser ablation of steel and titanium alloys,” Appl. Phys. B 116(2), 485–491 (2014).
    [Crossref]
  11. S. S. Harilal, J. Yeak, B. Brumfield, and M. C. Phillips, “Dynamics of molecular emission features from nanosecond, femtosecond laser and filament ablation plasmas,” J. Anal. At. Spectrom. 31(6), 1192–1197 (2016).
    [Crossref]
  12. I. Ghebregziabher, K. C. Hartig, and I. Jovanovic, “Propagation distance resolved characteristics of filament induced Cu plasma,” Opt. Express 24(5), 5263–5276 (2016).
    [Crossref]
  13. S. Tzortzakis, D. Anglos, and D. Gray, “Ultraviolet laser filaments for remote laser-induced breakdown spectroscopy (LIBS) analysis: applications in cultural heritage monitoring,” Opt. Lett. 31(8), 1139–1141 (2006).
    [Crossref] [PubMed]
  14. H. M. Hou, G. C. Y. Chan, X. L. Mao, R. E. Zheng, V. Zorba, and R. E. Russo, “Femtosecond filament-laser ablation molecular isotopic spectrometry,” Spectrochim. Acta B At. Spectrosc. 113, 113–118 (2015).
    [Crossref]
  15. H. L. Xu and S. L. Chin, “Femtosecond laser filamentation for atmospheric sensing,” Sensors (Basel) 11(1), 32–53 (2011).
    [Crossref] [PubMed]
  16. S. S. Harilal, J. Yeak, and M. C. Phillips, “Plasma temperature clamping in filamentation laser induced breakdown spectroscopy,” Opt. Express 23(21), 27113–27122 (2015).
    [Crossref] [PubMed]
  17. P. P. Kiran, S. Bagchi, C. L. Arnold, S. R. Krishnan, G. R. Kumar, and A. Couairon, “Filamentation without intensity clamping,” Opt. Express 18(20), 21504–21510 (2010).
    [Crossref] [PubMed]
  18. J. V. Moloney, “Intense femtosecond pulse propagation with applications,” Proc. SPIE 6261, 26102 (2006).
    [Crossref]
  19. A. Kramida and Y. Ralchenko, J. Reader, and N. A. Team, NIST Atomic Spectra Database, NIST Atomic Spectra Database (National Institute of Standards and Technology, http://physics.nist.gov/asd , 2013), Vol. 5.1.
  20. M. S. Dimitrijevic and S. Sahal-Brechot, “Stark broadening of neutral zinc spectral lines,” Astron. Astrophys. Suppl. Ser. 140(2), 193–196 (1999).
    [Crossref]
  21. S. S. Harilal, B. E. Brumfield, B. D. Cannon, and M. C. Phillips, “Shock wave mediated plasma chemistry of AlO formation in laser ablation plumes,” Anal. Chem. 88(4), 2296–2302 (2016).
    [Crossref] [PubMed]
  22. PGOPHER, a Program for Simulating Rotational Structure, C. M. Western, University of Bristol, http://pgopher.chm.bris.ac.uk .
  23. X. Sun, S. Xu, J. Zhao, W. Liu, Y. Cheng, Z. Xu, S. L. Chin, and G. Mu, “Impressive laser intensity increase at the trailing stage of femtosecond laser filamentation in air,” Opt. Express 20(4), 4790–4795 (2012).
    [Crossref] [PubMed]

2016 (5)

T. A. Labutin, V. N. Lednev, A. A. Ilyin, and A. M. Popov, “Femtosecond laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 31(1), 90–118 (2016).
[Crossref]

N. LaHaye, M. C. Phillips, A. Duffin, G. Eiden, and S. S. Harilal, “The influence of ns- and fs-LA plume local conditions on the performance of a combined LIBS/LA-ICP-MS sensor,” J. Anal. At. Spectrom. 31(2), 515–522 (2016).
[Crossref]

S. S. Harilal, J. Yeak, B. Brumfield, and M. C. Phillips, “Dynamics of molecular emission features from nanosecond, femtosecond laser and filament ablation plasmas,” J. Anal. At. Spectrom. 31(6), 1192–1197 (2016).
[Crossref]

I. Ghebregziabher, K. C. Hartig, and I. Jovanovic, “Propagation distance resolved characteristics of filament induced Cu plasma,” Opt. Express 24(5), 5263–5276 (2016).
[Crossref]

S. S. Harilal, B. E. Brumfield, B. D. Cannon, and M. C. Phillips, “Shock wave mediated plasma chemistry of AlO formation in laser ablation plumes,” Anal. Chem. 88(4), 2296–2302 (2016).
[Crossref] [PubMed]

2015 (3)

H. M. Hou, G. C. Y. Chan, X. L. Mao, R. E. Zheng, V. Zorba, and R. E. Russo, “Femtosecond filament-laser ablation molecular isotopic spectrometry,” Spectrochim. Acta B At. Spectrosc. 113, 113–118 (2015).
[Crossref]

S. S. Harilal, J. Yeak, and M. C. Phillips, “Plasma temperature clamping in filamentation laser induced breakdown spectroscopy,” Opt. Express 23(21), 27113–27122 (2015).
[Crossref] [PubMed]

K. K. Anoop, M. Polek, R. Bruzzese, S. Amoruso, and S. S. Harilal, “Multi-diagnostics analysis of ion dynamics in ultrafast laser ablation of metals over a large fluence range,” J. Appl. Phys. 117(8), 083108 (2015).
[Crossref]

2014 (1)

A. Valenzuela, C. Munson, A. Porwitzky, M. Weidman, and M. Richardson, “Comparison between geometrically focused pulses versus filaments in femtosecond laser ablation of steel and titanium alloys,” Appl. Phys. B 116(2), 485–491 (2014).
[Crossref]

2012 (2)

M. Weidman, K. Lim, M. Ramme, M. Durand, M. Baudelet, and M. Richardson, “Stand-off filament-induced ablation of gallium arsenide,” Appl. Phys. Lett. 101(3), 034101 (2012).
[Crossref]

X. Sun, S. Xu, J. Zhao, W. Liu, Y. Cheng, Z. Xu, S. L. Chin, and G. Mu, “Impressive laser intensity increase at the trailing stage of femtosecond laser filamentation in air,” Opt. Express 20(4), 4790–4795 (2012).
[Crossref] [PubMed]

2011 (1)

H. L. Xu and S. L. Chin, “Femtosecond laser filamentation for atmospheric sensing,” Sensors (Basel) 11(1), 32–53 (2011).
[Crossref] [PubMed]

2010 (1)

2007 (2)

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441(2-4), 47–189 (2007).
[Crossref]

E. L. Gurevich and R. Hergenröder, “Femtosecond laser-induced breakdown spectroscopy: physics, applications, and perspectives,” Appl. Spectrosc. 61(10), 233–242 (2007).
[Crossref] [PubMed]

2006 (2)

2004 (2)

K. Stelmaszczyk, P. Rohwetter, G. Mejean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J. P. Wolf, and L. Woste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85(18), 3977–3979 (2004).
[Crossref]

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J. P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(3), 036607 (2004).
[Crossref] [PubMed]

1999 (1)

M. S. Dimitrijevic and S. Sahal-Brechot, “Stark broadening of neutral zinc spectral lines,” Astron. Astrophys. Suppl. Ser. 140(2), 193–196 (1999).
[Crossref]

Ackermann, R.

K. Stelmaszczyk, P. Rohwetter, G. Mejean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J. P. Wolf, and L. Woste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85(18), 3977–3979 (2004).
[Crossref]

Amoruso, S.

K. K. Anoop, M. Polek, R. Bruzzese, S. Amoruso, and S. S. Harilal, “Multi-diagnostics analysis of ion dynamics in ultrafast laser ablation of metals over a large fluence range,” J. Appl. Phys. 117(8), 083108 (2015).
[Crossref]

Anglos, D.

Anoop, K. K.

K. K. Anoop, M. Polek, R. Bruzzese, S. Amoruso, and S. S. Harilal, “Multi-diagnostics analysis of ion dynamics in ultrafast laser ablation of metals over a large fluence range,” J. Appl. Phys. 117(8), 083108 (2015).
[Crossref]

Arnold, C. L.

Bagchi, S.

Baudelet, M.

M. Weidman, K. Lim, M. Ramme, M. Durand, M. Baudelet, and M. Richardson, “Stand-off filament-induced ablation of gallium arsenide,” Appl. Phys. Lett. 101(3), 034101 (2012).
[Crossref]

Bourayou, R.

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J. P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(3), 036607 (2004).
[Crossref] [PubMed]

Brumfield, B.

S. S. Harilal, J. Yeak, B. Brumfield, and M. C. Phillips, “Dynamics of molecular emission features from nanosecond, femtosecond laser and filament ablation plasmas,” J. Anal. At. Spectrom. 31(6), 1192–1197 (2016).
[Crossref]

Brumfield, B. E.

S. S. Harilal, B. E. Brumfield, B. D. Cannon, and M. C. Phillips, “Shock wave mediated plasma chemistry of AlO formation in laser ablation plumes,” Anal. Chem. 88(4), 2296–2302 (2016).
[Crossref] [PubMed]

Bruzzese, R.

K. K. Anoop, M. Polek, R. Bruzzese, S. Amoruso, and S. S. Harilal, “Multi-diagnostics analysis of ion dynamics in ultrafast laser ablation of metals over a large fluence range,” J. Appl. Phys. 117(8), 083108 (2015).
[Crossref]

Cannon, B. D.

S. S. Harilal, B. E. Brumfield, B. D. Cannon, and M. C. Phillips, “Shock wave mediated plasma chemistry of AlO formation in laser ablation plumes,” Anal. Chem. 88(4), 2296–2302 (2016).
[Crossref] [PubMed]

Chan, G. C. Y.

H. M. Hou, G. C. Y. Chan, X. L. Mao, R. E. Zheng, V. Zorba, and R. E. Russo, “Femtosecond filament-laser ablation molecular isotopic spectrometry,” Spectrochim. Acta B At. Spectrosc. 113, 113–118 (2015).
[Crossref]

Cheng, Y.

Chin, S. L.

Couairon, A.

Dimitrijevic, M. S.

M. S. Dimitrijevic and S. Sahal-Brechot, “Stark broadening of neutral zinc spectral lines,” Astron. Astrophys. Suppl. Ser. 140(2), 193–196 (1999).
[Crossref]

Duffin, A.

N. LaHaye, M. C. Phillips, A. Duffin, G. Eiden, and S. S. Harilal, “The influence of ns- and fs-LA plume local conditions on the performance of a combined LIBS/LA-ICP-MS sensor,” J. Anal. At. Spectrom. 31(2), 515–522 (2016).
[Crossref]

Durand, M.

M. Weidman, K. Lim, M. Ramme, M. Durand, M. Baudelet, and M. Richardson, “Stand-off filament-induced ablation of gallium arsenide,” Appl. Phys. Lett. 101(3), 034101 (2012).
[Crossref]

Eiden, G.

N. LaHaye, M. C. Phillips, A. Duffin, G. Eiden, and S. S. Harilal, “The influence of ns- and fs-LA plume local conditions on the performance of a combined LIBS/LA-ICP-MS sensor,” J. Anal. At. Spectrom. 31(2), 515–522 (2016).
[Crossref]

Eislöffel, J.

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J. P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(3), 036607 (2004).
[Crossref] [PubMed]

Ghebregziabher, I.

Gray, D.

Gurevich, E. L.

E. L. Gurevich and R. Hergenröder, “Femtosecond laser-induced breakdown spectroscopy: physics, applications, and perspectives,” Appl. Spectrosc. 61(10), 233–242 (2007).
[Crossref] [PubMed]

Harilal, S. S.

N. LaHaye, M. C. Phillips, A. Duffin, G. Eiden, and S. S. Harilal, “The influence of ns- and fs-LA plume local conditions on the performance of a combined LIBS/LA-ICP-MS sensor,” J. Anal. At. Spectrom. 31(2), 515–522 (2016).
[Crossref]

S. S. Harilal, J. Yeak, B. Brumfield, and M. C. Phillips, “Dynamics of molecular emission features from nanosecond, femtosecond laser and filament ablation plasmas,” J. Anal. At. Spectrom. 31(6), 1192–1197 (2016).
[Crossref]

S. S. Harilal, B. E. Brumfield, B. D. Cannon, and M. C. Phillips, “Shock wave mediated plasma chemistry of AlO formation in laser ablation plumes,” Anal. Chem. 88(4), 2296–2302 (2016).
[Crossref] [PubMed]

S. S. Harilal, J. Yeak, and M. C. Phillips, “Plasma temperature clamping in filamentation laser induced breakdown spectroscopy,” Opt. Express 23(21), 27113–27122 (2015).
[Crossref] [PubMed]

K. K. Anoop, M. Polek, R. Bruzzese, S. Amoruso, and S. S. Harilal, “Multi-diagnostics analysis of ion dynamics in ultrafast laser ablation of metals over a large fluence range,” J. Appl. Phys. 117(8), 083108 (2015).
[Crossref]

Hartig, K. C.

Hatzes, A. P.

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J. P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(3), 036607 (2004).
[Crossref] [PubMed]

Hergenröder, R.

E. L. Gurevich and R. Hergenröder, “Femtosecond laser-induced breakdown spectroscopy: physics, applications, and perspectives,” Appl. Spectrosc. 61(10), 233–242 (2007).
[Crossref] [PubMed]

Hou, H. M.

H. M. Hou, G. C. Y. Chan, X. L. Mao, R. E. Zheng, V. Zorba, and R. E. Russo, “Femtosecond filament-laser ablation molecular isotopic spectrometry,” Spectrochim. Acta B At. Spectrosc. 113, 113–118 (2015).
[Crossref]

Ilyin, A. A.

T. A. Labutin, V. N. Lednev, A. A. Ilyin, and A. M. Popov, “Femtosecond laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 31(1), 90–118 (2016).
[Crossref]

Jovanovic, I.

Kasparian, J.

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J. P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(3), 036607 (2004).
[Crossref] [PubMed]

K. Stelmaszczyk, P. Rohwetter, G. Mejean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J. P. Wolf, and L. Woste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85(18), 3977–3979 (2004).
[Crossref]

Kiran, P. P.

Krishnan, S. R.

Kumar, G. R.

Labutin, T. A.

T. A. Labutin, V. N. Lednev, A. A. Ilyin, and A. M. Popov, “Femtosecond laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 31(1), 90–118 (2016).
[Crossref]

LaHaye, N.

N. LaHaye, M. C. Phillips, A. Duffin, G. Eiden, and S. S. Harilal, “The influence of ns- and fs-LA plume local conditions on the performance of a combined LIBS/LA-ICP-MS sensor,” J. Anal. At. Spectrom. 31(2), 515–522 (2016).
[Crossref]

Laux, U.

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J. P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(3), 036607 (2004).
[Crossref] [PubMed]

Lednev, V. N.

T. A. Labutin, V. N. Lednev, A. A. Ilyin, and A. M. Popov, “Femtosecond laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 31(1), 90–118 (2016).
[Crossref]

Lim, K.

M. Weidman, K. Lim, M. Ramme, M. Durand, M. Baudelet, and M. Richardson, “Stand-off filament-induced ablation of gallium arsenide,” Appl. Phys. Lett. 101(3), 034101 (2012).
[Crossref]

Liu, W.

Mao, X. L.

H. M. Hou, G. C. Y. Chan, X. L. Mao, R. E. Zheng, V. Zorba, and R. E. Russo, “Femtosecond filament-laser ablation molecular isotopic spectrometry,” Spectrochim. Acta B At. Spectrosc. 113, 113–118 (2015).
[Crossref]

Mejean, G.

K. Stelmaszczyk, P. Rohwetter, G. Mejean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J. P. Wolf, and L. Woste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85(18), 3977–3979 (2004).
[Crossref]

Méjean, G.

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J. P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(3), 036607 (2004).
[Crossref] [PubMed]

Moloney, J. V.

J. V. Moloney, “Intense femtosecond pulse propagation with applications,” Proc. SPIE 6261, 26102 (2006).
[Crossref]

Mu, G.

Munson, C.

A. Valenzuela, C. Munson, A. Porwitzky, M. Weidman, and M. Richardson, “Comparison between geometrically focused pulses versus filaments in femtosecond laser ablation of steel and titanium alloys,” Appl. Phys. B 116(2), 485–491 (2014).
[Crossref]

Mysyrowicz, A.

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441(2-4), 47–189 (2007).
[Crossref]

Phillips, M. C.

N. LaHaye, M. C. Phillips, A. Duffin, G. Eiden, and S. S. Harilal, “The influence of ns- and fs-LA plume local conditions on the performance of a combined LIBS/LA-ICP-MS sensor,” J. Anal. At. Spectrom. 31(2), 515–522 (2016).
[Crossref]

S. S. Harilal, J. Yeak, B. Brumfield, and M. C. Phillips, “Dynamics of molecular emission features from nanosecond, femtosecond laser and filament ablation plasmas,” J. Anal. At. Spectrom. 31(6), 1192–1197 (2016).
[Crossref]

S. S. Harilal, B. E. Brumfield, B. D. Cannon, and M. C. Phillips, “Shock wave mediated plasma chemistry of AlO formation in laser ablation plumes,” Anal. Chem. 88(4), 2296–2302 (2016).
[Crossref] [PubMed]

S. S. Harilal, J. Yeak, and M. C. Phillips, “Plasma temperature clamping in filamentation laser induced breakdown spectroscopy,” Opt. Express 23(21), 27113–27122 (2015).
[Crossref] [PubMed]

Polek, M.

K. K. Anoop, M. Polek, R. Bruzzese, S. Amoruso, and S. S. Harilal, “Multi-diagnostics analysis of ion dynamics in ultrafast laser ablation of metals over a large fluence range,” J. Appl. Phys. 117(8), 083108 (2015).
[Crossref]

Popov, A. M.

T. A. Labutin, V. N. Lednev, A. A. Ilyin, and A. M. Popov, “Femtosecond laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 31(1), 90–118 (2016).
[Crossref]

Porwitzky, A.

A. Valenzuela, C. Munson, A. Porwitzky, M. Weidman, and M. Richardson, “Comparison between geometrically focused pulses versus filaments in femtosecond laser ablation of steel and titanium alloys,” Appl. Phys. B 116(2), 485–491 (2014).
[Crossref]

Ramme, M.

M. Weidman, K. Lim, M. Ramme, M. Durand, M. Baudelet, and M. Richardson, “Stand-off filament-induced ablation of gallium arsenide,” Appl. Phys. Lett. 101(3), 034101 (2012).
[Crossref]

Richardson, M.

A. Valenzuela, C. Munson, A. Porwitzky, M. Weidman, and M. Richardson, “Comparison between geometrically focused pulses versus filaments in femtosecond laser ablation of steel and titanium alloys,” Appl. Phys. B 116(2), 485–491 (2014).
[Crossref]

M. Weidman, K. Lim, M. Ramme, M. Durand, M. Baudelet, and M. Richardson, “Stand-off filament-induced ablation of gallium arsenide,” Appl. Phys. Lett. 101(3), 034101 (2012).
[Crossref]

Rodriguez, M.

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J. P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(3), 036607 (2004).
[Crossref] [PubMed]

Rohwetter, P.

K. Stelmaszczyk, P. Rohwetter, G. Mejean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J. P. Wolf, and L. Woste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85(18), 3977–3979 (2004).
[Crossref]

Russo, R. E.

H. M. Hou, G. C. Y. Chan, X. L. Mao, R. E. Zheng, V. Zorba, and R. E. Russo, “Femtosecond filament-laser ablation molecular isotopic spectrometry,” Spectrochim. Acta B At. Spectrosc. 113, 113–118 (2015).
[Crossref]

Sahal-Brechot, S.

M. S. Dimitrijevic and S. Sahal-Brechot, “Stark broadening of neutral zinc spectral lines,” Astron. Astrophys. Suppl. Ser. 140(2), 193–196 (1999).
[Crossref]

Salmon, E.

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J. P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(3), 036607 (2004).
[Crossref] [PubMed]

K. Stelmaszczyk, P. Rohwetter, G. Mejean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J. P. Wolf, and L. Woste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85(18), 3977–3979 (2004).
[Crossref]

Sauerbrey, R.

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J. P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(3), 036607 (2004).
[Crossref] [PubMed]

Scholz, A.

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J. P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(3), 036607 (2004).
[Crossref] [PubMed]

Stecklum, B.

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J. P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(3), 036607 (2004).
[Crossref] [PubMed]

Stelmaszczyk, K.

K. Stelmaszczyk, P. Rohwetter, G. Mejean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J. P. Wolf, and L. Woste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85(18), 3977–3979 (2004).
[Crossref]

Sun, X.

Tzortzakis, S.

Valenzuela, A.

A. Valenzuela, C. Munson, A. Porwitzky, M. Weidman, and M. Richardson, “Comparison between geometrically focused pulses versus filaments in femtosecond laser ablation of steel and titanium alloys,” Appl. Phys. B 116(2), 485–491 (2014).
[Crossref]

Weidman, M.

A. Valenzuela, C. Munson, A. Porwitzky, M. Weidman, and M. Richardson, “Comparison between geometrically focused pulses versus filaments in femtosecond laser ablation of steel and titanium alloys,” Appl. Phys. B 116(2), 485–491 (2014).
[Crossref]

M. Weidman, K. Lim, M. Ramme, M. Durand, M. Baudelet, and M. Richardson, “Stand-off filament-induced ablation of gallium arsenide,” Appl. Phys. Lett. 101(3), 034101 (2012).
[Crossref]

Wolf, J. P.

K. Stelmaszczyk, P. Rohwetter, G. Mejean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J. P. Wolf, and L. Woste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85(18), 3977–3979 (2004).
[Crossref]

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J. P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(3), 036607 (2004).
[Crossref] [PubMed]

Woste, L.

K. Stelmaszczyk, P. Rohwetter, G. Mejean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J. P. Wolf, and L. Woste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85(18), 3977–3979 (2004).
[Crossref]

Wöste, L.

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J. P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(3), 036607 (2004).
[Crossref] [PubMed]

Xu, H. L.

H. L. Xu and S. L. Chin, “Femtosecond laser filamentation for atmospheric sensing,” Sensors (Basel) 11(1), 32–53 (2011).
[Crossref] [PubMed]

Xu, S.

Xu, Z.

Yeak, J.

S. S. Harilal, J. Yeak, B. Brumfield, and M. C. Phillips, “Dynamics of molecular emission features from nanosecond, femtosecond laser and filament ablation plasmas,” J. Anal. At. Spectrom. 31(6), 1192–1197 (2016).
[Crossref]

S. S. Harilal, J. Yeak, and M. C. Phillips, “Plasma temperature clamping in filamentation laser induced breakdown spectroscopy,” Opt. Express 23(21), 27113–27122 (2015).
[Crossref] [PubMed]

Yu, J.

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J. P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(3), 036607 (2004).
[Crossref] [PubMed]

K. Stelmaszczyk, P. Rohwetter, G. Mejean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J. P. Wolf, and L. Woste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85(18), 3977–3979 (2004).
[Crossref]

Zhao, J.

Zheng, R. E.

H. M. Hou, G. C. Y. Chan, X. L. Mao, R. E. Zheng, V. Zorba, and R. E. Russo, “Femtosecond filament-laser ablation molecular isotopic spectrometry,” Spectrochim. Acta B At. Spectrosc. 113, 113–118 (2015).
[Crossref]

Zorba, V.

H. M. Hou, G. C. Y. Chan, X. L. Mao, R. E. Zheng, V. Zorba, and R. E. Russo, “Femtosecond filament-laser ablation molecular isotopic spectrometry,” Spectrochim. Acta B At. Spectrosc. 113, 113–118 (2015).
[Crossref]

Anal. Chem. (1)

S. S. Harilal, B. E. Brumfield, B. D. Cannon, and M. C. Phillips, “Shock wave mediated plasma chemistry of AlO formation in laser ablation plumes,” Anal. Chem. 88(4), 2296–2302 (2016).
[Crossref] [PubMed]

Appl. Phys. B (1)

A. Valenzuela, C. Munson, A. Porwitzky, M. Weidman, and M. Richardson, “Comparison between geometrically focused pulses versus filaments in femtosecond laser ablation of steel and titanium alloys,” Appl. Phys. B 116(2), 485–491 (2014).
[Crossref]

Appl. Phys. Lett. (2)

K. Stelmaszczyk, P. Rohwetter, G. Mejean, J. Yu, E. Salmon, J. Kasparian, R. Ackermann, J. P. Wolf, and L. Woste, “Long-distance remote laser-induced breakdown spectroscopy using filamentation in air,” Appl. Phys. Lett. 85(18), 3977–3979 (2004).
[Crossref]

M. Weidman, K. Lim, M. Ramme, M. Durand, M. Baudelet, and M. Richardson, “Stand-off filament-induced ablation of gallium arsenide,” Appl. Phys. Lett. 101(3), 034101 (2012).
[Crossref]

Appl. Spectrosc. (1)

E. L. Gurevich and R. Hergenröder, “Femtosecond laser-induced breakdown spectroscopy: physics, applications, and perspectives,” Appl. Spectrosc. 61(10), 233–242 (2007).
[Crossref] [PubMed]

Astron. Astrophys. Suppl. Ser. (1)

M. S. Dimitrijevic and S. Sahal-Brechot, “Stark broadening of neutral zinc spectral lines,” Astron. Astrophys. Suppl. Ser. 140(2), 193–196 (1999).
[Crossref]

J. Anal. At. Spectrom. (3)

S. S. Harilal, J. Yeak, B. Brumfield, and M. C. Phillips, “Dynamics of molecular emission features from nanosecond, femtosecond laser and filament ablation plasmas,” J. Anal. At. Spectrom. 31(6), 1192–1197 (2016).
[Crossref]

T. A. Labutin, V. N. Lednev, A. A. Ilyin, and A. M. Popov, “Femtosecond laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom. 31(1), 90–118 (2016).
[Crossref]

N. LaHaye, M. C. Phillips, A. Duffin, G. Eiden, and S. S. Harilal, “The influence of ns- and fs-LA plume local conditions on the performance of a combined LIBS/LA-ICP-MS sensor,” J. Anal. At. Spectrom. 31(2), 515–522 (2016).
[Crossref]

J. Appl. Phys. (1)

K. K. Anoop, M. Polek, R. Bruzzese, S. Amoruso, and S. S. Harilal, “Multi-diagnostics analysis of ion dynamics in ultrafast laser ablation of metals over a large fluence range,” J. Appl. Phys. 117(8), 083108 (2015).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Phys. Rep. (1)

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441(2-4), 47–189 (2007).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

M. Rodriguez, R. Bourayou, G. Méjean, J. Kasparian, J. Yu, E. Salmon, A. Scholz, B. Stecklum, J. Eislöffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Wöste, and J. P. Wolf, “Kilometer-range nonlinear propagation of femtosecond laser pulses,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 69(3), 036607 (2004).
[Crossref] [PubMed]

Proc. SPIE (1)

J. V. Moloney, “Intense femtosecond pulse propagation with applications,” Proc. SPIE 6261, 26102 (2006).
[Crossref]

Sensors (Basel) (1)

H. L. Xu and S. L. Chin, “Femtosecond laser filamentation for atmospheric sensing,” Sensors (Basel) 11(1), 32–53 (2011).
[Crossref] [PubMed]

Spectrochim. Acta B At. Spectrosc. (1)

H. M. Hou, G. C. Y. Chan, X. L. Mao, R. E. Zheng, V. Zorba, and R. E. Russo, “Femtosecond filament-laser ablation molecular isotopic spectrometry,” Spectrochim. Acta B At. Spectrosc. 113, 113–118 (2015).
[Crossref]

Other (3)

A. Kramida and Y. Ralchenko, J. Reader, and N. A. Team, NIST Atomic Spectra Database, NIST Atomic Spectra Database (National Institute of Standards and Technology, http://physics.nist.gov/asd , 2013), Vol. 5.1.

PGOPHER, a Program for Simulating Rotational Structure, C. M. Western, University of Bristol, http://pgopher.chm.bris.ac.uk .

E. G. Gamaly, Femtosecond Laser-Matter Interaction: Theory, Experiments and Applications (Pan Stanford, 2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic of the various focusing conditions used for generating ablation. (a) SF fs LIBS. A short focal length lens is used to generate a tightly focused ablation plume; (b) LF fLIBS. A long focal length lens is used to generate filaments in the laboratory frame and (c) FP fLIBS. The laser beam is propagated to 17 m distance for generating filaments.
Fig. 2
Fig. 2 Time evolution of Cu I emission intensity from laser ablation plumes generated by SF fs laser pulses, LF filaments, and FP filaments. A laser energy of ~1.9 mJ was used for all three irradiation conditions and measurements were carried out in a space integrated manner. A typical spectrum recorded at 500 ns after the plasma onset is given in the inset for SF fs LIBS. The spectral lines used for temperature and density measurement are also marked. The data acquisition time was 2 s for filament LIBS and 0.2 s for SFLIBS.
Fig. 3
Fig. 3 The time evolution of (a) excitation temperature and (b) electron density of ablation plumes generated by SF fs pulses, LF filament ablation and FP filament ablation. A typical Boltzmann plot used for estimating the excitation temperature is given in (a) inset (SF fs LIBS, time 1 μs, g, term values; A, transition probability; I, intensity of a line transition; λ, wavelength). In (b) inset the Stark broadened transition of Zn I 481.05 nm transition recorded at 350 ns for SF fs LIBS is given along with Voigt fit.
Fig. 4
Fig. 4 The emission intensity variation of AlO peak of the (0, 1) band (508.0 nm) is given for SF fs LA, LF and FP filament ablation. An emission spectrum collected for the B-X electronic transition of AlO showing Δυ = 1, 0, −1 band sequences is shown as an inset (SF fs LIBS, 1 μs delay).
Fig. 5
Fig. 5 The estimated AlO molecular temperature is given and a typical AlO band head and simulation spectra are given as an inset (LF fLIBS, delay = 600 ns, Temperature = 3358 ± 90 K). The data acquisition time was 2 s.

Metrics