Abstract

We investigate optical polariton modes supported by subwavelength-thick degenerately doped semiconductor nanolayers (e.g. indium tin oxide) on glass in the epsilon-near-zero (ENZ) regime. The dispersions of the radiative (R, on the left of the light line) and non-radiative (NR, on the right of the light line) ENZ polariton modes are experimentally measured and theoretically analyzed through the transfer matrix method and the complex-frequency/real-wavenumber analysis, which are in remarkable agreement. We observe directional near-perfect absorption using the Kretschmann geometry for incidence conditions close to the NR-ENZ polariton mode dispersion. Along with field enhancement, this provides us with an unexplored pathway to enhance nonlinear optical processes and to open up directions for ultrafast, tunable thermal emission.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Berreman mode and epsilon near zero mode

Simon Vassant, Jean-Paul Hugonin, Francois Marquier, and Jean-Jacques Greffet
Opt. Express 20(21) 23971-23977 (2012)

Role of epsilon-near-zero substrates in the optical response of plasmonic antennas

Jongbum Kim, Aveek Dutta, Gururaj V. Naik, Alexander J. Giles, Francisco J. Bezares, Chase T. Ellis, Joseph G. Tischler, Ahmed M. Mahmoud, Humeyra Caglayan, Orest J. Glembocki, Alexander V. Kildishev, Joshua D. Caldwell, Alexandra Boltasseva, and Nader Engheta
Optica 3(3) 339-346 (2016)

Plasmon polaritons in the near infrared on fluorine doped tin oxide films

Lorenzo Dominici, Francesco Michelotti, Thomas M. Brown, Andrea Reale, and Aldo Di Carlo
Opt. Express 17(12) 10155-10167 (2009)

References

  • View by:
  • |
  • |
  • |

  1. K. L. Kliewer and R. Fuchs, “Optical modes of vibration in an ionic crystal slab including retardation. I. Nonradiative region,” Phys. Rev. 144(2), 495–503 (1966).
    [Crossref]
  2. K. L. Kliewer and R. Fuchs, “Optical modes of vibration in an ionic crystal slab including retardation. II. Radiative region,” Phys. Rev. 150(2), 573–588 (1966).
    [Crossref]
  3. R. Fuchs, K. L. Kliewer, and W. J. Pardee, “Optical properties of an ionic crystal slab,” Phys. Rev. 150(2), 589–596 (1966).
    [Crossref]
  4. R. Ruppin and R. Englman, “Optical phonons of small crystals,” Rep. Prog. Phys. 33(1), 149–196 (1970).
    [Crossref]
  5. M. Schubert, Infrared Ellipsometry on Semiconductor Layer Structures (Springer, 2004).
  6. D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47(26), 1927–1930 (1981).
    [Crossref]
  7. E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182(2), 539–554 (1969).
    [Crossref]
  8. J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Surface plasmons in metallic structures,” J. Opt. A, Pure Appl. Opt. 7(2), S73–S84 (2005).
    [Crossref]
  9. R. P. Godwin and M. M. Mueller, “Reflection spectroscopy by plasma-resonance enhancement,” Appl. Opt. 12(6), 1276–1278 (1973).
    [Crossref] [PubMed]
  10. B. Harbecke, B. Heinz, and P. Grosse, “Optical properties of thin films and the Berreman effect,” Appl. Phys., A Mater. Sci. Process. 38(4), 263–267 (1985).
    [Crossref]
  11. D. W. Berreman, “Infrared absorption at longitudinal optic frequency in cubic crystal films,” Phys. Rev. 130(6), 2193–2198 (1963).
    [Crossref]
  12. T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep subwavelength low-permittivity films,” Phys. Rev. B 90(8), 085411 (2014).
    [Crossref]
  13. J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B Condens. Matter 33(8), 5186–5201 (1986).
    [Crossref] [PubMed]
  14. M. A. Badsha, Y. C. Jun, and C. K. Hwangbo, “Admittance matching analysis of perfect absorption in unpatterned thin films,” Opt. Commun. 332, 206–213 (2014).
    [Crossref]
  15. S. Vassant, J. P. Hugonin, F. Marquier, and J. J. Greffet, “Berreman mode and epsilon near zero mode,” Opt. Express 20(21), 23971–23977 (2012).
    [Crossref] [PubMed]
  16. T. Taliercio, V. N. Guilengui, L. Cerutti, E. Tournié, and J.-J. Greffet, “Brewster “mode” in highly doped semiconductor layers: an all-optical technique to monitor doping concentration,” Opt. Express 22(20), 24294–24303 (2014).
    [Crossref] [PubMed]
  17. J. Bösenberg and H. Raether, “Plasma-resonance emission of potassium, excited by light,” Phys. Rev. Lett. 18(11), 397–398 (1967).
    [Crossref]
  18. E. A. Vinogradov, G. N. Zhizhin, A. G. Mal’shukov, and V. I. Yudson, “Thermostimulated polariton emission of zinc selenide films on metal substrate,” Solid State Commun. 23(12), 915–921 (1977).
    [Crossref]
  19. R. A. Ferrell, “Predicted radiation of plasma oscillations in metal films,” Phys. Rev. 111(5), 1214–1222 (1958).
    [Crossref]
  20. A. Bichri, J. Lafait, and H. Welsch, “Visible and infrared optical properties of Ag/SiO2 multilayers: radiative virtual modes and coupling effects,” J. Phys. Condens. Matter 5(40), 7361–7374 (1993).
    [Crossref]
  21. A. J. McAlister and E. A. Stern, “Plasma resonance absorption in thin metal films,” Phys. Rev. 132(4), 1599–1602 (1963).
    [Crossref]
  22. S. Vassant, A. Archambault, F. Marquier, F. Pardo, U. Gennser, A. Cavanna, J. L. Pelouard, and J. J. Greffet, “Epsilon-near-zero mode for active optoelectronic devices,” Phys. Rev. Lett. 109(23), 237401 (2012).
    [Crossref] [PubMed]
  23. S. Campione, I. Brener, and F. Marquier, “Theory of epsilon-near-zero modes in ultrathin films,” Phys. Rev. B 91(12), 121408 (2015).
    [Crossref]
  24. M. Z. Alam, I. De Leon, and R. W. Boyd, “Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region,” Science 352(6287), 795–797 (2016).
    [Crossref] [PubMed]
  25. L. Caspani, R. P. M. Kaipurath, M. Clerici, M. Ferrera, T. Roger, J. Kim, N. Kinsey, M. Pietrzyk, A. Di Falco, V. M. Shalaev, A. Boltasseva, and D. Faccio, “Enhanced nonlinear refractive index in ε-near-zero materials,” Phys. Rev. Lett. 116(23), 233901 (2016).
    [Crossref] [PubMed]
  26. S. Franzen, C. Rhodes, M. Cerruti, R. W. Gerber, M. Losego, J.-P. Maria, and D. E. Aspnes, “Plasmonic phenomena in indium tin oxide and ITO-Au hybrid films,” Opt. Lett. 34(18), 2867–2869 (2009).
    [Crossref] [PubMed]
  27. L. Dominici, F. Michelotti, T. M. Brown, A. Reale, and A. Di Carlo, “Plasmon polaritons in the near infrared on fluorine doped tin oxide films,” Opt. Express 17(12), 10155–10167 (2009).
    [Crossref] [PubMed]
  28. Y. C. Jun, J. Reno, T. Ribaudo, E. Shaner, J.-J. Greffet, S. Vassant, F. Marquier, M. Sinclair, and I. Brener, “Epsilon-near-zero strong coupling in metamaterial-semiconductor hybrid structures,” Nano Lett. 13(11), 5391–5396 (2013).
    [Crossref] [PubMed]
  29. S. Campione, D. de Ceglia, M. A. Vincenti, M. Scalora, and F. Capolino, “Electric field enhancement in ɛ-near-zero slabs under TM-polarized oblique incidence,” Phys. Rev. B 87(3), 035120 (2013).
    [Crossref]
  30. D. de Ceglia, S. Campione, M. A. Vincenti, F. Capolino, and M. Scalora, “Low-damping epsilon-near-zero slabs: Nonlinear and nonlocal optical properties,” Phys. Rev. B 87(15), 155140 (2013).
    [Crossref]
  31. A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
    [Crossref]
  32. M. Antonietta Vincenti, S. Campione, D. de Ceglia, F. Capolino, and M. Scalora, “Gain-assisted harmonic generation in near-zero permittivity metamaterials made of plasmonic nanoshells,” New J. Phys. 14(10), 103016 (2012).
    [Crossref]
  33. M. A. Vincenti, D. de Ceglia, A. Ciattoni, and M. Scalora, “Singularity-driven second- and third-harmonic generation at ε -near-zero crossing points,” Phys. Rev. A 84(6), 063826 (2011).
    [Crossref]
  34. C. Argyropoulos, P.-Y. Chen, G. D’Aguanno, N. Engheta, and A. Alù, “Boosting optical nonlinearities in ε -near-zero plasmonic channels,” Phys. Rev. B 85(4), 045129 (2012).
    [Crossref]
  35. C. Argyropoulos, G. D’Aguanno, and A. Alù, “Giant second-harmonic generation efficiency and ideal phase matching with a double ε-near-zero cross-slit metamaterial,” Phys. Rev. B 89(23), 235401 (2014).
    [Crossref]
  36. M. A. Vincenti, D. de Ceglia, J. W. Haus, and M. Scalora, “Harmonic generation in multiresonant plasma films,” Phys. Rev. A 88(4), 043812 (2013).
    [Crossref]
  37. T. S. Luk, D. de Ceglia, S. Liu, G. A. Keeler, R. P. Prasankumar, M. A. Vincenti, M. Scalora, M. B. Sinclair, and S. Campione, “Enhanced third harmonic generation from the epsilon-near-zero modes of ultrathin films,” Appl. Phys. Lett. 106(15), 151103 (2015).
    [Crossref]
  38. A. Capretti, Y. Wang, N. Engheta, and L. Dal Negro, “Enhanced third-harmonic generation in Si-compatible epsilon-near-zero indium tin oxide nanolayers,” Opt. Lett. 40(7), 1500–1503 (2015).
    [Crossref] [PubMed]
  39. T. S. Luk, I. Kim, S. Campione, S. W. Howell, G. S. Subramania, R. K. Grubbs, I. Brener, H.-T. Chen, S. Fan, and M. B. Sinclair, “Near-infrared surface plasmon polariton dispersion control with hyperbolic metamaterials,” Opt. Express 21(9), 11107–11114 (2013).
    [Crossref] [PubMed]
  40. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference, and Diffraction of Light (Cambridge University, 1999).
  41. D. M. Pozar, Microwave Engineering (John Wiley and Sons, 2011).

2016 (2)

M. Z. Alam, I. De Leon, and R. W. Boyd, “Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region,” Science 352(6287), 795–797 (2016).
[Crossref] [PubMed]

L. Caspani, R. P. M. Kaipurath, M. Clerici, M. Ferrera, T. Roger, J. Kim, N. Kinsey, M. Pietrzyk, A. Di Falco, V. M. Shalaev, A. Boltasseva, and D. Faccio, “Enhanced nonlinear refractive index in ε-near-zero materials,” Phys. Rev. Lett. 116(23), 233901 (2016).
[Crossref] [PubMed]

2015 (3)

S. Campione, I. Brener, and F. Marquier, “Theory of epsilon-near-zero modes in ultrathin films,” Phys. Rev. B 91(12), 121408 (2015).
[Crossref]

T. S. Luk, D. de Ceglia, S. Liu, G. A. Keeler, R. P. Prasankumar, M. A. Vincenti, M. Scalora, M. B. Sinclair, and S. Campione, “Enhanced third harmonic generation from the epsilon-near-zero modes of ultrathin films,” Appl. Phys. Lett. 106(15), 151103 (2015).
[Crossref]

A. Capretti, Y. Wang, N. Engheta, and L. Dal Negro, “Enhanced third-harmonic generation in Si-compatible epsilon-near-zero indium tin oxide nanolayers,” Opt. Lett. 40(7), 1500–1503 (2015).
[Crossref] [PubMed]

2014 (4)

C. Argyropoulos, G. D’Aguanno, and A. Alù, “Giant second-harmonic generation efficiency and ideal phase matching with a double ε-near-zero cross-slit metamaterial,” Phys. Rev. B 89(23), 235401 (2014).
[Crossref]

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep subwavelength low-permittivity films,” Phys. Rev. B 90(8), 085411 (2014).
[Crossref]

M. A. Badsha, Y. C. Jun, and C. K. Hwangbo, “Admittance matching analysis of perfect absorption in unpatterned thin films,” Opt. Commun. 332, 206–213 (2014).
[Crossref]

T. Taliercio, V. N. Guilengui, L. Cerutti, E. Tournié, and J.-J. Greffet, “Brewster “mode” in highly doped semiconductor layers: an all-optical technique to monitor doping concentration,” Opt. Express 22(20), 24294–24303 (2014).
[Crossref] [PubMed]

2013 (5)

Y. C. Jun, J. Reno, T. Ribaudo, E. Shaner, J.-J. Greffet, S. Vassant, F. Marquier, M. Sinclair, and I. Brener, “Epsilon-near-zero strong coupling in metamaterial-semiconductor hybrid structures,” Nano Lett. 13(11), 5391–5396 (2013).
[Crossref] [PubMed]

S. Campione, D. de Ceglia, M. A. Vincenti, M. Scalora, and F. Capolino, “Electric field enhancement in ɛ-near-zero slabs under TM-polarized oblique incidence,” Phys. Rev. B 87(3), 035120 (2013).
[Crossref]

D. de Ceglia, S. Campione, M. A. Vincenti, F. Capolino, and M. Scalora, “Low-damping epsilon-near-zero slabs: Nonlinear and nonlocal optical properties,” Phys. Rev. B 87(15), 155140 (2013).
[Crossref]

M. A. Vincenti, D. de Ceglia, J. W. Haus, and M. Scalora, “Harmonic generation in multiresonant plasma films,” Phys. Rev. A 88(4), 043812 (2013).
[Crossref]

T. S. Luk, I. Kim, S. Campione, S. W. Howell, G. S. Subramania, R. K. Grubbs, I. Brener, H.-T. Chen, S. Fan, and M. B. Sinclair, “Near-infrared surface plasmon polariton dispersion control with hyperbolic metamaterials,” Opt. Express 21(9), 11107–11114 (2013).
[Crossref] [PubMed]

2012 (4)

C. Argyropoulos, P.-Y. Chen, G. D’Aguanno, N. Engheta, and A. Alù, “Boosting optical nonlinearities in ε -near-zero plasmonic channels,” Phys. Rev. B 85(4), 045129 (2012).
[Crossref]

M. Antonietta Vincenti, S. Campione, D. de Ceglia, F. Capolino, and M. Scalora, “Gain-assisted harmonic generation in near-zero permittivity metamaterials made of plasmonic nanoshells,” New J. Phys. 14(10), 103016 (2012).
[Crossref]

S. Vassant, A. Archambault, F. Marquier, F. Pardo, U. Gennser, A. Cavanna, J. L. Pelouard, and J. J. Greffet, “Epsilon-near-zero mode for active optoelectronic devices,” Phys. Rev. Lett. 109(23), 237401 (2012).
[Crossref] [PubMed]

S. Vassant, J. P. Hugonin, F. Marquier, and J. J. Greffet, “Berreman mode and epsilon near zero mode,” Opt. Express 20(21), 23971–23977 (2012).
[Crossref] [PubMed]

2011 (1)

M. A. Vincenti, D. de Ceglia, A. Ciattoni, and M. Scalora, “Singularity-driven second- and third-harmonic generation at ε -near-zero crossing points,” Phys. Rev. A 84(6), 063826 (2011).
[Crossref]

2009 (2)

2007 (1)

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
[Crossref]

2005 (1)

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Surface plasmons in metallic structures,” J. Opt. A, Pure Appl. Opt. 7(2), S73–S84 (2005).
[Crossref]

1993 (1)

A. Bichri, J. Lafait, and H. Welsch, “Visible and infrared optical properties of Ag/SiO2 multilayers: radiative virtual modes and coupling effects,” J. Phys. Condens. Matter 5(40), 7361–7374 (1993).
[Crossref]

1986 (1)

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B Condens. Matter 33(8), 5186–5201 (1986).
[Crossref] [PubMed]

1985 (1)

B. Harbecke, B. Heinz, and P. Grosse, “Optical properties of thin films and the Berreman effect,” Appl. Phys., A Mater. Sci. Process. 38(4), 263–267 (1985).
[Crossref]

1981 (1)

D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47(26), 1927–1930 (1981).
[Crossref]

1977 (1)

E. A. Vinogradov, G. N. Zhizhin, A. G. Mal’shukov, and V. I. Yudson, “Thermostimulated polariton emission of zinc selenide films on metal substrate,” Solid State Commun. 23(12), 915–921 (1977).
[Crossref]

1973 (1)

1970 (1)

R. Ruppin and R. Englman, “Optical phonons of small crystals,” Rep. Prog. Phys. 33(1), 149–196 (1970).
[Crossref]

1969 (1)

E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182(2), 539–554 (1969).
[Crossref]

1967 (1)

J. Bösenberg and H. Raether, “Plasma-resonance emission of potassium, excited by light,” Phys. Rev. Lett. 18(11), 397–398 (1967).
[Crossref]

1966 (3)

K. L. Kliewer and R. Fuchs, “Optical modes of vibration in an ionic crystal slab including retardation. I. Nonradiative region,” Phys. Rev. 144(2), 495–503 (1966).
[Crossref]

K. L. Kliewer and R. Fuchs, “Optical modes of vibration in an ionic crystal slab including retardation. II. Radiative region,” Phys. Rev. 150(2), 573–588 (1966).
[Crossref]

R. Fuchs, K. L. Kliewer, and W. J. Pardee, “Optical properties of an ionic crystal slab,” Phys. Rev. 150(2), 589–596 (1966).
[Crossref]

1963 (2)

D. W. Berreman, “Infrared absorption at longitudinal optic frequency in cubic crystal films,” Phys. Rev. 130(6), 2193–2198 (1963).
[Crossref]

A. J. McAlister and E. A. Stern, “Plasma resonance absorption in thin metal films,” Phys. Rev. 132(4), 1599–1602 (1963).
[Crossref]

1958 (1)

R. A. Ferrell, “Predicted radiation of plasma oscillations in metal films,” Phys. Rev. 111(5), 1214–1222 (1958).
[Crossref]

Alam, M. Z.

M. Z. Alam, I. De Leon, and R. W. Boyd, “Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region,” Science 352(6287), 795–797 (2016).
[Crossref] [PubMed]

Alù, A.

C. Argyropoulos, G. D’Aguanno, and A. Alù, “Giant second-harmonic generation efficiency and ideal phase matching with a double ε-near-zero cross-slit metamaterial,” Phys. Rev. B 89(23), 235401 (2014).
[Crossref]

C. Argyropoulos, P.-Y. Chen, G. D’Aguanno, N. Engheta, and A. Alù, “Boosting optical nonlinearities in ε -near-zero plasmonic channels,” Phys. Rev. B 85(4), 045129 (2012).
[Crossref]

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
[Crossref]

Antonietta Vincenti, M.

M. Antonietta Vincenti, S. Campione, D. de Ceglia, F. Capolino, and M. Scalora, “Gain-assisted harmonic generation in near-zero permittivity metamaterials made of plasmonic nanoshells,” New J. Phys. 14(10), 103016 (2012).
[Crossref]

Archambault, A.

S. Vassant, A. Archambault, F. Marquier, F. Pardo, U. Gennser, A. Cavanna, J. L. Pelouard, and J. J. Greffet, “Epsilon-near-zero mode for active optoelectronic devices,” Phys. Rev. Lett. 109(23), 237401 (2012).
[Crossref] [PubMed]

Argyropoulos, C.

C. Argyropoulos, G. D’Aguanno, and A. Alù, “Giant second-harmonic generation efficiency and ideal phase matching with a double ε-near-zero cross-slit metamaterial,” Phys. Rev. B 89(23), 235401 (2014).
[Crossref]

C. Argyropoulos, P.-Y. Chen, G. D’Aguanno, N. Engheta, and A. Alù, “Boosting optical nonlinearities in ε -near-zero plasmonic channels,” Phys. Rev. B 85(4), 045129 (2012).
[Crossref]

Aspnes, D. E.

Badsha, M. A.

M. A. Badsha, Y. C. Jun, and C. K. Hwangbo, “Admittance matching analysis of perfect absorption in unpatterned thin films,” Opt. Commun. 332, 206–213 (2014).
[Crossref]

Berreman, D. W.

D. W. Berreman, “Infrared absorption at longitudinal optic frequency in cubic crystal films,” Phys. Rev. 130(6), 2193–2198 (1963).
[Crossref]

Bichri, A.

A. Bichri, J. Lafait, and H. Welsch, “Visible and infrared optical properties of Ag/SiO2 multilayers: radiative virtual modes and coupling effects,” J. Phys. Condens. Matter 5(40), 7361–7374 (1993).
[Crossref]

Boltasseva, A.

L. Caspani, R. P. M. Kaipurath, M. Clerici, M. Ferrera, T. Roger, J. Kim, N. Kinsey, M. Pietrzyk, A. Di Falco, V. M. Shalaev, A. Boltasseva, and D. Faccio, “Enhanced nonlinear refractive index in ε-near-zero materials,” Phys. Rev. Lett. 116(23), 233901 (2016).
[Crossref] [PubMed]

Bösenberg, J.

J. Bösenberg and H. Raether, “Plasma-resonance emission of potassium, excited by light,” Phys. Rev. Lett. 18(11), 397–398 (1967).
[Crossref]

Boyd, R. W.

M. Z. Alam, I. De Leon, and R. W. Boyd, “Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region,” Science 352(6287), 795–797 (2016).
[Crossref] [PubMed]

Brener, I.

S. Campione, I. Brener, and F. Marquier, “Theory of epsilon-near-zero modes in ultrathin films,” Phys. Rev. B 91(12), 121408 (2015).
[Crossref]

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep subwavelength low-permittivity films,” Phys. Rev. B 90(8), 085411 (2014).
[Crossref]

Y. C. Jun, J. Reno, T. Ribaudo, E. Shaner, J.-J. Greffet, S. Vassant, F. Marquier, M. Sinclair, and I. Brener, “Epsilon-near-zero strong coupling in metamaterial-semiconductor hybrid structures,” Nano Lett. 13(11), 5391–5396 (2013).
[Crossref] [PubMed]

T. S. Luk, I. Kim, S. Campione, S. W. Howell, G. S. Subramania, R. K. Grubbs, I. Brener, H.-T. Chen, S. Fan, and M. B. Sinclair, “Near-infrared surface plasmon polariton dispersion control with hyperbolic metamaterials,” Opt. Express 21(9), 11107–11114 (2013).
[Crossref] [PubMed]

Brown, T. M.

Burke, J. J.

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B Condens. Matter 33(8), 5186–5201 (1986).
[Crossref] [PubMed]

Campione, S.

T. S. Luk, D. de Ceglia, S. Liu, G. A. Keeler, R. P. Prasankumar, M. A. Vincenti, M. Scalora, M. B. Sinclair, and S. Campione, “Enhanced third harmonic generation from the epsilon-near-zero modes of ultrathin films,” Appl. Phys. Lett. 106(15), 151103 (2015).
[Crossref]

S. Campione, I. Brener, and F. Marquier, “Theory of epsilon-near-zero modes in ultrathin films,” Phys. Rev. B 91(12), 121408 (2015).
[Crossref]

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep subwavelength low-permittivity films,” Phys. Rev. B 90(8), 085411 (2014).
[Crossref]

T. S. Luk, I. Kim, S. Campione, S. W. Howell, G. S. Subramania, R. K. Grubbs, I. Brener, H.-T. Chen, S. Fan, and M. B. Sinclair, “Near-infrared surface plasmon polariton dispersion control with hyperbolic metamaterials,” Opt. Express 21(9), 11107–11114 (2013).
[Crossref] [PubMed]

S. Campione, D. de Ceglia, M. A. Vincenti, M. Scalora, and F. Capolino, “Electric field enhancement in ɛ-near-zero slabs under TM-polarized oblique incidence,” Phys. Rev. B 87(3), 035120 (2013).
[Crossref]

D. de Ceglia, S. Campione, M. A. Vincenti, F. Capolino, and M. Scalora, “Low-damping epsilon-near-zero slabs: Nonlinear and nonlocal optical properties,” Phys. Rev. B 87(15), 155140 (2013).
[Crossref]

M. Antonietta Vincenti, S. Campione, D. de Ceglia, F. Capolino, and M. Scalora, “Gain-assisted harmonic generation in near-zero permittivity metamaterials made of plasmonic nanoshells,” New J. Phys. 14(10), 103016 (2012).
[Crossref]

Capolino, F.

D. de Ceglia, S. Campione, M. A. Vincenti, F. Capolino, and M. Scalora, “Low-damping epsilon-near-zero slabs: Nonlinear and nonlocal optical properties,” Phys. Rev. B 87(15), 155140 (2013).
[Crossref]

S. Campione, D. de Ceglia, M. A. Vincenti, M. Scalora, and F. Capolino, “Electric field enhancement in ɛ-near-zero slabs under TM-polarized oblique incidence,” Phys. Rev. B 87(3), 035120 (2013).
[Crossref]

M. Antonietta Vincenti, S. Campione, D. de Ceglia, F. Capolino, and M. Scalora, “Gain-assisted harmonic generation in near-zero permittivity metamaterials made of plasmonic nanoshells,” New J. Phys. 14(10), 103016 (2012).
[Crossref]

Capretti, A.

Caspani, L.

L. Caspani, R. P. M. Kaipurath, M. Clerici, M. Ferrera, T. Roger, J. Kim, N. Kinsey, M. Pietrzyk, A. Di Falco, V. M. Shalaev, A. Boltasseva, and D. Faccio, “Enhanced nonlinear refractive index in ε-near-zero materials,” Phys. Rev. Lett. 116(23), 233901 (2016).
[Crossref] [PubMed]

Catrysse, P. B.

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep subwavelength low-permittivity films,” Phys. Rev. B 90(8), 085411 (2014).
[Crossref]

Cavanna, A.

S. Vassant, A. Archambault, F. Marquier, F. Pardo, U. Gennser, A. Cavanna, J. L. Pelouard, and J. J. Greffet, “Epsilon-near-zero mode for active optoelectronic devices,” Phys. Rev. Lett. 109(23), 237401 (2012).
[Crossref] [PubMed]

Cerruti, M.

Cerutti, L.

Chen, H.-T.

Chen, P.-Y.

C. Argyropoulos, P.-Y. Chen, G. D’Aguanno, N. Engheta, and A. Alù, “Boosting optical nonlinearities in ε -near-zero plasmonic channels,” Phys. Rev. B 85(4), 045129 (2012).
[Crossref]

Chulkov, E. V.

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Surface plasmons in metallic structures,” J. Opt. A, Pure Appl. Opt. 7(2), S73–S84 (2005).
[Crossref]

Ciattoni, A.

M. A. Vincenti, D. de Ceglia, A. Ciattoni, and M. Scalora, “Singularity-driven second- and third-harmonic generation at ε -near-zero crossing points,” Phys. Rev. A 84(6), 063826 (2011).
[Crossref]

Clerici, M.

L. Caspani, R. P. M. Kaipurath, M. Clerici, M. Ferrera, T. Roger, J. Kim, N. Kinsey, M. Pietrzyk, A. Di Falco, V. M. Shalaev, A. Boltasseva, and D. Faccio, “Enhanced nonlinear refractive index in ε-near-zero materials,” Phys. Rev. Lett. 116(23), 233901 (2016).
[Crossref] [PubMed]

D’Aguanno, G.

C. Argyropoulos, G. D’Aguanno, and A. Alù, “Giant second-harmonic generation efficiency and ideal phase matching with a double ε-near-zero cross-slit metamaterial,” Phys. Rev. B 89(23), 235401 (2014).
[Crossref]

C. Argyropoulos, P.-Y. Chen, G. D’Aguanno, N. Engheta, and A. Alù, “Boosting optical nonlinearities in ε -near-zero plasmonic channels,” Phys. Rev. B 85(4), 045129 (2012).
[Crossref]

Dal Negro, L.

de Ceglia, D.

T. S. Luk, D. de Ceglia, S. Liu, G. A. Keeler, R. P. Prasankumar, M. A. Vincenti, M. Scalora, M. B. Sinclair, and S. Campione, “Enhanced third harmonic generation from the epsilon-near-zero modes of ultrathin films,” Appl. Phys. Lett. 106(15), 151103 (2015).
[Crossref]

S. Campione, D. de Ceglia, M. A. Vincenti, M. Scalora, and F. Capolino, “Electric field enhancement in ɛ-near-zero slabs under TM-polarized oblique incidence,” Phys. Rev. B 87(3), 035120 (2013).
[Crossref]

D. de Ceglia, S. Campione, M. A. Vincenti, F. Capolino, and M. Scalora, “Low-damping epsilon-near-zero slabs: Nonlinear and nonlocal optical properties,” Phys. Rev. B 87(15), 155140 (2013).
[Crossref]

M. A. Vincenti, D. de Ceglia, J. W. Haus, and M. Scalora, “Harmonic generation in multiresonant plasma films,” Phys. Rev. A 88(4), 043812 (2013).
[Crossref]

M. Antonietta Vincenti, S. Campione, D. de Ceglia, F. Capolino, and M. Scalora, “Gain-assisted harmonic generation in near-zero permittivity metamaterials made of plasmonic nanoshells,” New J. Phys. 14(10), 103016 (2012).
[Crossref]

M. A. Vincenti, D. de Ceglia, A. Ciattoni, and M. Scalora, “Singularity-driven second- and third-harmonic generation at ε -near-zero crossing points,” Phys. Rev. A 84(6), 063826 (2011).
[Crossref]

De Leon, I.

M. Z. Alam, I. De Leon, and R. W. Boyd, “Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region,” Science 352(6287), 795–797 (2016).
[Crossref] [PubMed]

Di Carlo, A.

Di Falco, A.

L. Caspani, R. P. M. Kaipurath, M. Clerici, M. Ferrera, T. Roger, J. Kim, N. Kinsey, M. Pietrzyk, A. Di Falco, V. M. Shalaev, A. Boltasseva, and D. Faccio, “Enhanced nonlinear refractive index in ε-near-zero materials,” Phys. Rev. Lett. 116(23), 233901 (2016).
[Crossref] [PubMed]

Dominici, L.

Echenique, P. M.

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Surface plasmons in metallic structures,” J. Opt. A, Pure Appl. Opt. 7(2), S73–S84 (2005).
[Crossref]

Economou, E. N.

E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182(2), 539–554 (1969).
[Crossref]

Engheta, N.

A. Capretti, Y. Wang, N. Engheta, and L. Dal Negro, “Enhanced third-harmonic generation in Si-compatible epsilon-near-zero indium tin oxide nanolayers,” Opt. Lett. 40(7), 1500–1503 (2015).
[Crossref] [PubMed]

C. Argyropoulos, P.-Y. Chen, G. D’Aguanno, N. Engheta, and A. Alù, “Boosting optical nonlinearities in ε -near-zero plasmonic channels,” Phys. Rev. B 85(4), 045129 (2012).
[Crossref]

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
[Crossref]

Englman, R.

R. Ruppin and R. Englman, “Optical phonons of small crystals,” Rep. Prog. Phys. 33(1), 149–196 (1970).
[Crossref]

Faccio, D.

L. Caspani, R. P. M. Kaipurath, M. Clerici, M. Ferrera, T. Roger, J. Kim, N. Kinsey, M. Pietrzyk, A. Di Falco, V. M. Shalaev, A. Boltasseva, and D. Faccio, “Enhanced nonlinear refractive index in ε-near-zero materials,” Phys. Rev. Lett. 116(23), 233901 (2016).
[Crossref] [PubMed]

Fan, S.

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep subwavelength low-permittivity films,” Phys. Rev. B 90(8), 085411 (2014).
[Crossref]

T. S. Luk, I. Kim, S. Campione, S. W. Howell, G. S. Subramania, R. K. Grubbs, I. Brener, H.-T. Chen, S. Fan, and M. B. Sinclair, “Near-infrared surface plasmon polariton dispersion control with hyperbolic metamaterials,” Opt. Express 21(9), 11107–11114 (2013).
[Crossref] [PubMed]

Feng, S.

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep subwavelength low-permittivity films,” Phys. Rev. B 90(8), 085411 (2014).
[Crossref]

Ferrell, R. A.

R. A. Ferrell, “Predicted radiation of plasma oscillations in metal films,” Phys. Rev. 111(5), 1214–1222 (1958).
[Crossref]

Ferrera, M.

L. Caspani, R. P. M. Kaipurath, M. Clerici, M. Ferrera, T. Roger, J. Kim, N. Kinsey, M. Pietrzyk, A. Di Falco, V. M. Shalaev, A. Boltasseva, and D. Faccio, “Enhanced nonlinear refractive index in ε-near-zero materials,” Phys. Rev. Lett. 116(23), 233901 (2016).
[Crossref] [PubMed]

Franzen, S.

Fuchs, R.

K. L. Kliewer and R. Fuchs, “Optical modes of vibration in an ionic crystal slab including retardation. II. Radiative region,” Phys. Rev. 150(2), 573–588 (1966).
[Crossref]

K. L. Kliewer and R. Fuchs, “Optical modes of vibration in an ionic crystal slab including retardation. I. Nonradiative region,” Phys. Rev. 144(2), 495–503 (1966).
[Crossref]

R. Fuchs, K. L. Kliewer, and W. J. Pardee, “Optical properties of an ionic crystal slab,” Phys. Rev. 150(2), 589–596 (1966).
[Crossref]

Gennser, U.

S. Vassant, A. Archambault, F. Marquier, F. Pardo, U. Gennser, A. Cavanna, J. L. Pelouard, and J. J. Greffet, “Epsilon-near-zero mode for active optoelectronic devices,” Phys. Rev. Lett. 109(23), 237401 (2012).
[Crossref] [PubMed]

Gerber, R. W.

Godwin, R. P.

Greffet, J. J.

S. Vassant, A. Archambault, F. Marquier, F. Pardo, U. Gennser, A. Cavanna, J. L. Pelouard, and J. J. Greffet, “Epsilon-near-zero mode for active optoelectronic devices,” Phys. Rev. Lett. 109(23), 237401 (2012).
[Crossref] [PubMed]

S. Vassant, J. P. Hugonin, F. Marquier, and J. J. Greffet, “Berreman mode and epsilon near zero mode,” Opt. Express 20(21), 23971–23977 (2012).
[Crossref] [PubMed]

Greffet, J.-J.

T. Taliercio, V. N. Guilengui, L. Cerutti, E. Tournié, and J.-J. Greffet, “Brewster “mode” in highly doped semiconductor layers: an all-optical technique to monitor doping concentration,” Opt. Express 22(20), 24294–24303 (2014).
[Crossref] [PubMed]

Y. C. Jun, J. Reno, T. Ribaudo, E. Shaner, J.-J. Greffet, S. Vassant, F. Marquier, M. Sinclair, and I. Brener, “Epsilon-near-zero strong coupling in metamaterial-semiconductor hybrid structures,” Nano Lett. 13(11), 5391–5396 (2013).
[Crossref] [PubMed]

Grosse, P.

B. Harbecke, B. Heinz, and P. Grosse, “Optical properties of thin films and the Berreman effect,” Appl. Phys., A Mater. Sci. Process. 38(4), 263–267 (1985).
[Crossref]

Grubbs, R. K.

Guilengui, V. N.

Harbecke, B.

B. Harbecke, B. Heinz, and P. Grosse, “Optical properties of thin films and the Berreman effect,” Appl. Phys., A Mater. Sci. Process. 38(4), 263–267 (1985).
[Crossref]

Haus, J. W.

M. A. Vincenti, D. de Ceglia, J. W. Haus, and M. Scalora, “Harmonic generation in multiresonant plasma films,” Phys. Rev. A 88(4), 043812 (2013).
[Crossref]

Heinz, B.

B. Harbecke, B. Heinz, and P. Grosse, “Optical properties of thin films and the Berreman effect,” Appl. Phys., A Mater. Sci. Process. 38(4), 263–267 (1985).
[Crossref]

Howell, S. W.

Hugonin, J. P.

Hwangbo, C. K.

M. A. Badsha, Y. C. Jun, and C. K. Hwangbo, “Admittance matching analysis of perfect absorption in unpatterned thin films,” Opt. Commun. 332, 206–213 (2014).
[Crossref]

Jun, Y. C.

M. A. Badsha, Y. C. Jun, and C. K. Hwangbo, “Admittance matching analysis of perfect absorption in unpatterned thin films,” Opt. Commun. 332, 206–213 (2014).
[Crossref]

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep subwavelength low-permittivity films,” Phys. Rev. B 90(8), 085411 (2014).
[Crossref]

Y. C. Jun, J. Reno, T. Ribaudo, E. Shaner, J.-J. Greffet, S. Vassant, F. Marquier, M. Sinclair, and I. Brener, “Epsilon-near-zero strong coupling in metamaterial-semiconductor hybrid structures,” Nano Lett. 13(11), 5391–5396 (2013).
[Crossref] [PubMed]

Kaipurath, R. P. M.

L. Caspani, R. P. M. Kaipurath, M. Clerici, M. Ferrera, T. Roger, J. Kim, N. Kinsey, M. Pietrzyk, A. Di Falco, V. M. Shalaev, A. Boltasseva, and D. Faccio, “Enhanced nonlinear refractive index in ε-near-zero materials,” Phys. Rev. Lett. 116(23), 233901 (2016).
[Crossref] [PubMed]

Keeler, G. A.

T. S. Luk, D. de Ceglia, S. Liu, G. A. Keeler, R. P. Prasankumar, M. A. Vincenti, M. Scalora, M. B. Sinclair, and S. Campione, “Enhanced third harmonic generation from the epsilon-near-zero modes of ultrathin films,” Appl. Phys. Lett. 106(15), 151103 (2015).
[Crossref]

Kim, I.

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep subwavelength low-permittivity films,” Phys. Rev. B 90(8), 085411 (2014).
[Crossref]

T. S. Luk, I. Kim, S. Campione, S. W. Howell, G. S. Subramania, R. K. Grubbs, I. Brener, H.-T. Chen, S. Fan, and M. B. Sinclair, “Near-infrared surface plasmon polariton dispersion control with hyperbolic metamaterials,” Opt. Express 21(9), 11107–11114 (2013).
[Crossref] [PubMed]

Kim, J.

L. Caspani, R. P. M. Kaipurath, M. Clerici, M. Ferrera, T. Roger, J. Kim, N. Kinsey, M. Pietrzyk, A. Di Falco, V. M. Shalaev, A. Boltasseva, and D. Faccio, “Enhanced nonlinear refractive index in ε-near-zero materials,” Phys. Rev. Lett. 116(23), 233901 (2016).
[Crossref] [PubMed]

Kinsey, N.

L. Caspani, R. P. M. Kaipurath, M. Clerici, M. Ferrera, T. Roger, J. Kim, N. Kinsey, M. Pietrzyk, A. Di Falco, V. M. Shalaev, A. Boltasseva, and D. Faccio, “Enhanced nonlinear refractive index in ε-near-zero materials,” Phys. Rev. Lett. 116(23), 233901 (2016).
[Crossref] [PubMed]

Kliewer, K. L.

K. L. Kliewer and R. Fuchs, “Optical modes of vibration in an ionic crystal slab including retardation. I. Nonradiative region,” Phys. Rev. 144(2), 495–503 (1966).
[Crossref]

K. L. Kliewer and R. Fuchs, “Optical modes of vibration in an ionic crystal slab including retardation. II. Radiative region,” Phys. Rev. 150(2), 573–588 (1966).
[Crossref]

R. Fuchs, K. L. Kliewer, and W. J. Pardee, “Optical properties of an ionic crystal slab,” Phys. Rev. 150(2), 589–596 (1966).
[Crossref]

Lafait, J.

A. Bichri, J. Lafait, and H. Welsch, “Visible and infrared optical properties of Ag/SiO2 multilayers: radiative virtual modes and coupling effects,” J. Phys. Condens. Matter 5(40), 7361–7374 (1993).
[Crossref]

Liu, S.

T. S. Luk, D. de Ceglia, S. Liu, G. A. Keeler, R. P. Prasankumar, M. A. Vincenti, M. Scalora, M. B. Sinclair, and S. Campione, “Enhanced third harmonic generation from the epsilon-near-zero modes of ultrathin films,” Appl. Phys. Lett. 106(15), 151103 (2015).
[Crossref]

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep subwavelength low-permittivity films,” Phys. Rev. B 90(8), 085411 (2014).
[Crossref]

Losego, M.

Luk, T. S.

T. S. Luk, D. de Ceglia, S. Liu, G. A. Keeler, R. P. Prasankumar, M. A. Vincenti, M. Scalora, M. B. Sinclair, and S. Campione, “Enhanced third harmonic generation from the epsilon-near-zero modes of ultrathin films,” Appl. Phys. Lett. 106(15), 151103 (2015).
[Crossref]

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep subwavelength low-permittivity films,” Phys. Rev. B 90(8), 085411 (2014).
[Crossref]

T. S. Luk, I. Kim, S. Campione, S. W. Howell, G. S. Subramania, R. K. Grubbs, I. Brener, H.-T. Chen, S. Fan, and M. B. Sinclair, “Near-infrared surface plasmon polariton dispersion control with hyperbolic metamaterials,” Opt. Express 21(9), 11107–11114 (2013).
[Crossref] [PubMed]

Mal’shukov, A. G.

E. A. Vinogradov, G. N. Zhizhin, A. G. Mal’shukov, and V. I. Yudson, “Thermostimulated polariton emission of zinc selenide films on metal substrate,” Solid State Commun. 23(12), 915–921 (1977).
[Crossref]

Maria, J.-P.

Marquier, F.

S. Campione, I. Brener, and F. Marquier, “Theory of epsilon-near-zero modes in ultrathin films,” Phys. Rev. B 91(12), 121408 (2015).
[Crossref]

Y. C. Jun, J. Reno, T. Ribaudo, E. Shaner, J.-J. Greffet, S. Vassant, F. Marquier, M. Sinclair, and I. Brener, “Epsilon-near-zero strong coupling in metamaterial-semiconductor hybrid structures,” Nano Lett. 13(11), 5391–5396 (2013).
[Crossref] [PubMed]

S. Vassant, J. P. Hugonin, F. Marquier, and J. J. Greffet, “Berreman mode and epsilon near zero mode,” Opt. Express 20(21), 23971–23977 (2012).
[Crossref] [PubMed]

S. Vassant, A. Archambault, F. Marquier, F. Pardo, U. Gennser, A. Cavanna, J. L. Pelouard, and J. J. Greffet, “Epsilon-near-zero mode for active optoelectronic devices,” Phys. Rev. Lett. 109(23), 237401 (2012).
[Crossref] [PubMed]

McAlister, A. J.

A. J. McAlister and E. A. Stern, “Plasma resonance absorption in thin metal films,” Phys. Rev. 132(4), 1599–1602 (1963).
[Crossref]

Michelotti, F.

Mueller, M. M.

Pardee, W. J.

R. Fuchs, K. L. Kliewer, and W. J. Pardee, “Optical properties of an ionic crystal slab,” Phys. Rev. 150(2), 589–596 (1966).
[Crossref]

Pardo, F.

S. Vassant, A. Archambault, F. Marquier, F. Pardo, U. Gennser, A. Cavanna, J. L. Pelouard, and J. J. Greffet, “Epsilon-near-zero mode for active optoelectronic devices,” Phys. Rev. Lett. 109(23), 237401 (2012).
[Crossref] [PubMed]

Pelouard, J. L.

S. Vassant, A. Archambault, F. Marquier, F. Pardo, U. Gennser, A. Cavanna, J. L. Pelouard, and J. J. Greffet, “Epsilon-near-zero mode for active optoelectronic devices,” Phys. Rev. Lett. 109(23), 237401 (2012).
[Crossref] [PubMed]

Pietrzyk, M.

L. Caspani, R. P. M. Kaipurath, M. Clerici, M. Ferrera, T. Roger, J. Kim, N. Kinsey, M. Pietrzyk, A. Di Falco, V. M. Shalaev, A. Boltasseva, and D. Faccio, “Enhanced nonlinear refractive index in ε-near-zero materials,” Phys. Rev. Lett. 116(23), 233901 (2016).
[Crossref] [PubMed]

Pitarke, J. M.

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Surface plasmons in metallic structures,” J. Opt. A, Pure Appl. Opt. 7(2), S73–S84 (2005).
[Crossref]

Prasankumar, R. P.

T. S. Luk, D. de Ceglia, S. Liu, G. A. Keeler, R. P. Prasankumar, M. A. Vincenti, M. Scalora, M. B. Sinclair, and S. Campione, “Enhanced third harmonic generation from the epsilon-near-zero modes of ultrathin films,” Appl. Phys. Lett. 106(15), 151103 (2015).
[Crossref]

Raether, H.

J. Bösenberg and H. Raether, “Plasma-resonance emission of potassium, excited by light,” Phys. Rev. Lett. 18(11), 397–398 (1967).
[Crossref]

Reale, A.

Reno, J.

Y. C. Jun, J. Reno, T. Ribaudo, E. Shaner, J.-J. Greffet, S. Vassant, F. Marquier, M. Sinclair, and I. Brener, “Epsilon-near-zero strong coupling in metamaterial-semiconductor hybrid structures,” Nano Lett. 13(11), 5391–5396 (2013).
[Crossref] [PubMed]

Rhodes, C.

Ribaudo, T.

Y. C. Jun, J. Reno, T. Ribaudo, E. Shaner, J.-J. Greffet, S. Vassant, F. Marquier, M. Sinclair, and I. Brener, “Epsilon-near-zero strong coupling in metamaterial-semiconductor hybrid structures,” Nano Lett. 13(11), 5391–5396 (2013).
[Crossref] [PubMed]

Roger, T.

L. Caspani, R. P. M. Kaipurath, M. Clerici, M. Ferrera, T. Roger, J. Kim, N. Kinsey, M. Pietrzyk, A. Di Falco, V. M. Shalaev, A. Boltasseva, and D. Faccio, “Enhanced nonlinear refractive index in ε-near-zero materials,” Phys. Rev. Lett. 116(23), 233901 (2016).
[Crossref] [PubMed]

Ruppin, R.

R. Ruppin and R. Englman, “Optical phonons of small crystals,” Rep. Prog. Phys. 33(1), 149–196 (1970).
[Crossref]

Salandrino, A.

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
[Crossref]

Sarid, D.

D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47(26), 1927–1930 (1981).
[Crossref]

Scalora, M.

T. S. Luk, D. de Ceglia, S. Liu, G. A. Keeler, R. P. Prasankumar, M. A. Vincenti, M. Scalora, M. B. Sinclair, and S. Campione, “Enhanced third harmonic generation from the epsilon-near-zero modes of ultrathin films,” Appl. Phys. Lett. 106(15), 151103 (2015).
[Crossref]

S. Campione, D. de Ceglia, M. A. Vincenti, M. Scalora, and F. Capolino, “Electric field enhancement in ɛ-near-zero slabs under TM-polarized oblique incidence,” Phys. Rev. B 87(3), 035120 (2013).
[Crossref]

D. de Ceglia, S. Campione, M. A. Vincenti, F. Capolino, and M. Scalora, “Low-damping epsilon-near-zero slabs: Nonlinear and nonlocal optical properties,” Phys. Rev. B 87(15), 155140 (2013).
[Crossref]

M. A. Vincenti, D. de Ceglia, J. W. Haus, and M. Scalora, “Harmonic generation in multiresonant plasma films,” Phys. Rev. A 88(4), 043812 (2013).
[Crossref]

M. Antonietta Vincenti, S. Campione, D. de Ceglia, F. Capolino, and M. Scalora, “Gain-assisted harmonic generation in near-zero permittivity metamaterials made of plasmonic nanoshells,” New J. Phys. 14(10), 103016 (2012).
[Crossref]

M. A. Vincenti, D. de Ceglia, A. Ciattoni, and M. Scalora, “Singularity-driven second- and third-harmonic generation at ε -near-zero crossing points,” Phys. Rev. A 84(6), 063826 (2011).
[Crossref]

Shalaev, V. M.

L. Caspani, R. P. M. Kaipurath, M. Clerici, M. Ferrera, T. Roger, J. Kim, N. Kinsey, M. Pietrzyk, A. Di Falco, V. M. Shalaev, A. Boltasseva, and D. Faccio, “Enhanced nonlinear refractive index in ε-near-zero materials,” Phys. Rev. Lett. 116(23), 233901 (2016).
[Crossref] [PubMed]

Shaner, E.

Y. C. Jun, J. Reno, T. Ribaudo, E. Shaner, J.-J. Greffet, S. Vassant, F. Marquier, M. Sinclair, and I. Brener, “Epsilon-near-zero strong coupling in metamaterial-semiconductor hybrid structures,” Nano Lett. 13(11), 5391–5396 (2013).
[Crossref] [PubMed]

Silkin, V. M.

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Surface plasmons in metallic structures,” J. Opt. A, Pure Appl. Opt. 7(2), S73–S84 (2005).
[Crossref]

Silveirinha, M. G.

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
[Crossref]

Sinclair, M.

Y. C. Jun, J. Reno, T. Ribaudo, E. Shaner, J.-J. Greffet, S. Vassant, F. Marquier, M. Sinclair, and I. Brener, “Epsilon-near-zero strong coupling in metamaterial-semiconductor hybrid structures,” Nano Lett. 13(11), 5391–5396 (2013).
[Crossref] [PubMed]

Sinclair, M. B.

T. S. Luk, D. de Ceglia, S. Liu, G. A. Keeler, R. P. Prasankumar, M. A. Vincenti, M. Scalora, M. B. Sinclair, and S. Campione, “Enhanced third harmonic generation from the epsilon-near-zero modes of ultrathin films,” Appl. Phys. Lett. 106(15), 151103 (2015).
[Crossref]

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep subwavelength low-permittivity films,” Phys. Rev. B 90(8), 085411 (2014).
[Crossref]

T. S. Luk, I. Kim, S. Campione, S. W. Howell, G. S. Subramania, R. K. Grubbs, I. Brener, H.-T. Chen, S. Fan, and M. B. Sinclair, “Near-infrared surface plasmon polariton dispersion control with hyperbolic metamaterials,” Opt. Express 21(9), 11107–11114 (2013).
[Crossref] [PubMed]

Stegeman, G. I.

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B Condens. Matter 33(8), 5186–5201 (1986).
[Crossref] [PubMed]

Stern, E. A.

A. J. McAlister and E. A. Stern, “Plasma resonance absorption in thin metal films,” Phys. Rev. 132(4), 1599–1602 (1963).
[Crossref]

Subramania, G. S.

Taliercio, T.

Tamir, T.

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B Condens. Matter 33(8), 5186–5201 (1986).
[Crossref] [PubMed]

Tournié, E.

Vassant, S.

Y. C. Jun, J. Reno, T. Ribaudo, E. Shaner, J.-J. Greffet, S. Vassant, F. Marquier, M. Sinclair, and I. Brener, “Epsilon-near-zero strong coupling in metamaterial-semiconductor hybrid structures,” Nano Lett. 13(11), 5391–5396 (2013).
[Crossref] [PubMed]

S. Vassant, J. P. Hugonin, F. Marquier, and J. J. Greffet, “Berreman mode and epsilon near zero mode,” Opt. Express 20(21), 23971–23977 (2012).
[Crossref] [PubMed]

S. Vassant, A. Archambault, F. Marquier, F. Pardo, U. Gennser, A. Cavanna, J. L. Pelouard, and J. J. Greffet, “Epsilon-near-zero mode for active optoelectronic devices,” Phys. Rev. Lett. 109(23), 237401 (2012).
[Crossref] [PubMed]

Vincenti, M. A.

T. S. Luk, D. de Ceglia, S. Liu, G. A. Keeler, R. P. Prasankumar, M. A. Vincenti, M. Scalora, M. B. Sinclair, and S. Campione, “Enhanced third harmonic generation from the epsilon-near-zero modes of ultrathin films,” Appl. Phys. Lett. 106(15), 151103 (2015).
[Crossref]

S. Campione, D. de Ceglia, M. A. Vincenti, M. Scalora, and F. Capolino, “Electric field enhancement in ɛ-near-zero slabs under TM-polarized oblique incidence,” Phys. Rev. B 87(3), 035120 (2013).
[Crossref]

D. de Ceglia, S. Campione, M. A. Vincenti, F. Capolino, and M. Scalora, “Low-damping epsilon-near-zero slabs: Nonlinear and nonlocal optical properties,” Phys. Rev. B 87(15), 155140 (2013).
[Crossref]

M. A. Vincenti, D. de Ceglia, J. W. Haus, and M. Scalora, “Harmonic generation in multiresonant plasma films,” Phys. Rev. A 88(4), 043812 (2013).
[Crossref]

M. A. Vincenti, D. de Ceglia, A. Ciattoni, and M. Scalora, “Singularity-driven second- and third-harmonic generation at ε -near-zero crossing points,” Phys. Rev. A 84(6), 063826 (2011).
[Crossref]

Vinogradov, E. A.

E. A. Vinogradov, G. N. Zhizhin, A. G. Mal’shukov, and V. I. Yudson, “Thermostimulated polariton emission of zinc selenide films on metal substrate,” Solid State Commun. 23(12), 915–921 (1977).
[Crossref]

Wang, Y.

Welsch, H.

A. Bichri, J. Lafait, and H. Welsch, “Visible and infrared optical properties of Ag/SiO2 multilayers: radiative virtual modes and coupling effects,” J. Phys. Condens. Matter 5(40), 7361–7374 (1993).
[Crossref]

Wright, J. B.

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep subwavelength low-permittivity films,” Phys. Rev. B 90(8), 085411 (2014).
[Crossref]

Yudson, V. I.

E. A. Vinogradov, G. N. Zhizhin, A. G. Mal’shukov, and V. I. Yudson, “Thermostimulated polariton emission of zinc selenide films on metal substrate,” Solid State Commun. 23(12), 915–921 (1977).
[Crossref]

Zhizhin, G. N.

E. A. Vinogradov, G. N. Zhizhin, A. G. Mal’shukov, and V. I. Yudson, “Thermostimulated polariton emission of zinc selenide films on metal substrate,” Solid State Commun. 23(12), 915–921 (1977).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

T. S. Luk, D. de Ceglia, S. Liu, G. A. Keeler, R. P. Prasankumar, M. A. Vincenti, M. Scalora, M. B. Sinclair, and S. Campione, “Enhanced third harmonic generation from the epsilon-near-zero modes of ultrathin films,” Appl. Phys. Lett. 106(15), 151103 (2015).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

B. Harbecke, B. Heinz, and P. Grosse, “Optical properties of thin films and the Berreman effect,” Appl. Phys., A Mater. Sci. Process. 38(4), 263–267 (1985).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

J. M. Pitarke, V. M. Silkin, E. V. Chulkov, and P. M. Echenique, “Surface plasmons in metallic structures,” J. Opt. A, Pure Appl. Opt. 7(2), S73–S84 (2005).
[Crossref]

J. Phys. Condens. Matter (1)

A. Bichri, J. Lafait, and H. Welsch, “Visible and infrared optical properties of Ag/SiO2 multilayers: radiative virtual modes and coupling effects,” J. Phys. Condens. Matter 5(40), 7361–7374 (1993).
[Crossref]

Nano Lett. (1)

Y. C. Jun, J. Reno, T. Ribaudo, E. Shaner, J.-J. Greffet, S. Vassant, F. Marquier, M. Sinclair, and I. Brener, “Epsilon-near-zero strong coupling in metamaterial-semiconductor hybrid structures,” Nano Lett. 13(11), 5391–5396 (2013).
[Crossref] [PubMed]

New J. Phys. (1)

M. Antonietta Vincenti, S. Campione, D. de Ceglia, F. Capolino, and M. Scalora, “Gain-assisted harmonic generation in near-zero permittivity metamaterials made of plasmonic nanoshells,” New J. Phys. 14(10), 103016 (2012).
[Crossref]

Opt. Commun. (1)

M. A. Badsha, Y. C. Jun, and C. K. Hwangbo, “Admittance matching analysis of perfect absorption in unpatterned thin films,” Opt. Commun. 332, 206–213 (2014).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Phys. Rev. (7)

A. J. McAlister and E. A. Stern, “Plasma resonance absorption in thin metal films,” Phys. Rev. 132(4), 1599–1602 (1963).
[Crossref]

R. A. Ferrell, “Predicted radiation of plasma oscillations in metal films,” Phys. Rev. 111(5), 1214–1222 (1958).
[Crossref]

E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182(2), 539–554 (1969).
[Crossref]

D. W. Berreman, “Infrared absorption at longitudinal optic frequency in cubic crystal films,” Phys. Rev. 130(6), 2193–2198 (1963).
[Crossref]

K. L. Kliewer and R. Fuchs, “Optical modes of vibration in an ionic crystal slab including retardation. I. Nonradiative region,” Phys. Rev. 144(2), 495–503 (1966).
[Crossref]

K. L. Kliewer and R. Fuchs, “Optical modes of vibration in an ionic crystal slab including retardation. II. Radiative region,” Phys. Rev. 150(2), 573–588 (1966).
[Crossref]

R. Fuchs, K. L. Kliewer, and W. J. Pardee, “Optical properties of an ionic crystal slab,” Phys. Rev. 150(2), 589–596 (1966).
[Crossref]

Phys. Rev. A (2)

M. A. Vincenti, D. de Ceglia, J. W. Haus, and M. Scalora, “Harmonic generation in multiresonant plasma films,” Phys. Rev. A 88(4), 043812 (2013).
[Crossref]

M. A. Vincenti, D. de Ceglia, A. Ciattoni, and M. Scalora, “Singularity-driven second- and third-harmonic generation at ε -near-zero crossing points,” Phys. Rev. A 84(6), 063826 (2011).
[Crossref]

Phys. Rev. B (7)

C. Argyropoulos, P.-Y. Chen, G. D’Aguanno, N. Engheta, and A. Alù, “Boosting optical nonlinearities in ε -near-zero plasmonic channels,” Phys. Rev. B 85(4), 045129 (2012).
[Crossref]

C. Argyropoulos, G. D’Aguanno, and A. Alù, “Giant second-harmonic generation efficiency and ideal phase matching with a double ε-near-zero cross-slit metamaterial,” Phys. Rev. B 89(23), 235401 (2014).
[Crossref]

S. Campione, I. Brener, and F. Marquier, “Theory of epsilon-near-zero modes in ultrathin films,” Phys. Rev. B 91(12), 121408 (2015).
[Crossref]

S. Campione, D. de Ceglia, M. A. Vincenti, M. Scalora, and F. Capolino, “Electric field enhancement in ɛ-near-zero slabs under TM-polarized oblique incidence,” Phys. Rev. B 87(3), 035120 (2013).
[Crossref]

D. de Ceglia, S. Campione, M. A. Vincenti, F. Capolino, and M. Scalora, “Low-damping epsilon-near-zero slabs: Nonlinear and nonlocal optical properties,” Phys. Rev. B 87(15), 155140 (2013).
[Crossref]

A. Alù, M. G. Silveirinha, A. Salandrino, and N. Engheta, “Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern,” Phys. Rev. B 75(15), 155410 (2007).
[Crossref]

T. S. Luk, S. Campione, I. Kim, S. Feng, Y. C. Jun, S. Liu, J. B. Wright, I. Brener, P. B. Catrysse, S. Fan, and M. B. Sinclair, “Directional perfect absorption using deep subwavelength low-permittivity films,” Phys. Rev. B 90(8), 085411 (2014).
[Crossref]

Phys. Rev. B Condens. Matter (1)

J. J. Burke, G. I. Stegeman, and T. Tamir, “Surface-polariton-like waves guided by thin, lossy metal films,” Phys. Rev. B Condens. Matter 33(8), 5186–5201 (1986).
[Crossref] [PubMed]

Phys. Rev. Lett. (4)

D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett. 47(26), 1927–1930 (1981).
[Crossref]

J. Bösenberg and H. Raether, “Plasma-resonance emission of potassium, excited by light,” Phys. Rev. Lett. 18(11), 397–398 (1967).
[Crossref]

S. Vassant, A. Archambault, F. Marquier, F. Pardo, U. Gennser, A. Cavanna, J. L. Pelouard, and J. J. Greffet, “Epsilon-near-zero mode for active optoelectronic devices,” Phys. Rev. Lett. 109(23), 237401 (2012).
[Crossref] [PubMed]

L. Caspani, R. P. M. Kaipurath, M. Clerici, M. Ferrera, T. Roger, J. Kim, N. Kinsey, M. Pietrzyk, A. Di Falco, V. M. Shalaev, A. Boltasseva, and D. Faccio, “Enhanced nonlinear refractive index in ε-near-zero materials,” Phys. Rev. Lett. 116(23), 233901 (2016).
[Crossref] [PubMed]

Rep. Prog. Phys. (1)

R. Ruppin and R. Englman, “Optical phonons of small crystals,” Rep. Prog. Phys. 33(1), 149–196 (1970).
[Crossref]

Science (1)

M. Z. Alam, I. De Leon, and R. W. Boyd, “Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region,” Science 352(6287), 795–797 (2016).
[Crossref] [PubMed]

Solid State Commun. (1)

E. A. Vinogradov, G. N. Zhizhin, A. G. Mal’shukov, and V. I. Yudson, “Thermostimulated polariton emission of zinc selenide films on metal substrate,” Solid State Commun. 23(12), 915–921 (1977).
[Crossref]

Other (3)

M. Schubert, Infrared Ellipsometry on Semiconductor Layer Structures (Springer, 2004).

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference, and Diffraction of Light (Cambridge University, 1999).

D. M. Pozar, Microwave Engineering (John Wiley and Sons, 2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic depiction of a three-medium structure comprising a half space made of glass (medium 1), a subwavelength ITO layer of thickness d (medium 2), and a half space made of air (medium 3) with oblique, p-polarized plane wave excitation from (a) air and (b) glass using the Kretschmann geometry. The excitation schemes in (a) and (b) are used to trace the dispersions of the R-ENZ and the NR-ENZ polariton modes, respectively.
Fig. 2
Fig. 2 (a) Real and imaginary parts of the ITO permittivity for the two samples with thicknesses of 24 and 53 nm. The ENZ crossing point is at ~7650 cm−1 (24 nm) and ~7700 cm−1 (53 nm). (b) Frequency/wavenumber dispersion diagram retrieved both experimentally (Exp) and via transfer matrix method (TMM) simulations for the two samples under analysis with thicknesses of 24 (blue circles and dashed blue line) and 53 (green triangles and green dashed line) nm. The data on the right of the light line was obtained using the excitation scheme in Fig. 1(b); the one on the left of the light line was obtained using the excitation scheme in Fig. 1(a). The inset reports two experimental reflectivity spectra for the 53 nm sample for the incident angles of 45 (black solid) and 60 (red dashed) degrees for the excitation scheme in Fig. 1(b).
Fig. 3
Fig. 3 (a) Real part and (b) imaginary parts of the complex-frequency/real-wavenumber dispersion diagram retrieved via eigenmode analysis (Mode 1 and Mode 2) for the two samples with thicknesses of 24 (solid and dashed blue lines) and 53 (solid and dashed green lines) nm. In panel (a), the symbols represent the TMM result similar to what shown in Fig. 2(b), now computed with the approximate Drude formula for ITO. In (a), the dotted and dash-dotted black lines refer to the light lines in free space and glass, respectively. The dotted blue and green lines indicate the ENZ crossing point for the 24 and 53 nm samples computed from the Drude permittivity models, respectively.
Fig. 4
Fig. 4 Panel (a) displays the raw experimental spectra at several discrete angles and panel (b) shows results calculated from TMM simulations. In (a), the solid green curve represents the real part of the complex-frequency/real-wavenumber dispersion diagram retrieved via eigenmode analysis shown in Fig. 3(a) for Mode 1.
Fig. 5
Fig. 5 Field enhancement versus frequency and angle of incidence computed using full-wave simulations at a location within the ITO layer for the three-medium structure in Fig. 1 for the two samples with thicknesses of 24 and 53 nm. Note that the electric field enhancement is virtually constant in the ITO film.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Z t = Z u + Z d = 0
Z u = A 2 Z 1 + B 2 C 2 Z 1 + D 2   and Z d = A 2 Z 3 + B 2 C 2 Z 3 + D 2

Metrics