Abstract

The tolerance of the non-local effect in the BOTDA method using a dual-tone probe wave with fixed frequency separation is theoretically and experimentally investigated in this paper. The presented analysis points out that when the sensing fiber consists of two long fiber segments with large BFS difference (> 100 MHz), there will always be only one probe tone interacting with the pump pulse in the front fiber segment. Therefore, although the pulse distortion problem can still be overcome in this case, the conventional non-local effect would impose systematic error on the estimated BFS of the hotspot located at the end of the front fiber segment. For the purpose of avoiding the impact of non-local effect and eliminating the pump distortion problem simultaneously when using high probe power, a novel method based on a four-tone probe wave is proposed, in which the probe light consists of two pairs of orthogonally-polarized dual-tone probe waves with opposite frequency scanning direction. The experimental results demonstrate that the proposed method is capable of realizing 2 m spatial resolution over 104-km-long sensing fiber without the impact of non-local effect.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Cyclic coding for Brillouin optical time-domain analyzers using probe dithering

Haritz Iribas, Alayn Loayssa, Florian Sauser, Miguel Llera, and Sébastien Le Floch
Opt. Express 25(8) 8787-8800 (2017)

Novel scanning method for distortion-free BOTDA measurements

Alejandro Dominguez-Lopez, Zhisheng Yang, Marcelo A. Soto, Xabier Angulo-Vinuesa, Sonia Martin-Lopez, Luc Thevenaz, and Miguel Gonzalez-Herraez
Opt. Express 24(10) 10188-10204 (2016)

Non-local effects in dual-probe-sideband Brillouin optical time domain analysis

Alejandro Dominguez-Lopez, Xabier Angulo-Vinuesa, Alexia Lopez-Gil, Sonia Martin-Lopez, and Miguel Gonzalez-Herraez
Opt. Express 23(8) 10341-10352 (2015)

References

  • View by:
  • |
  • |
  • |

  1. T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302 (1995).
    [Crossref]
  2. A. Motil, A. Bergman, and M. Tur, “State of the art of Brillouin fiber-optic distributed sensing,” Opt. Laser Technol. 78, 81–103 (2016).
    [Crossref]
  3. M. A. Soto and L. Thévenaz, “Modeling and evaluating the performance of Brillouin distributed optical fiber sensors,” Opt. Express 21(25), 31347–31366 (2013).
    [Crossref] [PubMed]
  4. A. Minardo, R. Bernini, L. Zeni, L. Thévenaz, and F. Briffod, “A re-construction technique for long-range stimulated Brillouin scattering distributed fiber-optic sensors: Experimental results,” Meas. Sci. Technol. 16(4), 900–908 (2005).
    [Crossref]
  5. L. Thévenaz, S. F. Mafang, and J. Lin, “Effect of pulse depletion in a Brillouin optical time-domain analysis system,” Opt. Express 21(12), 14017–14035 (2013).
    [Crossref] [PubMed]
  6. A. Minardo, R. Bernini, and L. Zeni, “A simple technique for reducing pump depletion in long-range distributed Brillouin fiber sensors,” IEEE Sens. J. 9(6), 633–634 (2009).
    [Crossref]
  7. Z. Yang, X. Hong, J. Wu, H. Guo, and J. Lin, “Theoretical and experimental investigation of an 82-km-long distributed Brillouin fiber sensor based on double sideband modulated probe wave,” Opt. Eng. 51(12), 124402 (2012).
    [Crossref]
  8. A. Dominguez-Lopez, X. Angulo-Vinuesa, A. Lopez-Gil, S. Martin-Lopez, and M. Gonzalez-Herraez, “Non-local effects in dual-probe-sideband Brillouin optical time domain analysis,” Opt. Express 23(8), 10341–10352 (2015).
    [Crossref] [PubMed]
  9. A. Dominguez-Lopez, Z. Yang, M. A. Soto, X. Angulo-Vinuesa, S. Martin-Lopez, L. Thevenaz, and M. Gonzalez-Herraez, “Novel scanning method for distortion-free BOTDA measurements,” Opt. Express 24(10), 10188–10204 (2016).
    [Crossref] [PubMed]
  10. R. Ruiz-Lombera, J. Urricelqui, M. Sagues, J. Mirapeix, J. M. López-Higuera, and A. Loayssa, “Overcoming nonlocal effects and Brillouin threshold limitations in Brillouin optical time-domain sensors,” IEEE Photonics J. 7(6), 1–9 (2015).
    [Crossref]
  11. M. A. Soto, G. Bolognini, F. Di Pasquale, and L. Thévenaz, “Simplex-coded BOTDA fiber sensor with 1 m spatial resolution over a 50 km range,” Opt. Lett. 35(2), 259–261 (2010).
    [Crossref] [PubMed]
  12. M. A. Soto, G. Bolognini, F. D. Pasquale, and L. Thévenaz, “Long-range Brillouin optical time-domain analysis sensor employing pulse coding techniques,” Meas. Sci. Technol. 21(9), 094024 (2010).
    [Crossref]
  13. M. O. van Deventer and A. J. Boot, “Polarization properties of stimulated Brillouin scattering in single-mode fibers,” J. Lightwave Technol. 12(4), 585–590 (1994).
    [Crossref]
  14. A. Zadok, E. Zilka, A. Eyal, L. Thévenaz, and M. Tur, “Vector analysis of stimulated Brillouin scattering amplification in standard single-mode fibers,” Opt. Express 16(26), 21692–21707 (2008).
    [Crossref] [PubMed]
  15. G. D. VanWiggeren and R. Roy, “Transmission of linearly polarized light through a single-mode fiber with random fluctuations of birefringence,” Appl. Opt. 38(18), 3888–3892 (1999).
    [Crossref] [PubMed]

2016 (2)

2015 (2)

R. Ruiz-Lombera, J. Urricelqui, M. Sagues, J. Mirapeix, J. M. López-Higuera, and A. Loayssa, “Overcoming nonlocal effects and Brillouin threshold limitations in Brillouin optical time-domain sensors,” IEEE Photonics J. 7(6), 1–9 (2015).
[Crossref]

A. Dominguez-Lopez, X. Angulo-Vinuesa, A. Lopez-Gil, S. Martin-Lopez, and M. Gonzalez-Herraez, “Non-local effects in dual-probe-sideband Brillouin optical time domain analysis,” Opt. Express 23(8), 10341–10352 (2015).
[Crossref] [PubMed]

2013 (2)

2012 (1)

Z. Yang, X. Hong, J. Wu, H. Guo, and J. Lin, “Theoretical and experimental investigation of an 82-km-long distributed Brillouin fiber sensor based on double sideband modulated probe wave,” Opt. Eng. 51(12), 124402 (2012).
[Crossref]

2010 (2)

M. A. Soto, G. Bolognini, F. Di Pasquale, and L. Thévenaz, “Simplex-coded BOTDA fiber sensor with 1 m spatial resolution over a 50 km range,” Opt. Lett. 35(2), 259–261 (2010).
[Crossref] [PubMed]

M. A. Soto, G. Bolognini, F. D. Pasquale, and L. Thévenaz, “Long-range Brillouin optical time-domain analysis sensor employing pulse coding techniques,” Meas. Sci. Technol. 21(9), 094024 (2010).
[Crossref]

2009 (1)

A. Minardo, R. Bernini, and L. Zeni, “A simple technique for reducing pump depletion in long-range distributed Brillouin fiber sensors,” IEEE Sens. J. 9(6), 633–634 (2009).
[Crossref]

2008 (1)

2005 (1)

A. Minardo, R. Bernini, L. Zeni, L. Thévenaz, and F. Briffod, “A re-construction technique for long-range stimulated Brillouin scattering distributed fiber-optic sensors: Experimental results,” Meas. Sci. Technol. 16(4), 900–908 (2005).
[Crossref]

1999 (1)

1995 (1)

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302 (1995).
[Crossref]

1994 (1)

M. O. van Deventer and A. J. Boot, “Polarization properties of stimulated Brillouin scattering in single-mode fibers,” J. Lightwave Technol. 12(4), 585–590 (1994).
[Crossref]

Angulo-Vinuesa, X.

Bergman, A.

A. Motil, A. Bergman, and M. Tur, “State of the art of Brillouin fiber-optic distributed sensing,” Opt. Laser Technol. 78, 81–103 (2016).
[Crossref]

Bernini, R.

A. Minardo, R. Bernini, and L. Zeni, “A simple technique for reducing pump depletion in long-range distributed Brillouin fiber sensors,” IEEE Sens. J. 9(6), 633–634 (2009).
[Crossref]

A. Minardo, R. Bernini, L. Zeni, L. Thévenaz, and F. Briffod, “A re-construction technique for long-range stimulated Brillouin scattering distributed fiber-optic sensors: Experimental results,” Meas. Sci. Technol. 16(4), 900–908 (2005).
[Crossref]

Bolognini, G.

M. A. Soto, G. Bolognini, F. Di Pasquale, and L. Thévenaz, “Simplex-coded BOTDA fiber sensor with 1 m spatial resolution over a 50 km range,” Opt. Lett. 35(2), 259–261 (2010).
[Crossref] [PubMed]

M. A. Soto, G. Bolognini, F. D. Pasquale, and L. Thévenaz, “Long-range Brillouin optical time-domain analysis sensor employing pulse coding techniques,” Meas. Sci. Technol. 21(9), 094024 (2010).
[Crossref]

Boot, A. J.

M. O. van Deventer and A. J. Boot, “Polarization properties of stimulated Brillouin scattering in single-mode fibers,” J. Lightwave Technol. 12(4), 585–590 (1994).
[Crossref]

Briffod, F.

A. Minardo, R. Bernini, L. Zeni, L. Thévenaz, and F. Briffod, “A re-construction technique for long-range stimulated Brillouin scattering distributed fiber-optic sensors: Experimental results,” Meas. Sci. Technol. 16(4), 900–908 (2005).
[Crossref]

Di Pasquale, F.

Dominguez-Lopez, A.

Eyal, A.

Gonzalez-Herraez, M.

Guo, H.

Z. Yang, X. Hong, J. Wu, H. Guo, and J. Lin, “Theoretical and experimental investigation of an 82-km-long distributed Brillouin fiber sensor based on double sideband modulated probe wave,” Opt. Eng. 51(12), 124402 (2012).
[Crossref]

Hong, X.

Z. Yang, X. Hong, J. Wu, H. Guo, and J. Lin, “Theoretical and experimental investigation of an 82-km-long distributed Brillouin fiber sensor based on double sideband modulated probe wave,” Opt. Eng. 51(12), 124402 (2012).
[Crossref]

Horiguchi, T.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302 (1995).
[Crossref]

Koyamada, Y.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302 (1995).
[Crossref]

Kurashima, T.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302 (1995).
[Crossref]

Lin, J.

L. Thévenaz, S. F. Mafang, and J. Lin, “Effect of pulse depletion in a Brillouin optical time-domain analysis system,” Opt. Express 21(12), 14017–14035 (2013).
[Crossref] [PubMed]

Z. Yang, X. Hong, J. Wu, H. Guo, and J. Lin, “Theoretical and experimental investigation of an 82-km-long distributed Brillouin fiber sensor based on double sideband modulated probe wave,” Opt. Eng. 51(12), 124402 (2012).
[Crossref]

Loayssa, A.

R. Ruiz-Lombera, J. Urricelqui, M. Sagues, J. Mirapeix, J. M. López-Higuera, and A. Loayssa, “Overcoming nonlocal effects and Brillouin threshold limitations in Brillouin optical time-domain sensors,” IEEE Photonics J. 7(6), 1–9 (2015).
[Crossref]

Lopez-Gil, A.

López-Higuera, J. M.

R. Ruiz-Lombera, J. Urricelqui, M. Sagues, J. Mirapeix, J. M. López-Higuera, and A. Loayssa, “Overcoming nonlocal effects and Brillouin threshold limitations in Brillouin optical time-domain sensors,” IEEE Photonics J. 7(6), 1–9 (2015).
[Crossref]

Mafang, S. F.

Martin-Lopez, S.

Minardo, A.

A. Minardo, R. Bernini, and L. Zeni, “A simple technique for reducing pump depletion in long-range distributed Brillouin fiber sensors,” IEEE Sens. J. 9(6), 633–634 (2009).
[Crossref]

A. Minardo, R. Bernini, L. Zeni, L. Thévenaz, and F. Briffod, “A re-construction technique for long-range stimulated Brillouin scattering distributed fiber-optic sensors: Experimental results,” Meas. Sci. Technol. 16(4), 900–908 (2005).
[Crossref]

Mirapeix, J.

R. Ruiz-Lombera, J. Urricelqui, M. Sagues, J. Mirapeix, J. M. López-Higuera, and A. Loayssa, “Overcoming nonlocal effects and Brillouin threshold limitations in Brillouin optical time-domain sensors,” IEEE Photonics J. 7(6), 1–9 (2015).
[Crossref]

Motil, A.

A. Motil, A. Bergman, and M. Tur, “State of the art of Brillouin fiber-optic distributed sensing,” Opt. Laser Technol. 78, 81–103 (2016).
[Crossref]

Pasquale, F. D.

M. A. Soto, G. Bolognini, F. D. Pasquale, and L. Thévenaz, “Long-range Brillouin optical time-domain analysis sensor employing pulse coding techniques,” Meas. Sci. Technol. 21(9), 094024 (2010).
[Crossref]

Roy, R.

Ruiz-Lombera, R.

R. Ruiz-Lombera, J. Urricelqui, M. Sagues, J. Mirapeix, J. M. López-Higuera, and A. Loayssa, “Overcoming nonlocal effects and Brillouin threshold limitations in Brillouin optical time-domain sensors,” IEEE Photonics J. 7(6), 1–9 (2015).
[Crossref]

Sagues, M.

R. Ruiz-Lombera, J. Urricelqui, M. Sagues, J. Mirapeix, J. M. López-Higuera, and A. Loayssa, “Overcoming nonlocal effects and Brillouin threshold limitations in Brillouin optical time-domain sensors,” IEEE Photonics J. 7(6), 1–9 (2015).
[Crossref]

Shimizu, K.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302 (1995).
[Crossref]

Soto, M. A.

Tateda, M.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302 (1995).
[Crossref]

Thevenaz, L.

Thévenaz, L.

Tur, M.

Urricelqui, J.

R. Ruiz-Lombera, J. Urricelqui, M. Sagues, J. Mirapeix, J. M. López-Higuera, and A. Loayssa, “Overcoming nonlocal effects and Brillouin threshold limitations in Brillouin optical time-domain sensors,” IEEE Photonics J. 7(6), 1–9 (2015).
[Crossref]

van Deventer, M. O.

M. O. van Deventer and A. J. Boot, “Polarization properties of stimulated Brillouin scattering in single-mode fibers,” J. Lightwave Technol. 12(4), 585–590 (1994).
[Crossref]

VanWiggeren, G. D.

Wu, J.

Z. Yang, X. Hong, J. Wu, H. Guo, and J. Lin, “Theoretical and experimental investigation of an 82-km-long distributed Brillouin fiber sensor based on double sideband modulated probe wave,” Opt. Eng. 51(12), 124402 (2012).
[Crossref]

Yang, Z.

A. Dominguez-Lopez, Z. Yang, M. A. Soto, X. Angulo-Vinuesa, S. Martin-Lopez, L. Thevenaz, and M. Gonzalez-Herraez, “Novel scanning method for distortion-free BOTDA measurements,” Opt. Express 24(10), 10188–10204 (2016).
[Crossref] [PubMed]

Z. Yang, X. Hong, J. Wu, H. Guo, and J. Lin, “Theoretical and experimental investigation of an 82-km-long distributed Brillouin fiber sensor based on double sideband modulated probe wave,” Opt. Eng. 51(12), 124402 (2012).
[Crossref]

Zadok, A.

Zeni, L.

A. Minardo, R. Bernini, and L. Zeni, “A simple technique for reducing pump depletion in long-range distributed Brillouin fiber sensors,” IEEE Sens. J. 9(6), 633–634 (2009).
[Crossref]

A. Minardo, R. Bernini, L. Zeni, L. Thévenaz, and F. Briffod, “A re-construction technique for long-range stimulated Brillouin scattering distributed fiber-optic sensors: Experimental results,” Meas. Sci. Technol. 16(4), 900–908 (2005).
[Crossref]

Zilka, E.

Appl. Opt. (1)

IEEE Photonics J. (1)

R. Ruiz-Lombera, J. Urricelqui, M. Sagues, J. Mirapeix, J. M. López-Higuera, and A. Loayssa, “Overcoming nonlocal effects and Brillouin threshold limitations in Brillouin optical time-domain sensors,” IEEE Photonics J. 7(6), 1–9 (2015).
[Crossref]

IEEE Sens. J. (1)

A. Minardo, R. Bernini, and L. Zeni, “A simple technique for reducing pump depletion in long-range distributed Brillouin fiber sensors,” IEEE Sens. J. 9(6), 633–634 (2009).
[Crossref]

J. Lightwave Technol. (2)

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13(7), 1296–1302 (1995).
[Crossref]

M. O. van Deventer and A. J. Boot, “Polarization properties of stimulated Brillouin scattering in single-mode fibers,” J. Lightwave Technol. 12(4), 585–590 (1994).
[Crossref]

Meas. Sci. Technol. (2)

A. Minardo, R. Bernini, L. Zeni, L. Thévenaz, and F. Briffod, “A re-construction technique for long-range stimulated Brillouin scattering distributed fiber-optic sensors: Experimental results,” Meas. Sci. Technol. 16(4), 900–908 (2005).
[Crossref]

M. A. Soto, G. Bolognini, F. D. Pasquale, and L. Thévenaz, “Long-range Brillouin optical time-domain analysis sensor employing pulse coding techniques,” Meas. Sci. Technol. 21(9), 094024 (2010).
[Crossref]

Opt. Eng. (1)

Z. Yang, X. Hong, J. Wu, H. Guo, and J. Lin, “Theoretical and experimental investigation of an 82-km-long distributed Brillouin fiber sensor based on double sideband modulated probe wave,” Opt. Eng. 51(12), 124402 (2012).
[Crossref]

Opt. Express (5)

Opt. Laser Technol. (1)

A. Motil, A. Bergman, and M. Tur, “State of the art of Brillouin fiber-optic distributed sensing,” Opt. Laser Technol. 78, 81–103 (2016).
[Crossref]

Opt. Lett. (1)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1 Schematic descriptions of the pump-probe Brillouin interactions in spectral domain: (a) the standard DSB-based scanning method; (b) the fixed frequency separation method proposed in [9]; where vB is the dominant BFS over the last ~20 kilometers of sensing fiber.
Fig. 2
Fig. 2 Configuration of sensing fiber. Black curve: the dominant BFS of sensing fiber versus the distance; Green curve: the probe power versus distance. The hotspot is located at the end of the front segment of sensing fiber.
Fig. 3
Fig. 3 Schematic descriptions of the pump-probe Brillouin interactions based on the method that keep fixed frequency separation 2vB2. (a) the Brillouin interaction process in S2 segment; (b) the Brillouin interaction process in S1 segment (vB1 < vB2).
Fig. 4
Fig. 4 Schematic descriptions of the frequency sweeping direction in the proposal. The dashed arrows represent the sweeping direction of its corresponding probe tone.
Fig. 5
Fig. 5 Schematic descriptions of the pump-probe Brillouin interactions of the orthogonally-polarized four-tone probe scheme in spectral domain.
Fig. 6
Fig. 6 Schematic description of the pump-probe Brillouin interaction inside S1 segment using the proposed BOTDA scheme based on the orthogonally-polarized four-tone probe scheme in spectral domain when the BFS of S1 section vB1 is largely different from vB2.
Fig. 7
Fig. 7 Illustration of the BGS of hotspot at different temperature changes in (a) S1 fiber segment and in (b) S2 fiber segment. Blue dashed curve: the BGS component attributed to the blue probe tone shown in Fig. 4; Red dashed curve: the BGS component attributed to the red probe tone shown in Fig. 4; Black curve: the synthetic BGS used for fitting.
Fig. 8
Fig. 8 (a) Experimental setup of the proposal; (b) implementation of the method in [9] based on the experimental setup of our proposal. PC: polarization controller; EOM: electro-optic modulator; PG: pulse generator; Cir.: circulator; PS: polarization switch; PD: photodiode; PBC: polarization beam combiner; DWDM: dense wave length division multiplexing; Pol.: polarizer.
Fig. 9
Fig. 9 (a) A set of temporal envelopes of the output pump pulses measured at the end of the sensing fiber for different pump-probe frequency offsets using the proposed scanning method; (b) peak power of the pump pulse at the fiber output as a function of scanning frequency difference between pump and probe.
Fig. 10
Fig. 10 The BGS profiles at the hotspot located at the end of the front section of sensing fiber using (a) the previous method; (b) the proposed scanning method.
Fig. 11
Fig. 11 The BFS at the hotspot with each temperature step for both methods
Fig. 12
Fig. 12 (a) The measured and fitted BGS profiles inside and outside the hot-spot location; (b) fitted BFS profile around the hot-spot location.
Fig. 13
Fig. 13 (a) The estimated BFS along the 104-km-long sensing fiber by using the proposal and the method in [9]; (b) the standard deviation of BFS versus distance using the proposal and the method in [9].
Fig. 14
Fig. 14 The fitted BFS profiles for both methods around (a) 2 m hotspot placed at the end of the second fiber segment; (b) 2 m hotspot placed at the end of the third fiber segment.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

g ( Ω ) = ( Γ B / 2 ) 2 ( Ω Ω z ) 2 + ( Γ B / 2 ) 2 + ( Γ B / 2 ) 2 ( Ω ( 2 Ω B Ω z ) ) 2 + ( Γ B / 2 ) 2 ,

Metrics