Abstract

In this paper, a novel optical encoder enabling the simultaneous measurement of displacement and the position of precision stages is presented. The encoder is composed of an improved single-track scale grating and a compact two-probe reading head. In the scale grating, multiple reference codes are physically superimposed onto the incremental grooves, in contrast to conventional designs, where an additional track is necessary. The distribution of the reference codes follows a specific mathematical algorithm. For the reading head, a two-probe structure is designed to identify the discrete reference codes by means of the superimposition of the codes with a stationary mask and to read the continuous incremental grooves by means of a grating interferometry, respectively. A prototype encoder was designed, constructed and evaluated, and experimental results show that the distance code precision achieved is 0.5 μm, while the linearity error of the linear displacement measurement is less than 0.06%.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Highly accurate, absolute optical encoder using a hybrid-positioning method

Yaping Shi, Kai Ni, Xinghui Li, Qian Zhou, and Xiaohao Wang
Opt. Lett. 44(21) 5258-5261 (2019)

Absolute, high-resolution optical position encoder

Kai Engelhardt and Peter Seitz
Appl. Opt. 35(1) 201-208 (1996)

Holographic fabrication of an arrayed one-axis scale grating for a two-probe optical linear encoder

Xinghui Li, Qian Zhou, Xiangwen Zhu, Haiou Lu, Lin Yang, Donghan Ma, Jianhui Sun, Kai Ni, and Xiaohao Wang
Opt. Express 25(14) 16028-16039 (2017)

References

  • View by:
  • |
  • |
  • |

  1. Heidenhain, Sealed Linear Encoder LC (Heidenhain Co, 2015).
  2. Renishaw, Absolute Optical Encoder with BiSS Serial Communications (Renishaw PLC, 2014).
  3. Magnescale Co, Ltd, “Laser scale, Linear scale,” www.mgscale.com .
  4. T. Oiwa, M. Katsuki, M. Karita, W. Gao, S. Makinouchi, K. Sato, and Y. Oohashi, “Report of Questionnaire Survey on Ultra-precision Positioning,” Int. J. Jpn Soc. Precis. Eng. (2015).
  5. W. Gao, W. Kim, H. Bosse, H. Haitjema, Y. Chen, X. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision positioning,” CIRP Ann. 64(2), 773–796 (2015).
    [Crossref]
  6. Y. Matsuzoe, N. Tsuji, T. Nakayama, K. Fujita, and T. Yoshizawa, “High-performance absolute rotary encoder using multitrack and m-code,” Opt. Eng. 42(1), 124–131 (2003).
    [Crossref]
  7. L. Wang, K. Li, Z. Liu, Y. Zhang, and J. Niu, “Rapid detection of index for encoder in rotary inertial navigation system,” Opt. Express 24(5), 5591–5599 (2016).
    [Crossref]
  8. S. Ishimura and K. Kikuchi, “Eight-state trellis-coded optical modulation with signal constellations of four-dimensional M-ary quadrature-amplitude modulation,” Opt. Express 23(5), 6692–6704 (2015).
    [Crossref] [PubMed]
  9. Heidenhain, Sealed Linear Encoders LC (Heidenhain Co, 2003).
  10. H. Schwenke, W. Knapp, H. Haitjema, A. Weckenmann, R. Schmitt, and F. Delbressine, “Geometric error measurement and compensation of machines – an update,” CIRP Ann. 57(2), 660–675 (2008).
    [Crossref]
  11. W. Gao, S. Dejima, H. Yanai, K. Katakura, S. Kiyono, and Y. Tomita, “A surface motor driven planar motion stage integrated with an XYZ surface encoder for precision positioning,” Precis. Eng. 28(3), 329–337 (2004).
    [Crossref]
  12. Sumitomo Heavy Industries Co, Ltd, “Mechatronics division,” http://www.shi-mechatronics.jp .
  13. J. Saez-Landete, J. Alonso, and E. Bernabeu, “Design of zero reference codes by means of a global optimization method,” Opt. Express 13(1), 195–201 (2005).
    [Crossref] [PubMed]
  14. J. Saez-Landete, S. Salcedo-Sanz, M. Rosa-Zurera, J. Alonso, and E. Bernabeu, “Generation of optical reference signals robust to diffractive effects,” in Proceedings of IEEE Conference on Photonics Technology Letters (IEEE, 2007) 19(15), pp. 1133–1135.
    [Crossref]
  15. W. Gao and A. Kimura, “A three-axis displacement sensor with nanometric resolution,” CIRP Ann. 56(1), 529–532 (2007).
    [Crossref]
  16. H. L. Hsieh and W. Chen, “Heterodyne wollaston laser encoder for measurement of in-plane displacement,” Opt. Express 24(8), 8693–8707 (2016).
    [Crossref] [PubMed]
  17. X. Li, W. Gao, H. Muto, Y. Shimizu, S. Ito, and S. Dian, “A six-degree-of-freedom surface encoder for precision positioning of a planar motion stage,” Precis. Eng. 37(3), 771–781 (2013).
    [Crossref]
  18. X. Li, Y. Shimizu, T. Ito, Y. Cai, S. Ito, and W. Gao, “Measurement of six-degree-of-freedom planar motions by using a multi-probe surface encoder,” Opt. Eng. 53(12), 122405 (2014).
    [Crossref]
  19. H. Wolferen, L. Abelmann, and T. C. Hennessy, Laser interference lithography (Lithography Principles Processes and Materials, 2011), Chap. 5.
  20. X. Li, W. Gao, Y. Shimizu, and S. Ito, “A two-axis Lloyd’s mirror interferometer for fabrication of two dimensional diffraction gratings,” CIRP Ann. 63(1), 461–464 (2014).
    [Crossref]
  21. S. R. J. Brueck, “Optical and Interferometric Lithography-Nanotechnology Enablers,” in Proceedings of the IEEE (IEEE, 2005) 93(10), pp. 1704–1721.
  22. X. Li, Y. Shimizu, S. Ito, and W. Gao, “Fabrication of scale gratings for surface encoders by using laser interference lithography with 405 nm laser diodes,” Int. J. Precis. Eng. Manuf. 14(11), 1979–1988 (2013).
    [Crossref]
  23. S. Wang and L. Zeng, “Analysis and minimization of spacing error of holographic gratings recorded with spherical collimation lenses,” Opt. Express 23(5), 5532–5546 (2015).
    [Crossref] [PubMed]
  24. W. Gao and A. Kimura, “A fast evaluation method for pitch deviation and out-of-flatness of a planar scale grating,” CIRP Ann. 59(1), 505–508 (2010).
    [Crossref]
  25. A. Kimura, W. Gao, Y. Arai, and L. Zeng, “Design and construction of a two-degree of-freedom linear encoder for nanometric measurement of stage position and straightness,” Precis. Eng. 34(1), 145–155 (2010).
    [Crossref]

2016 (2)

2015 (3)

2014 (2)

X. Li, Y. Shimizu, T. Ito, Y. Cai, S. Ito, and W. Gao, “Measurement of six-degree-of-freedom planar motions by using a multi-probe surface encoder,” Opt. Eng. 53(12), 122405 (2014).
[Crossref]

X. Li, W. Gao, Y. Shimizu, and S. Ito, “A two-axis Lloyd’s mirror interferometer for fabrication of two dimensional diffraction gratings,” CIRP Ann. 63(1), 461–464 (2014).
[Crossref]

2013 (2)

X. Li, Y. Shimizu, S. Ito, and W. Gao, “Fabrication of scale gratings for surface encoders by using laser interference lithography with 405 nm laser diodes,” Int. J. Precis. Eng. Manuf. 14(11), 1979–1988 (2013).
[Crossref]

X. Li, W. Gao, H. Muto, Y. Shimizu, S. Ito, and S. Dian, “A six-degree-of-freedom surface encoder for precision positioning of a planar motion stage,” Precis. Eng. 37(3), 771–781 (2013).
[Crossref]

2010 (2)

W. Gao and A. Kimura, “A fast evaluation method for pitch deviation and out-of-flatness of a planar scale grating,” CIRP Ann. 59(1), 505–508 (2010).
[Crossref]

A. Kimura, W. Gao, Y. Arai, and L. Zeng, “Design and construction of a two-degree of-freedom linear encoder for nanometric measurement of stage position and straightness,” Precis. Eng. 34(1), 145–155 (2010).
[Crossref]

2008 (1)

H. Schwenke, W. Knapp, H. Haitjema, A. Weckenmann, R. Schmitt, and F. Delbressine, “Geometric error measurement and compensation of machines – an update,” CIRP Ann. 57(2), 660–675 (2008).
[Crossref]

2007 (1)

W. Gao and A. Kimura, “A three-axis displacement sensor with nanometric resolution,” CIRP Ann. 56(1), 529–532 (2007).
[Crossref]

2005 (1)

2004 (1)

W. Gao, S. Dejima, H. Yanai, K. Katakura, S. Kiyono, and Y. Tomita, “A surface motor driven planar motion stage integrated with an XYZ surface encoder for precision positioning,” Precis. Eng. 28(3), 329–337 (2004).
[Crossref]

2003 (1)

Y. Matsuzoe, N. Tsuji, T. Nakayama, K. Fujita, and T. Yoshizawa, “High-performance absolute rotary encoder using multitrack and m-code,” Opt. Eng. 42(1), 124–131 (2003).
[Crossref]

Alonso, J.

J. Saez-Landete, J. Alonso, and E. Bernabeu, “Design of zero reference codes by means of a global optimization method,” Opt. Express 13(1), 195–201 (2005).
[Crossref] [PubMed]

J. Saez-Landete, S. Salcedo-Sanz, M. Rosa-Zurera, J. Alonso, and E. Bernabeu, “Generation of optical reference signals robust to diffractive effects,” in Proceedings of IEEE Conference on Photonics Technology Letters (IEEE, 2007) 19(15), pp. 1133–1135.
[Crossref]

Arai, Y.

A. Kimura, W. Gao, Y. Arai, and L. Zeng, “Design and construction of a two-degree of-freedom linear encoder for nanometric measurement of stage position and straightness,” Precis. Eng. 34(1), 145–155 (2010).
[Crossref]

Bernabeu, E.

J. Saez-Landete, J. Alonso, and E. Bernabeu, “Design of zero reference codes by means of a global optimization method,” Opt. Express 13(1), 195–201 (2005).
[Crossref] [PubMed]

J. Saez-Landete, S. Salcedo-Sanz, M. Rosa-Zurera, J. Alonso, and E. Bernabeu, “Generation of optical reference signals robust to diffractive effects,” in Proceedings of IEEE Conference on Photonics Technology Letters (IEEE, 2007) 19(15), pp. 1133–1135.
[Crossref]

Bosse, H.

W. Gao, W. Kim, H. Bosse, H. Haitjema, Y. Chen, X. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision positioning,” CIRP Ann. 64(2), 773–796 (2015).
[Crossref]

Brueck, S. R. J.

S. R. J. Brueck, “Optical and Interferometric Lithography-Nanotechnology Enablers,” in Proceedings of the IEEE (IEEE, 2005) 93(10), pp. 1704–1721.

Cai, Y.

X. Li, Y. Shimizu, T. Ito, Y. Cai, S. Ito, and W. Gao, “Measurement of six-degree-of-freedom planar motions by using a multi-probe surface encoder,” Opt. Eng. 53(12), 122405 (2014).
[Crossref]

Chen, W.

Chen, Y.

W. Gao, W. Kim, H. Bosse, H. Haitjema, Y. Chen, X. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision positioning,” CIRP Ann. 64(2), 773–796 (2015).
[Crossref]

Dejima, S.

W. Gao, S. Dejima, H. Yanai, K. Katakura, S. Kiyono, and Y. Tomita, “A surface motor driven planar motion stage integrated with an XYZ surface encoder for precision positioning,” Precis. Eng. 28(3), 329–337 (2004).
[Crossref]

Delbressine, F.

H. Schwenke, W. Knapp, H. Haitjema, A. Weckenmann, R. Schmitt, and F. Delbressine, “Geometric error measurement and compensation of machines – an update,” CIRP Ann. 57(2), 660–675 (2008).
[Crossref]

Dian, S.

X. Li, W. Gao, H. Muto, Y. Shimizu, S. Ito, and S. Dian, “A six-degree-of-freedom surface encoder for precision positioning of a planar motion stage,” Precis. Eng. 37(3), 771–781 (2013).
[Crossref]

Estler, W. T.

W. Gao, W. Kim, H. Bosse, H. Haitjema, Y. Chen, X. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision positioning,” CIRP Ann. 64(2), 773–796 (2015).
[Crossref]

Fujita, K.

Y. Matsuzoe, N. Tsuji, T. Nakayama, K. Fujita, and T. Yoshizawa, “High-performance absolute rotary encoder using multitrack and m-code,” Opt. Eng. 42(1), 124–131 (2003).
[Crossref]

Gao, W.

W. Gao, W. Kim, H. Bosse, H. Haitjema, Y. Chen, X. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision positioning,” CIRP Ann. 64(2), 773–796 (2015).
[Crossref]

X. Li, Y. Shimizu, T. Ito, Y. Cai, S. Ito, and W. Gao, “Measurement of six-degree-of-freedom planar motions by using a multi-probe surface encoder,” Opt. Eng. 53(12), 122405 (2014).
[Crossref]

X. Li, W. Gao, Y. Shimizu, and S. Ito, “A two-axis Lloyd’s mirror interferometer for fabrication of two dimensional diffraction gratings,” CIRP Ann. 63(1), 461–464 (2014).
[Crossref]

X. Li, W. Gao, H. Muto, Y. Shimizu, S. Ito, and S. Dian, “A six-degree-of-freedom surface encoder for precision positioning of a planar motion stage,” Precis. Eng. 37(3), 771–781 (2013).
[Crossref]

X. Li, Y. Shimizu, S. Ito, and W. Gao, “Fabrication of scale gratings for surface encoders by using laser interference lithography with 405 nm laser diodes,” Int. J. Precis. Eng. Manuf. 14(11), 1979–1988 (2013).
[Crossref]

W. Gao and A. Kimura, “A fast evaluation method for pitch deviation and out-of-flatness of a planar scale grating,” CIRP Ann. 59(1), 505–508 (2010).
[Crossref]

A. Kimura, W. Gao, Y. Arai, and L. Zeng, “Design and construction of a two-degree of-freedom linear encoder for nanometric measurement of stage position and straightness,” Precis. Eng. 34(1), 145–155 (2010).
[Crossref]

W. Gao and A. Kimura, “A three-axis displacement sensor with nanometric resolution,” CIRP Ann. 56(1), 529–532 (2007).
[Crossref]

W. Gao, S. Dejima, H. Yanai, K. Katakura, S. Kiyono, and Y. Tomita, “A surface motor driven planar motion stage integrated with an XYZ surface encoder for precision positioning,” Precis. Eng. 28(3), 329–337 (2004).
[Crossref]

Haitjema, H.

W. Gao, W. Kim, H. Bosse, H. Haitjema, Y. Chen, X. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision positioning,” CIRP Ann. 64(2), 773–796 (2015).
[Crossref]

H. Schwenke, W. Knapp, H. Haitjema, A. Weckenmann, R. Schmitt, and F. Delbressine, “Geometric error measurement and compensation of machines – an update,” CIRP Ann. 57(2), 660–675 (2008).
[Crossref]

Hsieh, H. L.

Ishimura, S.

Ito, S.

X. Li, Y. Shimizu, T. Ito, Y. Cai, S. Ito, and W. Gao, “Measurement of six-degree-of-freedom planar motions by using a multi-probe surface encoder,” Opt. Eng. 53(12), 122405 (2014).
[Crossref]

X. Li, W. Gao, Y. Shimizu, and S. Ito, “A two-axis Lloyd’s mirror interferometer for fabrication of two dimensional diffraction gratings,” CIRP Ann. 63(1), 461–464 (2014).
[Crossref]

X. Li, W. Gao, H. Muto, Y. Shimizu, S. Ito, and S. Dian, “A six-degree-of-freedom surface encoder for precision positioning of a planar motion stage,” Precis. Eng. 37(3), 771–781 (2013).
[Crossref]

X. Li, Y. Shimizu, S. Ito, and W. Gao, “Fabrication of scale gratings for surface encoders by using laser interference lithography with 405 nm laser diodes,” Int. J. Precis. Eng. Manuf. 14(11), 1979–1988 (2013).
[Crossref]

Ito, T.

X. Li, Y. Shimizu, T. Ito, Y. Cai, S. Ito, and W. Gao, “Measurement of six-degree-of-freedom planar motions by using a multi-probe surface encoder,” Opt. Eng. 53(12), 122405 (2014).
[Crossref]

Katakura, K.

W. Gao, S. Dejima, H. Yanai, K. Katakura, S. Kiyono, and Y. Tomita, “A surface motor driven planar motion stage integrated with an XYZ surface encoder for precision positioning,” Precis. Eng. 28(3), 329–337 (2004).
[Crossref]

Kikuchi, K.

Kim, W.

W. Gao, W. Kim, H. Bosse, H. Haitjema, Y. Chen, X. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision positioning,” CIRP Ann. 64(2), 773–796 (2015).
[Crossref]

Kimura, A.

W. Gao and A. Kimura, “A fast evaluation method for pitch deviation and out-of-flatness of a planar scale grating,” CIRP Ann. 59(1), 505–508 (2010).
[Crossref]

A. Kimura, W. Gao, Y. Arai, and L. Zeng, “Design and construction of a two-degree of-freedom linear encoder for nanometric measurement of stage position and straightness,” Precis. Eng. 34(1), 145–155 (2010).
[Crossref]

W. Gao and A. Kimura, “A three-axis displacement sensor with nanometric resolution,” CIRP Ann. 56(1), 529–532 (2007).
[Crossref]

Kiyono, S.

W. Gao, S. Dejima, H. Yanai, K. Katakura, S. Kiyono, and Y. Tomita, “A surface motor driven planar motion stage integrated with an XYZ surface encoder for precision positioning,” Precis. Eng. 28(3), 329–337 (2004).
[Crossref]

Knapp, W.

W. Gao, W. Kim, H. Bosse, H. Haitjema, Y. Chen, X. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision positioning,” CIRP Ann. 64(2), 773–796 (2015).
[Crossref]

H. Schwenke, W. Knapp, H. Haitjema, A. Weckenmann, R. Schmitt, and F. Delbressine, “Geometric error measurement and compensation of machines – an update,” CIRP Ann. 57(2), 660–675 (2008).
[Crossref]

Kunzmann, H.

W. Gao, W. Kim, H. Bosse, H. Haitjema, Y. Chen, X. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision positioning,” CIRP Ann. 64(2), 773–796 (2015).
[Crossref]

Li, K.

Li, X.

X. Li, W. Gao, Y. Shimizu, and S. Ito, “A two-axis Lloyd’s mirror interferometer for fabrication of two dimensional diffraction gratings,” CIRP Ann. 63(1), 461–464 (2014).
[Crossref]

X. Li, Y. Shimizu, T. Ito, Y. Cai, S. Ito, and W. Gao, “Measurement of six-degree-of-freedom planar motions by using a multi-probe surface encoder,” Opt. Eng. 53(12), 122405 (2014).
[Crossref]

X. Li, Y. Shimizu, S. Ito, and W. Gao, “Fabrication of scale gratings for surface encoders by using laser interference lithography with 405 nm laser diodes,” Int. J. Precis. Eng. Manuf. 14(11), 1979–1988 (2013).
[Crossref]

X. Li, W. Gao, H. Muto, Y. Shimizu, S. Ito, and S. Dian, “A six-degree-of-freedom surface encoder for precision positioning of a planar motion stage,” Precis. Eng. 37(3), 771–781 (2013).
[Crossref]

Liu, Z.

Lu, X.

W. Gao, W. Kim, H. Bosse, H. Haitjema, Y. Chen, X. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision positioning,” CIRP Ann. 64(2), 773–796 (2015).
[Crossref]

Matsuzoe, Y.

Y. Matsuzoe, N. Tsuji, T. Nakayama, K. Fujita, and T. Yoshizawa, “High-performance absolute rotary encoder using multitrack and m-code,” Opt. Eng. 42(1), 124–131 (2003).
[Crossref]

Muto, H.

X. Li, W. Gao, H. Muto, Y. Shimizu, S. Ito, and S. Dian, “A six-degree-of-freedom surface encoder for precision positioning of a planar motion stage,” Precis. Eng. 37(3), 771–781 (2013).
[Crossref]

Nakayama, T.

Y. Matsuzoe, N. Tsuji, T. Nakayama, K. Fujita, and T. Yoshizawa, “High-performance absolute rotary encoder using multitrack and m-code,” Opt. Eng. 42(1), 124–131 (2003).
[Crossref]

Niu, J.

Rosa-Zurera, M.

J. Saez-Landete, S. Salcedo-Sanz, M. Rosa-Zurera, J. Alonso, and E. Bernabeu, “Generation of optical reference signals robust to diffractive effects,” in Proceedings of IEEE Conference on Photonics Technology Letters (IEEE, 2007) 19(15), pp. 1133–1135.
[Crossref]

Saez-Landete, J.

J. Saez-Landete, J. Alonso, and E. Bernabeu, “Design of zero reference codes by means of a global optimization method,” Opt. Express 13(1), 195–201 (2005).
[Crossref] [PubMed]

J. Saez-Landete, S. Salcedo-Sanz, M. Rosa-Zurera, J. Alonso, and E. Bernabeu, “Generation of optical reference signals robust to diffractive effects,” in Proceedings of IEEE Conference on Photonics Technology Letters (IEEE, 2007) 19(15), pp. 1133–1135.
[Crossref]

Salcedo-Sanz, S.

J. Saez-Landete, S. Salcedo-Sanz, M. Rosa-Zurera, J. Alonso, and E. Bernabeu, “Generation of optical reference signals robust to diffractive effects,” in Proceedings of IEEE Conference on Photonics Technology Letters (IEEE, 2007) 19(15), pp. 1133–1135.
[Crossref]

Schmitt, R.

H. Schwenke, W. Knapp, H. Haitjema, A. Weckenmann, R. Schmitt, and F. Delbressine, “Geometric error measurement and compensation of machines – an update,” CIRP Ann. 57(2), 660–675 (2008).
[Crossref]

Schwenke, H.

H. Schwenke, W. Knapp, H. Haitjema, A. Weckenmann, R. Schmitt, and F. Delbressine, “Geometric error measurement and compensation of machines – an update,” CIRP Ann. 57(2), 660–675 (2008).
[Crossref]

Shimizu, Y.

X. Li, Y. Shimizu, T. Ito, Y. Cai, S. Ito, and W. Gao, “Measurement of six-degree-of-freedom planar motions by using a multi-probe surface encoder,” Opt. Eng. 53(12), 122405 (2014).
[Crossref]

X. Li, W. Gao, Y. Shimizu, and S. Ito, “A two-axis Lloyd’s mirror interferometer for fabrication of two dimensional diffraction gratings,” CIRP Ann. 63(1), 461–464 (2014).
[Crossref]

X. Li, Y. Shimizu, S. Ito, and W. Gao, “Fabrication of scale gratings for surface encoders by using laser interference lithography with 405 nm laser diodes,” Int. J. Precis. Eng. Manuf. 14(11), 1979–1988 (2013).
[Crossref]

X. Li, W. Gao, H. Muto, Y. Shimizu, S. Ito, and S. Dian, “A six-degree-of-freedom surface encoder for precision positioning of a planar motion stage,” Precis. Eng. 37(3), 771–781 (2013).
[Crossref]

Tomita, Y.

W. Gao, S. Dejima, H. Yanai, K. Katakura, S. Kiyono, and Y. Tomita, “A surface motor driven planar motion stage integrated with an XYZ surface encoder for precision positioning,” Precis. Eng. 28(3), 329–337 (2004).
[Crossref]

Tsuji, N.

Y. Matsuzoe, N. Tsuji, T. Nakayama, K. Fujita, and T. Yoshizawa, “High-performance absolute rotary encoder using multitrack and m-code,” Opt. Eng. 42(1), 124–131 (2003).
[Crossref]

Wang, L.

Wang, S.

Weckenmann, A.

W. Gao, W. Kim, H. Bosse, H. Haitjema, Y. Chen, X. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision positioning,” CIRP Ann. 64(2), 773–796 (2015).
[Crossref]

H. Schwenke, W. Knapp, H. Haitjema, A. Weckenmann, R. Schmitt, and F. Delbressine, “Geometric error measurement and compensation of machines – an update,” CIRP Ann. 57(2), 660–675 (2008).
[Crossref]

Yanai, H.

W. Gao, S. Dejima, H. Yanai, K. Katakura, S. Kiyono, and Y. Tomita, “A surface motor driven planar motion stage integrated with an XYZ surface encoder for precision positioning,” Precis. Eng. 28(3), 329–337 (2004).
[Crossref]

Yoshizawa, T.

Y. Matsuzoe, N. Tsuji, T. Nakayama, K. Fujita, and T. Yoshizawa, “High-performance absolute rotary encoder using multitrack and m-code,” Opt. Eng. 42(1), 124–131 (2003).
[Crossref]

Zeng, L.

S. Wang and L. Zeng, “Analysis and minimization of spacing error of holographic gratings recorded with spherical collimation lenses,” Opt. Express 23(5), 5532–5546 (2015).
[Crossref] [PubMed]

A. Kimura, W. Gao, Y. Arai, and L. Zeng, “Design and construction of a two-degree of-freedom linear encoder for nanometric measurement of stage position and straightness,” Precis. Eng. 34(1), 145–155 (2010).
[Crossref]

Zhang, Y.

CIRP Ann. (5)

W. Gao, W. Kim, H. Bosse, H. Haitjema, Y. Chen, X. Lu, W. Knapp, A. Weckenmann, W. T. Estler, and H. Kunzmann, “Measurement technologies for precision positioning,” CIRP Ann. 64(2), 773–796 (2015).
[Crossref]

H. Schwenke, W. Knapp, H. Haitjema, A. Weckenmann, R. Schmitt, and F. Delbressine, “Geometric error measurement and compensation of machines – an update,” CIRP Ann. 57(2), 660–675 (2008).
[Crossref]

W. Gao and A. Kimura, “A three-axis displacement sensor with nanometric resolution,” CIRP Ann. 56(1), 529–532 (2007).
[Crossref]

X. Li, W. Gao, Y. Shimizu, and S. Ito, “A two-axis Lloyd’s mirror interferometer for fabrication of two dimensional diffraction gratings,” CIRP Ann. 63(1), 461–464 (2014).
[Crossref]

W. Gao and A. Kimura, “A fast evaluation method for pitch deviation and out-of-flatness of a planar scale grating,” CIRP Ann. 59(1), 505–508 (2010).
[Crossref]

Int. J. Precis. Eng. Manuf. (1)

X. Li, Y. Shimizu, S. Ito, and W. Gao, “Fabrication of scale gratings for surface encoders by using laser interference lithography with 405 nm laser diodes,” Int. J. Precis. Eng. Manuf. 14(11), 1979–1988 (2013).
[Crossref]

Opt. Eng. (2)

X. Li, Y. Shimizu, T. Ito, Y. Cai, S. Ito, and W. Gao, “Measurement of six-degree-of-freedom planar motions by using a multi-probe surface encoder,” Opt. Eng. 53(12), 122405 (2014).
[Crossref]

Y. Matsuzoe, N. Tsuji, T. Nakayama, K. Fujita, and T. Yoshizawa, “High-performance absolute rotary encoder using multitrack and m-code,” Opt. Eng. 42(1), 124–131 (2003).
[Crossref]

Opt. Express (5)

Precis. Eng. (3)

A. Kimura, W. Gao, Y. Arai, and L. Zeng, “Design and construction of a two-degree of-freedom linear encoder for nanometric measurement of stage position and straightness,” Precis. Eng. 34(1), 145–155 (2010).
[Crossref]

W. Gao, S. Dejima, H. Yanai, K. Katakura, S. Kiyono, and Y. Tomita, “A surface motor driven planar motion stage integrated with an XYZ surface encoder for precision positioning,” Precis. Eng. 28(3), 329–337 (2004).
[Crossref]

X. Li, W. Gao, H. Muto, Y. Shimizu, S. Ito, and S. Dian, “A six-degree-of-freedom surface encoder for precision positioning of a planar motion stage,” Precis. Eng. 37(3), 771–781 (2013).
[Crossref]

Other (9)

H. Wolferen, L. Abelmann, and T. C. Hennessy, Laser interference lithography (Lithography Principles Processes and Materials, 2011), Chap. 5.

Sumitomo Heavy Industries Co, Ltd, “Mechatronics division,” http://www.shi-mechatronics.jp .

J. Saez-Landete, S. Salcedo-Sanz, M. Rosa-Zurera, J. Alonso, and E. Bernabeu, “Generation of optical reference signals robust to diffractive effects,” in Proceedings of IEEE Conference on Photonics Technology Letters (IEEE, 2007) 19(15), pp. 1133–1135.
[Crossref]

Heidenhain, Sealed Linear Encoders LC (Heidenhain Co, 2003).

Heidenhain, Sealed Linear Encoder LC (Heidenhain Co, 2015).

Renishaw, Absolute Optical Encoder with BiSS Serial Communications (Renishaw PLC, 2014).

Magnescale Co, Ltd, “Laser scale, Linear scale,” www.mgscale.com .

T. Oiwa, M. Katsuki, M. Karita, W. Gao, S. Makinouchi, K. Sato, and Y. Oohashi, “Report of Questionnaire Survey on Ultra-precision Positioning,” Int. J. Jpn Soc. Precis. Eng. (2015).

S. R. J. Brueck, “Optical and Interferometric Lithography-Nanotechnology Enablers,” in Proceedings of the IEEE (IEEE, 2005) 93(10), pp. 1704–1721.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Operational principle of two-probe absolute linear encoder.
Fig. 2
Fig. 2 Optical configuration of the reference assembly.
Fig. 3
Fig. 3 Schematic of the single-track scale grating and location of the multiple reference codes.
Fig. 4
Fig. 4 Expanded design of the displacement assembly.
Fig. 5
Fig. 5 Code of the reference mark (a) and the simulated signal (b).
Fig. 6
Fig. 6 Optical microscope image of the fabricated reference mask and its sectional images tested by an AFM (a) and picture of the scale grating with reference code, the optical microscope image and the AFM images of the reference code (b).
Fig. 7
Fig. 7 Prototype encoder (a) and experimental setup (b).
Fig. 8
Fig. 8 The experiment reference pulse signal.
Fig. 9
Fig. 9 Reference positioning accuracy.
Fig. 10
Fig. 10 X-directional outputs and nonlinear error components.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

t ( x ) = i = 1 n a i × r e c t ( x i × b b ) , 0 x 3 D
I ( x , z ) = | F 1 { F { t ( x ) } exp ( i 2 π z 1 / λ 2 v 2 ) } | 2
f ( x ) = { 1 , 0 x < D 1 t ( x ) , D x < 2 D 1 , 2 D x 3 D
I f 1 ( x 0 , z ) = I ( x , z ) f ( x + x 0 ) , 0 x D , 0 x 0 2 D
I f 2 ( x 0 , z ) = | F 1 { F { I f 1 ( x 0 , z ) } exp ( i 2 π z 1 / λ 2 v 2 ) } | 2
I m ( x 0 , z ) = I f 2 ( x 0 , z ) t ( x )
P O = P I I ( x 1 x 2 L k )
Δ X = 1 2 g 2 π { arc tan ( S X + 1 S X + 1 ' ) arc tan ( S X 1 S X 1 ' ) }
Δ Z = 1 2 1 1 + cos θ λ 2 π { arc tan ( S X + 1 S X + 1 ' ) + arc tan ( S X 1 S X 1 ' ) }
S X + 1 = I X + 1 ( 0 0 ) I X + 1 ( 180 0 ) I X + 1 ( 0 0 ) + I X + 1 ( 180 0 )
S X + 1 ' = I X + 1 ( 90 0 ) I X + 1 ( 270 0 ) I X + 1 ( 90 0 ) + I X + 1 ( 270 0 )
S X 1 = I X 1 ( 0 0 ) I X 1 ( 180 0 ) I X 1 ( 0 0 ) + I X 1 ( 180 0 )
S X 1 ' = I X 1 ( 90 0 ) I X 1 ( 270 0 ) I X 1 ( 90 0 ) + I X 1 ( 270 0 )
r = a 1 + a 2 2

Metrics