Abstract

Digital printing of 3D metal micro-structures by laser induced forward transfer under ambient conditions is reviewed. Recent progress has allowed drop on demand transfer of molten, femto-liter, metal droplets with a high jetting directionality. Such small volume droplets solidify instantly, on a nanosecond time scale, as they touch the substrate. This fast solidification limits their lateral spreading and allows the fabrication of high aspect ratio and complex 3D metal structures. Several examples of micron-scale resolution metal objects printed using this method are presented and discussed.

© 2016 Optical Society of America

Full Article  |  PDF Article

Corrections

3 February 2016: A correction was made to the author affiliations.


OSA Recommended Articles
Jetting regimes of double-pulse laser-induced forward transfer

Qingfeng Li, David Grojo, Anne-Patricia Alloncle, and Philippe Delaporte
Opt. Mater. Express 9(8) 3476-3486 (2019)

Dynamic spatial pulse shaping via a digital micromirror device for patterned laser-induced forward transfer of solid polymer films

Daniel J Heath, Matthias Feinaeugle, James A Grant-Jacob, Ben Mills, and Robert W Eason
Opt. Mater. Express 5(5) 1129-1136 (2015)

Optical vortex-induced forward mass transfer: manifestation of helical trajectory of optical vortex

Ryosuke Nakamura, Haruki Kawaguchi, Muneaki Iwata, Akihiro Kaneko, Ryo Nagura, Satoyuki Kawano, Kohei Toyoda, Katsuhiko Miyamoto, and Takashige Omatsu
Opt. Express 27(26) 38019-38027 (2019)

References

  • View by:
  • |
  • |
  • |

  1. N. Jones, “Science in three dimensions: The print revolution,” Nature 487(7405), 22–23 (2012).
    [Crossref] [PubMed]
  2. “The third industrial revolution,“ The Economist, special report edition Apr 21st (2012).
  3. Z. Z. Fang, Sintering Of Advanced Materials (Elsevier, 2010).
  4. I. Yadroitsev, I. Shishkovsky, P. Bertrand, and I. Smurov, “Manufacturing of fine-structured 3D porous filter elements by selective laser melting,” Appl. Surf. Sci. 255(10), 5523–5527 (2009).
    [Crossref]
  5. S. Kumar and J. P. Kruth, “Wear performance of SLS/SLM materials,” Adv. Eng. Mater. 10(8), 750–753 (2008).
    [Crossref]
  6. I. Yadroitsev, Ph. Bertrand, and I. Smurov, “Parametric analysis of the selective laser melting process,” Appl. Surf. Sci. 253(19), 8064–8069 (2007).
    [Crossref]
  7. I. M. Hutchings and G. D. Martin, Inkjet Technology For Digital Fabrication (Willey, 2012).
  8. S. Magdassi, M. Grouchko, and A. Kamyshny, “Copper nanoparticles for printed electronics: routes towards achieving oxidation stability,” Materials (Basel) 3(9), 4626–4638 (2010).
    [Crossref]
  9. Y. Lee, J. R. Choi, K. J. Lee, N. E. Stott, and D. Kim, “Large-scale synthesis of copper nanoparticles by chemically controlled reduction for applications of inkjet-printed electronics,” Nanotechnology 19(41), 415604 (2008).
    [Crossref] [PubMed]
  10. M. Grouchko, A. Kamyshny, and S. Magdassi, “Formation of air-stable copper–silver core–shell nanoparticles for inkjet Printing,” J. Mater. Chem. 19(19), 3057–3062 (2009).
    [Crossref]
  11. S. H. Ko, H. Pan, C. P. Grigoropoulos, C. K. Luscombe, J. M. J. Fr’echet, and D. Poulikakos, “All-inkjet-printed flexible electronics fabrication on a polymer substrate by low-temperature high-resolution selective laser sintering of metal nanoparticles,” Nanotechnology 18(34), 345202 (2007).
    [Crossref]
  12. A. C. Arias, S. E. Ready, R. Lujan, W. S. Wong, K. E. Paul, A. Salleo, M. L. Chabinyc, R. Apte, R. A. Street, Y. Wu, P. Liu, and B. Ong, “All jet-printed polymer thin-film transistor active-matrix backplanes,” Appl. Phys. Lett. 85(15), 3304 (2004).
    [Crossref]
  13. H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, and E. P. Woo, “High-Resolution Inkjet Printing of All-Polymer Transistor Circuits,” Science 290(5499), 2123–2126 (2000).
    [Crossref] [PubMed]
  14. U. Zschieschang, H. Klauk, M. Halik, G. Schmid, and C. Dehm, “Flexible Organic Circuits with Printed Gate Electrodes,” Adv. Mater. 15(14), 1147–1151 (2003).
    [Crossref]
  15. S. Gamerith, A. Klug, H. Scheiber, U. Scherf, E. Moderegger, and E. J. W. List, “Direct ink-jet printing of Ag–Cu nanoparticle and Ag precursor based electrodes for OFET applications,” Adv. Funct. Mater. 17(16), 3111–3118 (2007).
    [Crossref]
  16. Y. Lee, J.-R. Choi, K. J. Lee, N. E. Stott, and D. Kim, “Large-scale synthesis of copper nanoparticles by chemically controlled reduction for applications of inkjet-printed electronics,” Nanotechnology 19(41), 415604 (2008).
    [Crossref] [PubMed]
  17. J. Bohandy, B. F. Kim, and F. J. Adrian, “Metal deposition from a supported metal film using an excimer laser,” J. Appl. Phys. 60(4), 1538 (1986).
    [Crossref]
  18. P. Mogyorósi, T. Szörényi, K. Bali, Zs. Tóth, and I. Hevesi, “Pulsed laser ablative deposition of thin metal films,” Appl. Surf. Sci. 36(1-4), 157–163 (1989).
    [Crossref]
  19. V. Schultze and M. Wagner, “Laser-induced forward transfer of aluminium,” Appl. Surf. Sci. 52(4), 303–309 (1991).
    [Crossref]
  20. A. B. Bullock and P. R. Bolton, “Laser-induced back ablation of aluminum thin films using picosecond laser pulses,” J. Appl. Phys. 85(1), 460 (1999).
    [Crossref]
  21. Y. Nakata and T. Okada, “Time-resolved microscopic imaging of the laser-induced forward transfer process,” Appl. Phys., A Mater. Sci. Process. 69(7), S275–S278 (1999).
    [Crossref]
  22. T. Sano, H. Yamada, T. Nakayama, and I. Miyamoto, “Experimental investigation of laser induced forward transfer process of metal thin films,” Appl. Surf. Sci. 186(1-4), 221–226 (2002).
    [Crossref]
  23. H. Yamada, T. Sano, T. Nakayama, and I. Miyamoto, “Optimization of laser-induced forward transfer process of metal thin films,” Appl. Surf. Sci. 197, 411–415 (2002).
    [Crossref]
  24. I. Zergioti, D. G. Papazoglou, A. Karaiskou, C. Fotakis, E. Gamaly, and A. Rode, “A comparative schlieren imaging study between ns and sub-ps laser forward transfer of Cr,” Appl. Surf. Sci. 208–209, 177–180 (2003).
    [Crossref]
  25. D. Toet, P. M. Smith, T. W. Sigmon, and M. O. Thompson, “Experimental and numerical investigations of a hydrogen-assisted laser-induced materials transfer procedure,” Appl. Phys. (Berl.) 87(7), 3537 (2000).
    [Crossref]
  26. E. Fogarassy, C. Fuchs, F. Kerherve, G. Hauchecorne, and J. Perriere, “Laser‐induced forward transfer of high‐Tc YBaCuO and BiSrCaCuO superconducting thin films,” J. Appl. Phys. 66(1), 457 (1989).
    [Crossref]
  27. G. Koundourakis, C. Rockstuhl, D. Papazoglou, A. Klini, I. Zergioti, N. A. Vainos, and C. Fotakis, “Laser printing of active optical microstructures,” Appl. Phys. Lett. 78(7), 868 (2001).
    [Crossref]
  28. N. T. Kattamis, N. D. McDaniel, S. Bernhard, and C. B. Arnold, “Laser direct write printing of sensitive and robust light emitting organic molecules,” Appl. Phys. Lett. 94(10), 103306 (2009).
    [Crossref]
  29. L. Rapp, A. K. Diallo, A. P. Alloncle, C. Videlot-Ackermann, F. Fages, and P. Delaporte, “Pulsed-laser printing of organic thin-film transistors,” Appl. Phys. Lett. 95(17), 171109 (2009).
    [Crossref]
  30. J. S. Stewart, T. Lippert, M. Nagel, F. Nüesch, and A. Wokaun, “Red-green-blue polymer light-emitting diode pixels printed by optimized laser-induced forward transfer,” Appl. Phys. Lett. 100(20), 203303 (2012).
    [Crossref]
  31. J. Wang, R. C. Y. Auyeung, H. Kim, N. A. Charipar, and A. Piqué, “Three-dimensional printing of interconnects by laser direct-write of silver nanopastes,” Adv. Mater. 22(40), 4462–4466 (2010).
    [Crossref] [PubMed]
  32. A. I. Kuznetsov, R. Kiyan, and B. N. Chichkov, “Laser fabrication of 2D and 3D metal nanoparticle structures and arrays,” Opt. Express 18(20), 21198–21203 (2010).
    [Crossref] [PubMed]
  33. F. Adrian, J. Bohandy, B. Kim, A. Jette, and P. Thompson, “A study of the mechanism of metal deposition by the laser-induced forward transfer process,” J. Vac. Sci. Technol. B 5(5), 1490–1494 (1987).
    [Crossref]
  34. R. Baseman, N. Froberg, J. C. Andreshak, and Z. Schlesinger, “Minimum uence for laser blow-off of thin gold films at 248 and 532 nm,” Appl. Phys. Lett. 56(15), 1412–1414 (1990).
    [Crossref]
  35. W. Tolbert, I. Lee, M. Doxtader, E. Ellis, and D. Dlott, “High-speed color imaging by laser ablation transfer with a dynamic release layer: fundamental mechanisms,” J. Imag. Sci. Tech. 37, 411 (1993).
  36. L. Rapp, J. Ailuno, A. P. Alloncle, and P. Delaporte, “Pulsed-laser printing of silver nanoparticles ink: control of morphological properties,” Opt. Express 19(22), 21563–21574 (2011).
    [Crossref] [PubMed]
  37. M. S. Brown, N. T. Kattamis, and C. B. Arnold, “Time-resolved study of polyimide absorption layers for blister-actuated laser-induced forward transfer,” J. Appl. Phys. 107(8), 083103 (2010).
    [Crossref]
  38. B. Hopp, T. Smausz, Z. Antal, N. Kresz, Z. Bor, and D. Chrisey, “Absorbing film assisted laser induced forward transfer of fungi (trichoderma conidia),” J. Appl. Phys. 96(6), 3478 (2004).
    [Crossref]
  39. R. Fardel, M. Nagel, F. Nüesch, T. Lippert, and A. Wokaun, “Fabrication of organic light-emitting diode pixels by laser-assistedforward transfer,” Appl. Phys. Lett. 91(6), 061103 (2007).
    [Crossref]
  40. D. Banks, K. Kaur, R. Gazia, R. Fardel, M. Nagel, T. Lippert, and R. Eason, “Triazene photopolymer dynamic release layer-assisted femtosecond laser-induced forward transfer with an active carrier substrate,” Europhys. Lett. 83(3), 38003 (2008).
    [Crossref]
  41. K. S. Kaur, R. Fardel, T. C. May-Smith, M. Nagel, D. P. Banks, C. Grivas, T. Lippert, and R. W. Eason, “Shadowgraphic studies of triazene assisted laser-induced forward transfer of ceramic thin films,” J. Appl. Phys. 105(11), 113119 (2009).
    [Crossref]
  42. V. Dincaa, T. Mattle, A. Palla Papavlu, L. Rusen, C. Luculescu, T. Lippert, and M. Dinescu, “Polyethyleneimine patterns obtained by laser-transfer assisted by a dynamic release layer onto themanox soft substrates for cell adhesion study,” Appl. Surf. Sci. 278, 190–197 (2013).
    [Crossref]
  43. J. R. H. Shaw-Stewart, T. K. Lippert, M. Nagel, F. A. Nüesch, and A. Wokaun, “Sequential printing by laser-induced forward transfer to fabricate a Polymer Light-Emitting Diode Pixel,” ACS Appl. Mater. Interfaces 4(7), 3535–3541 (2012).
    [Crossref] [PubMed]
  44. R. Fardel, M. Nagel, F. Nüesch, T. Lippert, and A. Wokaun, “Laser-Induced Forward Transfer of organic LED building blocks studied by time-resolved shadowgraphy,” J. Phys. Chem. C 114(12), 5617–5636 (2010).
    [Crossref]
  45. E. Breckenfeld, H. Kim, R. C. Y. Auyeung, N. Charipar, P. Serra, and A. Piqué, “Laser-induced forward transfer of silver nanopaste for microwave interconnects,” Appl. Surf. Sci. 331, 254–261 (2015).
    [Crossref]
  46. P. Serra, M. Colina, J. M. Fernández-Pradas, L. Sevilla, and J. L. Morenza, “Preparation of functional DNA microarrays through laser-induced forward transfer,” Appl. Phys. Lett. 85(9), 1639 (2004).
    [Crossref]
  47. G. Forgacs, W. Sun, and W. Andrew, Biofabrication: Micro- and Nano-fabrication, Printing, Patterning and Assemblies (Elsevier, 2013).
  48. A. Prosperetti, “A generalization of the Rayleigh-Plesset equation of bubble dynamics,” Phys. Fluids 25(3), 409–410 (1982).
    [Crossref]
  49. L. Xiu-Mei, H. Jie, L. Jian, and N. Xiao-Wu, “Growth and collapse of laser-induced bubbles in glycerol-water mixtures,” Chin. Phys. B 17(7), 2574–2579 (2008).
    [Crossref]
  50. P. B. Robinson, J. R. Blake, T. Kodama, A. Shima, and Y. Tomita, “Interaction of cavitation bubbles with a free surface,” J. Appl. Phys. 89(12), 8225 (2001).
    [Crossref]
  51. P. Serra, J. M. Fernández-Pradas, F. X. Berthet, M. Colina, J. Elvira, and J. L. Morenza, “Laser direct writing of biomolecule microarrays,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 949 (2004).
    [Crossref]
  52. A. Doraiswamy, R. J. Narayan, T. Lippert, L. Urech, A. Wokaun, M. Nagel, B. Hopp, M. Dinescu, R. Modi, R. C. Y. Auyeung, and D. B. Chrisey, “Excimer laser forward transfer of mammalian cells using a novel triazene absorbing layer,” Appl. Surf. Sci. 252(13), 4743–4747 (2006).
    [Crossref]
  53. A. Palla-Papavlu, L. Paraico, J. Shaw-Stewart, V. Dinca, T. Savopol, E. Kovacs, T. Lippert, A. Wokaun, and M. Dinescu, “Liposome micropatterning based on laser-induced forward transfer,” Appl. Phys., A Mater. Sci. Process. 102(3), 651–659 (2011).
    [Crossref]
  54. M. Duocastella, H. Kim, P. Serra, and A. Piqué, “Optimization of laser printing of nanoparticle suspensions for microelectronic applications,” Appl. Phys., A Mater. Sci. Process. 106(3), 471–478 (2012).
    [Crossref]
  55. C. Boutopoulos, I. Kalpyris, E. Serpetzoglou, and I. Zergioti, “Laser-induced forward transfer of silver nanoparticle ink: time-resolved imaging of the jetting dynamics and correlation with the printing quality,” Microfluid. Nanofluidics 16(3), 493–500 (2014).
    [Crossref]
  56. M. Makrygianni, I. Kalpyris, C. Boutopoulos, and I. Zergioti, “Laser induced forward transfer of Ag nanoparticles ink deposition and characterization,” Appl. Surf. Sci. 297, 40–44 (2014).
    [Crossref]
  57. L. Rapp, A. K. Diallo, A. P. Alloncle, C. Videlot-Ackermann, F. Fages, and P. Delaporte, “Pulsed-laser printing of organic thin-film transistors,” Appl. Phys. Lett. 95(17), 171109 (2009).
    [Crossref]
  58. R. C. Y. Auyeung, H. Kim, S. A. Mathews, and A. Piqué, “Laser direct-write of metallic nanoparticle inks,” J. Laser Mirco/Nanoeng. 2(1), 21–25 (2007).
    [Crossref]
  59. M. Zenou, S. Winter, A. Saar, and Z. Kotler, “Laser-Forward-Transfer of metal NP ink droplets: parametric analysis,” Nanosci. Nanotechnol. Lett. 5(4), 435 (2013).
    [Crossref]
  60. M. Zenou, “Direct laser writing of ring-like metal structures,” presented at 11th International Symposium on Laser Precision Micro-fabrication, Stuttgart, Germany, June 7–10 2010.
  61. A. Palla-Papavlu, C. Córdoba, A. Patrascioiu, J. M. Fernández-Pradas, J. L. Morenza, and P. Serra, “Deposition and characterization of lines printed through laser-induced forward transfer,” Appl. Phys., A Mater. Sci. Process. 110(4), 751–755 (2013).
    [Crossref]
  62. D. A. Willis and V. Grosu, “Microdroplet deposition by laser-induced forward transfer,” Appl. Phys. Lett. 86(24), 244103 (2005).
    [Crossref]
  63. D. A. Willis and V. Grosu, “The effect of melting-induced volumetric expansion on initiation of laser-induced forward transfer,” Appl. Surf. Sci. 253(10), 4759–4763 (2007).
    [Crossref]
  64. D. P. Banks, C. Grivas, J. D. Mills, R. W. Eason, and I. Zergioti, “Nanodroplets deposited in microarrays by femtosecond Ti:sapphire laser-induced forward transfer,” Appl. Phys. Lett. 89(19), 193107 (2006).
    [Crossref]
  65. U. Zywietz, C. Reinhardt, A. B. Evlyukhin, T. Birr, and B. N. Chichkov, “Generation and patterning of Si nanoparticles by femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 114(1), 45–50 (2014).
    [Crossref]
  66. A. I. Kuznetsov, C. Unger, J. Koch, and B. N. Chichkov, “Laser-induced jet formation and droplet ejection from thin metal films,” Appl. Phys., A Mater. Sci. Process. 106(3), 479–487 (2012).
    [Crossref]
  67. C. Unger, J. Koch, L. Overmeyer, and B. N. Chichkov, “Time-resolved studies of femtosecond-laser induced melt dynamics,” Opt. Express 20(22), 24864–24872 (2012).
    [Crossref] [PubMed]
  68. U. Zywietz, A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses,” Nat. Commun. 5, 3402 (2014).
    [Crossref] [PubMed]
  69. M. Zenou, A. Sa’ar, and Z. Kotler, “Digital laser printing of aluminum microstructure on thermally sensitive substrate,” J. Phys. D: Appl. Phys. D 48(20), 205303 (2015).
    [Crossref]
  70. M. Zenou, A. Sa’ar, and Z. Kotler, “Laser transfer of metals and metal alloys for digital microfabrication of 3D objects,” Small 11(33), 4082–4089 (2015).
    [Crossref] [PubMed]
  71. M. Zenou, A. Sa’ar, and Z. Kotler, “Laser jetting of femto-liter metal droplets for high resolution 3D printed structures,” Sci. Rep. 5, 17265 (2015).
    [Crossref] [PubMed]
  72. M. Zenou, A. Sa’ar, and Z. Kotler, “Supersonic laser-induced jetting of aluminum micro-droplets,” Appl. Phys. Lett. 106(18), 181905 (2015).
    [Crossref]
  73. M. Zenou, A. Sa’ar, and Z. Kotler, “Digital laser printing of metal/metal-oxide nano-composites with tunable electrical properties,” Nanotechnology 27(1), 015203 (2016).
    [Crossref] [PubMed]
  74. C. W. Visser, R. Pohl, C. Sun, G.-W. Römer, B. Huis in ’t Veld, and D. Lohse, “Toward 3D printing of pure metals by laser-induced forward transfer,” Adv. Mater. 27(27), 4087–4092 (2015).
    [Crossref] [PubMed]
  75. J. A. Grant-Jacob, B. Mills, M. Feinaeugle, C. L. Sones, G. Oosterhuis, M. B. Hoppenbrouwers, and R. W. Eason, “Micron-scale copper wires printed using femtosecond laser-induced forward transfer with automated donor replenishment,” Opt. Mater. Express 3(6), 747–754 (2013).
    [Crossref]
  76. A. P. Alivisatos, A. M. Andrews, E. S. Boyden, M. Chun, G. M. Church, K. Deisseroth, J. P. Donoghue, S. E. Fraser, J. Lippincott-Schwartz, L. L. Looger, S. Masmanidis, P. L. McEuen, A. V. Nurmikko, H. Park, D. S. Peterka, C. Reid, M. L. Roukes, A. Scherer, M. Schnitzer, T. J. Sejnowski, K. L. Shepard, D. Tsao, G. Turrigiano, P. S. Weiss, C. Xu, R. Yuste, and X. Zhuang, “Nanotools for neuroscience and brain activity mapping,” ACS Nano 7(3), 1850–1866 (2013).
    [Crossref] [PubMed]
  77. J. T. Robinson, M. Jorgolli, A. K. Shalek, M.-H. Yoon, R. S. Gertner, and H. Park, “Vertical nanowire electrode arrays as a scalable platform for intracellular interfacing to neuronal circuits,” Nat. Nanotechnol. 7(3), 180–184 (2012).
    [Crossref] [PubMed]
  78. J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386(6621), 143–149 (1997).
    [Crossref]
  79. A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, “Nanofabricated media with negative permeability at visible frequencies,” Nature 438(7066), 335–338 (2005).
    [Crossref] [PubMed]
  80. D. A. LaVan, T. McGuire, and R. Langer, “Small-scale systems for in vivo drug delivery,” Nat. Biotechnol. 21(10), 1184–1191 (2003).
    [Crossref] [PubMed]
  81. S. H. Ko, J. Chung, N. Hotz, K. H. Nam, and C. P. Grigoropoulos, “Metal nanoparticle direct inkjet printing for low-temperature 3D micro metal structure fabrication,” J. Micromech. Microeng. 20(12), 125010 (2010).
    [Crossref]
  82. B. Y. Ahn, E. B. Duoss, M. J. Motala, X. Guo, S. I. Park, Y. Xiong, J. Yoon, R. G. Nuzzo, J. A. Rogers, and J. A. Lewis, “Omnidirectional printing of flexible, stretchable, and spanning silver microelectrodes,” Science 323(5921), 1590–1593 (2009).
    [Crossref] [PubMed]
  83. C. Ho, K. Murata, D. A. Steingart, J. W. Evans, and P. K. Wright, “A super ink jet printed zinc–silver 3D microbattery,” J. Micromech. Microeng. 19(9), 094013 (2009).
    [Crossref]
  84. K. Sun, T.-S. Wei, B. Y. Ahn, J. Y. Seo, S. J. Dillon, and J. A. Lewis, “3D printing of interdigitated Li-ion microbattery architectures,” Adv. Mater. 25(33), 4539–4543 (2013).
    [Crossref] [PubMed]
  85. http://www.optomec.com/3d-printed-metals/lens-technology/ .

2016 (1)

M. Zenou, A. Sa’ar, and Z. Kotler, “Digital laser printing of metal/metal-oxide nano-composites with tunable electrical properties,” Nanotechnology 27(1), 015203 (2016).
[Crossref] [PubMed]

2015 (6)

C. W. Visser, R. Pohl, C. Sun, G.-W. Römer, B. Huis in ’t Veld, and D. Lohse, “Toward 3D printing of pure metals by laser-induced forward transfer,” Adv. Mater. 27(27), 4087–4092 (2015).
[Crossref] [PubMed]

M. Zenou, A. Sa’ar, and Z. Kotler, “Digital laser printing of aluminum microstructure on thermally sensitive substrate,” J. Phys. D: Appl. Phys. D 48(20), 205303 (2015).
[Crossref]

M. Zenou, A. Sa’ar, and Z. Kotler, “Laser transfer of metals and metal alloys for digital microfabrication of 3D objects,” Small 11(33), 4082–4089 (2015).
[Crossref] [PubMed]

M. Zenou, A. Sa’ar, and Z. Kotler, “Laser jetting of femto-liter metal droplets for high resolution 3D printed structures,” Sci. Rep. 5, 17265 (2015).
[Crossref] [PubMed]

M. Zenou, A. Sa’ar, and Z. Kotler, “Supersonic laser-induced jetting of aluminum micro-droplets,” Appl. Phys. Lett. 106(18), 181905 (2015).
[Crossref]

E. Breckenfeld, H. Kim, R. C. Y. Auyeung, N. Charipar, P. Serra, and A. Piqué, “Laser-induced forward transfer of silver nanopaste for microwave interconnects,” Appl. Surf. Sci. 331, 254–261 (2015).
[Crossref]

2014 (4)

C. Boutopoulos, I. Kalpyris, E. Serpetzoglou, and I. Zergioti, “Laser-induced forward transfer of silver nanoparticle ink: time-resolved imaging of the jetting dynamics and correlation with the printing quality,” Microfluid. Nanofluidics 16(3), 493–500 (2014).
[Crossref]

M. Makrygianni, I. Kalpyris, C. Boutopoulos, and I. Zergioti, “Laser induced forward transfer of Ag nanoparticles ink deposition and characterization,” Appl. Surf. Sci. 297, 40–44 (2014).
[Crossref]

U. Zywietz, C. Reinhardt, A. B. Evlyukhin, T. Birr, and B. N. Chichkov, “Generation and patterning of Si nanoparticles by femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 114(1), 45–50 (2014).
[Crossref]

U. Zywietz, A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses,” Nat. Commun. 5, 3402 (2014).
[Crossref] [PubMed]

2013 (6)

K. Sun, T.-S. Wei, B. Y. Ahn, J. Y. Seo, S. J. Dillon, and J. A. Lewis, “3D printing of interdigitated Li-ion microbattery architectures,” Adv. Mater. 25(33), 4539–4543 (2013).
[Crossref] [PubMed]

M. Zenou, S. Winter, A. Saar, and Z. Kotler, “Laser-Forward-Transfer of metal NP ink droplets: parametric analysis,” Nanosci. Nanotechnol. Lett. 5(4), 435 (2013).
[Crossref]

A. Palla-Papavlu, C. Córdoba, A. Patrascioiu, J. M. Fernández-Pradas, J. L. Morenza, and P. Serra, “Deposition and characterization of lines printed through laser-induced forward transfer,” Appl. Phys., A Mater. Sci. Process. 110(4), 751–755 (2013).
[Crossref]

J. A. Grant-Jacob, B. Mills, M. Feinaeugle, C. L. Sones, G. Oosterhuis, M. B. Hoppenbrouwers, and R. W. Eason, “Micron-scale copper wires printed using femtosecond laser-induced forward transfer with automated donor replenishment,” Opt. Mater. Express 3(6), 747–754 (2013).
[Crossref]

A. P. Alivisatos, A. M. Andrews, E. S. Boyden, M. Chun, G. M. Church, K. Deisseroth, J. P. Donoghue, S. E. Fraser, J. Lippincott-Schwartz, L. L. Looger, S. Masmanidis, P. L. McEuen, A. V. Nurmikko, H. Park, D. S. Peterka, C. Reid, M. L. Roukes, A. Scherer, M. Schnitzer, T. J. Sejnowski, K. L. Shepard, D. Tsao, G. Turrigiano, P. S. Weiss, C. Xu, R. Yuste, and X. Zhuang, “Nanotools for neuroscience and brain activity mapping,” ACS Nano 7(3), 1850–1866 (2013).
[Crossref] [PubMed]

V. Dincaa, T. Mattle, A. Palla Papavlu, L. Rusen, C. Luculescu, T. Lippert, and M. Dinescu, “Polyethyleneimine patterns obtained by laser-transfer assisted by a dynamic release layer onto themanox soft substrates for cell adhesion study,” Appl. Surf. Sci. 278, 190–197 (2013).
[Crossref]

2012 (7)

J. R. H. Shaw-Stewart, T. K. Lippert, M. Nagel, F. A. Nüesch, and A. Wokaun, “Sequential printing by laser-induced forward transfer to fabricate a Polymer Light-Emitting Diode Pixel,” ACS Appl. Mater. Interfaces 4(7), 3535–3541 (2012).
[Crossref] [PubMed]

J. T. Robinson, M. Jorgolli, A. K. Shalek, M.-H. Yoon, R. S. Gertner, and H. Park, “Vertical nanowire electrode arrays as a scalable platform for intracellular interfacing to neuronal circuits,” Nat. Nanotechnol. 7(3), 180–184 (2012).
[Crossref] [PubMed]

M. Duocastella, H. Kim, P. Serra, and A. Piqué, “Optimization of laser printing of nanoparticle suspensions for microelectronic applications,” Appl. Phys., A Mater. Sci. Process. 106(3), 471–478 (2012).
[Crossref]

A. I. Kuznetsov, C. Unger, J. Koch, and B. N. Chichkov, “Laser-induced jet formation and droplet ejection from thin metal films,” Appl. Phys., A Mater. Sci. Process. 106(3), 479–487 (2012).
[Crossref]

C. Unger, J. Koch, L. Overmeyer, and B. N. Chichkov, “Time-resolved studies of femtosecond-laser induced melt dynamics,” Opt. Express 20(22), 24864–24872 (2012).
[Crossref] [PubMed]

N. Jones, “Science in three dimensions: The print revolution,” Nature 487(7405), 22–23 (2012).
[Crossref] [PubMed]

J. S. Stewart, T. Lippert, M. Nagel, F. Nüesch, and A. Wokaun, “Red-green-blue polymer light-emitting diode pixels printed by optimized laser-induced forward transfer,” Appl. Phys. Lett. 100(20), 203303 (2012).
[Crossref]

2011 (2)

L. Rapp, J. Ailuno, A. P. Alloncle, and P. Delaporte, “Pulsed-laser printing of silver nanoparticles ink: control of morphological properties,” Opt. Express 19(22), 21563–21574 (2011).
[Crossref] [PubMed]

A. Palla-Papavlu, L. Paraico, J. Shaw-Stewart, V. Dinca, T. Savopol, E. Kovacs, T. Lippert, A. Wokaun, and M. Dinescu, “Liposome micropatterning based on laser-induced forward transfer,” Appl. Phys., A Mater. Sci. Process. 102(3), 651–659 (2011).
[Crossref]

2010 (6)

R. Fardel, M. Nagel, F. Nüesch, T. Lippert, and A. Wokaun, “Laser-Induced Forward Transfer of organic LED building blocks studied by time-resolved shadowgraphy,” J. Phys. Chem. C 114(12), 5617–5636 (2010).
[Crossref]

M. S. Brown, N. T. Kattamis, and C. B. Arnold, “Time-resolved study of polyimide absorption layers for blister-actuated laser-induced forward transfer,” J. Appl. Phys. 107(8), 083103 (2010).
[Crossref]

J. Wang, R. C. Y. Auyeung, H. Kim, N. A. Charipar, and A. Piqué, “Three-dimensional printing of interconnects by laser direct-write of silver nanopastes,” Adv. Mater. 22(40), 4462–4466 (2010).
[Crossref] [PubMed]

A. I. Kuznetsov, R. Kiyan, and B. N. Chichkov, “Laser fabrication of 2D and 3D metal nanoparticle structures and arrays,” Opt. Express 18(20), 21198–21203 (2010).
[Crossref] [PubMed]

S. Magdassi, M. Grouchko, and A. Kamyshny, “Copper nanoparticles for printed electronics: routes towards achieving oxidation stability,” Materials (Basel) 3(9), 4626–4638 (2010).
[Crossref]

S. H. Ko, J. Chung, N. Hotz, K. H. Nam, and C. P. Grigoropoulos, “Metal nanoparticle direct inkjet printing for low-temperature 3D micro metal structure fabrication,” J. Micromech. Microeng. 20(12), 125010 (2010).
[Crossref]

2009 (8)

B. Y. Ahn, E. B. Duoss, M. J. Motala, X. Guo, S. I. Park, Y. Xiong, J. Yoon, R. G. Nuzzo, J. A. Rogers, and J. A. Lewis, “Omnidirectional printing of flexible, stretchable, and spanning silver microelectrodes,” Science 323(5921), 1590–1593 (2009).
[Crossref] [PubMed]

C. Ho, K. Murata, D. A. Steingart, J. W. Evans, and P. K. Wright, “A super ink jet printed zinc–silver 3D microbattery,” J. Micromech. Microeng. 19(9), 094013 (2009).
[Crossref]

I. Yadroitsev, I. Shishkovsky, P. Bertrand, and I. Smurov, “Manufacturing of fine-structured 3D porous filter elements by selective laser melting,” Appl. Surf. Sci. 255(10), 5523–5527 (2009).
[Crossref]

M. Grouchko, A. Kamyshny, and S. Magdassi, “Formation of air-stable copper–silver core–shell nanoparticles for inkjet Printing,” J. Mater. Chem. 19(19), 3057–3062 (2009).
[Crossref]

N. T. Kattamis, N. D. McDaniel, S. Bernhard, and C. B. Arnold, “Laser direct write printing of sensitive and robust light emitting organic molecules,” Appl. Phys. Lett. 94(10), 103306 (2009).
[Crossref]

L. Rapp, A. K. Diallo, A. P. Alloncle, C. Videlot-Ackermann, F. Fages, and P. Delaporte, “Pulsed-laser printing of organic thin-film transistors,” Appl. Phys. Lett. 95(17), 171109 (2009).
[Crossref]

K. S. Kaur, R. Fardel, T. C. May-Smith, M. Nagel, D. P. Banks, C. Grivas, T. Lippert, and R. W. Eason, “Shadowgraphic studies of triazene assisted laser-induced forward transfer of ceramic thin films,” J. Appl. Phys. 105(11), 113119 (2009).
[Crossref]

L. Rapp, A. K. Diallo, A. P. Alloncle, C. Videlot-Ackermann, F. Fages, and P. Delaporte, “Pulsed-laser printing of organic thin-film transistors,” Appl. Phys. Lett. 95(17), 171109 (2009).
[Crossref]

2008 (5)

L. Xiu-Mei, H. Jie, L. Jian, and N. Xiao-Wu, “Growth and collapse of laser-induced bubbles in glycerol-water mixtures,” Chin. Phys. B 17(7), 2574–2579 (2008).
[Crossref]

D. Banks, K. Kaur, R. Gazia, R. Fardel, M. Nagel, T. Lippert, and R. Eason, “Triazene photopolymer dynamic release layer-assisted femtosecond laser-induced forward transfer with an active carrier substrate,” Europhys. Lett. 83(3), 38003 (2008).
[Crossref]

S. Kumar and J. P. Kruth, “Wear performance of SLS/SLM materials,” Adv. Eng. Mater. 10(8), 750–753 (2008).
[Crossref]

Y. Lee, J. R. Choi, K. J. Lee, N. E. Stott, and D. Kim, “Large-scale synthesis of copper nanoparticles by chemically controlled reduction for applications of inkjet-printed electronics,” Nanotechnology 19(41), 415604 (2008).
[Crossref] [PubMed]

Y. Lee, J.-R. Choi, K. J. Lee, N. E. Stott, and D. Kim, “Large-scale synthesis of copper nanoparticles by chemically controlled reduction for applications of inkjet-printed electronics,” Nanotechnology 19(41), 415604 (2008).
[Crossref] [PubMed]

2007 (6)

S. Gamerith, A. Klug, H. Scheiber, U. Scherf, E. Moderegger, and E. J. W. List, “Direct ink-jet printing of Ag–Cu nanoparticle and Ag precursor based electrodes for OFET applications,” Adv. Funct. Mater. 17(16), 3111–3118 (2007).
[Crossref]

I. Yadroitsev, Ph. Bertrand, and I. Smurov, “Parametric analysis of the selective laser melting process,” Appl. Surf. Sci. 253(19), 8064–8069 (2007).
[Crossref]

S. H. Ko, H. Pan, C. P. Grigoropoulos, C. K. Luscombe, J. M. J. Fr’echet, and D. Poulikakos, “All-inkjet-printed flexible electronics fabrication on a polymer substrate by low-temperature high-resolution selective laser sintering of metal nanoparticles,” Nanotechnology 18(34), 345202 (2007).
[Crossref]

R. Fardel, M. Nagel, F. Nüesch, T. Lippert, and A. Wokaun, “Fabrication of organic light-emitting diode pixels by laser-assistedforward transfer,” Appl. Phys. Lett. 91(6), 061103 (2007).
[Crossref]

R. C. Y. Auyeung, H. Kim, S. A. Mathews, and A. Piqué, “Laser direct-write of metallic nanoparticle inks,” J. Laser Mirco/Nanoeng. 2(1), 21–25 (2007).
[Crossref]

D. A. Willis and V. Grosu, “The effect of melting-induced volumetric expansion on initiation of laser-induced forward transfer,” Appl. Surf. Sci. 253(10), 4759–4763 (2007).
[Crossref]

2006 (2)

D. P. Banks, C. Grivas, J. D. Mills, R. W. Eason, and I. Zergioti, “Nanodroplets deposited in microarrays by femtosecond Ti:sapphire laser-induced forward transfer,” Appl. Phys. Lett. 89(19), 193107 (2006).
[Crossref]

A. Doraiswamy, R. J. Narayan, T. Lippert, L. Urech, A. Wokaun, M. Nagel, B. Hopp, M. Dinescu, R. Modi, R. C. Y. Auyeung, and D. B. Chrisey, “Excimer laser forward transfer of mammalian cells using a novel triazene absorbing layer,” Appl. Surf. Sci. 252(13), 4743–4747 (2006).
[Crossref]

2005 (2)

D. A. Willis and V. Grosu, “Microdroplet deposition by laser-induced forward transfer,” Appl. Phys. Lett. 86(24), 244103 (2005).
[Crossref]

A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, “Nanofabricated media with negative permeability at visible frequencies,” Nature 438(7066), 335–338 (2005).
[Crossref] [PubMed]

2004 (4)

P. Serra, J. M. Fernández-Pradas, F. X. Berthet, M. Colina, J. Elvira, and J. L. Morenza, “Laser direct writing of biomolecule microarrays,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 949 (2004).
[Crossref]

P. Serra, M. Colina, J. M. Fernández-Pradas, L. Sevilla, and J. L. Morenza, “Preparation of functional DNA microarrays through laser-induced forward transfer,” Appl. Phys. Lett. 85(9), 1639 (2004).
[Crossref]

A. C. Arias, S. E. Ready, R. Lujan, W. S. Wong, K. E. Paul, A. Salleo, M. L. Chabinyc, R. Apte, R. A. Street, Y. Wu, P. Liu, and B. Ong, “All jet-printed polymer thin-film transistor active-matrix backplanes,” Appl. Phys. Lett. 85(15), 3304 (2004).
[Crossref]

B. Hopp, T. Smausz, Z. Antal, N. Kresz, Z. Bor, and D. Chrisey, “Absorbing film assisted laser induced forward transfer of fungi (trichoderma conidia),” J. Appl. Phys. 96(6), 3478 (2004).
[Crossref]

2003 (3)

I. Zergioti, D. G. Papazoglou, A. Karaiskou, C. Fotakis, E. Gamaly, and A. Rode, “A comparative schlieren imaging study between ns and sub-ps laser forward transfer of Cr,” Appl. Surf. Sci. 208–209, 177–180 (2003).
[Crossref]

U. Zschieschang, H. Klauk, M. Halik, G. Schmid, and C. Dehm, “Flexible Organic Circuits with Printed Gate Electrodes,” Adv. Mater. 15(14), 1147–1151 (2003).
[Crossref]

D. A. LaVan, T. McGuire, and R. Langer, “Small-scale systems for in vivo drug delivery,” Nat. Biotechnol. 21(10), 1184–1191 (2003).
[Crossref] [PubMed]

2002 (2)

T. Sano, H. Yamada, T. Nakayama, and I. Miyamoto, “Experimental investigation of laser induced forward transfer process of metal thin films,” Appl. Surf. Sci. 186(1-4), 221–226 (2002).
[Crossref]

H. Yamada, T. Sano, T. Nakayama, and I. Miyamoto, “Optimization of laser-induced forward transfer process of metal thin films,” Appl. Surf. Sci. 197, 411–415 (2002).
[Crossref]

2001 (2)

G. Koundourakis, C. Rockstuhl, D. Papazoglou, A. Klini, I. Zergioti, N. A. Vainos, and C. Fotakis, “Laser printing of active optical microstructures,” Appl. Phys. Lett. 78(7), 868 (2001).
[Crossref]

P. B. Robinson, J. R. Blake, T. Kodama, A. Shima, and Y. Tomita, “Interaction of cavitation bubbles with a free surface,” J. Appl. Phys. 89(12), 8225 (2001).
[Crossref]

2000 (2)

D. Toet, P. M. Smith, T. W. Sigmon, and M. O. Thompson, “Experimental and numerical investigations of a hydrogen-assisted laser-induced materials transfer procedure,” Appl. Phys. (Berl.) 87(7), 3537 (2000).
[Crossref]

H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, and E. P. Woo, “High-Resolution Inkjet Printing of All-Polymer Transistor Circuits,” Science 290(5499), 2123–2126 (2000).
[Crossref] [PubMed]

1999 (2)

A. B. Bullock and P. R. Bolton, “Laser-induced back ablation of aluminum thin films using picosecond laser pulses,” J. Appl. Phys. 85(1), 460 (1999).
[Crossref]

Y. Nakata and T. Okada, “Time-resolved microscopic imaging of the laser-induced forward transfer process,” Appl. Phys., A Mater. Sci. Process. 69(7), S275–S278 (1999).
[Crossref]

1997 (1)

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386(6621), 143–149 (1997).
[Crossref]

1993 (1)

W. Tolbert, I. Lee, M. Doxtader, E. Ellis, and D. Dlott, “High-speed color imaging by laser ablation transfer with a dynamic release layer: fundamental mechanisms,” J. Imag. Sci. Tech. 37, 411 (1993).

1991 (1)

V. Schultze and M. Wagner, “Laser-induced forward transfer of aluminium,” Appl. Surf. Sci. 52(4), 303–309 (1991).
[Crossref]

1990 (1)

R. Baseman, N. Froberg, J. C. Andreshak, and Z. Schlesinger, “Minimum uence for laser blow-off of thin gold films at 248 and 532 nm,” Appl. Phys. Lett. 56(15), 1412–1414 (1990).
[Crossref]

1989 (2)

E. Fogarassy, C. Fuchs, F. Kerherve, G. Hauchecorne, and J. Perriere, “Laser‐induced forward transfer of high‐Tc YBaCuO and BiSrCaCuO superconducting thin films,” J. Appl. Phys. 66(1), 457 (1989).
[Crossref]

P. Mogyorósi, T. Szörényi, K. Bali, Zs. Tóth, and I. Hevesi, “Pulsed laser ablative deposition of thin metal films,” Appl. Surf. Sci. 36(1-4), 157–163 (1989).
[Crossref]

1987 (1)

F. Adrian, J. Bohandy, B. Kim, A. Jette, and P. Thompson, “A study of the mechanism of metal deposition by the laser-induced forward transfer process,” J. Vac. Sci. Technol. B 5(5), 1490–1494 (1987).
[Crossref]

1986 (1)

J. Bohandy, B. F. Kim, and F. J. Adrian, “Metal deposition from a supported metal film using an excimer laser,” J. Appl. Phys. 60(4), 1538 (1986).
[Crossref]

1982 (1)

A. Prosperetti, “A generalization of the Rayleigh-Plesset equation of bubble dynamics,” Phys. Fluids 25(3), 409–410 (1982).
[Crossref]

Adrian, F.

F. Adrian, J. Bohandy, B. Kim, A. Jette, and P. Thompson, “A study of the mechanism of metal deposition by the laser-induced forward transfer process,” J. Vac. Sci. Technol. B 5(5), 1490–1494 (1987).
[Crossref]

Adrian, F. J.

J. Bohandy, B. F. Kim, and F. J. Adrian, “Metal deposition from a supported metal film using an excimer laser,” J. Appl. Phys. 60(4), 1538 (1986).
[Crossref]

Ahn, B. Y.

K. Sun, T.-S. Wei, B. Y. Ahn, J. Y. Seo, S. J. Dillon, and J. A. Lewis, “3D printing of interdigitated Li-ion microbattery architectures,” Adv. Mater. 25(33), 4539–4543 (2013).
[Crossref] [PubMed]

B. Y. Ahn, E. B. Duoss, M. J. Motala, X. Guo, S. I. Park, Y. Xiong, J. Yoon, R. G. Nuzzo, J. A. Rogers, and J. A. Lewis, “Omnidirectional printing of flexible, stretchable, and spanning silver microelectrodes,” Science 323(5921), 1590–1593 (2009).
[Crossref] [PubMed]

Ailuno, J.

Alivisatos, A. P.

A. P. Alivisatos, A. M. Andrews, E. S. Boyden, M. Chun, G. M. Church, K. Deisseroth, J. P. Donoghue, S. E. Fraser, J. Lippincott-Schwartz, L. L. Looger, S. Masmanidis, P. L. McEuen, A. V. Nurmikko, H. Park, D. S. Peterka, C. Reid, M. L. Roukes, A. Scherer, M. Schnitzer, T. J. Sejnowski, K. L. Shepard, D. Tsao, G. Turrigiano, P. S. Weiss, C. Xu, R. Yuste, and X. Zhuang, “Nanotools for neuroscience and brain activity mapping,” ACS Nano 7(3), 1850–1866 (2013).
[Crossref] [PubMed]

Alloncle, A. P.

L. Rapp, J. Ailuno, A. P. Alloncle, and P. Delaporte, “Pulsed-laser printing of silver nanoparticles ink: control of morphological properties,” Opt. Express 19(22), 21563–21574 (2011).
[Crossref] [PubMed]

L. Rapp, A. K. Diallo, A. P. Alloncle, C. Videlot-Ackermann, F. Fages, and P. Delaporte, “Pulsed-laser printing of organic thin-film transistors,” Appl. Phys. Lett. 95(17), 171109 (2009).
[Crossref]

L. Rapp, A. K. Diallo, A. P. Alloncle, C. Videlot-Ackermann, F. Fages, and P. Delaporte, “Pulsed-laser printing of organic thin-film transistors,” Appl. Phys. Lett. 95(17), 171109 (2009).
[Crossref]

Andreshak, J. C.

R. Baseman, N. Froberg, J. C. Andreshak, and Z. Schlesinger, “Minimum uence for laser blow-off of thin gold films at 248 and 532 nm,” Appl. Phys. Lett. 56(15), 1412–1414 (1990).
[Crossref]

Andrews, A. M.

A. P. Alivisatos, A. M. Andrews, E. S. Boyden, M. Chun, G. M. Church, K. Deisseroth, J. P. Donoghue, S. E. Fraser, J. Lippincott-Schwartz, L. L. Looger, S. Masmanidis, P. L. McEuen, A. V. Nurmikko, H. Park, D. S. Peterka, C. Reid, M. L. Roukes, A. Scherer, M. Schnitzer, T. J. Sejnowski, K. L. Shepard, D. Tsao, G. Turrigiano, P. S. Weiss, C. Xu, R. Yuste, and X. Zhuang, “Nanotools for neuroscience and brain activity mapping,” ACS Nano 7(3), 1850–1866 (2013).
[Crossref] [PubMed]

Antal, Z.

B. Hopp, T. Smausz, Z. Antal, N. Kresz, Z. Bor, and D. Chrisey, “Absorbing film assisted laser induced forward transfer of fungi (trichoderma conidia),” J. Appl. Phys. 96(6), 3478 (2004).
[Crossref]

Apte, R.

A. C. Arias, S. E. Ready, R. Lujan, W. S. Wong, K. E. Paul, A. Salleo, M. L. Chabinyc, R. Apte, R. A. Street, Y. Wu, P. Liu, and B. Ong, “All jet-printed polymer thin-film transistor active-matrix backplanes,” Appl. Phys. Lett. 85(15), 3304 (2004).
[Crossref]

Arias, A. C.

A. C. Arias, S. E. Ready, R. Lujan, W. S. Wong, K. E. Paul, A. Salleo, M. L. Chabinyc, R. Apte, R. A. Street, Y. Wu, P. Liu, and B. Ong, “All jet-printed polymer thin-film transistor active-matrix backplanes,” Appl. Phys. Lett. 85(15), 3304 (2004).
[Crossref]

Arnold, C. B.

M. S. Brown, N. T. Kattamis, and C. B. Arnold, “Time-resolved study of polyimide absorption layers for blister-actuated laser-induced forward transfer,” J. Appl. Phys. 107(8), 083103 (2010).
[Crossref]

N. T. Kattamis, N. D. McDaniel, S. Bernhard, and C. B. Arnold, “Laser direct write printing of sensitive and robust light emitting organic molecules,” Appl. Phys. Lett. 94(10), 103306 (2009).
[Crossref]

Auyeung, R. C. Y.

E. Breckenfeld, H. Kim, R. C. Y. Auyeung, N. Charipar, P. Serra, and A. Piqué, “Laser-induced forward transfer of silver nanopaste for microwave interconnects,” Appl. Surf. Sci. 331, 254–261 (2015).
[Crossref]

J. Wang, R. C. Y. Auyeung, H. Kim, N. A. Charipar, and A. Piqué, “Three-dimensional printing of interconnects by laser direct-write of silver nanopastes,” Adv. Mater. 22(40), 4462–4466 (2010).
[Crossref] [PubMed]

R. C. Y. Auyeung, H. Kim, S. A. Mathews, and A. Piqué, “Laser direct-write of metallic nanoparticle inks,” J. Laser Mirco/Nanoeng. 2(1), 21–25 (2007).
[Crossref]

A. Doraiswamy, R. J. Narayan, T. Lippert, L. Urech, A. Wokaun, M. Nagel, B. Hopp, M. Dinescu, R. Modi, R. C. Y. Auyeung, and D. B. Chrisey, “Excimer laser forward transfer of mammalian cells using a novel triazene absorbing layer,” Appl. Surf. Sci. 252(13), 4743–4747 (2006).
[Crossref]

Bali, K.

P. Mogyorósi, T. Szörényi, K. Bali, Zs. Tóth, and I. Hevesi, “Pulsed laser ablative deposition of thin metal films,” Appl. Surf. Sci. 36(1-4), 157–163 (1989).
[Crossref]

Banks, D.

D. Banks, K. Kaur, R. Gazia, R. Fardel, M. Nagel, T. Lippert, and R. Eason, “Triazene photopolymer dynamic release layer-assisted femtosecond laser-induced forward transfer with an active carrier substrate,” Europhys. Lett. 83(3), 38003 (2008).
[Crossref]

Banks, D. P.

K. S. Kaur, R. Fardel, T. C. May-Smith, M. Nagel, D. P. Banks, C. Grivas, T. Lippert, and R. W. Eason, “Shadowgraphic studies of triazene assisted laser-induced forward transfer of ceramic thin films,” J. Appl. Phys. 105(11), 113119 (2009).
[Crossref]

D. P. Banks, C. Grivas, J. D. Mills, R. W. Eason, and I. Zergioti, “Nanodroplets deposited in microarrays by femtosecond Ti:sapphire laser-induced forward transfer,” Appl. Phys. Lett. 89(19), 193107 (2006).
[Crossref]

Baseman, R.

R. Baseman, N. Froberg, J. C. Andreshak, and Z. Schlesinger, “Minimum uence for laser blow-off of thin gold films at 248 and 532 nm,” Appl. Phys. Lett. 56(15), 1412–1414 (1990).
[Crossref]

Bernhard, S.

N. T. Kattamis, N. D. McDaniel, S. Bernhard, and C. B. Arnold, “Laser direct write printing of sensitive and robust light emitting organic molecules,” Appl. Phys. Lett. 94(10), 103306 (2009).
[Crossref]

Berthet, F. X.

P. Serra, J. M. Fernández-Pradas, F. X. Berthet, M. Colina, J. Elvira, and J. L. Morenza, “Laser direct writing of biomolecule microarrays,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 949 (2004).
[Crossref]

Bertrand, P.

I. Yadroitsev, I. Shishkovsky, P. Bertrand, and I. Smurov, “Manufacturing of fine-structured 3D porous filter elements by selective laser melting,” Appl. Surf. Sci. 255(10), 5523–5527 (2009).
[Crossref]

Bertrand, Ph.

I. Yadroitsev, Ph. Bertrand, and I. Smurov, “Parametric analysis of the selective laser melting process,” Appl. Surf. Sci. 253(19), 8064–8069 (2007).
[Crossref]

Birr, T.

U. Zywietz, C. Reinhardt, A. B. Evlyukhin, T. Birr, and B. N. Chichkov, “Generation and patterning of Si nanoparticles by femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 114(1), 45–50 (2014).
[Crossref]

Blake, J. R.

P. B. Robinson, J. R. Blake, T. Kodama, A. Shima, and Y. Tomita, “Interaction of cavitation bubbles with a free surface,” J. Appl. Phys. 89(12), 8225 (2001).
[Crossref]

Bohandy, J.

F. Adrian, J. Bohandy, B. Kim, A. Jette, and P. Thompson, “A study of the mechanism of metal deposition by the laser-induced forward transfer process,” J. Vac. Sci. Technol. B 5(5), 1490–1494 (1987).
[Crossref]

J. Bohandy, B. F. Kim, and F. J. Adrian, “Metal deposition from a supported metal film using an excimer laser,” J. Appl. Phys. 60(4), 1538 (1986).
[Crossref]

Bolton, P. R.

A. B. Bullock and P. R. Bolton, “Laser-induced back ablation of aluminum thin films using picosecond laser pulses,” J. Appl. Phys. 85(1), 460 (1999).
[Crossref]

Bor, Z.

B. Hopp, T. Smausz, Z. Antal, N. Kresz, Z. Bor, and D. Chrisey, “Absorbing film assisted laser induced forward transfer of fungi (trichoderma conidia),” J. Appl. Phys. 96(6), 3478 (2004).
[Crossref]

Boutopoulos, C.

C. Boutopoulos, I. Kalpyris, E. Serpetzoglou, and I. Zergioti, “Laser-induced forward transfer of silver nanoparticle ink: time-resolved imaging of the jetting dynamics and correlation with the printing quality,” Microfluid. Nanofluidics 16(3), 493–500 (2014).
[Crossref]

M. Makrygianni, I. Kalpyris, C. Boutopoulos, and I. Zergioti, “Laser induced forward transfer of Ag nanoparticles ink deposition and characterization,” Appl. Surf. Sci. 297, 40–44 (2014).
[Crossref]

Boyden, E. S.

A. P. Alivisatos, A. M. Andrews, E. S. Boyden, M. Chun, G. M. Church, K. Deisseroth, J. P. Donoghue, S. E. Fraser, J. Lippincott-Schwartz, L. L. Looger, S. Masmanidis, P. L. McEuen, A. V. Nurmikko, H. Park, D. S. Peterka, C. Reid, M. L. Roukes, A. Scherer, M. Schnitzer, T. J. Sejnowski, K. L. Shepard, D. Tsao, G. Turrigiano, P. S. Weiss, C. Xu, R. Yuste, and X. Zhuang, “Nanotools for neuroscience and brain activity mapping,” ACS Nano 7(3), 1850–1866 (2013).
[Crossref] [PubMed]

Breckenfeld, E.

E. Breckenfeld, H. Kim, R. C. Y. Auyeung, N. Charipar, P. Serra, and A. Piqué, “Laser-induced forward transfer of silver nanopaste for microwave interconnects,” Appl. Surf. Sci. 331, 254–261 (2015).
[Crossref]

Brown, M. S.

M. S. Brown, N. T. Kattamis, and C. B. Arnold, “Time-resolved study of polyimide absorption layers for blister-actuated laser-induced forward transfer,” J. Appl. Phys. 107(8), 083103 (2010).
[Crossref]

Bullock, A. B.

A. B. Bullock and P. R. Bolton, “Laser-induced back ablation of aluminum thin films using picosecond laser pulses,” J. Appl. Phys. 85(1), 460 (1999).
[Crossref]

Chabinyc, M. L.

A. C. Arias, S. E. Ready, R. Lujan, W. S. Wong, K. E. Paul, A. Salleo, M. L. Chabinyc, R. Apte, R. A. Street, Y. Wu, P. Liu, and B. Ong, “All jet-printed polymer thin-film transistor active-matrix backplanes,” Appl. Phys. Lett. 85(15), 3304 (2004).
[Crossref]

Charipar, N.

E. Breckenfeld, H. Kim, R. C. Y. Auyeung, N. Charipar, P. Serra, and A. Piqué, “Laser-induced forward transfer of silver nanopaste for microwave interconnects,” Appl. Surf. Sci. 331, 254–261 (2015).
[Crossref]

Charipar, N. A.

J. Wang, R. C. Y. Auyeung, H. Kim, N. A. Charipar, and A. Piqué, “Three-dimensional printing of interconnects by laser direct-write of silver nanopastes,” Adv. Mater. 22(40), 4462–4466 (2010).
[Crossref] [PubMed]

Chichkov, B. N.

U. Zywietz, C. Reinhardt, A. B. Evlyukhin, T. Birr, and B. N. Chichkov, “Generation and patterning of Si nanoparticles by femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 114(1), 45–50 (2014).
[Crossref]

U. Zywietz, A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses,” Nat. Commun. 5, 3402 (2014).
[Crossref] [PubMed]

A. I. Kuznetsov, C. Unger, J. Koch, and B. N. Chichkov, “Laser-induced jet formation and droplet ejection from thin metal films,” Appl. Phys., A Mater. Sci. Process. 106(3), 479–487 (2012).
[Crossref]

C. Unger, J. Koch, L. Overmeyer, and B. N. Chichkov, “Time-resolved studies of femtosecond-laser induced melt dynamics,” Opt. Express 20(22), 24864–24872 (2012).
[Crossref] [PubMed]

A. I. Kuznetsov, R. Kiyan, and B. N. Chichkov, “Laser fabrication of 2D and 3D metal nanoparticle structures and arrays,” Opt. Express 18(20), 21198–21203 (2010).
[Crossref] [PubMed]

Choi, J. R.

Y. Lee, J. R. Choi, K. J. Lee, N. E. Stott, and D. Kim, “Large-scale synthesis of copper nanoparticles by chemically controlled reduction for applications of inkjet-printed electronics,” Nanotechnology 19(41), 415604 (2008).
[Crossref] [PubMed]

Choi, J.-R.

Y. Lee, J.-R. Choi, K. J. Lee, N. E. Stott, and D. Kim, “Large-scale synthesis of copper nanoparticles by chemically controlled reduction for applications of inkjet-printed electronics,” Nanotechnology 19(41), 415604 (2008).
[Crossref] [PubMed]

Chrisey, D.

B. Hopp, T. Smausz, Z. Antal, N. Kresz, Z. Bor, and D. Chrisey, “Absorbing film assisted laser induced forward transfer of fungi (trichoderma conidia),” J. Appl. Phys. 96(6), 3478 (2004).
[Crossref]

Chrisey, D. B.

A. Doraiswamy, R. J. Narayan, T. Lippert, L. Urech, A. Wokaun, M. Nagel, B. Hopp, M. Dinescu, R. Modi, R. C. Y. Auyeung, and D. B. Chrisey, “Excimer laser forward transfer of mammalian cells using a novel triazene absorbing layer,” Appl. Surf. Sci. 252(13), 4743–4747 (2006).
[Crossref]

Chun, M.

A. P. Alivisatos, A. M. Andrews, E. S. Boyden, M. Chun, G. M. Church, K. Deisseroth, J. P. Donoghue, S. E. Fraser, J. Lippincott-Schwartz, L. L. Looger, S. Masmanidis, P. L. McEuen, A. V. Nurmikko, H. Park, D. S. Peterka, C. Reid, M. L. Roukes, A. Scherer, M. Schnitzer, T. J. Sejnowski, K. L. Shepard, D. Tsao, G. Turrigiano, P. S. Weiss, C. Xu, R. Yuste, and X. Zhuang, “Nanotools for neuroscience and brain activity mapping,” ACS Nano 7(3), 1850–1866 (2013).
[Crossref] [PubMed]

Chung, J.

S. H. Ko, J. Chung, N. Hotz, K. H. Nam, and C. P. Grigoropoulos, “Metal nanoparticle direct inkjet printing for low-temperature 3D micro metal structure fabrication,” J. Micromech. Microeng. 20(12), 125010 (2010).
[Crossref]

Church, G. M.

A. P. Alivisatos, A. M. Andrews, E. S. Boyden, M. Chun, G. M. Church, K. Deisseroth, J. P. Donoghue, S. E. Fraser, J. Lippincott-Schwartz, L. L. Looger, S. Masmanidis, P. L. McEuen, A. V. Nurmikko, H. Park, D. S. Peterka, C. Reid, M. L. Roukes, A. Scherer, M. Schnitzer, T. J. Sejnowski, K. L. Shepard, D. Tsao, G. Turrigiano, P. S. Weiss, C. Xu, R. Yuste, and X. Zhuang, “Nanotools for neuroscience and brain activity mapping,” ACS Nano 7(3), 1850–1866 (2013).
[Crossref] [PubMed]

Colina, M.

P. Serra, J. M. Fernández-Pradas, F. X. Berthet, M. Colina, J. Elvira, and J. L. Morenza, “Laser direct writing of biomolecule microarrays,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 949 (2004).
[Crossref]

P. Serra, M. Colina, J. M. Fernández-Pradas, L. Sevilla, and J. L. Morenza, “Preparation of functional DNA microarrays through laser-induced forward transfer,” Appl. Phys. Lett. 85(9), 1639 (2004).
[Crossref]

Córdoba, C.

A. Palla-Papavlu, C. Córdoba, A. Patrascioiu, J. M. Fernández-Pradas, J. L. Morenza, and P. Serra, “Deposition and characterization of lines printed through laser-induced forward transfer,” Appl. Phys., A Mater. Sci. Process. 110(4), 751–755 (2013).
[Crossref]

Dehm, C.

U. Zschieschang, H. Klauk, M. Halik, G. Schmid, and C. Dehm, “Flexible Organic Circuits with Printed Gate Electrodes,” Adv. Mater. 15(14), 1147–1151 (2003).
[Crossref]

Deisseroth, K.

A. P. Alivisatos, A. M. Andrews, E. S. Boyden, M. Chun, G. M. Church, K. Deisseroth, J. P. Donoghue, S. E. Fraser, J. Lippincott-Schwartz, L. L. Looger, S. Masmanidis, P. L. McEuen, A. V. Nurmikko, H. Park, D. S. Peterka, C. Reid, M. L. Roukes, A. Scherer, M. Schnitzer, T. J. Sejnowski, K. L. Shepard, D. Tsao, G. Turrigiano, P. S. Weiss, C. Xu, R. Yuste, and X. Zhuang, “Nanotools for neuroscience and brain activity mapping,” ACS Nano 7(3), 1850–1866 (2013).
[Crossref] [PubMed]

Delaporte, P.

L. Rapp, J. Ailuno, A. P. Alloncle, and P. Delaporte, “Pulsed-laser printing of silver nanoparticles ink: control of morphological properties,” Opt. Express 19(22), 21563–21574 (2011).
[Crossref] [PubMed]

L. Rapp, A. K. Diallo, A. P. Alloncle, C. Videlot-Ackermann, F. Fages, and P. Delaporte, “Pulsed-laser printing of organic thin-film transistors,” Appl. Phys. Lett. 95(17), 171109 (2009).
[Crossref]

L. Rapp, A. K. Diallo, A. P. Alloncle, C. Videlot-Ackermann, F. Fages, and P. Delaporte, “Pulsed-laser printing of organic thin-film transistors,” Appl. Phys. Lett. 95(17), 171109 (2009).
[Crossref]

Diallo, A. K.

L. Rapp, A. K. Diallo, A. P. Alloncle, C. Videlot-Ackermann, F. Fages, and P. Delaporte, “Pulsed-laser printing of organic thin-film transistors,” Appl. Phys. Lett. 95(17), 171109 (2009).
[Crossref]

L. Rapp, A. K. Diallo, A. P. Alloncle, C. Videlot-Ackermann, F. Fages, and P. Delaporte, “Pulsed-laser printing of organic thin-film transistors,” Appl. Phys. Lett. 95(17), 171109 (2009).
[Crossref]

Dillon, S. J.

K. Sun, T.-S. Wei, B. Y. Ahn, J. Y. Seo, S. J. Dillon, and J. A. Lewis, “3D printing of interdigitated Li-ion microbattery architectures,” Adv. Mater. 25(33), 4539–4543 (2013).
[Crossref] [PubMed]

Dinca, V.

A. Palla-Papavlu, L. Paraico, J. Shaw-Stewart, V. Dinca, T. Savopol, E. Kovacs, T. Lippert, A. Wokaun, and M. Dinescu, “Liposome micropatterning based on laser-induced forward transfer,” Appl. Phys., A Mater. Sci. Process. 102(3), 651–659 (2011).
[Crossref]

Dincaa, V.

V. Dincaa, T. Mattle, A. Palla Papavlu, L. Rusen, C. Luculescu, T. Lippert, and M. Dinescu, “Polyethyleneimine patterns obtained by laser-transfer assisted by a dynamic release layer onto themanox soft substrates for cell adhesion study,” Appl. Surf. Sci. 278, 190–197 (2013).
[Crossref]

Dinescu, M.

V. Dincaa, T. Mattle, A. Palla Papavlu, L. Rusen, C. Luculescu, T. Lippert, and M. Dinescu, “Polyethyleneimine patterns obtained by laser-transfer assisted by a dynamic release layer onto themanox soft substrates for cell adhesion study,” Appl. Surf. Sci. 278, 190–197 (2013).
[Crossref]

A. Palla-Papavlu, L. Paraico, J. Shaw-Stewart, V. Dinca, T. Savopol, E. Kovacs, T. Lippert, A. Wokaun, and M. Dinescu, “Liposome micropatterning based on laser-induced forward transfer,” Appl. Phys., A Mater. Sci. Process. 102(3), 651–659 (2011).
[Crossref]

A. Doraiswamy, R. J. Narayan, T. Lippert, L. Urech, A. Wokaun, M. Nagel, B. Hopp, M. Dinescu, R. Modi, R. C. Y. Auyeung, and D. B. Chrisey, “Excimer laser forward transfer of mammalian cells using a novel triazene absorbing layer,” Appl. Surf. Sci. 252(13), 4743–4747 (2006).
[Crossref]

Dlott, D.

W. Tolbert, I. Lee, M. Doxtader, E. Ellis, and D. Dlott, “High-speed color imaging by laser ablation transfer with a dynamic release layer: fundamental mechanisms,” J. Imag. Sci. Tech. 37, 411 (1993).

Donoghue, J. P.

A. P. Alivisatos, A. M. Andrews, E. S. Boyden, M. Chun, G. M. Church, K. Deisseroth, J. P. Donoghue, S. E. Fraser, J. Lippincott-Schwartz, L. L. Looger, S. Masmanidis, P. L. McEuen, A. V. Nurmikko, H. Park, D. S. Peterka, C. Reid, M. L. Roukes, A. Scherer, M. Schnitzer, T. J. Sejnowski, K. L. Shepard, D. Tsao, G. Turrigiano, P. S. Weiss, C. Xu, R. Yuste, and X. Zhuang, “Nanotools for neuroscience and brain activity mapping,” ACS Nano 7(3), 1850–1866 (2013).
[Crossref] [PubMed]

Doraiswamy, A.

A. Doraiswamy, R. J. Narayan, T. Lippert, L. Urech, A. Wokaun, M. Nagel, B. Hopp, M. Dinescu, R. Modi, R. C. Y. Auyeung, and D. B. Chrisey, “Excimer laser forward transfer of mammalian cells using a novel triazene absorbing layer,” Appl. Surf. Sci. 252(13), 4743–4747 (2006).
[Crossref]

Doxtader, M.

W. Tolbert, I. Lee, M. Doxtader, E. Ellis, and D. Dlott, “High-speed color imaging by laser ablation transfer with a dynamic release layer: fundamental mechanisms,” J. Imag. Sci. Tech. 37, 411 (1993).

Duocastella, M.

M. Duocastella, H. Kim, P. Serra, and A. Piqué, “Optimization of laser printing of nanoparticle suspensions for microelectronic applications,” Appl. Phys., A Mater. Sci. Process. 106(3), 471–478 (2012).
[Crossref]

Duoss, E. B.

B. Y. Ahn, E. B. Duoss, M. J. Motala, X. Guo, S. I. Park, Y. Xiong, J. Yoon, R. G. Nuzzo, J. A. Rogers, and J. A. Lewis, “Omnidirectional printing of flexible, stretchable, and spanning silver microelectrodes,” Science 323(5921), 1590–1593 (2009).
[Crossref] [PubMed]

Eason, R.

D. Banks, K. Kaur, R. Gazia, R. Fardel, M. Nagel, T. Lippert, and R. Eason, “Triazene photopolymer dynamic release layer-assisted femtosecond laser-induced forward transfer with an active carrier substrate,” Europhys. Lett. 83(3), 38003 (2008).
[Crossref]

Eason, R. W.

J. A. Grant-Jacob, B. Mills, M. Feinaeugle, C. L. Sones, G. Oosterhuis, M. B. Hoppenbrouwers, and R. W. Eason, “Micron-scale copper wires printed using femtosecond laser-induced forward transfer with automated donor replenishment,” Opt. Mater. Express 3(6), 747–754 (2013).
[Crossref]

K. S. Kaur, R. Fardel, T. C. May-Smith, M. Nagel, D. P. Banks, C. Grivas, T. Lippert, and R. W. Eason, “Shadowgraphic studies of triazene assisted laser-induced forward transfer of ceramic thin films,” J. Appl. Phys. 105(11), 113119 (2009).
[Crossref]

D. P. Banks, C. Grivas, J. D. Mills, R. W. Eason, and I. Zergioti, “Nanodroplets deposited in microarrays by femtosecond Ti:sapphire laser-induced forward transfer,” Appl. Phys. Lett. 89(19), 193107 (2006).
[Crossref]

Ellis, E.

W. Tolbert, I. Lee, M. Doxtader, E. Ellis, and D. Dlott, “High-speed color imaging by laser ablation transfer with a dynamic release layer: fundamental mechanisms,” J. Imag. Sci. Tech. 37, 411 (1993).

Elvira, J.

P. Serra, J. M. Fernández-Pradas, F. X. Berthet, M. Colina, J. Elvira, and J. L. Morenza, “Laser direct writing of biomolecule microarrays,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 949 (2004).
[Crossref]

Evans, J. W.

C. Ho, K. Murata, D. A. Steingart, J. W. Evans, and P. K. Wright, “A super ink jet printed zinc–silver 3D microbattery,” J. Micromech. Microeng. 19(9), 094013 (2009).
[Crossref]

Evlyukhin, A. B.

U. Zywietz, A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses,” Nat. Commun. 5, 3402 (2014).
[Crossref] [PubMed]

U. Zywietz, C. Reinhardt, A. B. Evlyukhin, T. Birr, and B. N. Chichkov, “Generation and patterning of Si nanoparticles by femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 114(1), 45–50 (2014).
[Crossref]

Fages, F.

L. Rapp, A. K. Diallo, A. P. Alloncle, C. Videlot-Ackermann, F. Fages, and P. Delaporte, “Pulsed-laser printing of organic thin-film transistors,” Appl. Phys. Lett. 95(17), 171109 (2009).
[Crossref]

L. Rapp, A. K. Diallo, A. P. Alloncle, C. Videlot-Ackermann, F. Fages, and P. Delaporte, “Pulsed-laser printing of organic thin-film transistors,” Appl. Phys. Lett. 95(17), 171109 (2009).
[Crossref]

Fan, S.

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386(6621), 143–149 (1997).
[Crossref]

Fardel, R.

R. Fardel, M. Nagel, F. Nüesch, T. Lippert, and A. Wokaun, “Laser-Induced Forward Transfer of organic LED building blocks studied by time-resolved shadowgraphy,” J. Phys. Chem. C 114(12), 5617–5636 (2010).
[Crossref]

K. S. Kaur, R. Fardel, T. C. May-Smith, M. Nagel, D. P. Banks, C. Grivas, T. Lippert, and R. W. Eason, “Shadowgraphic studies of triazene assisted laser-induced forward transfer of ceramic thin films,” J. Appl. Phys. 105(11), 113119 (2009).
[Crossref]

D. Banks, K. Kaur, R. Gazia, R. Fardel, M. Nagel, T. Lippert, and R. Eason, “Triazene photopolymer dynamic release layer-assisted femtosecond laser-induced forward transfer with an active carrier substrate,” Europhys. Lett. 83(3), 38003 (2008).
[Crossref]

R. Fardel, M. Nagel, F. Nüesch, T. Lippert, and A. Wokaun, “Fabrication of organic light-emitting diode pixels by laser-assistedforward transfer,” Appl. Phys. Lett. 91(6), 061103 (2007).
[Crossref]

Feinaeugle, M.

Fernández-Pradas, J. M.

A. Palla-Papavlu, C. Córdoba, A. Patrascioiu, J. M. Fernández-Pradas, J. L. Morenza, and P. Serra, “Deposition and characterization of lines printed through laser-induced forward transfer,” Appl. Phys., A Mater. Sci. Process. 110(4), 751–755 (2013).
[Crossref]

P. Serra, M. Colina, J. M. Fernández-Pradas, L. Sevilla, and J. L. Morenza, “Preparation of functional DNA microarrays through laser-induced forward transfer,” Appl. Phys. Lett. 85(9), 1639 (2004).
[Crossref]

P. Serra, J. M. Fernández-Pradas, F. X. Berthet, M. Colina, J. Elvira, and J. L. Morenza, “Laser direct writing of biomolecule microarrays,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 949 (2004).
[Crossref]

Firsov, A. A.

A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, “Nanofabricated media with negative permeability at visible frequencies,” Nature 438(7066), 335–338 (2005).
[Crossref] [PubMed]

Fogarassy, E.

E. Fogarassy, C. Fuchs, F. Kerherve, G. Hauchecorne, and J. Perriere, “Laser‐induced forward transfer of high‐Tc YBaCuO and BiSrCaCuO superconducting thin films,” J. Appl. Phys. 66(1), 457 (1989).
[Crossref]

Fotakis, C.

I. Zergioti, D. G. Papazoglou, A. Karaiskou, C. Fotakis, E. Gamaly, and A. Rode, “A comparative schlieren imaging study between ns and sub-ps laser forward transfer of Cr,” Appl. Surf. Sci. 208–209, 177–180 (2003).
[Crossref]

G. Koundourakis, C. Rockstuhl, D. Papazoglou, A. Klini, I. Zergioti, N. A. Vainos, and C. Fotakis, “Laser printing of active optical microstructures,” Appl. Phys. Lett. 78(7), 868 (2001).
[Crossref]

Fr’echet, J. M. J.

S. H. Ko, H. Pan, C. P. Grigoropoulos, C. K. Luscombe, J. M. J. Fr’echet, and D. Poulikakos, “All-inkjet-printed flexible electronics fabrication on a polymer substrate by low-temperature high-resolution selective laser sintering of metal nanoparticles,” Nanotechnology 18(34), 345202 (2007).
[Crossref]

Fraser, S. E.

A. P. Alivisatos, A. M. Andrews, E. S. Boyden, M. Chun, G. M. Church, K. Deisseroth, J. P. Donoghue, S. E. Fraser, J. Lippincott-Schwartz, L. L. Looger, S. Masmanidis, P. L. McEuen, A. V. Nurmikko, H. Park, D. S. Peterka, C. Reid, M. L. Roukes, A. Scherer, M. Schnitzer, T. J. Sejnowski, K. L. Shepard, D. Tsao, G. Turrigiano, P. S. Weiss, C. Xu, R. Yuste, and X. Zhuang, “Nanotools for neuroscience and brain activity mapping,” ACS Nano 7(3), 1850–1866 (2013).
[Crossref] [PubMed]

Friend, R. H.

H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, and E. P. Woo, “High-Resolution Inkjet Printing of All-Polymer Transistor Circuits,” Science 290(5499), 2123–2126 (2000).
[Crossref] [PubMed]

Froberg, N.

R. Baseman, N. Froberg, J. C. Andreshak, and Z. Schlesinger, “Minimum uence for laser blow-off of thin gold films at 248 and 532 nm,” Appl. Phys. Lett. 56(15), 1412–1414 (1990).
[Crossref]

Fuchs, C.

E. Fogarassy, C. Fuchs, F. Kerherve, G. Hauchecorne, and J. Perriere, “Laser‐induced forward transfer of high‐Tc YBaCuO and BiSrCaCuO superconducting thin films,” J. Appl. Phys. 66(1), 457 (1989).
[Crossref]

Gamaly, E.

I. Zergioti, D. G. Papazoglou, A. Karaiskou, C. Fotakis, E. Gamaly, and A. Rode, “A comparative schlieren imaging study between ns and sub-ps laser forward transfer of Cr,” Appl. Surf. Sci. 208–209, 177–180 (2003).
[Crossref]

Gamerith, S.

S. Gamerith, A. Klug, H. Scheiber, U. Scherf, E. Moderegger, and E. J. W. List, “Direct ink-jet printing of Ag–Cu nanoparticle and Ag precursor based electrodes for OFET applications,” Adv. Funct. Mater. 17(16), 3111–3118 (2007).
[Crossref]

Gazia, R.

D. Banks, K. Kaur, R. Gazia, R. Fardel, M. Nagel, T. Lippert, and R. Eason, “Triazene photopolymer dynamic release layer-assisted femtosecond laser-induced forward transfer with an active carrier substrate,” Europhys. Lett. 83(3), 38003 (2008).
[Crossref]

Geim, A. K.

A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, “Nanofabricated media with negative permeability at visible frequencies,” Nature 438(7066), 335–338 (2005).
[Crossref] [PubMed]

Gertner, R. S.

J. T. Robinson, M. Jorgolli, A. K. Shalek, M.-H. Yoon, R. S. Gertner, and H. Park, “Vertical nanowire electrode arrays as a scalable platform for intracellular interfacing to neuronal circuits,” Nat. Nanotechnol. 7(3), 180–184 (2012).
[Crossref] [PubMed]

Gleeson, H. F.

A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, “Nanofabricated media with negative permeability at visible frequencies,” Nature 438(7066), 335–338 (2005).
[Crossref] [PubMed]

Grant-Jacob, J. A.

Grigorenko, A. N.

A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, “Nanofabricated media with negative permeability at visible frequencies,” Nature 438(7066), 335–338 (2005).
[Crossref] [PubMed]

Grigoropoulos, C. P.

S. H. Ko, J. Chung, N. Hotz, K. H. Nam, and C. P. Grigoropoulos, “Metal nanoparticle direct inkjet printing for low-temperature 3D micro metal structure fabrication,” J. Micromech. Microeng. 20(12), 125010 (2010).
[Crossref]

S. H. Ko, H. Pan, C. P. Grigoropoulos, C. K. Luscombe, J. M. J. Fr’echet, and D. Poulikakos, “All-inkjet-printed flexible electronics fabrication on a polymer substrate by low-temperature high-resolution selective laser sintering of metal nanoparticles,” Nanotechnology 18(34), 345202 (2007).
[Crossref]

Grivas, C.

K. S. Kaur, R. Fardel, T. C. May-Smith, M. Nagel, D. P. Banks, C. Grivas, T. Lippert, and R. W. Eason, “Shadowgraphic studies of triazene assisted laser-induced forward transfer of ceramic thin films,” J. Appl. Phys. 105(11), 113119 (2009).
[Crossref]

D. P. Banks, C. Grivas, J. D. Mills, R. W. Eason, and I. Zergioti, “Nanodroplets deposited in microarrays by femtosecond Ti:sapphire laser-induced forward transfer,” Appl. Phys. Lett. 89(19), 193107 (2006).
[Crossref]

Grosu, V.

D. A. Willis and V. Grosu, “The effect of melting-induced volumetric expansion on initiation of laser-induced forward transfer,” Appl. Surf. Sci. 253(10), 4759–4763 (2007).
[Crossref]

D. A. Willis and V. Grosu, “Microdroplet deposition by laser-induced forward transfer,” Appl. Phys. Lett. 86(24), 244103 (2005).
[Crossref]

Grouchko, M.

S. Magdassi, M. Grouchko, and A. Kamyshny, “Copper nanoparticles for printed electronics: routes towards achieving oxidation stability,” Materials (Basel) 3(9), 4626–4638 (2010).
[Crossref]

M. Grouchko, A. Kamyshny, and S. Magdassi, “Formation of air-stable copper–silver core–shell nanoparticles for inkjet Printing,” J. Mater. Chem. 19(19), 3057–3062 (2009).
[Crossref]

Guo, X.

B. Y. Ahn, E. B. Duoss, M. J. Motala, X. Guo, S. I. Park, Y. Xiong, J. Yoon, R. G. Nuzzo, J. A. Rogers, and J. A. Lewis, “Omnidirectional printing of flexible, stretchable, and spanning silver microelectrodes,” Science 323(5921), 1590–1593 (2009).
[Crossref] [PubMed]

Halik, M.

U. Zschieschang, H. Klauk, M. Halik, G. Schmid, and C. Dehm, “Flexible Organic Circuits with Printed Gate Electrodes,” Adv. Mater. 15(14), 1147–1151 (2003).
[Crossref]

Hauchecorne, G.

E. Fogarassy, C. Fuchs, F. Kerherve, G. Hauchecorne, and J. Perriere, “Laser‐induced forward transfer of high‐Tc YBaCuO and BiSrCaCuO superconducting thin films,” J. Appl. Phys. 66(1), 457 (1989).
[Crossref]

Hevesi, I.

P. Mogyorósi, T. Szörényi, K. Bali, Zs. Tóth, and I. Hevesi, “Pulsed laser ablative deposition of thin metal films,” Appl. Surf. Sci. 36(1-4), 157–163 (1989).
[Crossref]

Ho, C.

C. Ho, K. Murata, D. A. Steingart, J. W. Evans, and P. K. Wright, “A super ink jet printed zinc–silver 3D microbattery,” J. Micromech. Microeng. 19(9), 094013 (2009).
[Crossref]

Hopp, B.

A. Doraiswamy, R. J. Narayan, T. Lippert, L. Urech, A. Wokaun, M. Nagel, B. Hopp, M. Dinescu, R. Modi, R. C. Y. Auyeung, and D. B. Chrisey, “Excimer laser forward transfer of mammalian cells using a novel triazene absorbing layer,” Appl. Surf. Sci. 252(13), 4743–4747 (2006).
[Crossref]

B. Hopp, T. Smausz, Z. Antal, N. Kresz, Z. Bor, and D. Chrisey, “Absorbing film assisted laser induced forward transfer of fungi (trichoderma conidia),” J. Appl. Phys. 96(6), 3478 (2004).
[Crossref]

Hoppenbrouwers, M. B.

Hotz, N.

S. H. Ko, J. Chung, N. Hotz, K. H. Nam, and C. P. Grigoropoulos, “Metal nanoparticle direct inkjet printing for low-temperature 3D micro metal structure fabrication,” J. Micromech. Microeng. 20(12), 125010 (2010).
[Crossref]

Huis in ’t Veld, B.

C. W. Visser, R. Pohl, C. Sun, G.-W. Römer, B. Huis in ’t Veld, and D. Lohse, “Toward 3D printing of pure metals by laser-induced forward transfer,” Adv. Mater. 27(27), 4087–4092 (2015).
[Crossref] [PubMed]

Inbasekaran, M.

H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, and E. P. Woo, “High-Resolution Inkjet Printing of All-Polymer Transistor Circuits,” Science 290(5499), 2123–2126 (2000).
[Crossref] [PubMed]

Jette, A.

F. Adrian, J. Bohandy, B. Kim, A. Jette, and P. Thompson, “A study of the mechanism of metal deposition by the laser-induced forward transfer process,” J. Vac. Sci. Technol. B 5(5), 1490–1494 (1987).
[Crossref]

Jian, L.

L. Xiu-Mei, H. Jie, L. Jian, and N. Xiao-Wu, “Growth and collapse of laser-induced bubbles in glycerol-water mixtures,” Chin. Phys. B 17(7), 2574–2579 (2008).
[Crossref]

Jie, H.

L. Xiu-Mei, H. Jie, L. Jian, and N. Xiao-Wu, “Growth and collapse of laser-induced bubbles in glycerol-water mixtures,” Chin. Phys. B 17(7), 2574–2579 (2008).
[Crossref]

Joannopoulos, J. D.

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386(6621), 143–149 (1997).
[Crossref]

Jones, N.

N. Jones, “Science in three dimensions: The print revolution,” Nature 487(7405), 22–23 (2012).
[Crossref] [PubMed]

Jorgolli, M.

J. T. Robinson, M. Jorgolli, A. K. Shalek, M.-H. Yoon, R. S. Gertner, and H. Park, “Vertical nanowire electrode arrays as a scalable platform for intracellular interfacing to neuronal circuits,” Nat. Nanotechnol. 7(3), 180–184 (2012).
[Crossref] [PubMed]

Kalpyris, I.

M. Makrygianni, I. Kalpyris, C. Boutopoulos, and I. Zergioti, “Laser induced forward transfer of Ag nanoparticles ink deposition and characterization,” Appl. Surf. Sci. 297, 40–44 (2014).
[Crossref]

C. Boutopoulos, I. Kalpyris, E. Serpetzoglou, and I. Zergioti, “Laser-induced forward transfer of silver nanoparticle ink: time-resolved imaging of the jetting dynamics and correlation with the printing quality,” Microfluid. Nanofluidics 16(3), 493–500 (2014).
[Crossref]

Kamyshny, A.

S. Magdassi, M. Grouchko, and A. Kamyshny, “Copper nanoparticles for printed electronics: routes towards achieving oxidation stability,” Materials (Basel) 3(9), 4626–4638 (2010).
[Crossref]

M. Grouchko, A. Kamyshny, and S. Magdassi, “Formation of air-stable copper–silver core–shell nanoparticles for inkjet Printing,” J. Mater. Chem. 19(19), 3057–3062 (2009).
[Crossref]

Karaiskou, A.

I. Zergioti, D. G. Papazoglou, A. Karaiskou, C. Fotakis, E. Gamaly, and A. Rode, “A comparative schlieren imaging study between ns and sub-ps laser forward transfer of Cr,” Appl. Surf. Sci. 208–209, 177–180 (2003).
[Crossref]

Kattamis, N. T.

M. S. Brown, N. T. Kattamis, and C. B. Arnold, “Time-resolved study of polyimide absorption layers for blister-actuated laser-induced forward transfer,” J. Appl. Phys. 107(8), 083103 (2010).
[Crossref]

N. T. Kattamis, N. D. McDaniel, S. Bernhard, and C. B. Arnold, “Laser direct write printing of sensitive and robust light emitting organic molecules,” Appl. Phys. Lett. 94(10), 103306 (2009).
[Crossref]

Kaur, K.

D. Banks, K. Kaur, R. Gazia, R. Fardel, M. Nagel, T. Lippert, and R. Eason, “Triazene photopolymer dynamic release layer-assisted femtosecond laser-induced forward transfer with an active carrier substrate,” Europhys. Lett. 83(3), 38003 (2008).
[Crossref]

Kaur, K. S.

K. S. Kaur, R. Fardel, T. C. May-Smith, M. Nagel, D. P. Banks, C. Grivas, T. Lippert, and R. W. Eason, “Shadowgraphic studies of triazene assisted laser-induced forward transfer of ceramic thin films,” J. Appl. Phys. 105(11), 113119 (2009).
[Crossref]

Kawase, T.

H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, and E. P. Woo, “High-Resolution Inkjet Printing of All-Polymer Transistor Circuits,” Science 290(5499), 2123–2126 (2000).
[Crossref] [PubMed]

Kerherve, F.

E. Fogarassy, C. Fuchs, F. Kerherve, G. Hauchecorne, and J. Perriere, “Laser‐induced forward transfer of high‐Tc YBaCuO and BiSrCaCuO superconducting thin films,” J. Appl. Phys. 66(1), 457 (1989).
[Crossref]

Khrushchev, I. Y.

A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, “Nanofabricated media with negative permeability at visible frequencies,” Nature 438(7066), 335–338 (2005).
[Crossref] [PubMed]

Kim, B.

F. Adrian, J. Bohandy, B. Kim, A. Jette, and P. Thompson, “A study of the mechanism of metal deposition by the laser-induced forward transfer process,” J. Vac. Sci. Technol. B 5(5), 1490–1494 (1987).
[Crossref]

Kim, B. F.

J. Bohandy, B. F. Kim, and F. J. Adrian, “Metal deposition from a supported metal film using an excimer laser,” J. Appl. Phys. 60(4), 1538 (1986).
[Crossref]

Kim, D.

Y. Lee, J.-R. Choi, K. J. Lee, N. E. Stott, and D. Kim, “Large-scale synthesis of copper nanoparticles by chemically controlled reduction for applications of inkjet-printed electronics,” Nanotechnology 19(41), 415604 (2008).
[Crossref] [PubMed]

Y. Lee, J. R. Choi, K. J. Lee, N. E. Stott, and D. Kim, “Large-scale synthesis of copper nanoparticles by chemically controlled reduction for applications of inkjet-printed electronics,” Nanotechnology 19(41), 415604 (2008).
[Crossref] [PubMed]

Kim, H.

E. Breckenfeld, H. Kim, R. C. Y. Auyeung, N. Charipar, P. Serra, and A. Piqué, “Laser-induced forward transfer of silver nanopaste for microwave interconnects,” Appl. Surf. Sci. 331, 254–261 (2015).
[Crossref]

M. Duocastella, H. Kim, P. Serra, and A. Piqué, “Optimization of laser printing of nanoparticle suspensions for microelectronic applications,” Appl. Phys., A Mater. Sci. Process. 106(3), 471–478 (2012).
[Crossref]

J. Wang, R. C. Y. Auyeung, H. Kim, N. A. Charipar, and A. Piqué, “Three-dimensional printing of interconnects by laser direct-write of silver nanopastes,” Adv. Mater. 22(40), 4462–4466 (2010).
[Crossref] [PubMed]

R. C. Y. Auyeung, H. Kim, S. A. Mathews, and A. Piqué, “Laser direct-write of metallic nanoparticle inks,” J. Laser Mirco/Nanoeng. 2(1), 21–25 (2007).
[Crossref]

Kiyan, R.

Klauk, H.

U. Zschieschang, H. Klauk, M. Halik, G. Schmid, and C. Dehm, “Flexible Organic Circuits with Printed Gate Electrodes,” Adv. Mater. 15(14), 1147–1151 (2003).
[Crossref]

Klini, A.

G. Koundourakis, C. Rockstuhl, D. Papazoglou, A. Klini, I. Zergioti, N. A. Vainos, and C. Fotakis, “Laser printing of active optical microstructures,” Appl. Phys. Lett. 78(7), 868 (2001).
[Crossref]

Klug, A.

S. Gamerith, A. Klug, H. Scheiber, U. Scherf, E. Moderegger, and E. J. W. List, “Direct ink-jet printing of Ag–Cu nanoparticle and Ag precursor based electrodes for OFET applications,” Adv. Funct. Mater. 17(16), 3111–3118 (2007).
[Crossref]

Ko, S. H.

S. H. Ko, J. Chung, N. Hotz, K. H. Nam, and C. P. Grigoropoulos, “Metal nanoparticle direct inkjet printing for low-temperature 3D micro metal structure fabrication,” J. Micromech. Microeng. 20(12), 125010 (2010).
[Crossref]

S. H. Ko, H. Pan, C. P. Grigoropoulos, C. K. Luscombe, J. M. J. Fr’echet, and D. Poulikakos, “All-inkjet-printed flexible electronics fabrication on a polymer substrate by low-temperature high-resolution selective laser sintering of metal nanoparticles,” Nanotechnology 18(34), 345202 (2007).
[Crossref]

Koch, J.

A. I. Kuznetsov, C. Unger, J. Koch, and B. N. Chichkov, “Laser-induced jet formation and droplet ejection from thin metal films,” Appl. Phys., A Mater. Sci. Process. 106(3), 479–487 (2012).
[Crossref]

C. Unger, J. Koch, L. Overmeyer, and B. N. Chichkov, “Time-resolved studies of femtosecond-laser induced melt dynamics,” Opt. Express 20(22), 24864–24872 (2012).
[Crossref] [PubMed]

Kodama, T.

P. B. Robinson, J. R. Blake, T. Kodama, A. Shima, and Y. Tomita, “Interaction of cavitation bubbles with a free surface,” J. Appl. Phys. 89(12), 8225 (2001).
[Crossref]

Kotler, Z.

M. Zenou, A. Sa’ar, and Z. Kotler, “Digital laser printing of metal/metal-oxide nano-composites with tunable electrical properties,” Nanotechnology 27(1), 015203 (2016).
[Crossref] [PubMed]

M. Zenou, A. Sa’ar, and Z. Kotler, “Supersonic laser-induced jetting of aluminum micro-droplets,” Appl. Phys. Lett. 106(18), 181905 (2015).
[Crossref]

M. Zenou, A. Sa’ar, and Z. Kotler, “Laser transfer of metals and metal alloys for digital microfabrication of 3D objects,” Small 11(33), 4082–4089 (2015).
[Crossref] [PubMed]

M. Zenou, A. Sa’ar, and Z. Kotler, “Laser jetting of femto-liter metal droplets for high resolution 3D printed structures,” Sci. Rep. 5, 17265 (2015).
[Crossref] [PubMed]

M. Zenou, A. Sa’ar, and Z. Kotler, “Digital laser printing of aluminum microstructure on thermally sensitive substrate,” J. Phys. D: Appl. Phys. D 48(20), 205303 (2015).
[Crossref]

M. Zenou, S. Winter, A. Saar, and Z. Kotler, “Laser-Forward-Transfer of metal NP ink droplets: parametric analysis,” Nanosci. Nanotechnol. Lett. 5(4), 435 (2013).
[Crossref]

Koundourakis, G.

G. Koundourakis, C. Rockstuhl, D. Papazoglou, A. Klini, I. Zergioti, N. A. Vainos, and C. Fotakis, “Laser printing of active optical microstructures,” Appl. Phys. Lett. 78(7), 868 (2001).
[Crossref]

Kovacs, E.

A. Palla-Papavlu, L. Paraico, J. Shaw-Stewart, V. Dinca, T. Savopol, E. Kovacs, T. Lippert, A. Wokaun, and M. Dinescu, “Liposome micropatterning based on laser-induced forward transfer,” Appl. Phys., A Mater. Sci. Process. 102(3), 651–659 (2011).
[Crossref]

Kresz, N.

B. Hopp, T. Smausz, Z. Antal, N. Kresz, Z. Bor, and D. Chrisey, “Absorbing film assisted laser induced forward transfer of fungi (trichoderma conidia),” J. Appl. Phys. 96(6), 3478 (2004).
[Crossref]

Kruth, J. P.

S. Kumar and J. P. Kruth, “Wear performance of SLS/SLM materials,” Adv. Eng. Mater. 10(8), 750–753 (2008).
[Crossref]

Kumar, S.

S. Kumar and J. P. Kruth, “Wear performance of SLS/SLM materials,” Adv. Eng. Mater. 10(8), 750–753 (2008).
[Crossref]

Kuznetsov, A. I.

A. I. Kuznetsov, C. Unger, J. Koch, and B. N. Chichkov, “Laser-induced jet formation and droplet ejection from thin metal films,” Appl. Phys., A Mater. Sci. Process. 106(3), 479–487 (2012).
[Crossref]

A. I. Kuznetsov, R. Kiyan, and B. N. Chichkov, “Laser fabrication of 2D and 3D metal nanoparticle structures and arrays,” Opt. Express 18(20), 21198–21203 (2010).
[Crossref] [PubMed]

Langer, R.

D. A. LaVan, T. McGuire, and R. Langer, “Small-scale systems for in vivo drug delivery,” Nat. Biotechnol. 21(10), 1184–1191 (2003).
[Crossref] [PubMed]

LaVan, D. A.

D. A. LaVan, T. McGuire, and R. Langer, “Small-scale systems for in vivo drug delivery,” Nat. Biotechnol. 21(10), 1184–1191 (2003).
[Crossref] [PubMed]

Lee, I.

W. Tolbert, I. Lee, M. Doxtader, E. Ellis, and D. Dlott, “High-speed color imaging by laser ablation transfer with a dynamic release layer: fundamental mechanisms,” J. Imag. Sci. Tech. 37, 411 (1993).

Lee, K. J.

Y. Lee, J. R. Choi, K. J. Lee, N. E. Stott, and D. Kim, “Large-scale synthesis of copper nanoparticles by chemically controlled reduction for applications of inkjet-printed electronics,” Nanotechnology 19(41), 415604 (2008).
[Crossref] [PubMed]

Y. Lee, J.-R. Choi, K. J. Lee, N. E. Stott, and D. Kim, “Large-scale synthesis of copper nanoparticles by chemically controlled reduction for applications of inkjet-printed electronics,” Nanotechnology 19(41), 415604 (2008).
[Crossref] [PubMed]

Lee, Y.

Y. Lee, J.-R. Choi, K. J. Lee, N. E. Stott, and D. Kim, “Large-scale synthesis of copper nanoparticles by chemically controlled reduction for applications of inkjet-printed electronics,” Nanotechnology 19(41), 415604 (2008).
[Crossref] [PubMed]

Y. Lee, J. R. Choi, K. J. Lee, N. E. Stott, and D. Kim, “Large-scale synthesis of copper nanoparticles by chemically controlled reduction for applications of inkjet-printed electronics,” Nanotechnology 19(41), 415604 (2008).
[Crossref] [PubMed]

Lewis, J. A.

K. Sun, T.-S. Wei, B. Y. Ahn, J. Y. Seo, S. J. Dillon, and J. A. Lewis, “3D printing of interdigitated Li-ion microbattery architectures,” Adv. Mater. 25(33), 4539–4543 (2013).
[Crossref] [PubMed]

B. Y. Ahn, E. B. Duoss, M. J. Motala, X. Guo, S. I. Park, Y. Xiong, J. Yoon, R. G. Nuzzo, J. A. Rogers, and J. A. Lewis, “Omnidirectional printing of flexible, stretchable, and spanning silver microelectrodes,” Science 323(5921), 1590–1593 (2009).
[Crossref] [PubMed]

Lippert, T.

V. Dincaa, T. Mattle, A. Palla Papavlu, L. Rusen, C. Luculescu, T. Lippert, and M. Dinescu, “Polyethyleneimine patterns obtained by laser-transfer assisted by a dynamic release layer onto themanox soft substrates for cell adhesion study,” Appl. Surf. Sci. 278, 190–197 (2013).
[Crossref]

J. S. Stewart, T. Lippert, M. Nagel, F. Nüesch, and A. Wokaun, “Red-green-blue polymer light-emitting diode pixels printed by optimized laser-induced forward transfer,” Appl. Phys. Lett. 100(20), 203303 (2012).
[Crossref]

A. Palla-Papavlu, L. Paraico, J. Shaw-Stewart, V. Dinca, T. Savopol, E. Kovacs, T. Lippert, A. Wokaun, and M. Dinescu, “Liposome micropatterning based on laser-induced forward transfer,” Appl. Phys., A Mater. Sci. Process. 102(3), 651–659 (2011).
[Crossref]

R. Fardel, M. Nagel, F. Nüesch, T. Lippert, and A. Wokaun, “Laser-Induced Forward Transfer of organic LED building blocks studied by time-resolved shadowgraphy,” J. Phys. Chem. C 114(12), 5617–5636 (2010).
[Crossref]

K. S. Kaur, R. Fardel, T. C. May-Smith, M. Nagel, D. P. Banks, C. Grivas, T. Lippert, and R. W. Eason, “Shadowgraphic studies of triazene assisted laser-induced forward transfer of ceramic thin films,” J. Appl. Phys. 105(11), 113119 (2009).
[Crossref]

D. Banks, K. Kaur, R. Gazia, R. Fardel, M. Nagel, T. Lippert, and R. Eason, “Triazene photopolymer dynamic release layer-assisted femtosecond laser-induced forward transfer with an active carrier substrate,” Europhys. Lett. 83(3), 38003 (2008).
[Crossref]

R. Fardel, M. Nagel, F. Nüesch, T. Lippert, and A. Wokaun, “Fabrication of organic light-emitting diode pixels by laser-assistedforward transfer,” Appl. Phys. Lett. 91(6), 061103 (2007).
[Crossref]

A. Doraiswamy, R. J. Narayan, T. Lippert, L. Urech, A. Wokaun, M. Nagel, B. Hopp, M. Dinescu, R. Modi, R. C. Y. Auyeung, and D. B. Chrisey, “Excimer laser forward transfer of mammalian cells using a novel triazene absorbing layer,” Appl. Surf. Sci. 252(13), 4743–4747 (2006).
[Crossref]

Lippert, T. K.

J. R. H. Shaw-Stewart, T. K. Lippert, M. Nagel, F. A. Nüesch, and A. Wokaun, “Sequential printing by laser-induced forward transfer to fabricate a Polymer Light-Emitting Diode Pixel,” ACS Appl. Mater. Interfaces 4(7), 3535–3541 (2012).
[Crossref] [PubMed]

Lippincott-Schwartz, J.

A. P. Alivisatos, A. M. Andrews, E. S. Boyden, M. Chun, G. M. Church, K. Deisseroth, J. P. Donoghue, S. E. Fraser, J. Lippincott-Schwartz, L. L. Looger, S. Masmanidis, P. L. McEuen, A. V. Nurmikko, H. Park, D. S. Peterka, C. Reid, M. L. Roukes, A. Scherer, M. Schnitzer, T. J. Sejnowski, K. L. Shepard, D. Tsao, G. Turrigiano, P. S. Weiss, C. Xu, R. Yuste, and X. Zhuang, “Nanotools for neuroscience and brain activity mapping,” ACS Nano 7(3), 1850–1866 (2013).
[Crossref] [PubMed]

List, E. J. W.

S. Gamerith, A. Klug, H. Scheiber, U. Scherf, E. Moderegger, and E. J. W. List, “Direct ink-jet printing of Ag–Cu nanoparticle and Ag precursor based electrodes for OFET applications,” Adv. Funct. Mater. 17(16), 3111–3118 (2007).
[Crossref]

Liu, P.

A. C. Arias, S. E. Ready, R. Lujan, W. S. Wong, K. E. Paul, A. Salleo, M. L. Chabinyc, R. Apte, R. A. Street, Y. Wu, P. Liu, and B. Ong, “All jet-printed polymer thin-film transistor active-matrix backplanes,” Appl. Phys. Lett. 85(15), 3304 (2004).
[Crossref]

Lohse, D.

C. W. Visser, R. Pohl, C. Sun, G.-W. Römer, B. Huis in ’t Veld, and D. Lohse, “Toward 3D printing of pure metals by laser-induced forward transfer,” Adv. Mater. 27(27), 4087–4092 (2015).
[Crossref] [PubMed]

Looger, L. L.

A. P. Alivisatos, A. M. Andrews, E. S. Boyden, M. Chun, G. M. Church, K. Deisseroth, J. P. Donoghue, S. E. Fraser, J. Lippincott-Schwartz, L. L. Looger, S. Masmanidis, P. L. McEuen, A. V. Nurmikko, H. Park, D. S. Peterka, C. Reid, M. L. Roukes, A. Scherer, M. Schnitzer, T. J. Sejnowski, K. L. Shepard, D. Tsao, G. Turrigiano, P. S. Weiss, C. Xu, R. Yuste, and X. Zhuang, “Nanotools for neuroscience and brain activity mapping,” ACS Nano 7(3), 1850–1866 (2013).
[Crossref] [PubMed]

Luculescu, C.

V. Dincaa, T. Mattle, A. Palla Papavlu, L. Rusen, C. Luculescu, T. Lippert, and M. Dinescu, “Polyethyleneimine patterns obtained by laser-transfer assisted by a dynamic release layer onto themanox soft substrates for cell adhesion study,” Appl. Surf. Sci. 278, 190–197 (2013).
[Crossref]

Lujan, R.

A. C. Arias, S. E. Ready, R. Lujan, W. S. Wong, K. E. Paul, A. Salleo, M. L. Chabinyc, R. Apte, R. A. Street, Y. Wu, P. Liu, and B. Ong, “All jet-printed polymer thin-film transistor active-matrix backplanes,” Appl. Phys. Lett. 85(15), 3304 (2004).
[Crossref]

Luscombe, C. K.

S. H. Ko, H. Pan, C. P. Grigoropoulos, C. K. Luscombe, J. M. J. Fr’echet, and D. Poulikakos, “All-inkjet-printed flexible electronics fabrication on a polymer substrate by low-temperature high-resolution selective laser sintering of metal nanoparticles,” Nanotechnology 18(34), 345202 (2007).
[Crossref]

Magdassi, S.

S. Magdassi, M. Grouchko, and A. Kamyshny, “Copper nanoparticles for printed electronics: routes towards achieving oxidation stability,” Materials (Basel) 3(9), 4626–4638 (2010).
[Crossref]

M. Grouchko, A. Kamyshny, and S. Magdassi, “Formation of air-stable copper–silver core–shell nanoparticles for inkjet Printing,” J. Mater. Chem. 19(19), 3057–3062 (2009).
[Crossref]

Makrygianni, M.

M. Makrygianni, I. Kalpyris, C. Boutopoulos, and I. Zergioti, “Laser induced forward transfer of Ag nanoparticles ink deposition and characterization,” Appl. Surf. Sci. 297, 40–44 (2014).
[Crossref]

Masmanidis, S.

A. P. Alivisatos, A. M. Andrews, E. S. Boyden, M. Chun, G. M. Church, K. Deisseroth, J. P. Donoghue, S. E. Fraser, J. Lippincott-Schwartz, L. L. Looger, S. Masmanidis, P. L. McEuen, A. V. Nurmikko, H. Park, D. S. Peterka, C. Reid, M. L. Roukes, A. Scherer, M. Schnitzer, T. J. Sejnowski, K. L. Shepard, D. Tsao, G. Turrigiano, P. S. Weiss, C. Xu, R. Yuste, and X. Zhuang, “Nanotools for neuroscience and brain activity mapping,” ACS Nano 7(3), 1850–1866 (2013).
[Crossref] [PubMed]

Mathews, S. A.

R. C. Y. Auyeung, H. Kim, S. A. Mathews, and A. Piqué, “Laser direct-write of metallic nanoparticle inks,” J. Laser Mirco/Nanoeng. 2(1), 21–25 (2007).
[Crossref]

Mattle, T.

V. Dincaa, T. Mattle, A. Palla Papavlu, L. Rusen, C. Luculescu, T. Lippert, and M. Dinescu, “Polyethyleneimine patterns obtained by laser-transfer assisted by a dynamic release layer onto themanox soft substrates for cell adhesion study,” Appl. Surf. Sci. 278, 190–197 (2013).
[Crossref]

May-Smith, T. C.

K. S. Kaur, R. Fardel, T. C. May-Smith, M. Nagel, D. P. Banks, C. Grivas, T. Lippert, and R. W. Eason, “Shadowgraphic studies of triazene assisted laser-induced forward transfer of ceramic thin films,” J. Appl. Phys. 105(11), 113119 (2009).
[Crossref]

McDaniel, N. D.

N. T. Kattamis, N. D. McDaniel, S. Bernhard, and C. B. Arnold, “Laser direct write printing of sensitive and robust light emitting organic molecules,” Appl. Phys. Lett. 94(10), 103306 (2009).
[Crossref]

McEuen, P. L.

A. P. Alivisatos, A. M. Andrews, E. S. Boyden, M. Chun, G. M. Church, K. Deisseroth, J. P. Donoghue, S. E. Fraser, J. Lippincott-Schwartz, L. L. Looger, S. Masmanidis, P. L. McEuen, A. V. Nurmikko, H. Park, D. S. Peterka, C. Reid, M. L. Roukes, A. Scherer, M. Schnitzer, T. J. Sejnowski, K. L. Shepard, D. Tsao, G. Turrigiano, P. S. Weiss, C. Xu, R. Yuste, and X. Zhuang, “Nanotools for neuroscience and brain activity mapping,” ACS Nano 7(3), 1850–1866 (2013).
[Crossref] [PubMed]

McGuire, T.

D. A. LaVan, T. McGuire, and R. Langer, “Small-scale systems for in vivo drug delivery,” Nat. Biotechnol. 21(10), 1184–1191 (2003).
[Crossref] [PubMed]

Mills, B.

Mills, J. D.

D. P. Banks, C. Grivas, J. D. Mills, R. W. Eason, and I. Zergioti, “Nanodroplets deposited in microarrays by femtosecond Ti:sapphire laser-induced forward transfer,” Appl. Phys. Lett. 89(19), 193107 (2006).
[Crossref]

Miyamoto, I.

H. Yamada, T. Sano, T. Nakayama, and I. Miyamoto, “Optimization of laser-induced forward transfer process of metal thin films,” Appl. Surf. Sci. 197, 411–415 (2002).
[Crossref]

T. Sano, H. Yamada, T. Nakayama, and I. Miyamoto, “Experimental investigation of laser induced forward transfer process of metal thin films,” Appl. Surf. Sci. 186(1-4), 221–226 (2002).
[Crossref]

Moderegger, E.

S. Gamerith, A. Klug, H. Scheiber, U. Scherf, E. Moderegger, and E. J. W. List, “Direct ink-jet printing of Ag–Cu nanoparticle and Ag precursor based electrodes for OFET applications,” Adv. Funct. Mater. 17(16), 3111–3118 (2007).
[Crossref]

Modi, R.

A. Doraiswamy, R. J. Narayan, T. Lippert, L. Urech, A. Wokaun, M. Nagel, B. Hopp, M. Dinescu, R. Modi, R. C. Y. Auyeung, and D. B. Chrisey, “Excimer laser forward transfer of mammalian cells using a novel triazene absorbing layer,” Appl. Surf. Sci. 252(13), 4743–4747 (2006).
[Crossref]

Mogyorósi, P.

P. Mogyorósi, T. Szörényi, K. Bali, Zs. Tóth, and I. Hevesi, “Pulsed laser ablative deposition of thin metal films,” Appl. Surf. Sci. 36(1-4), 157–163 (1989).
[Crossref]

Morenza, J. L.

A. Palla-Papavlu, C. Córdoba, A. Patrascioiu, J. M. Fernández-Pradas, J. L. Morenza, and P. Serra, “Deposition and characterization of lines printed through laser-induced forward transfer,” Appl. Phys., A Mater. Sci. Process. 110(4), 751–755 (2013).
[Crossref]

P. Serra, M. Colina, J. M. Fernández-Pradas, L. Sevilla, and J. L. Morenza, “Preparation of functional DNA microarrays through laser-induced forward transfer,” Appl. Phys. Lett. 85(9), 1639 (2004).
[Crossref]

P. Serra, J. M. Fernández-Pradas, F. X. Berthet, M. Colina, J. Elvira, and J. L. Morenza, “Laser direct writing of biomolecule microarrays,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 949 (2004).
[Crossref]

Motala, M. J.

B. Y. Ahn, E. B. Duoss, M. J. Motala, X. Guo, S. I. Park, Y. Xiong, J. Yoon, R. G. Nuzzo, J. A. Rogers, and J. A. Lewis, “Omnidirectional printing of flexible, stretchable, and spanning silver microelectrodes,” Science 323(5921), 1590–1593 (2009).
[Crossref] [PubMed]

Murata, K.

C. Ho, K. Murata, D. A. Steingart, J. W. Evans, and P. K. Wright, “A super ink jet printed zinc–silver 3D microbattery,” J. Micromech. Microeng. 19(9), 094013 (2009).
[Crossref]

Nagel, M.

J. R. H. Shaw-Stewart, T. K. Lippert, M. Nagel, F. A. Nüesch, and A. Wokaun, “Sequential printing by laser-induced forward transfer to fabricate a Polymer Light-Emitting Diode Pixel,” ACS Appl. Mater. Interfaces 4(7), 3535–3541 (2012).
[Crossref] [PubMed]

J. S. Stewart, T. Lippert, M. Nagel, F. Nüesch, and A. Wokaun, “Red-green-blue polymer light-emitting diode pixels printed by optimized laser-induced forward transfer,” Appl. Phys. Lett. 100(20), 203303 (2012).
[Crossref]

R. Fardel, M. Nagel, F. Nüesch, T. Lippert, and A. Wokaun, “Laser-Induced Forward Transfer of organic LED building blocks studied by time-resolved shadowgraphy,” J. Phys. Chem. C 114(12), 5617–5636 (2010).
[Crossref]

K. S. Kaur, R. Fardel, T. C. May-Smith, M. Nagel, D. P. Banks, C. Grivas, T. Lippert, and R. W. Eason, “Shadowgraphic studies of triazene assisted laser-induced forward transfer of ceramic thin films,” J. Appl. Phys. 105(11), 113119 (2009).
[Crossref]

D. Banks, K. Kaur, R. Gazia, R. Fardel, M. Nagel, T. Lippert, and R. Eason, “Triazene photopolymer dynamic release layer-assisted femtosecond laser-induced forward transfer with an active carrier substrate,” Europhys. Lett. 83(3), 38003 (2008).
[Crossref]

R. Fardel, M. Nagel, F. Nüesch, T. Lippert, and A. Wokaun, “Fabrication of organic light-emitting diode pixels by laser-assistedforward transfer,” Appl. Phys. Lett. 91(6), 061103 (2007).
[Crossref]

A. Doraiswamy, R. J. Narayan, T. Lippert, L. Urech, A. Wokaun, M. Nagel, B. Hopp, M. Dinescu, R. Modi, R. C. Y. Auyeung, and D. B. Chrisey, “Excimer laser forward transfer of mammalian cells using a novel triazene absorbing layer,” Appl. Surf. Sci. 252(13), 4743–4747 (2006).
[Crossref]

Nakata, Y.

Y. Nakata and T. Okada, “Time-resolved microscopic imaging of the laser-induced forward transfer process,” Appl. Phys., A Mater. Sci. Process. 69(7), S275–S278 (1999).
[Crossref]

Nakayama, T.

T. Sano, H. Yamada, T. Nakayama, and I. Miyamoto, “Experimental investigation of laser induced forward transfer process of metal thin films,” Appl. Surf. Sci. 186(1-4), 221–226 (2002).
[Crossref]

H. Yamada, T. Sano, T. Nakayama, and I. Miyamoto, “Optimization of laser-induced forward transfer process of metal thin films,” Appl. Surf. Sci. 197, 411–415 (2002).
[Crossref]

Nam, K. H.

S. H. Ko, J. Chung, N. Hotz, K. H. Nam, and C. P. Grigoropoulos, “Metal nanoparticle direct inkjet printing for low-temperature 3D micro metal structure fabrication,” J. Micromech. Microeng. 20(12), 125010 (2010).
[Crossref]

Narayan, R. J.

A. Doraiswamy, R. J. Narayan, T. Lippert, L. Urech, A. Wokaun, M. Nagel, B. Hopp, M. Dinescu, R. Modi, R. C. Y. Auyeung, and D. B. Chrisey, “Excimer laser forward transfer of mammalian cells using a novel triazene absorbing layer,” Appl. Surf. Sci. 252(13), 4743–4747 (2006).
[Crossref]

Nüesch, F.

J. S. Stewart, T. Lippert, M. Nagel, F. Nüesch, and A. Wokaun, “Red-green-blue polymer light-emitting diode pixels printed by optimized laser-induced forward transfer,” Appl. Phys. Lett. 100(20), 203303 (2012).
[Crossref]

R. Fardel, M. Nagel, F. Nüesch, T. Lippert, and A. Wokaun, “Laser-Induced Forward Transfer of organic LED building blocks studied by time-resolved shadowgraphy,” J. Phys. Chem. C 114(12), 5617–5636 (2010).
[Crossref]

R. Fardel, M. Nagel, F. Nüesch, T. Lippert, and A. Wokaun, “Fabrication of organic light-emitting diode pixels by laser-assistedforward transfer,” Appl. Phys. Lett. 91(6), 061103 (2007).
[Crossref]

Nüesch, F. A.

J. R. H. Shaw-Stewart, T. K. Lippert, M. Nagel, F. A. Nüesch, and A. Wokaun, “Sequential printing by laser-induced forward transfer to fabricate a Polymer Light-Emitting Diode Pixel,” ACS Appl. Mater. Interfaces 4(7), 3535–3541 (2012).
[Crossref] [PubMed]

Nurmikko, A. V.

A. P. Alivisatos, A. M. Andrews, E. S. Boyden, M. Chun, G. M. Church, K. Deisseroth, J. P. Donoghue, S. E. Fraser, J. Lippincott-Schwartz, L. L. Looger, S. Masmanidis, P. L. McEuen, A. V. Nurmikko, H. Park, D. S. Peterka, C. Reid, M. L. Roukes, A. Scherer, M. Schnitzer, T. J. Sejnowski, K. L. Shepard, D. Tsao, G. Turrigiano, P. S. Weiss, C. Xu, R. Yuste, and X. Zhuang, “Nanotools for neuroscience and brain activity mapping,” ACS Nano 7(3), 1850–1866 (2013).
[Crossref] [PubMed]

Nuzzo, R. G.

B. Y. Ahn, E. B. Duoss, M. J. Motala, X. Guo, S. I. Park, Y. Xiong, J. Yoon, R. G. Nuzzo, J. A. Rogers, and J. A. Lewis, “Omnidirectional printing of flexible, stretchable, and spanning silver microelectrodes,” Science 323(5921), 1590–1593 (2009).
[Crossref] [PubMed]

Okada, T.

Y. Nakata and T. Okada, “Time-resolved microscopic imaging of the laser-induced forward transfer process,” Appl. Phys., A Mater. Sci. Process. 69(7), S275–S278 (1999).
[Crossref]

Ong, B.

A. C. Arias, S. E. Ready, R. Lujan, W. S. Wong, K. E. Paul, A. Salleo, M. L. Chabinyc, R. Apte, R. A. Street, Y. Wu, P. Liu, and B. Ong, “All jet-printed polymer thin-film transistor active-matrix backplanes,” Appl. Phys. Lett. 85(15), 3304 (2004).
[Crossref]

Oosterhuis, G.

Overmeyer, L.

Palla Papavlu, A.

V. Dincaa, T. Mattle, A. Palla Papavlu, L. Rusen, C. Luculescu, T. Lippert, and M. Dinescu, “Polyethyleneimine patterns obtained by laser-transfer assisted by a dynamic release layer onto themanox soft substrates for cell adhesion study,” Appl. Surf. Sci. 278, 190–197 (2013).
[Crossref]

Palla-Papavlu, A.

A. Palla-Papavlu, C. Córdoba, A. Patrascioiu, J. M. Fernández-Pradas, J. L. Morenza, and P. Serra, “Deposition and characterization of lines printed through laser-induced forward transfer,” Appl. Phys., A Mater. Sci. Process. 110(4), 751–755 (2013).
[Crossref]

A. Palla-Papavlu, L. Paraico, J. Shaw-Stewart, V. Dinca, T. Savopol, E. Kovacs, T. Lippert, A. Wokaun, and M. Dinescu, “Liposome micropatterning based on laser-induced forward transfer,” Appl. Phys., A Mater. Sci. Process. 102(3), 651–659 (2011).
[Crossref]

Pan, H.

S. H. Ko, H. Pan, C. P. Grigoropoulos, C. K. Luscombe, J. M. J. Fr’echet, and D. Poulikakos, “All-inkjet-printed flexible electronics fabrication on a polymer substrate by low-temperature high-resolution selective laser sintering of metal nanoparticles,” Nanotechnology 18(34), 345202 (2007).
[Crossref]

Papazoglou, D.

G. Koundourakis, C. Rockstuhl, D. Papazoglou, A. Klini, I. Zergioti, N. A. Vainos, and C. Fotakis, “Laser printing of active optical microstructures,” Appl. Phys. Lett. 78(7), 868 (2001).
[Crossref]

Papazoglou, D. G.

I. Zergioti, D. G. Papazoglou, A. Karaiskou, C. Fotakis, E. Gamaly, and A. Rode, “A comparative schlieren imaging study between ns and sub-ps laser forward transfer of Cr,” Appl. Surf. Sci. 208–209, 177–180 (2003).
[Crossref]

Paraico, L.

A. Palla-Papavlu, L. Paraico, J. Shaw-Stewart, V. Dinca, T. Savopol, E. Kovacs, T. Lippert, A. Wokaun, and M. Dinescu, “Liposome micropatterning based on laser-induced forward transfer,” Appl. Phys., A Mater. Sci. Process. 102(3), 651–659 (2011).
[Crossref]

Park, H.

A. P. Alivisatos, A. M. Andrews, E. S. Boyden, M. Chun, G. M. Church, K. Deisseroth, J. P. Donoghue, S. E. Fraser, J. Lippincott-Schwartz, L. L. Looger, S. Masmanidis, P. L. McEuen, A. V. Nurmikko, H. Park, D. S. Peterka, C. Reid, M. L. Roukes, A. Scherer, M. Schnitzer, T. J. Sejnowski, K. L. Shepard, D. Tsao, G. Turrigiano, P. S. Weiss, C. Xu, R. Yuste, and X. Zhuang, “Nanotools for neuroscience and brain activity mapping,” ACS Nano 7(3), 1850–1866 (2013).
[Crossref] [PubMed]

J. T. Robinson, M. Jorgolli, A. K. Shalek, M.-H. Yoon, R. S. Gertner, and H. Park, “Vertical nanowire electrode arrays as a scalable platform for intracellular interfacing to neuronal circuits,” Nat. Nanotechnol. 7(3), 180–184 (2012).
[Crossref] [PubMed]

Park, S. I.

B. Y. Ahn, E. B. Duoss, M. J. Motala, X. Guo, S. I. Park, Y. Xiong, J. Yoon, R. G. Nuzzo, J. A. Rogers, and J. A. Lewis, “Omnidirectional printing of flexible, stretchable, and spanning silver microelectrodes,” Science 323(5921), 1590–1593 (2009).
[Crossref] [PubMed]

Patrascioiu, A.

A. Palla-Papavlu, C. Córdoba, A. Patrascioiu, J. M. Fernández-Pradas, J. L. Morenza, and P. Serra, “Deposition and characterization of lines printed through laser-induced forward transfer,” Appl. Phys., A Mater. Sci. Process. 110(4), 751–755 (2013).
[Crossref]

Paul, K. E.

A. C. Arias, S. E. Ready, R. Lujan, W. S. Wong, K. E. Paul, A. Salleo, M. L. Chabinyc, R. Apte, R. A. Street, Y. Wu, P. Liu, and B. Ong, “All jet-printed polymer thin-film transistor active-matrix backplanes,” Appl. Phys. Lett. 85(15), 3304 (2004).
[Crossref]

Perriere, J.

E. Fogarassy, C. Fuchs, F. Kerherve, G. Hauchecorne, and J. Perriere, “Laser‐induced forward transfer of high‐Tc YBaCuO and BiSrCaCuO superconducting thin films,” J. Appl. Phys. 66(1), 457 (1989).
[Crossref]

Peterka, D. S.

A. P. Alivisatos, A. M. Andrews, E. S. Boyden, M. Chun, G. M. Church, K. Deisseroth, J. P. Donoghue, S. E. Fraser, J. Lippincott-Schwartz, L. L. Looger, S. Masmanidis, P. L. McEuen, A. V. Nurmikko, H. Park, D. S. Peterka, C. Reid, M. L. Roukes, A. Scherer, M. Schnitzer, T. J. Sejnowski, K. L. Shepard, D. Tsao, G. Turrigiano, P. S. Weiss, C. Xu, R. Yuste, and X. Zhuang, “Nanotools for neuroscience and brain activity mapping,” ACS Nano 7(3), 1850–1866 (2013).
[Crossref] [PubMed]

Petrovic, J.

A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, “Nanofabricated media with negative permeability at visible frequencies,” Nature 438(7066), 335–338 (2005).
[Crossref] [PubMed]

Piqué, A.

E. Breckenfeld, H. Kim, R. C. Y. Auyeung, N. Charipar, P. Serra, and A. Piqué, “Laser-induced forward transfer of silver nanopaste for microwave interconnects,” Appl. Surf. Sci. 331, 254–261 (2015).
[Crossref]

M. Duocastella, H. Kim, P. Serra, and A. Piqué, “Optimization of laser printing of nanoparticle suspensions for microelectronic applications,” Appl. Phys., A Mater. Sci. Process. 106(3), 471–478 (2012).
[Crossref]

J. Wang, R. C. Y. Auyeung, H. Kim, N. A. Charipar, and A. Piqué, “Three-dimensional printing of interconnects by laser direct-write of silver nanopastes,” Adv. Mater. 22(40), 4462–4466 (2010).
[Crossref] [PubMed]

R. C. Y. Auyeung, H. Kim, S. A. Mathews, and A. Piqué, “Laser direct-write of metallic nanoparticle inks,” J. Laser Mirco/Nanoeng. 2(1), 21–25 (2007).
[Crossref]

Pohl, R.

C. W. Visser, R. Pohl, C. Sun, G.-W. Römer, B. Huis in ’t Veld, and D. Lohse, “Toward 3D printing of pure metals by laser-induced forward transfer,” Adv. Mater. 27(27), 4087–4092 (2015).
[Crossref] [PubMed]

Poulikakos, D.

S. H. Ko, H. Pan, C. P. Grigoropoulos, C. K. Luscombe, J. M. J. Fr’echet, and D. Poulikakos, “All-inkjet-printed flexible electronics fabrication on a polymer substrate by low-temperature high-resolution selective laser sintering of metal nanoparticles,” Nanotechnology 18(34), 345202 (2007).
[Crossref]

Prosperetti, A.

A. Prosperetti, “A generalization of the Rayleigh-Plesset equation of bubble dynamics,” Phys. Fluids 25(3), 409–410 (1982).
[Crossref]

Rapp, L.

L. Rapp, J. Ailuno, A. P. Alloncle, and P. Delaporte, “Pulsed-laser printing of silver nanoparticles ink: control of morphological properties,” Opt. Express 19(22), 21563–21574 (2011).
[Crossref] [PubMed]

L. Rapp, A. K. Diallo, A. P. Alloncle, C. Videlot-Ackermann, F. Fages, and P. Delaporte, “Pulsed-laser printing of organic thin-film transistors,” Appl. Phys. Lett. 95(17), 171109 (2009).
[Crossref]

L. Rapp, A. K. Diallo, A. P. Alloncle, C. Videlot-Ackermann, F. Fages, and P. Delaporte, “Pulsed-laser printing of organic thin-film transistors,” Appl. Phys. Lett. 95(17), 171109 (2009).
[Crossref]

Ready, S. E.

A. C. Arias, S. E. Ready, R. Lujan, W. S. Wong, K. E. Paul, A. Salleo, M. L. Chabinyc, R. Apte, R. A. Street, Y. Wu, P. Liu, and B. Ong, “All jet-printed polymer thin-film transistor active-matrix backplanes,” Appl. Phys. Lett. 85(15), 3304 (2004).
[Crossref]

Reid, C.

A. P. Alivisatos, A. M. Andrews, E. S. Boyden, M. Chun, G. M. Church, K. Deisseroth, J. P. Donoghue, S. E. Fraser, J. Lippincott-Schwartz, L. L. Looger, S. Masmanidis, P. L. McEuen, A. V. Nurmikko, H. Park, D. S. Peterka, C. Reid, M. L. Roukes, A. Scherer, M. Schnitzer, T. J. Sejnowski, K. L. Shepard, D. Tsao, G. Turrigiano, P. S. Weiss, C. Xu, R. Yuste, and X. Zhuang, “Nanotools for neuroscience and brain activity mapping,” ACS Nano 7(3), 1850–1866 (2013).
[Crossref] [PubMed]

Reinhardt, C.

U. Zywietz, C. Reinhardt, A. B. Evlyukhin, T. Birr, and B. N. Chichkov, “Generation and patterning of Si nanoparticles by femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 114(1), 45–50 (2014).
[Crossref]

U. Zywietz, A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses,” Nat. Commun. 5, 3402 (2014).
[Crossref] [PubMed]

Robinson, J. T.

J. T. Robinson, M. Jorgolli, A. K. Shalek, M.-H. Yoon, R. S. Gertner, and H. Park, “Vertical nanowire electrode arrays as a scalable platform for intracellular interfacing to neuronal circuits,” Nat. Nanotechnol. 7(3), 180–184 (2012).
[Crossref] [PubMed]

Robinson, P. B.

P. B. Robinson, J. R. Blake, T. Kodama, A. Shima, and Y. Tomita, “Interaction of cavitation bubbles with a free surface,” J. Appl. Phys. 89(12), 8225 (2001).
[Crossref]

Rockstuhl, C.

G. Koundourakis, C. Rockstuhl, D. Papazoglou, A. Klini, I. Zergioti, N. A. Vainos, and C. Fotakis, “Laser printing of active optical microstructures,” Appl. Phys. Lett. 78(7), 868 (2001).
[Crossref]

Rode, A.

I. Zergioti, D. G. Papazoglou, A. Karaiskou, C. Fotakis, E. Gamaly, and A. Rode, “A comparative schlieren imaging study between ns and sub-ps laser forward transfer of Cr,” Appl. Surf. Sci. 208–209, 177–180 (2003).
[Crossref]

Rogers, J. A.

B. Y. Ahn, E. B. Duoss, M. J. Motala, X. Guo, S. I. Park, Y. Xiong, J. Yoon, R. G. Nuzzo, J. A. Rogers, and J. A. Lewis, “Omnidirectional printing of flexible, stretchable, and spanning silver microelectrodes,” Science 323(5921), 1590–1593 (2009).
[Crossref] [PubMed]

Römer, G.-W.

C. W. Visser, R. Pohl, C. Sun, G.-W. Römer, B. Huis in ’t Veld, and D. Lohse, “Toward 3D printing of pure metals by laser-induced forward transfer,” Adv. Mater. 27(27), 4087–4092 (2015).
[Crossref] [PubMed]

Roukes, M. L.

A. P. Alivisatos, A. M. Andrews, E. S. Boyden, M. Chun, G. M. Church, K. Deisseroth, J. P. Donoghue, S. E. Fraser, J. Lippincott-Schwartz, L. L. Looger, S. Masmanidis, P. L. McEuen, A. V. Nurmikko, H. Park, D. S. Peterka, C. Reid, M. L. Roukes, A. Scherer, M. Schnitzer, T. J. Sejnowski, K. L. Shepard, D. Tsao, G. Turrigiano, P. S. Weiss, C. Xu, R. Yuste, and X. Zhuang, “Nanotools for neuroscience and brain activity mapping,” ACS Nano 7(3), 1850–1866 (2013).
[Crossref] [PubMed]

Rusen, L.

V. Dincaa, T. Mattle, A. Palla Papavlu, L. Rusen, C. Luculescu, T. Lippert, and M. Dinescu, “Polyethyleneimine patterns obtained by laser-transfer assisted by a dynamic release layer onto themanox soft substrates for cell adhesion study,” Appl. Surf. Sci. 278, 190–197 (2013).
[Crossref]

Sa’ar, A.

M. Zenou, A. Sa’ar, and Z. Kotler, “Digital laser printing of metal/metal-oxide nano-composites with tunable electrical properties,” Nanotechnology 27(1), 015203 (2016).
[Crossref] [PubMed]

M. Zenou, A. Sa’ar, and Z. Kotler, “Laser jetting of femto-liter metal droplets for high resolution 3D printed structures,” Sci. Rep. 5, 17265 (2015).
[Crossref] [PubMed]

M. Zenou, A. Sa’ar, and Z. Kotler, “Supersonic laser-induced jetting of aluminum micro-droplets,” Appl. Phys. Lett. 106(18), 181905 (2015).
[Crossref]

M. Zenou, A. Sa’ar, and Z. Kotler, “Digital laser printing of aluminum microstructure on thermally sensitive substrate,” J. Phys. D: Appl. Phys. D 48(20), 205303 (2015).
[Crossref]

M. Zenou, A. Sa’ar, and Z. Kotler, “Laser transfer of metals and metal alloys for digital microfabrication of 3D objects,” Small 11(33), 4082–4089 (2015).
[Crossref] [PubMed]

Saar, A.

M. Zenou, S. Winter, A. Saar, and Z. Kotler, “Laser-Forward-Transfer of metal NP ink droplets: parametric analysis,” Nanosci. Nanotechnol. Lett. 5(4), 435 (2013).
[Crossref]

Salleo, A.

A. C. Arias, S. E. Ready, R. Lujan, W. S. Wong, K. E. Paul, A. Salleo, M. L. Chabinyc, R. Apte, R. A. Street, Y. Wu, P. Liu, and B. Ong, “All jet-printed polymer thin-film transistor active-matrix backplanes,” Appl. Phys. Lett. 85(15), 3304 (2004).
[Crossref]

Sano, T.

T. Sano, H. Yamada, T. Nakayama, and I. Miyamoto, “Experimental investigation of laser induced forward transfer process of metal thin films,” Appl. Surf. Sci. 186(1-4), 221–226 (2002).
[Crossref]

H. Yamada, T. Sano, T. Nakayama, and I. Miyamoto, “Optimization of laser-induced forward transfer process of metal thin films,” Appl. Surf. Sci. 197, 411–415 (2002).
[Crossref]

Savopol, T.

A. Palla-Papavlu, L. Paraico, J. Shaw-Stewart, V. Dinca, T. Savopol, E. Kovacs, T. Lippert, A. Wokaun, and M. Dinescu, “Liposome micropatterning based on laser-induced forward transfer,” Appl. Phys., A Mater. Sci. Process. 102(3), 651–659 (2011).
[Crossref]

Scheiber, H.

S. Gamerith, A. Klug, H. Scheiber, U. Scherf, E. Moderegger, and E. J. W. List, “Direct ink-jet printing of Ag–Cu nanoparticle and Ag precursor based electrodes for OFET applications,” Adv. Funct. Mater. 17(16), 3111–3118 (2007).
[Crossref]

Scherer, A.

A. P. Alivisatos, A. M. Andrews, E. S. Boyden, M. Chun, G. M. Church, K. Deisseroth, J. P. Donoghue, S. E. Fraser, J. Lippincott-Schwartz, L. L. Looger, S. Masmanidis, P. L. McEuen, A. V. Nurmikko, H. Park, D. S. Peterka, C. Reid, M. L. Roukes, A. Scherer, M. Schnitzer, T. J. Sejnowski, K. L. Shepard, D. Tsao, G. Turrigiano, P. S. Weiss, C. Xu, R. Yuste, and X. Zhuang, “Nanotools for neuroscience and brain activity mapping,” ACS Nano 7(3), 1850–1866 (2013).
[Crossref] [PubMed]

Scherf, U.

S. Gamerith, A. Klug, H. Scheiber, U. Scherf, E. Moderegger, and E. J. W. List, “Direct ink-jet printing of Ag–Cu nanoparticle and Ag precursor based electrodes for OFET applications,” Adv. Funct. Mater. 17(16), 3111–3118 (2007).
[Crossref]

Schlesinger, Z.

R. Baseman, N. Froberg, J. C. Andreshak, and Z. Schlesinger, “Minimum uence for laser blow-off of thin gold films at 248 and 532 nm,” Appl. Phys. Lett. 56(15), 1412–1414 (1990).
[Crossref]

Schmid, G.

U. Zschieschang, H. Klauk, M. Halik, G. Schmid, and C. Dehm, “Flexible Organic Circuits with Printed Gate Electrodes,” Adv. Mater. 15(14), 1147–1151 (2003).
[Crossref]

Schnitzer, M.

A. P. Alivisatos, A. M. Andrews, E. S. Boyden, M. Chun, G. M. Church, K. Deisseroth, J. P. Donoghue, S. E. Fraser, J. Lippincott-Schwartz, L. L. Looger, S. Masmanidis, P. L. McEuen, A. V. Nurmikko, H. Park, D. S. Peterka, C. Reid, M. L. Roukes, A. Scherer, M. Schnitzer, T. J. Sejnowski, K. L. Shepard, D. Tsao, G. Turrigiano, P. S. Weiss, C. Xu, R. Yuste, and X. Zhuang, “Nanotools for neuroscience and brain activity mapping,” ACS Nano 7(3), 1850–1866 (2013).
[Crossref] [PubMed]

Schultze, V.

V. Schultze and M. Wagner, “Laser-induced forward transfer of aluminium,” Appl. Surf. Sci. 52(4), 303–309 (1991).
[Crossref]

Sejnowski, T. J.

A. P. Alivisatos, A. M. Andrews, E. S. Boyden, M. Chun, G. M. Church, K. Deisseroth, J. P. Donoghue, S. E. Fraser, J. Lippincott-Schwartz, L. L. Looger, S. Masmanidis, P. L. McEuen, A. V. Nurmikko, H. Park, D. S. Peterka, C. Reid, M. L. Roukes, A. Scherer, M. Schnitzer, T. J. Sejnowski, K. L. Shepard, D. Tsao, G. Turrigiano, P. S. Weiss, C. Xu, R. Yuste, and X. Zhuang, “Nanotools for neuroscience and brain activity mapping,” ACS Nano 7(3), 1850–1866 (2013).
[Crossref] [PubMed]

Seo, J. Y.

K. Sun, T.-S. Wei, B. Y. Ahn, J. Y. Seo, S. J. Dillon, and J. A. Lewis, “3D printing of interdigitated Li-ion microbattery architectures,” Adv. Mater. 25(33), 4539–4543 (2013).
[Crossref] [PubMed]

Serpetzoglou, E.

C. Boutopoulos, I. Kalpyris, E. Serpetzoglou, and I. Zergioti, “Laser-induced forward transfer of silver nanoparticle ink: time-resolved imaging of the jetting dynamics and correlation with the printing quality,” Microfluid. Nanofluidics 16(3), 493–500 (2014).
[Crossref]

Serra, P.

E. Breckenfeld, H. Kim, R. C. Y. Auyeung, N. Charipar, P. Serra, and A. Piqué, “Laser-induced forward transfer of silver nanopaste for microwave interconnects,” Appl. Surf. Sci. 331, 254–261 (2015).
[Crossref]

A. Palla-Papavlu, C. Córdoba, A. Patrascioiu, J. M. Fernández-Pradas, J. L. Morenza, and P. Serra, “Deposition and characterization of lines printed through laser-induced forward transfer,” Appl. Phys., A Mater. Sci. Process. 110(4), 751–755 (2013).
[Crossref]

M. Duocastella, H. Kim, P. Serra, and A. Piqué, “Optimization of laser printing of nanoparticle suspensions for microelectronic applications,” Appl. Phys., A Mater. Sci. Process. 106(3), 471–478 (2012).
[Crossref]

P. Serra, M. Colina, J. M. Fernández-Pradas, L. Sevilla, and J. L. Morenza, “Preparation of functional DNA microarrays through laser-induced forward transfer,” Appl. Phys. Lett. 85(9), 1639 (2004).
[Crossref]

P. Serra, J. M. Fernández-Pradas, F. X. Berthet, M. Colina, J. Elvira, and J. L. Morenza, “Laser direct writing of biomolecule microarrays,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 949 (2004).
[Crossref]

Sevilla, L.

P. Serra, M. Colina, J. M. Fernández-Pradas, L. Sevilla, and J. L. Morenza, “Preparation of functional DNA microarrays through laser-induced forward transfer,” Appl. Phys. Lett. 85(9), 1639 (2004).
[Crossref]

Shalek, A. K.

J. T. Robinson, M. Jorgolli, A. K. Shalek, M.-H. Yoon, R. S. Gertner, and H. Park, “Vertical nanowire electrode arrays as a scalable platform for intracellular interfacing to neuronal circuits,” Nat. Nanotechnol. 7(3), 180–184 (2012).
[Crossref] [PubMed]

Shaw-Stewart, J.

A. Palla-Papavlu, L. Paraico, J. Shaw-Stewart, V. Dinca, T. Savopol, E. Kovacs, T. Lippert, A. Wokaun, and M. Dinescu, “Liposome micropatterning based on laser-induced forward transfer,” Appl. Phys., A Mater. Sci. Process. 102(3), 651–659 (2011).
[Crossref]

Shaw-Stewart, J. R. H.

J. R. H. Shaw-Stewart, T. K. Lippert, M. Nagel, F. A. Nüesch, and A. Wokaun, “Sequential printing by laser-induced forward transfer to fabricate a Polymer Light-Emitting Diode Pixel,” ACS Appl. Mater. Interfaces 4(7), 3535–3541 (2012).
[Crossref] [PubMed]

Shepard, K. L.

A. P. Alivisatos, A. M. Andrews, E. S. Boyden, M. Chun, G. M. Church, K. Deisseroth, J. P. Donoghue, S. E. Fraser, J. Lippincott-Schwartz, L. L. Looger, S. Masmanidis, P. L. McEuen, A. V. Nurmikko, H. Park, D. S. Peterka, C. Reid, M. L. Roukes, A. Scherer, M. Schnitzer, T. J. Sejnowski, K. L. Shepard, D. Tsao, G. Turrigiano, P. S. Weiss, C. Xu, R. Yuste, and X. Zhuang, “Nanotools for neuroscience and brain activity mapping,” ACS Nano 7(3), 1850–1866 (2013).
[Crossref] [PubMed]

Shima, A.

P. B. Robinson, J. R. Blake, T. Kodama, A. Shima, and Y. Tomita, “Interaction of cavitation bubbles with a free surface,” J. Appl. Phys. 89(12), 8225 (2001).
[Crossref]

Shimoda, T.

H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, and E. P. Woo, “High-Resolution Inkjet Printing of All-Polymer Transistor Circuits,” Science 290(5499), 2123–2126 (2000).
[Crossref] [PubMed]

Shishkovsky, I.

I. Yadroitsev, I. Shishkovsky, P. Bertrand, and I. Smurov, “Manufacturing of fine-structured 3D porous filter elements by selective laser melting,” Appl. Surf. Sci. 255(10), 5523–5527 (2009).
[Crossref]

Sigmon, T. W.

D. Toet, P. M. Smith, T. W. Sigmon, and M. O. Thompson, “Experimental and numerical investigations of a hydrogen-assisted laser-induced materials transfer procedure,” Appl. Phys. (Berl.) 87(7), 3537 (2000).
[Crossref]

Sirringhaus, H.

H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, and E. P. Woo, “High-Resolution Inkjet Printing of All-Polymer Transistor Circuits,” Science 290(5499), 2123–2126 (2000).
[Crossref] [PubMed]

Smausz, T.

B. Hopp, T. Smausz, Z. Antal, N. Kresz, Z. Bor, and D. Chrisey, “Absorbing film assisted laser induced forward transfer of fungi (trichoderma conidia),” J. Appl. Phys. 96(6), 3478 (2004).
[Crossref]

Smith, P. M.

D. Toet, P. M. Smith, T. W. Sigmon, and M. O. Thompson, “Experimental and numerical investigations of a hydrogen-assisted laser-induced materials transfer procedure,” Appl. Phys. (Berl.) 87(7), 3537 (2000).
[Crossref]

Smurov, I.

I. Yadroitsev, I. Shishkovsky, P. Bertrand, and I. Smurov, “Manufacturing of fine-structured 3D porous filter elements by selective laser melting,” Appl. Surf. Sci. 255(10), 5523–5527 (2009).
[Crossref]

I. Yadroitsev, Ph. Bertrand, and I. Smurov, “Parametric analysis of the selective laser melting process,” Appl. Surf. Sci. 253(19), 8064–8069 (2007).
[Crossref]

Sones, C. L.

Steingart, D. A.

C. Ho, K. Murata, D. A. Steingart, J. W. Evans, and P. K. Wright, “A super ink jet printed zinc–silver 3D microbattery,” J. Micromech. Microeng. 19(9), 094013 (2009).
[Crossref]

Stewart, J. S.

J. S. Stewart, T. Lippert, M. Nagel, F. Nüesch, and A. Wokaun, “Red-green-blue polymer light-emitting diode pixels printed by optimized laser-induced forward transfer,” Appl. Phys. Lett. 100(20), 203303 (2012).
[Crossref]

Stott, N. E.

Y. Lee, J. R. Choi, K. J. Lee, N. E. Stott, and D. Kim, “Large-scale synthesis of copper nanoparticles by chemically controlled reduction for applications of inkjet-printed electronics,” Nanotechnology 19(41), 415604 (2008).
[Crossref] [PubMed]

Y. Lee, J.-R. Choi, K. J. Lee, N. E. Stott, and D. Kim, “Large-scale synthesis of copper nanoparticles by chemically controlled reduction for applications of inkjet-printed electronics,” Nanotechnology 19(41), 415604 (2008).
[Crossref] [PubMed]

Street, R. A.

A. C. Arias, S. E. Ready, R. Lujan, W. S. Wong, K. E. Paul, A. Salleo, M. L. Chabinyc, R. Apte, R. A. Street, Y. Wu, P. Liu, and B. Ong, “All jet-printed polymer thin-film transistor active-matrix backplanes,” Appl. Phys. Lett. 85(15), 3304 (2004).
[Crossref]

Sun, C.

C. W. Visser, R. Pohl, C. Sun, G.-W. Römer, B. Huis in ’t Veld, and D. Lohse, “Toward 3D printing of pure metals by laser-induced forward transfer,” Adv. Mater. 27(27), 4087–4092 (2015).
[Crossref] [PubMed]

Sun, K.

K. Sun, T.-S. Wei, B. Y. Ahn, J. Y. Seo, S. J. Dillon, and J. A. Lewis, “3D printing of interdigitated Li-ion microbattery architectures,” Adv. Mater. 25(33), 4539–4543 (2013).
[Crossref] [PubMed]

Szörényi, T.

P. Mogyorósi, T. Szörényi, K. Bali, Zs. Tóth, and I. Hevesi, “Pulsed laser ablative deposition of thin metal films,” Appl. Surf. Sci. 36(1-4), 157–163 (1989).
[Crossref]

Thompson, M. O.

D. Toet, P. M. Smith, T. W. Sigmon, and M. O. Thompson, “Experimental and numerical investigations of a hydrogen-assisted laser-induced materials transfer procedure,” Appl. Phys. (Berl.) 87(7), 3537 (2000).
[Crossref]

Thompson, P.

F. Adrian, J. Bohandy, B. Kim, A. Jette, and P. Thompson, “A study of the mechanism of metal deposition by the laser-induced forward transfer process,” J. Vac. Sci. Technol. B 5(5), 1490–1494 (1987).
[Crossref]

Toet, D.

D. Toet, P. M. Smith, T. W. Sigmon, and M. O. Thompson, “Experimental and numerical investigations of a hydrogen-assisted laser-induced materials transfer procedure,” Appl. Phys. (Berl.) 87(7), 3537 (2000).
[Crossref]

Tolbert, W.

W. Tolbert, I. Lee, M. Doxtader, E. Ellis, and D. Dlott, “High-speed color imaging by laser ablation transfer with a dynamic release layer: fundamental mechanisms,” J. Imag. Sci. Tech. 37, 411 (1993).

Tomita, Y.

P. B. Robinson, J. R. Blake, T. Kodama, A. Shima, and Y. Tomita, “Interaction of cavitation bubbles with a free surface,” J. Appl. Phys. 89(12), 8225 (2001).
[Crossref]

Tóth, Zs.

P. Mogyorósi, T. Szörényi, K. Bali, Zs. Tóth, and I. Hevesi, “Pulsed laser ablative deposition of thin metal films,” Appl. Surf. Sci. 36(1-4), 157–163 (1989).
[Crossref]

Tsao, D.

A. P. Alivisatos, A. M. Andrews, E. S. Boyden, M. Chun, G. M. Church, K. Deisseroth, J. P. Donoghue, S. E. Fraser, J. Lippincott-Schwartz, L. L. Looger, S. Masmanidis, P. L. McEuen, A. V. Nurmikko, H. Park, D. S. Peterka, C. Reid, M. L. Roukes, A. Scherer, M. Schnitzer, T. J. Sejnowski, K. L. Shepard, D. Tsao, G. Turrigiano, P. S. Weiss, C. Xu, R. Yuste, and X. Zhuang, “Nanotools for neuroscience and brain activity mapping,” ACS Nano 7(3), 1850–1866 (2013).
[Crossref] [PubMed]

Turrigiano, G.

A. P. Alivisatos, A. M. Andrews, E. S. Boyden, M. Chun, G. M. Church, K. Deisseroth, J. P. Donoghue, S. E. Fraser, J. Lippincott-Schwartz, L. L. Looger, S. Masmanidis, P. L. McEuen, A. V. Nurmikko, H. Park, D. S. Peterka, C. Reid, M. L. Roukes, A. Scherer, M. Schnitzer, T. J. Sejnowski, K. L. Shepard, D. Tsao, G. Turrigiano, P. S. Weiss, C. Xu, R. Yuste, and X. Zhuang, “Nanotools for neuroscience and brain activity mapping,” ACS Nano 7(3), 1850–1866 (2013).
[Crossref] [PubMed]

Unger, C.

A. I. Kuznetsov, C. Unger, J. Koch, and B. N. Chichkov, “Laser-induced jet formation and droplet ejection from thin metal films,” Appl. Phys., A Mater. Sci. Process. 106(3), 479–487 (2012).
[Crossref]

C. Unger, J. Koch, L. Overmeyer, and B. N. Chichkov, “Time-resolved studies of femtosecond-laser induced melt dynamics,” Opt. Express 20(22), 24864–24872 (2012).
[Crossref] [PubMed]

Urech, L.

A. Doraiswamy, R. J. Narayan, T. Lippert, L. Urech, A. Wokaun, M. Nagel, B. Hopp, M. Dinescu, R. Modi, R. C. Y. Auyeung, and D. B. Chrisey, “Excimer laser forward transfer of mammalian cells using a novel triazene absorbing layer,” Appl. Surf. Sci. 252(13), 4743–4747 (2006).
[Crossref]

Vainos, N. A.

G. Koundourakis, C. Rockstuhl, D. Papazoglou, A. Klini, I. Zergioti, N. A. Vainos, and C. Fotakis, “Laser printing of active optical microstructures,” Appl. Phys. Lett. 78(7), 868 (2001).
[Crossref]

Videlot-Ackermann, C.

L. Rapp, A. K. Diallo, A. P. Alloncle, C. Videlot-Ackermann, F. Fages, and P. Delaporte, “Pulsed-laser printing of organic thin-film transistors,” Appl. Phys. Lett. 95(17), 171109 (2009).
[Crossref]

L. Rapp, A. K. Diallo, A. P. Alloncle, C. Videlot-Ackermann, F. Fages, and P. Delaporte, “Pulsed-laser printing of organic thin-film transistors,” Appl. Phys. Lett. 95(17), 171109 (2009).
[Crossref]

Villeneuve, P. R.

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386(6621), 143–149 (1997).
[Crossref]

Visser, C. W.

C. W. Visser, R. Pohl, C. Sun, G.-W. Römer, B. Huis in ’t Veld, and D. Lohse, “Toward 3D printing of pure metals by laser-induced forward transfer,” Adv. Mater. 27(27), 4087–4092 (2015).
[Crossref] [PubMed]

Wagner, M.

V. Schultze and M. Wagner, “Laser-induced forward transfer of aluminium,” Appl. Surf. Sci. 52(4), 303–309 (1991).
[Crossref]

Wang, J.

J. Wang, R. C. Y. Auyeung, H. Kim, N. A. Charipar, and A. Piqué, “Three-dimensional printing of interconnects by laser direct-write of silver nanopastes,” Adv. Mater. 22(40), 4462–4466 (2010).
[Crossref] [PubMed]

Wei, T.-S.

K. Sun, T.-S. Wei, B. Y. Ahn, J. Y. Seo, S. J. Dillon, and J. A. Lewis, “3D printing of interdigitated Li-ion microbattery architectures,” Adv. Mater. 25(33), 4539–4543 (2013).
[Crossref] [PubMed]

Weiss, P. S.

A. P. Alivisatos, A. M. Andrews, E. S. Boyden, M. Chun, G. M. Church, K. Deisseroth, J. P. Donoghue, S. E. Fraser, J. Lippincott-Schwartz, L. L. Looger, S. Masmanidis, P. L. McEuen, A. V. Nurmikko, H. Park, D. S. Peterka, C. Reid, M. L. Roukes, A. Scherer, M. Schnitzer, T. J. Sejnowski, K. L. Shepard, D. Tsao, G. Turrigiano, P. S. Weiss, C. Xu, R. Yuste, and X. Zhuang, “Nanotools for neuroscience and brain activity mapping,” ACS Nano 7(3), 1850–1866 (2013).
[Crossref] [PubMed]

Willis, D. A.

D. A. Willis and V. Grosu, “The effect of melting-induced volumetric expansion on initiation of laser-induced forward transfer,” Appl. Surf. Sci. 253(10), 4759–4763 (2007).
[Crossref]

D. A. Willis and V. Grosu, “Microdroplet deposition by laser-induced forward transfer,” Appl. Phys. Lett. 86(24), 244103 (2005).
[Crossref]

Winter, S.

M. Zenou, S. Winter, A. Saar, and Z. Kotler, “Laser-Forward-Transfer of metal NP ink droplets: parametric analysis,” Nanosci. Nanotechnol. Lett. 5(4), 435 (2013).
[Crossref]

Wokaun, A.

J. R. H. Shaw-Stewart, T. K. Lippert, M. Nagel, F. A. Nüesch, and A. Wokaun, “Sequential printing by laser-induced forward transfer to fabricate a Polymer Light-Emitting Diode Pixel,” ACS Appl. Mater. Interfaces 4(7), 3535–3541 (2012).
[Crossref] [PubMed]

J. S. Stewart, T. Lippert, M. Nagel, F. Nüesch, and A. Wokaun, “Red-green-blue polymer light-emitting diode pixels printed by optimized laser-induced forward transfer,” Appl. Phys. Lett. 100(20), 203303 (2012).
[Crossref]

A. Palla-Papavlu, L. Paraico, J. Shaw-Stewart, V. Dinca, T. Savopol, E. Kovacs, T. Lippert, A. Wokaun, and M. Dinescu, “Liposome micropatterning based on laser-induced forward transfer,” Appl. Phys., A Mater. Sci. Process. 102(3), 651–659 (2011).
[Crossref]

R. Fardel, M. Nagel, F. Nüesch, T. Lippert, and A. Wokaun, “Laser-Induced Forward Transfer of organic LED building blocks studied by time-resolved shadowgraphy,” J. Phys. Chem. C 114(12), 5617–5636 (2010).
[Crossref]

R. Fardel, M. Nagel, F. Nüesch, T. Lippert, and A. Wokaun, “Fabrication of organic light-emitting diode pixels by laser-assistedforward transfer,” Appl. Phys. Lett. 91(6), 061103 (2007).
[Crossref]

A. Doraiswamy, R. J. Narayan, T. Lippert, L. Urech, A. Wokaun, M. Nagel, B. Hopp, M. Dinescu, R. Modi, R. C. Y. Auyeung, and D. B. Chrisey, “Excimer laser forward transfer of mammalian cells using a novel triazene absorbing layer,” Appl. Surf. Sci. 252(13), 4743–4747 (2006).
[Crossref]

Wong, W. S.

A. C. Arias, S. E. Ready, R. Lujan, W. S. Wong, K. E. Paul, A. Salleo, M. L. Chabinyc, R. Apte, R. A. Street, Y. Wu, P. Liu, and B. Ong, “All jet-printed polymer thin-film transistor active-matrix backplanes,” Appl. Phys. Lett. 85(15), 3304 (2004).
[Crossref]

Woo, E. P.

H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, and E. P. Woo, “High-Resolution Inkjet Printing of All-Polymer Transistor Circuits,” Science 290(5499), 2123–2126 (2000).
[Crossref] [PubMed]

Wright, P. K.

C. Ho, K. Murata, D. A. Steingart, J. W. Evans, and P. K. Wright, “A super ink jet printed zinc–silver 3D microbattery,” J. Micromech. Microeng. 19(9), 094013 (2009).
[Crossref]

Wu, W.

H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, and E. P. Woo, “High-Resolution Inkjet Printing of All-Polymer Transistor Circuits,” Science 290(5499), 2123–2126 (2000).
[Crossref] [PubMed]

Wu, Y.

A. C. Arias, S. E. Ready, R. Lujan, W. S. Wong, K. E. Paul, A. Salleo, M. L. Chabinyc, R. Apte, R. A. Street, Y. Wu, P. Liu, and B. Ong, “All jet-printed polymer thin-film transistor active-matrix backplanes,” Appl. Phys. Lett. 85(15), 3304 (2004).
[Crossref]

Xiao-Wu, N.

L. Xiu-Mei, H. Jie, L. Jian, and N. Xiao-Wu, “Growth and collapse of laser-induced bubbles in glycerol-water mixtures,” Chin. Phys. B 17(7), 2574–2579 (2008).
[Crossref]

Xiong, Y.

B. Y. Ahn, E. B. Duoss, M. J. Motala, X. Guo, S. I. Park, Y. Xiong, J. Yoon, R. G. Nuzzo, J. A. Rogers, and J. A. Lewis, “Omnidirectional printing of flexible, stretchable, and spanning silver microelectrodes,” Science 323(5921), 1590–1593 (2009).
[Crossref] [PubMed]

Xiu-Mei, L.

L. Xiu-Mei, H. Jie, L. Jian, and N. Xiao-Wu, “Growth and collapse of laser-induced bubbles in glycerol-water mixtures,” Chin. Phys. B 17(7), 2574–2579 (2008).
[Crossref]

Xu, C.

A. P. Alivisatos, A. M. Andrews, E. S. Boyden, M. Chun, G. M. Church, K. Deisseroth, J. P. Donoghue, S. E. Fraser, J. Lippincott-Schwartz, L. L. Looger, S. Masmanidis, P. L. McEuen, A. V. Nurmikko, H. Park, D. S. Peterka, C. Reid, M. L. Roukes, A. Scherer, M. Schnitzer, T. J. Sejnowski, K. L. Shepard, D. Tsao, G. Turrigiano, P. S. Weiss, C. Xu, R. Yuste, and X. Zhuang, “Nanotools for neuroscience and brain activity mapping,” ACS Nano 7(3), 1850–1866 (2013).
[Crossref] [PubMed]

Yadroitsev, I.

I. Yadroitsev, I. Shishkovsky, P. Bertrand, and I. Smurov, “Manufacturing of fine-structured 3D porous filter elements by selective laser melting,” Appl. Surf. Sci. 255(10), 5523–5527 (2009).
[Crossref]

I. Yadroitsev, Ph. Bertrand, and I. Smurov, “Parametric analysis of the selective laser melting process,” Appl. Surf. Sci. 253(19), 8064–8069 (2007).
[Crossref]

Yamada, H.

H. Yamada, T. Sano, T. Nakayama, and I. Miyamoto, “Optimization of laser-induced forward transfer process of metal thin films,” Appl. Surf. Sci. 197, 411–415 (2002).
[Crossref]

T. Sano, H. Yamada, T. Nakayama, and I. Miyamoto, “Experimental investigation of laser induced forward transfer process of metal thin films,” Appl. Surf. Sci. 186(1-4), 221–226 (2002).
[Crossref]

Yoon, J.

B. Y. Ahn, E. B. Duoss, M. J. Motala, X. Guo, S. I. Park, Y. Xiong, J. Yoon, R. G. Nuzzo, J. A. Rogers, and J. A. Lewis, “Omnidirectional printing of flexible, stretchable, and spanning silver microelectrodes,” Science 323(5921), 1590–1593 (2009).
[Crossref] [PubMed]

Yoon, M.-H.

J. T. Robinson, M. Jorgolli, A. K. Shalek, M.-H. Yoon, R. S. Gertner, and H. Park, “Vertical nanowire electrode arrays as a scalable platform for intracellular interfacing to neuronal circuits,” Nat. Nanotechnol. 7(3), 180–184 (2012).
[Crossref] [PubMed]

Yuste, R.

A. P. Alivisatos, A. M. Andrews, E. S. Boyden, M. Chun, G. M. Church, K. Deisseroth, J. P. Donoghue, S. E. Fraser, J. Lippincott-Schwartz, L. L. Looger, S. Masmanidis, P. L. McEuen, A. V. Nurmikko, H. Park, D. S. Peterka, C. Reid, M. L. Roukes, A. Scherer, M. Schnitzer, T. J. Sejnowski, K. L. Shepard, D. Tsao, G. Turrigiano, P. S. Weiss, C. Xu, R. Yuste, and X. Zhuang, “Nanotools for neuroscience and brain activity mapping,” ACS Nano 7(3), 1850–1866 (2013).
[Crossref] [PubMed]

Zenou, M.

M. Zenou, A. Sa’ar, and Z. Kotler, “Digital laser printing of metal/metal-oxide nano-composites with tunable electrical properties,” Nanotechnology 27(1), 015203 (2016).
[Crossref] [PubMed]

M. Zenou, A. Sa’ar, and Z. Kotler, “Laser jetting of femto-liter metal droplets for high resolution 3D printed structures,” Sci. Rep. 5, 17265 (2015).
[Crossref] [PubMed]

M. Zenou, A. Sa’ar, and Z. Kotler, “Supersonic laser-induced jetting of aluminum micro-droplets,” Appl. Phys. Lett. 106(18), 181905 (2015).
[Crossref]

M. Zenou, A. Sa’ar, and Z. Kotler, “Laser transfer of metals and metal alloys for digital microfabrication of 3D objects,” Small 11(33), 4082–4089 (2015).
[Crossref] [PubMed]

M. Zenou, A. Sa’ar, and Z. Kotler, “Digital laser printing of aluminum microstructure on thermally sensitive substrate,” J. Phys. D: Appl. Phys. D 48(20), 205303 (2015).
[Crossref]

M. Zenou, S. Winter, A. Saar, and Z. Kotler, “Laser-Forward-Transfer of metal NP ink droplets: parametric analysis,” Nanosci. Nanotechnol. Lett. 5(4), 435 (2013).
[Crossref]

Zergioti, I.

C. Boutopoulos, I. Kalpyris, E. Serpetzoglou, and I. Zergioti, “Laser-induced forward transfer of silver nanoparticle ink: time-resolved imaging of the jetting dynamics and correlation with the printing quality,” Microfluid. Nanofluidics 16(3), 493–500 (2014).
[Crossref]

M. Makrygianni, I. Kalpyris, C. Boutopoulos, and I. Zergioti, “Laser induced forward transfer of Ag nanoparticles ink deposition and characterization,” Appl. Surf. Sci. 297, 40–44 (2014).
[Crossref]

D. P. Banks, C. Grivas, J. D. Mills, R. W. Eason, and I. Zergioti, “Nanodroplets deposited in microarrays by femtosecond Ti:sapphire laser-induced forward transfer,” Appl. Phys. Lett. 89(19), 193107 (2006).
[Crossref]

I. Zergioti, D. G. Papazoglou, A. Karaiskou, C. Fotakis, E. Gamaly, and A. Rode, “A comparative schlieren imaging study between ns and sub-ps laser forward transfer of Cr,” Appl. Surf. Sci. 208–209, 177–180 (2003).
[Crossref]

G. Koundourakis, C. Rockstuhl, D. Papazoglou, A. Klini, I. Zergioti, N. A. Vainos, and C. Fotakis, “Laser printing of active optical microstructures,” Appl. Phys. Lett. 78(7), 868 (2001).
[Crossref]

Zhang, Y.

A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, “Nanofabricated media with negative permeability at visible frequencies,” Nature 438(7066), 335–338 (2005).
[Crossref] [PubMed]

Zhuang, X.

A. P. Alivisatos, A. M. Andrews, E. S. Boyden, M. Chun, G. M. Church, K. Deisseroth, J. P. Donoghue, S. E. Fraser, J. Lippincott-Schwartz, L. L. Looger, S. Masmanidis, P. L. McEuen, A. V. Nurmikko, H. Park, D. S. Peterka, C. Reid, M. L. Roukes, A. Scherer, M. Schnitzer, T. J. Sejnowski, K. L. Shepard, D. Tsao, G. Turrigiano, P. S. Weiss, C. Xu, R. Yuste, and X. Zhuang, “Nanotools for neuroscience and brain activity mapping,” ACS Nano 7(3), 1850–1866 (2013).
[Crossref] [PubMed]

Zschieschang, U.

U. Zschieschang, H. Klauk, M. Halik, G. Schmid, and C. Dehm, “Flexible Organic Circuits with Printed Gate Electrodes,” Adv. Mater. 15(14), 1147–1151 (2003).
[Crossref]

Zywietz, U.

U. Zywietz, C. Reinhardt, A. B. Evlyukhin, T. Birr, and B. N. Chichkov, “Generation and patterning of Si nanoparticles by femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 114(1), 45–50 (2014).
[Crossref]

U. Zywietz, A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses,” Nat. Commun. 5, 3402 (2014).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (1)

J. R. H. Shaw-Stewart, T. K. Lippert, M. Nagel, F. A. Nüesch, and A. Wokaun, “Sequential printing by laser-induced forward transfer to fabricate a Polymer Light-Emitting Diode Pixel,” ACS Appl. Mater. Interfaces 4(7), 3535–3541 (2012).
[Crossref] [PubMed]

ACS Nano (1)

A. P. Alivisatos, A. M. Andrews, E. S. Boyden, M. Chun, G. M. Church, K. Deisseroth, J. P. Donoghue, S. E. Fraser, J. Lippincott-Schwartz, L. L. Looger, S. Masmanidis, P. L. McEuen, A. V. Nurmikko, H. Park, D. S. Peterka, C. Reid, M. L. Roukes, A. Scherer, M. Schnitzer, T. J. Sejnowski, K. L. Shepard, D. Tsao, G. Turrigiano, P. S. Weiss, C. Xu, R. Yuste, and X. Zhuang, “Nanotools for neuroscience and brain activity mapping,” ACS Nano 7(3), 1850–1866 (2013).
[Crossref] [PubMed]

Adv. Eng. Mater. (1)

S. Kumar and J. P. Kruth, “Wear performance of SLS/SLM materials,” Adv. Eng. Mater. 10(8), 750–753 (2008).
[Crossref]

Adv. Funct. Mater. (1)

S. Gamerith, A. Klug, H. Scheiber, U. Scherf, E. Moderegger, and E. J. W. List, “Direct ink-jet printing of Ag–Cu nanoparticle and Ag precursor based electrodes for OFET applications,” Adv. Funct. Mater. 17(16), 3111–3118 (2007).
[Crossref]

Adv. Mater. (4)

U. Zschieschang, H. Klauk, M. Halik, G. Schmid, and C. Dehm, “Flexible Organic Circuits with Printed Gate Electrodes,” Adv. Mater. 15(14), 1147–1151 (2003).
[Crossref]

J. Wang, R. C. Y. Auyeung, H. Kim, N. A. Charipar, and A. Piqué, “Three-dimensional printing of interconnects by laser direct-write of silver nanopastes,” Adv. Mater. 22(40), 4462–4466 (2010).
[Crossref] [PubMed]

C. W. Visser, R. Pohl, C. Sun, G.-W. Römer, B. Huis in ’t Veld, and D. Lohse, “Toward 3D printing of pure metals by laser-induced forward transfer,” Adv. Mater. 27(27), 4087–4092 (2015).
[Crossref] [PubMed]

K. Sun, T.-S. Wei, B. Y. Ahn, J. Y. Seo, S. J. Dillon, and J. A. Lewis, “3D printing of interdigitated Li-ion microbattery architectures,” Adv. Mater. 25(33), 4539–4543 (2013).
[Crossref] [PubMed]

Appl. Phys. (Berl.) (1)

D. Toet, P. M. Smith, T. W. Sigmon, and M. O. Thompson, “Experimental and numerical investigations of a hydrogen-assisted laser-induced materials transfer procedure,” Appl. Phys. (Berl.) 87(7), 3537 (2000).
[Crossref]

Appl. Phys. Lett. (12)

R. Baseman, N. Froberg, J. C. Andreshak, and Z. Schlesinger, “Minimum uence for laser blow-off of thin gold films at 248 and 532 nm,” Appl. Phys. Lett. 56(15), 1412–1414 (1990).
[Crossref]

G. Koundourakis, C. Rockstuhl, D. Papazoglou, A. Klini, I. Zergioti, N. A. Vainos, and C. Fotakis, “Laser printing of active optical microstructures,” Appl. Phys. Lett. 78(7), 868 (2001).
[Crossref]

N. T. Kattamis, N. D. McDaniel, S. Bernhard, and C. B. Arnold, “Laser direct write printing of sensitive and robust light emitting organic molecules,” Appl. Phys. Lett. 94(10), 103306 (2009).
[Crossref]

L. Rapp, A. K. Diallo, A. P. Alloncle, C. Videlot-Ackermann, F. Fages, and P. Delaporte, “Pulsed-laser printing of organic thin-film transistors,” Appl. Phys. Lett. 95(17), 171109 (2009).
[Crossref]

J. S. Stewart, T. Lippert, M. Nagel, F. Nüesch, and A. Wokaun, “Red-green-blue polymer light-emitting diode pixels printed by optimized laser-induced forward transfer,” Appl. Phys. Lett. 100(20), 203303 (2012).
[Crossref]

A. C. Arias, S. E. Ready, R. Lujan, W. S. Wong, K. E. Paul, A. Salleo, M. L. Chabinyc, R. Apte, R. A. Street, Y. Wu, P. Liu, and B. Ong, “All jet-printed polymer thin-film transistor active-matrix backplanes,” Appl. Phys. Lett. 85(15), 3304 (2004).
[Crossref]

R. Fardel, M. Nagel, F. Nüesch, T. Lippert, and A. Wokaun, “Fabrication of organic light-emitting diode pixels by laser-assistedforward transfer,” Appl. Phys. Lett. 91(6), 061103 (2007).
[Crossref]

P. Serra, M. Colina, J. M. Fernández-Pradas, L. Sevilla, and J. L. Morenza, “Preparation of functional DNA microarrays through laser-induced forward transfer,” Appl. Phys. Lett. 85(9), 1639 (2004).
[Crossref]

L. Rapp, A. K. Diallo, A. P. Alloncle, C. Videlot-Ackermann, F. Fages, and P. Delaporte, “Pulsed-laser printing of organic thin-film transistors,” Appl. Phys. Lett. 95(17), 171109 (2009).
[Crossref]

D. A. Willis and V. Grosu, “Microdroplet deposition by laser-induced forward transfer,” Appl. Phys. Lett. 86(24), 244103 (2005).
[Crossref]

D. P. Banks, C. Grivas, J. D. Mills, R. W. Eason, and I. Zergioti, “Nanodroplets deposited in microarrays by femtosecond Ti:sapphire laser-induced forward transfer,” Appl. Phys. Lett. 89(19), 193107 (2006).
[Crossref]

M. Zenou, A. Sa’ar, and Z. Kotler, “Supersonic laser-induced jetting of aluminum micro-droplets,” Appl. Phys. Lett. 106(18), 181905 (2015).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (7)

U. Zywietz, C. Reinhardt, A. B. Evlyukhin, T. Birr, and B. N. Chichkov, “Generation and patterning of Si nanoparticles by femtosecond laser pulses,” Appl. Phys., A Mater. Sci. Process. 114(1), 45–50 (2014).
[Crossref]

A. I. Kuznetsov, C. Unger, J. Koch, and B. N. Chichkov, “Laser-induced jet formation and droplet ejection from thin metal films,” Appl. Phys., A Mater. Sci. Process. 106(3), 479–487 (2012).
[Crossref]

A. Palla-Papavlu, C. Córdoba, A. Patrascioiu, J. M. Fernández-Pradas, J. L. Morenza, and P. Serra, “Deposition and characterization of lines printed through laser-induced forward transfer,” Appl. Phys., A Mater. Sci. Process. 110(4), 751–755 (2013).
[Crossref]

P. Serra, J. M. Fernández-Pradas, F. X. Berthet, M. Colina, J. Elvira, and J. L. Morenza, “Laser direct writing of biomolecule microarrays,” Appl. Phys., A Mater. Sci. Process. 79(4-6), 949 (2004).
[Crossref]

A. Palla-Papavlu, L. Paraico, J. Shaw-Stewart, V. Dinca, T. Savopol, E. Kovacs, T. Lippert, A. Wokaun, and M. Dinescu, “Liposome micropatterning based on laser-induced forward transfer,” Appl. Phys., A Mater. Sci. Process. 102(3), 651–659 (2011).
[Crossref]

M. Duocastella, H. Kim, P. Serra, and A. Piqué, “Optimization of laser printing of nanoparticle suspensions for microelectronic applications,” Appl. Phys., A Mater. Sci. Process. 106(3), 471–478 (2012).
[Crossref]

Y. Nakata and T. Okada, “Time-resolved microscopic imaging of the laser-induced forward transfer process,” Appl. Phys., A Mater. Sci. Process. 69(7), S275–S278 (1999).
[Crossref]

Appl. Surf. Sci. (12)

T. Sano, H. Yamada, T. Nakayama, and I. Miyamoto, “Experimental investigation of laser induced forward transfer process of metal thin films,” Appl. Surf. Sci. 186(1-4), 221–226 (2002).
[Crossref]

H. Yamada, T. Sano, T. Nakayama, and I. Miyamoto, “Optimization of laser-induced forward transfer process of metal thin films,” Appl. Surf. Sci. 197, 411–415 (2002).
[Crossref]

I. Zergioti, D. G. Papazoglou, A. Karaiskou, C. Fotakis, E. Gamaly, and A. Rode, “A comparative schlieren imaging study between ns and sub-ps laser forward transfer of Cr,” Appl. Surf. Sci. 208–209, 177–180 (2003).
[Crossref]

I. Yadroitsev, I. Shishkovsky, P. Bertrand, and I. Smurov, “Manufacturing of fine-structured 3D porous filter elements by selective laser melting,” Appl. Surf. Sci. 255(10), 5523–5527 (2009).
[Crossref]

P. Mogyorósi, T. Szörényi, K. Bali, Zs. Tóth, and I. Hevesi, “Pulsed laser ablative deposition of thin metal films,” Appl. Surf. Sci. 36(1-4), 157–163 (1989).
[Crossref]

V. Schultze and M. Wagner, “Laser-induced forward transfer of aluminium,” Appl. Surf. Sci. 52(4), 303–309 (1991).
[Crossref]

I. Yadroitsev, Ph. Bertrand, and I. Smurov, “Parametric analysis of the selective laser melting process,” Appl. Surf. Sci. 253(19), 8064–8069 (2007).
[Crossref]

A. Doraiswamy, R. J. Narayan, T. Lippert, L. Urech, A. Wokaun, M. Nagel, B. Hopp, M. Dinescu, R. Modi, R. C. Y. Auyeung, and D. B. Chrisey, “Excimer laser forward transfer of mammalian cells using a novel triazene absorbing layer,” Appl. Surf. Sci. 252(13), 4743–4747 (2006).
[Crossref]

V. Dincaa, T. Mattle, A. Palla Papavlu, L. Rusen, C. Luculescu, T. Lippert, and M. Dinescu, “Polyethyleneimine patterns obtained by laser-transfer assisted by a dynamic release layer onto themanox soft substrates for cell adhesion study,” Appl. Surf. Sci. 278, 190–197 (2013).
[Crossref]

E. Breckenfeld, H. Kim, R. C. Y. Auyeung, N. Charipar, P. Serra, and A. Piqué, “Laser-induced forward transfer of silver nanopaste for microwave interconnects,” Appl. Surf. Sci. 331, 254–261 (2015).
[Crossref]

D. A. Willis and V. Grosu, “The effect of melting-induced volumetric expansion on initiation of laser-induced forward transfer,” Appl. Surf. Sci. 253(10), 4759–4763 (2007).
[Crossref]

M. Makrygianni, I. Kalpyris, C. Boutopoulos, and I. Zergioti, “Laser induced forward transfer of Ag nanoparticles ink deposition and characterization,” Appl. Surf. Sci. 297, 40–44 (2014).
[Crossref]

Chin. Phys. B (1)

L. Xiu-Mei, H. Jie, L. Jian, and N. Xiao-Wu, “Growth and collapse of laser-induced bubbles in glycerol-water mixtures,” Chin. Phys. B 17(7), 2574–2579 (2008).
[Crossref]

Europhys. Lett. (1)

D. Banks, K. Kaur, R. Gazia, R. Fardel, M. Nagel, T. Lippert, and R. Eason, “Triazene photopolymer dynamic release layer-assisted femtosecond laser-induced forward transfer with an active carrier substrate,” Europhys. Lett. 83(3), 38003 (2008).
[Crossref]

J. Appl. Phys. (7)

K. S. Kaur, R. Fardel, T. C. May-Smith, M. Nagel, D. P. Banks, C. Grivas, T. Lippert, and R. W. Eason, “Shadowgraphic studies of triazene assisted laser-induced forward transfer of ceramic thin films,” J. Appl. Phys. 105(11), 113119 (2009).
[Crossref]

M. S. Brown, N. T. Kattamis, and C. B. Arnold, “Time-resolved study of polyimide absorption layers for blister-actuated laser-induced forward transfer,” J. Appl. Phys. 107(8), 083103 (2010).
[Crossref]

B. Hopp, T. Smausz, Z. Antal, N. Kresz, Z. Bor, and D. Chrisey, “Absorbing film assisted laser induced forward transfer of fungi (trichoderma conidia),” J. Appl. Phys. 96(6), 3478 (2004).
[Crossref]

P. B. Robinson, J. R. Blake, T. Kodama, A. Shima, and Y. Tomita, “Interaction of cavitation bubbles with a free surface,” J. Appl. Phys. 89(12), 8225 (2001).
[Crossref]

A. B. Bullock and P. R. Bolton, “Laser-induced back ablation of aluminum thin films using picosecond laser pulses,” J. Appl. Phys. 85(1), 460 (1999).
[Crossref]

J. Bohandy, B. F. Kim, and F. J. Adrian, “Metal deposition from a supported metal film using an excimer laser,” J. Appl. Phys. 60(4), 1538 (1986).
[Crossref]

E. Fogarassy, C. Fuchs, F. Kerherve, G. Hauchecorne, and J. Perriere, “Laser‐induced forward transfer of high‐Tc YBaCuO and BiSrCaCuO superconducting thin films,” J. Appl. Phys. 66(1), 457 (1989).
[Crossref]

J. Imag. Sci. Tech. (1)

W. Tolbert, I. Lee, M. Doxtader, E. Ellis, and D. Dlott, “High-speed color imaging by laser ablation transfer with a dynamic release layer: fundamental mechanisms,” J. Imag. Sci. Tech. 37, 411 (1993).

J. Laser Mirco/Nanoeng. (1)

R. C. Y. Auyeung, H. Kim, S. A. Mathews, and A. Piqué, “Laser direct-write of metallic nanoparticle inks,” J. Laser Mirco/Nanoeng. 2(1), 21–25 (2007).
[Crossref]

J. Mater. Chem. (1)

M. Grouchko, A. Kamyshny, and S. Magdassi, “Formation of air-stable copper–silver core–shell nanoparticles for inkjet Printing,” J. Mater. Chem. 19(19), 3057–3062 (2009).
[Crossref]

J. Micromech. Microeng. (2)

C. Ho, K. Murata, D. A. Steingart, J. W. Evans, and P. K. Wright, “A super ink jet printed zinc–silver 3D microbattery,” J. Micromech. Microeng. 19(9), 094013 (2009).
[Crossref]

S. H. Ko, J. Chung, N. Hotz, K. H. Nam, and C. P. Grigoropoulos, “Metal nanoparticle direct inkjet printing for low-temperature 3D micro metal structure fabrication,” J. Micromech. Microeng. 20(12), 125010 (2010).
[Crossref]

J. Phys. Chem. C (1)

R. Fardel, M. Nagel, F. Nüesch, T. Lippert, and A. Wokaun, “Laser-Induced Forward Transfer of organic LED building blocks studied by time-resolved shadowgraphy,” J. Phys. Chem. C 114(12), 5617–5636 (2010).
[Crossref]

J. Phys. D: Appl. Phys. D (1)

M. Zenou, A. Sa’ar, and Z. Kotler, “Digital laser printing of aluminum microstructure on thermally sensitive substrate,” J. Phys. D: Appl. Phys. D 48(20), 205303 (2015).
[Crossref]

J. Vac. Sci. Technol. B (1)

F. Adrian, J. Bohandy, B. Kim, A. Jette, and P. Thompson, “A study of the mechanism of metal deposition by the laser-induced forward transfer process,” J. Vac. Sci. Technol. B 5(5), 1490–1494 (1987).
[Crossref]

Materials (Basel) (1)

S. Magdassi, M. Grouchko, and A. Kamyshny, “Copper nanoparticles for printed electronics: routes towards achieving oxidation stability,” Materials (Basel) 3(9), 4626–4638 (2010).
[Crossref]

Microfluid. Nanofluidics (1)

C. Boutopoulos, I. Kalpyris, E. Serpetzoglou, and I. Zergioti, “Laser-induced forward transfer of silver nanoparticle ink: time-resolved imaging of the jetting dynamics and correlation with the printing quality,” Microfluid. Nanofluidics 16(3), 493–500 (2014).
[Crossref]

Nanosci. Nanotechnol. Lett. (1)

M. Zenou, S. Winter, A. Saar, and Z. Kotler, “Laser-Forward-Transfer of metal NP ink droplets: parametric analysis,” Nanosci. Nanotechnol. Lett. 5(4), 435 (2013).
[Crossref]

Nanotechnology (4)

Y. Lee, J. R. Choi, K. J. Lee, N. E. Stott, and D. Kim, “Large-scale synthesis of copper nanoparticles by chemically controlled reduction for applications of inkjet-printed electronics,” Nanotechnology 19(41), 415604 (2008).
[Crossref] [PubMed]

S. H. Ko, H. Pan, C. P. Grigoropoulos, C. K. Luscombe, J. M. J. Fr’echet, and D. Poulikakos, “All-inkjet-printed flexible electronics fabrication on a polymer substrate by low-temperature high-resolution selective laser sintering of metal nanoparticles,” Nanotechnology 18(34), 345202 (2007).
[Crossref]

Y. Lee, J.-R. Choi, K. J. Lee, N. E. Stott, and D. Kim, “Large-scale synthesis of copper nanoparticles by chemically controlled reduction for applications of inkjet-printed electronics,” Nanotechnology 19(41), 415604 (2008).
[Crossref] [PubMed]

M. Zenou, A. Sa’ar, and Z. Kotler, “Digital laser printing of metal/metal-oxide nano-composites with tunable electrical properties,” Nanotechnology 27(1), 015203 (2016).
[Crossref] [PubMed]

Nat. Biotechnol. (1)

D. A. LaVan, T. McGuire, and R. Langer, “Small-scale systems for in vivo drug delivery,” Nat. Biotechnol. 21(10), 1184–1191 (2003).
[Crossref] [PubMed]

Nat. Commun. (1)

U. Zywietz, A. B. Evlyukhin, C. Reinhardt, and B. N. Chichkov, “Laser printing of silicon nanoparticles with resonant optical electric and magnetic responses,” Nat. Commun. 5, 3402 (2014).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

J. T. Robinson, M. Jorgolli, A. K. Shalek, M.-H. Yoon, R. S. Gertner, and H. Park, “Vertical nanowire electrode arrays as a scalable platform for intracellular interfacing to neuronal circuits,” Nat. Nanotechnol. 7(3), 180–184 (2012).
[Crossref] [PubMed]

Nature (3)

J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, “Photonic crystals: putting a new twist on light,” Nature 386(6621), 143–149 (1997).
[Crossref]

A. N. Grigorenko, A. K. Geim, H. F. Gleeson, Y. Zhang, A. A. Firsov, I. Y. Khrushchev, and J. Petrovic, “Nanofabricated media with negative permeability at visible frequencies,” Nature 438(7066), 335–338 (2005).
[Crossref] [PubMed]

N. Jones, “Science in three dimensions: The print revolution,” Nature 487(7405), 22–23 (2012).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Mater. Express (1)

Phys. Fluids (1)

A. Prosperetti, “A generalization of the Rayleigh-Plesset equation of bubble dynamics,” Phys. Fluids 25(3), 409–410 (1982).
[Crossref]

Sci. Rep. (1)

M. Zenou, A. Sa’ar, and Z. Kotler, “Laser jetting of femto-liter metal droplets for high resolution 3D printed structures,” Sci. Rep. 5, 17265 (2015).
[Crossref] [PubMed]

Science (2)

B. Y. Ahn, E. B. Duoss, M. J. Motala, X. Guo, S. I. Park, Y. Xiong, J. Yoon, R. G. Nuzzo, J. A. Rogers, and J. A. Lewis, “Omnidirectional printing of flexible, stretchable, and spanning silver microelectrodes,” Science 323(5921), 1590–1593 (2009).
[Crossref] [PubMed]

H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, and E. P. Woo, “High-Resolution Inkjet Printing of All-Polymer Transistor Circuits,” Science 290(5499), 2123–2126 (2000).
[Crossref] [PubMed]

Small (1)

M. Zenou, A. Sa’ar, and Z. Kotler, “Laser transfer of metals and metal alloys for digital microfabrication of 3D objects,” Small 11(33), 4082–4089 (2015).
[Crossref] [PubMed]

Other (6)

M. Zenou, “Direct laser writing of ring-like metal structures,” presented at 11th International Symposium on Laser Precision Micro-fabrication, Stuttgart, Germany, June 7–10 2010.

G. Forgacs, W. Sun, and W. Andrew, Biofabrication: Micro- and Nano-fabrication, Printing, Patterning and Assemblies (Elsevier, 2013).

“The third industrial revolution,“ The Economist, special report edition Apr 21st (2012).

Z. Z. Fang, Sintering Of Advanced Materials (Elsevier, 2010).

I. M. Hutchings and G. D. Martin, Inkjet Technology For Digital Fabrication (Willey, 2012).

http://www.optomec.com/3d-printed-metals/lens-technology/ .

Supplementary Material (2)

NameDescription
» Visualization 1: MP4 (937 KB)      LIFT printed cone 3D topography different angles view
» Visualization 2: MP4 (1084 KB)      Plasma under high voltage

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 (a) A sketch of the donor which consists of a transparent substrate coated with a thin metal layer to be printed; At first a focused laser pulse is absorbed in the metal layer leading to local heating; (b) the resulting pressure at the interface provide the conditions for the transfer of part of the layer material “Flyer”; (c) Transferred pixel landing on the receiver.
Fig. 2
Fig. 2 LIFT with a dynamic release layer (DRL) the explosion of which provides the driving force of the material transfer.
Fig. 3
Fig. 3 Schematic of LIFT of fluids: (a) the laser pulse evaporates the solvent and a gas bubble is formed; (b) the bubble radius increases until its pressure equals the ambient pressure; (c) the bubble collapses and a droplet separates from the jet filament.
Fig. 4
Fig. 4 (a) A 5x5 matrix arrays of NP ink droplet printed by LIFT; (b) Changing droplet deposit morphology as function of the pulse energy (the metal ink solvent is glycerol).
Fig. 5
Fig. 5 A schematic description of the holes which form in the metal donor layer and HAZ range.
Fig. 6
Fig. 6 (a) A binary image of the shapes to be printed; (c-e) Printing plan indicated by a color code of dots (see texts). (c) Kcell = 5, which amounts to 25 donor steps (indicated by 25 different colors); (d) Kcell = 3; (e) Kcell = 2 (for which the print plan is composed of 4 color only; (b) 3D measurement of a printed structure for which Kcell = 10.
Fig. 7
Fig. 7 (a) 3D CAD model; (b) 2D Slice presentation of the object (19 layers) each denoted by a specific color; (c) and (d) 3D map presentations of the printed object (Visualization 1); (e) Line scan across the tip; (e) SEM image of LIFT printed cone (the base is 250µm wide and the cone height is 60 µm)
Fig. 8
Fig. 8 (a) SEM image of an array of LIFT printed copper metal pillars (7x10 pillars) with width of 9µm and height of 106µm ; (b) zoom in on (a)
Fig. 9
Fig. 9 A printed. interdigitated, high aspect ratio, copper structure: (a) 3D optical microscopy image ; (b) An SEM image of the 4 by 4 digit structure; (c) Zoom in on (b).
Fig. 10
Fig. 10 (a) The experimental setup for driving the ID structure with high voltage using micro-probes under an optical microscope (the microscope objective can be seen at the upper middle part). The inset at the bottom left depicts the ID structure image (bright field image). (a) Setup arrangement before applying high voltage; (b) With voltage on (V = 300V, 1kHz) a bright blue emission can be seen (inset and Visualization 2).
Fig. 11
Fig. 11 (a) SEM image of LIFT printed gold deposit on a Nitinol metal part; (b) A zoom in on (a).
Fig. 12
Fig. 12 (a) 3D measurement of the printed “gear”; (b) An SEM image of the same structure.
Fig. 13
Fig. 13 (a) An SEM image of a copper logo printed at the bottom of a blind via; (b) The same SEM image taken at a tilted angle of 30°; (c) a 3D microscope measurement.

Metrics