Abstract

We present a new design for the fabrication of concave gratings with large grating constants for flat-field miniature spectrometers with a wide spectral band. In this new design, one of the two optical paths for the holographic lithography of a curved grating structure with variable line spacing is modified by adding a concave lens in front of the point source. The addition of the concave lens allows the real point source, as well as the spatial filter for generating this point source, to be moved back. In this manner, the two spatial filters for generating two point sources are separated. Avoiding the physical conflict between these two spatial filters reduces the difficulty of fabricating large-constant concave gratings. Experimental results verify the feasibility of the proposed design in fabricating concave gratings with large grating constants. The resolution of a spectrometer using the fabricated concave grating is evaluated and found to be better than 1.1 nm across a spectral band ranging from 360 nm to 825 nm.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Fabrication of a concave grating with a large line spacing via a novel dual-beam interference lithography method

Xinghui Li, Kai Ni, Qian Zhou, Xiaohao Wang, Rui Tian, and Jinchao Pang
Opt. Express 24(10) 10759-10766 (2016)

Improving the spectral resolution of flat-field concave grating miniature spectrometers by dividing a wide spectral band into two narrow ones

Qian Zhou, Jinchao Pang, Xinghui Li, Kai Ni, and Rui Tian
Appl. Opt. 54(32) 9450-9455 (2015)

High-resolution compact spectrometer based on a custom-printed varied-line-spacing concave blazed grating

Jianwei Chen, Wang Chen, Guodong Zhang, Hui Lin, and Shih-Chi Chen
Opt. Express 25(11) 12446-12454 (2017)

References

  • View by:
  • |
  • |
  • |

  1. S. Hu, Z. Y. Wen, Y. Q. Liang, X. Q. Du, and B. Zhang, “Microbiochemical analyzer based on continuous spectrum and its test for clinic use,” Guangpuxue Yu Guangpu Fenxi 26(9), 1769–1773 (2006).
    [PubMed]
  2. D. S. Goldman, P. L. White, and N. C. Anheier, “Miniaturized spectrometer employing planar waveguides and grating couplers for chemical analysis,” Appl. Opt. 29(31), 4583–4589 (1990).
    [Crossref] [PubMed]
  3. G. M. Yee, N. I. Maluf, P. A. Hing, M. Albin, and G. T. A. Kovacs, “Miniature spectrometers for biological analysis,” Sens. Act. A 58, 61–66 (1997).
  4. H. Kim, “Are subjects’ perceptual asymmetries on auditory and visual language tasks correlated?: a meta-analysis,” Brain Lang. 58(1), 61–69 (1997).
    [Crossref] [PubMed]
  5. M. Badieirostami, O. Momtahan, C. Hsieh, A. Adibi, and D. J. Brady, “Very-high-resolution tandem Fabry-Perot etalon cylindrical beam volume hologram spectrometer for diffuse source spectroscopy,” Opt. Lett. 33(1), 31–33 (2008).
    [Crossref] [PubMed]
  6. P. Kong, Y. Tang, X. Q. Bayanheshig, W. Li, and J. Cui, “Double-grating minitype flat-field holographic concave grating spectrograph,” Acta Opt. Sin. 33, 24–30 (2013).
  7. M. Varasi, M. Signorazzi, A. Vannucci, and J. Dunphy, “A high-resolution integrated optical spectrometer with applications to fibre sensor signal processing,” Meas. Sci. Technol. 7(2), 173–178 (1996).
    [Crossref]
  8. J. Zeng, “Optimum design of miniature wide-waveband concave holographic grating monochromator,” Acta Opt. Sin. 32, 248–254 (2012).
  9. C. H. Ko, W. C. Liu, N. P. Chen, J. L. Shen, and J. S. Lin, “Double reflection in the concave reflective blazed grating,” Opt. Express 15(17), 10498–10503 (2007).
    [Crossref] [PubMed]
  10. Q. Zhou, J. Pang, X. Li, R. Tian, and K. Ni, “Improving the spectral resolution of flat-field concavegrating miniature spectrometers by dividing a wide spectral band into two narrow ones,” Appl. Opt. (accepted).
  11. Q. Zhou, L. J. Zeng, and L. F. Li, “Numerical simulation and experimental demonstration of error compensation between recording structure and use structure of flat-field holographic concave gratings,” Guangpuxue Yu Guangpu Fenxi 28(7), 1674–1678 (2008).
    [PubMed]
  12. Q. Zhou, J. Pang, X. Li, R. Tian, and K. Ni, “A concave grting miniature spectrometer with an expanded spectral band by using two entrance,” Chin. Opt. Lett. (Article in press).
  13. K. Chaganti, I. Salakhutdinov, I. Avrutsky, and G. W. Auner, “A simple miniature optical spectrometer with a planar waveguide grating coupler in combination with a plano-convex lens,” Opt. Express 14(9), 4064–4072 (2006).
    [Crossref] [PubMed]
  14. S. Grabarnik, R. Wolffenbuttel, A. Emadi, M. Loktev, E. Sokolova, and G. Vdovin, “Planar double-grating microspectrometer,” Opt. Express 15(6), 3581–3588 (2007).
    [Crossref] [PubMed]
  15. R. Brunner, M. Burkhardt, K. Rudolf, and N. Correns, “Microspectrometer based on holographically recorded diffractive elements using supplementary holograms,” Opt. Express 16(16), 12239–12250 (2008).
    [Crossref] [PubMed]
  16. E. Sokolova, “Simulation of mechanically ruled concave diffraction gratings by use of an original geometric theory,” Appl. Opt. 43(1), 20–28 (2004).
    [Crossref] [PubMed]
  17. I. Aubrecht, M. Miler, and I. Koudela, “Recording of holographic diffraction gratings in photopolymers: theoretical modelling and real-time monitoring of grating growth,” J Mod. Opt. 45(7), 1465–1477 (1998).
    [Crossref]
  18. High throughput compact spectrometer, Torus Series, http://oceanoptics.com .
  19. H. Noda, T. Namioka, and M. Seya, “Geometric theory of the grating,” J. Opt. Soc. Am. 64(8), 1031–1036 (1974).
    [Crossref]

2013 (1)

P. Kong, Y. Tang, X. Q. Bayanheshig, W. Li, and J. Cui, “Double-grating minitype flat-field holographic concave grating spectrograph,” Acta Opt. Sin. 33, 24–30 (2013).

2012 (1)

J. Zeng, “Optimum design of miniature wide-waveband concave holographic grating monochromator,” Acta Opt. Sin. 32, 248–254 (2012).

2008 (3)

2007 (2)

2006 (2)

S. Hu, Z. Y. Wen, Y. Q. Liang, X. Q. Du, and B. Zhang, “Microbiochemical analyzer based on continuous spectrum and its test for clinic use,” Guangpuxue Yu Guangpu Fenxi 26(9), 1769–1773 (2006).
[PubMed]

K. Chaganti, I. Salakhutdinov, I. Avrutsky, and G. W. Auner, “A simple miniature optical spectrometer with a planar waveguide grating coupler in combination with a plano-convex lens,” Opt. Express 14(9), 4064–4072 (2006).
[Crossref] [PubMed]

2004 (1)

1998 (1)

I. Aubrecht, M. Miler, and I. Koudela, “Recording of holographic diffraction gratings in photopolymers: theoretical modelling and real-time monitoring of grating growth,” J Mod. Opt. 45(7), 1465–1477 (1998).
[Crossref]

1997 (2)

G. M. Yee, N. I. Maluf, P. A. Hing, M. Albin, and G. T. A. Kovacs, “Miniature spectrometers for biological analysis,” Sens. Act. A 58, 61–66 (1997).

H. Kim, “Are subjects’ perceptual asymmetries on auditory and visual language tasks correlated?: a meta-analysis,” Brain Lang. 58(1), 61–69 (1997).
[Crossref] [PubMed]

1996 (1)

M. Varasi, M. Signorazzi, A. Vannucci, and J. Dunphy, “A high-resolution integrated optical spectrometer with applications to fibre sensor signal processing,” Meas. Sci. Technol. 7(2), 173–178 (1996).
[Crossref]

1990 (1)

1974 (1)

Adibi, A.

Albin, M.

G. M. Yee, N. I. Maluf, P. A. Hing, M. Albin, and G. T. A. Kovacs, “Miniature spectrometers for biological analysis,” Sens. Act. A 58, 61–66 (1997).

Anheier, N. C.

Aubrecht, I.

I. Aubrecht, M. Miler, and I. Koudela, “Recording of holographic diffraction gratings in photopolymers: theoretical modelling and real-time monitoring of grating growth,” J Mod. Opt. 45(7), 1465–1477 (1998).
[Crossref]

Auner, G. W.

Avrutsky, I.

Badieirostami, M.

Bayanheshig, X. Q.

P. Kong, Y. Tang, X. Q. Bayanheshig, W. Li, and J. Cui, “Double-grating minitype flat-field holographic concave grating spectrograph,” Acta Opt. Sin. 33, 24–30 (2013).

Brady, D. J.

Brunner, R.

Burkhardt, M.

Chaganti, K.

Chen, N. P.

Correns, N.

Cui, J.

P. Kong, Y. Tang, X. Q. Bayanheshig, W. Li, and J. Cui, “Double-grating minitype flat-field holographic concave grating spectrograph,” Acta Opt. Sin. 33, 24–30 (2013).

Du, X. Q.

S. Hu, Z. Y. Wen, Y. Q. Liang, X. Q. Du, and B. Zhang, “Microbiochemical analyzer based on continuous spectrum and its test for clinic use,” Guangpuxue Yu Guangpu Fenxi 26(9), 1769–1773 (2006).
[PubMed]

Dunphy, J.

M. Varasi, M. Signorazzi, A. Vannucci, and J. Dunphy, “A high-resolution integrated optical spectrometer with applications to fibre sensor signal processing,” Meas. Sci. Technol. 7(2), 173–178 (1996).
[Crossref]

Emadi, A.

Goldman, D. S.

Grabarnik, S.

Hing, P. A.

G. M. Yee, N. I. Maluf, P. A. Hing, M. Albin, and G. T. A. Kovacs, “Miniature spectrometers for biological analysis,” Sens. Act. A 58, 61–66 (1997).

Hsieh, C.

Hu, S.

S. Hu, Z. Y. Wen, Y. Q. Liang, X. Q. Du, and B. Zhang, “Microbiochemical analyzer based on continuous spectrum and its test for clinic use,” Guangpuxue Yu Guangpu Fenxi 26(9), 1769–1773 (2006).
[PubMed]

Kim, H.

H. Kim, “Are subjects’ perceptual asymmetries on auditory and visual language tasks correlated?: a meta-analysis,” Brain Lang. 58(1), 61–69 (1997).
[Crossref] [PubMed]

Ko, C. H.

Kong, P.

P. Kong, Y. Tang, X. Q. Bayanheshig, W. Li, and J. Cui, “Double-grating minitype flat-field holographic concave grating spectrograph,” Acta Opt. Sin. 33, 24–30 (2013).

Koudela, I.

I. Aubrecht, M. Miler, and I. Koudela, “Recording of holographic diffraction gratings in photopolymers: theoretical modelling and real-time monitoring of grating growth,” J Mod. Opt. 45(7), 1465–1477 (1998).
[Crossref]

Kovacs, G. T. A.

G. M. Yee, N. I. Maluf, P. A. Hing, M. Albin, and G. T. A. Kovacs, “Miniature spectrometers for biological analysis,” Sens. Act. A 58, 61–66 (1997).

Li, L. F.

Q. Zhou, L. J. Zeng, and L. F. Li, “Numerical simulation and experimental demonstration of error compensation between recording structure and use structure of flat-field holographic concave gratings,” Guangpuxue Yu Guangpu Fenxi 28(7), 1674–1678 (2008).
[PubMed]

Li, W.

P. Kong, Y. Tang, X. Q. Bayanheshig, W. Li, and J. Cui, “Double-grating minitype flat-field holographic concave grating spectrograph,” Acta Opt. Sin. 33, 24–30 (2013).

Li, X.

Q. Zhou, J. Pang, X. Li, R. Tian, and K. Ni, “A concave grting miniature spectrometer with an expanded spectral band by using two entrance,” Chin. Opt. Lett. (Article in press).

Q. Zhou, J. Pang, X. Li, R. Tian, and K. Ni, “Improving the spectral resolution of flat-field concavegrating miniature spectrometers by dividing a wide spectral band into two narrow ones,” Appl. Opt. (accepted).

Liang, Y. Q.

S. Hu, Z. Y. Wen, Y. Q. Liang, X. Q. Du, and B. Zhang, “Microbiochemical analyzer based on continuous spectrum and its test for clinic use,” Guangpuxue Yu Guangpu Fenxi 26(9), 1769–1773 (2006).
[PubMed]

Lin, J. S.

Liu, W. C.

Loktev, M.

Maluf, N. I.

G. M. Yee, N. I. Maluf, P. A. Hing, M. Albin, and G. T. A. Kovacs, “Miniature spectrometers for biological analysis,” Sens. Act. A 58, 61–66 (1997).

Miler, M.

I. Aubrecht, M. Miler, and I. Koudela, “Recording of holographic diffraction gratings in photopolymers: theoretical modelling and real-time monitoring of grating growth,” J Mod. Opt. 45(7), 1465–1477 (1998).
[Crossref]

Momtahan, O.

Namioka, T.

Ni, K.

Q. Zhou, J. Pang, X. Li, R. Tian, and K. Ni, “A concave grting miniature spectrometer with an expanded spectral band by using two entrance,” Chin. Opt. Lett. (Article in press).

Q. Zhou, J. Pang, X. Li, R. Tian, and K. Ni, “Improving the spectral resolution of flat-field concavegrating miniature spectrometers by dividing a wide spectral band into two narrow ones,” Appl. Opt. (accepted).

Noda, H.

Pang, J.

Q. Zhou, J. Pang, X. Li, R. Tian, and K. Ni, “Improving the spectral resolution of flat-field concavegrating miniature spectrometers by dividing a wide spectral band into two narrow ones,” Appl. Opt. (accepted).

Q. Zhou, J. Pang, X. Li, R. Tian, and K. Ni, “A concave grting miniature spectrometer with an expanded spectral band by using two entrance,” Chin. Opt. Lett. (Article in press).

Rudolf, K.

Salakhutdinov, I.

Seya, M.

Shen, J. L.

Signorazzi, M.

M. Varasi, M. Signorazzi, A. Vannucci, and J. Dunphy, “A high-resolution integrated optical spectrometer with applications to fibre sensor signal processing,” Meas. Sci. Technol. 7(2), 173–178 (1996).
[Crossref]

Sokolova, E.

Tang, Y.

P. Kong, Y. Tang, X. Q. Bayanheshig, W. Li, and J. Cui, “Double-grating minitype flat-field holographic concave grating spectrograph,” Acta Opt. Sin. 33, 24–30 (2013).

Tian, R.

Q. Zhou, J. Pang, X. Li, R. Tian, and K. Ni, “A concave grting miniature spectrometer with an expanded spectral band by using two entrance,” Chin. Opt. Lett. (Article in press).

Q. Zhou, J. Pang, X. Li, R. Tian, and K. Ni, “Improving the spectral resolution of flat-field concavegrating miniature spectrometers by dividing a wide spectral band into two narrow ones,” Appl. Opt. (accepted).

Vannucci, A.

M. Varasi, M. Signorazzi, A. Vannucci, and J. Dunphy, “A high-resolution integrated optical spectrometer with applications to fibre sensor signal processing,” Meas. Sci. Technol. 7(2), 173–178 (1996).
[Crossref]

Varasi, M.

M. Varasi, M. Signorazzi, A. Vannucci, and J. Dunphy, “A high-resolution integrated optical spectrometer with applications to fibre sensor signal processing,” Meas. Sci. Technol. 7(2), 173–178 (1996).
[Crossref]

Vdovin, G.

Wen, Z. Y.

S. Hu, Z. Y. Wen, Y. Q. Liang, X. Q. Du, and B. Zhang, “Microbiochemical analyzer based on continuous spectrum and its test for clinic use,” Guangpuxue Yu Guangpu Fenxi 26(9), 1769–1773 (2006).
[PubMed]

White, P. L.

Wolffenbuttel, R.

Yee, G. M.

G. M. Yee, N. I. Maluf, P. A. Hing, M. Albin, and G. T. A. Kovacs, “Miniature spectrometers for biological analysis,” Sens. Act. A 58, 61–66 (1997).

Zeng, J.

J. Zeng, “Optimum design of miniature wide-waveband concave holographic grating monochromator,” Acta Opt. Sin. 32, 248–254 (2012).

Zeng, L. J.

Q. Zhou, L. J. Zeng, and L. F. Li, “Numerical simulation and experimental demonstration of error compensation between recording structure and use structure of flat-field holographic concave gratings,” Guangpuxue Yu Guangpu Fenxi 28(7), 1674–1678 (2008).
[PubMed]

Zhang, B.

S. Hu, Z. Y. Wen, Y. Q. Liang, X. Q. Du, and B. Zhang, “Microbiochemical analyzer based on continuous spectrum and its test for clinic use,” Guangpuxue Yu Guangpu Fenxi 26(9), 1769–1773 (2006).
[PubMed]

Zhou, Q.

Q. Zhou, L. J. Zeng, and L. F. Li, “Numerical simulation and experimental demonstration of error compensation between recording structure and use structure of flat-field holographic concave gratings,” Guangpuxue Yu Guangpu Fenxi 28(7), 1674–1678 (2008).
[PubMed]

Q. Zhou, J. Pang, X. Li, R. Tian, and K. Ni, “Improving the spectral resolution of flat-field concavegrating miniature spectrometers by dividing a wide spectral band into two narrow ones,” Appl. Opt. (accepted).

Q. Zhou, J. Pang, X. Li, R. Tian, and K. Ni, “A concave grting miniature spectrometer with an expanded spectral band by using two entrance,” Chin. Opt. Lett. (Article in press).

Acta Opt. Sin. (2)

P. Kong, Y. Tang, X. Q. Bayanheshig, W. Li, and J. Cui, “Double-grating minitype flat-field holographic concave grating spectrograph,” Acta Opt. Sin. 33, 24–30 (2013).

J. Zeng, “Optimum design of miniature wide-waveband concave holographic grating monochromator,” Acta Opt. Sin. 32, 248–254 (2012).

Appl. Opt. (2)

Brain Lang. (1)

H. Kim, “Are subjects’ perceptual asymmetries on auditory and visual language tasks correlated?: a meta-analysis,” Brain Lang. 58(1), 61–69 (1997).
[Crossref] [PubMed]

Guangpuxue Yu Guangpu Fenxi (2)

Q. Zhou, L. J. Zeng, and L. F. Li, “Numerical simulation and experimental demonstration of error compensation between recording structure and use structure of flat-field holographic concave gratings,” Guangpuxue Yu Guangpu Fenxi 28(7), 1674–1678 (2008).
[PubMed]

S. Hu, Z. Y. Wen, Y. Q. Liang, X. Q. Du, and B. Zhang, “Microbiochemical analyzer based on continuous spectrum and its test for clinic use,” Guangpuxue Yu Guangpu Fenxi 26(9), 1769–1773 (2006).
[PubMed]

J Mod. Opt. (1)

I. Aubrecht, M. Miler, and I. Koudela, “Recording of holographic diffraction gratings in photopolymers: theoretical modelling and real-time monitoring of grating growth,” J Mod. Opt. 45(7), 1465–1477 (1998).
[Crossref]

J. Opt. Soc. Am. (1)

Meas. Sci. Technol. (1)

M. Varasi, M. Signorazzi, A. Vannucci, and J. Dunphy, “A high-resolution integrated optical spectrometer with applications to fibre sensor signal processing,” Meas. Sci. Technol. 7(2), 173–178 (1996).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Sens. Act. A (1)

G. M. Yee, N. I. Maluf, P. A. Hing, M. Albin, and G. T. A. Kovacs, “Miniature spectrometers for biological analysis,” Sens. Act. A 58, 61–66 (1997).

Other (3)

Q. Zhou, J. Pang, X. Li, R. Tian, and K. Ni, “A concave grting miniature spectrometer with an expanded spectral band by using two entrance,” Chin. Opt. Lett. (Article in press).

Q. Zhou, J. Pang, X. Li, R. Tian, and K. Ni, “Improving the spectral resolution of flat-field concavegrating miniature spectrometers by dividing a wide spectral band into two narrow ones,” Appl. Opt. (accepted).

High throughput compact spectrometer, Torus Series, http://oceanoptics.com .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Recording points and optical path of a flat-field concave grating spectrometer.
Fig. 2
Fig. 2 Principle of holographical recording for fabricating concave grating. (a) A conventional setup, (b) A new method for fabricating concave grating.
Fig. 3
Fig. 3 Experimental setup (a) The simulated setup of the recording system. (b) Experimental setup of the recording sources.
Fig. 4
Fig. 4 A picture of the fabricated concave grating.
Fig. 5
Fig. 5 Experiment setup for testing the concave grating fabricated by using the proposed method.
Fig. 6
Fig. 6 Measured spectrum of laser sources.

Tables (2)

Tables Icon

Table 1 Optimized parameters of the spectrometer

Tables Icon

Table 2 Experimental and simulated resolution

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

d = λ | sin θ C sin θ D |
F = A P + P B + K m λ

Metrics