Abstract

Asymmetric photonic crystal (APC) has been proposed and investigated, which only allows the transmission of the incidence at a certain incident plane and angle. Simulation results show that the proposed structure exhibits both azimuth- and elevation- angular selectivity within a broad waveband under p-polarized illumination. Consequently, functional devices such as angle-frequency filter operating in the visible range can be achieved by combining the azimuth-elevation-angular selectivity and frequency selectivity. Our scheme may find potential applications in communication and imaging systems.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Low-threshold lasing in photonic-crystal heterostructures

M. Srinivas Reddy, Ramarao Vijaya, Ivan D. Rukhlenko, and Malin Premaratne
Opt. Express 22(6) 6229-6238 (2014)

Performance analysis of UV multiple-scatter communication system with height difference

Peng Song, Xianli Zhou, Fei Song, Caixia Su, and Anxiang Wang
Appl. Opt. 56(32) 8908-8916 (2017)

Light scattering by horizontally oriented spheroidal particles

Shoji Asano
Appl. Opt. 22(9) 1390-1396 (1983)

References

  • View by:
  • |
  • |
  • |

  1. M. R. Wu, J. C. Chien, C. J. Wu, and S. J. Chang, “Near-infrared multichannel filter in a finite semiconductor metamaterial photonic crystal,” IEEE Photonics J. 8(1), 2700309 (2016).
    [Crossref]
  2. A. C. Tasolamprou, L. Zhang, M. Kafesaki, T. Koschny, and C. M. Soukoulis, “Frequency splitter based on the directional emission from surface modes in dielectric photonic crystal structures,” Opt. Express 23(11), 13972–13982 (2015).
    [Crossref] [PubMed]
  3. Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998).
    [Crossref] [PubMed]
  4. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
    [Crossref] [PubMed]
  5. E. Yablonovitch, “Photonic band-gap structures,” J. Opt. Soc. Am. B 10(2), 283–295 (1993).
    [Crossref]
  6. S. G. Johnson and J. D. Joannopoulos, “Three-dimensionally periodic dielectric layered structure with omnidirectional photonic band gap,” Appl. Phys. Lett. 77(22), 3490–3492 (2000).
    [Crossref]
  7. A. Alù, G. D’Aguanno, N. Mattiucci, and M. J. Bloemer, “Plasmonic Brewster angle: broadband extraordinary transmission through optical gratings,” Phys. Rev. Lett. 106(12), 123902 (2011).
    [Crossref] [PubMed]
  8. K. Q. Le, C. Argyropoulos, N. Mattiucci, G. D’Aguanno, M. J. Bloemer, and A. Alù, “Broadband Brewster transmission through 2D metallic gratings,” J. Appl. Phys. 112(9), 094317 (2012).
    [Crossref]
  9. N. Aközbek, N. Mattiucci, D. de Ceglia, R. Trimm, A. Alù, G. D’Aguanno, M. Vincenti, M. Scalora, and M. Bloemer, “Experimental demonstration of plasmonic Brewster angle extraordinary transmission through extreme subwavelength slit arrays in the microwave,” Phys. Rev. B 85(20), 205430 (2012).
    [Crossref]
  10. C. Argyropoulos, N. D’Aguanno, N. Mattiucci, N. Akozbek, M. J. Bloemer, and A. Alù, “Matching and funneling light at the plasmonic Brewster angle,” Phys. Rev. B 85(2), 024304 (2012).
    [Crossref]
  11. F. G. De Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79(4), 1267–1290 (2007).
    [Crossref]
  12. B. T. Schwartz and R. Piestun, “Total external reflection from metamaterials with ultralow refractive index,” J. Opt. Soc. Am. B 20(12), 2448–2453 (2003).
    [Crossref]
  13. J. Üpping, P. Miclea, R. Wehrspohn, T. Baumgarten, and S. Greulich-Weber, “Direction-selective optical transmission of 3D FCC photonic crystals in the microwave regime,” Photon. Nanostructures 8(2), 102–106 (2010).
    [Crossref]
  14. P. Bermel, M. Ghebrebrhan, M. Harradon, Y. X. Yeng, I. Celanovic, J. D. Joannopoulos, and M. Soljačić, “Tailoring photonic metamaterial resonances for thermal radiation,” Nanoscale Res. Lett. 6(1), 549 (2011).
    [Crossref] [PubMed]
  15. V. Rinnerbauer, Y. Shen, J. D. Joannopoulos, M. Soljačić, F. Schäffler, and I. Celanovic, “Superlattice photonic crystal as broadband solar absorber for high temperature operation,” Opt. Express 22(S7), A1895–A1906 (2014).
    [Crossref] [PubMed]
  16. S. W. MacMaster, U.S. patent 7052746 filed 26 November 2003, issued 30 May 2006.
  17. Y. Shen, C. W. Hsu, J. D. Joannopoulos, and M. Soljačić, “Air-compatible broadband angular selective material systems,” http://arxiv.org/abs/1502.00243 .
  18. R. E. Hamam, I. Celanovic, and M. Soljačić, “Angular photonic band gap,” Phys. Rev. A 83(3), 035806 (2011).
    [Crossref]
  19. C. Argyropoulos, K. Q. Le, N. Mattiucci, G. D’Aguanno, and A. Alù, “Broadband absorbers and selective emitters based on plasmonic Brewster metasurfaces,” Phys. Rev. B 87(20), 205112 (2013).
    [Crossref]
  20. E. D. Kosten, J. H. Atwater, J. Parsons, A. Polman, and H. A. Atwater, “Highly efficient GaAs solar cells by limiting light emission angle,” Light Sci. Appl. 2(1), e45 (2013).
    [Crossref]
  21. Y. Shen, D. Ye, I. Celanovic, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Optical Broadband Angular Selectivity,” Science 343(6178), 1499–1501 (2014).
    [Crossref] [PubMed]
  22. J. B. Pendry, “Photonic band structures,” J. Mod. Opt. 41(2), 209–229 (1994).
    [Crossref]
  23. Y. Guo, Y. Wang, M. Pu, Z. Zhao, X. Wu, X. Ma, C. Wang, L. Yan, and X. Luo, “Dispersion management of anisotropic metamirror for super-octave bandwidth polarization conversion,” Sci. Rep. 5, 8434 (2015).
    [Crossref] [PubMed]
  24. Y. Guo, L. Yan, W. Pan, and B. Luo, “Achromatic polarization manipulation by dispersion management of anisotropic meta-mirror with dual-metasurface,” Opt. Express 23(21), 27566–27575 (2015).
    [Crossref] [PubMed]
  25. C. Zhang, F. Qiao, J. Wan, and J. Zi, “Enlargement of nontransmission frequency range in photonic crystals by using multiple heterostructures,” J. Appl. Phys. 87(6), 3174–3176 (2000).
    [Crossref]
  26. B. Perilloux, Thin-film Design: Modulated Thickness and other Stopband Design Methods (SPIE Press, 2002).
  27. X. Wang, X. Hu, Y. Li, W. Jia, C. Xu, X. Liu, and J. Zi, “Enlargement of omnidirectional total reflection frequency range in one-dimensional photonic crystals by using photonic heterostructures,” Appl. Phys. Lett. 80(23), 4291–4293 (2002).
    [Crossref]
  28. M. Beresna, M. Gecevicius, and P. G. Kazansky, “Polarization sensitive elements fabricated by femtosecond laser nanostructuring of glass,” Opt. Mater. Express 1(4), 783–795 (2011).
    [Crossref]
  29. R. Guo, D. J. Yuan, and S. Das, “Large-area microlens arrays fabricated on flexible polycarbonate sheets via single-step laser interference ablation,” Journal of Micromachines and Microengineering 21(1), 015010 (2011).
    [Crossref]
  30. W. C. Cheong, B. P. S. Ahluwalia, X. C. Yuan, L. S. Zhang, H. Wang, H. B. Niu, and X. Peng, “Fabrication of efficient microaxicon by direct electron-beam lithography for long nondiffracting distance of Bessel beams for optical manipulation,” Appl. Phys. Lett. 87(2), 024104 (2005).
    [Crossref]
  31. H. T. Hsieh, V. Lin, J. L. Hsieh, and G. D. J. Su, “Design and fabrication of long focal length microlens arrays,” Opt. Commun. 284(21), 5225–5230 (2011).
    [Crossref]
  32. F. Chen, H. Liu, Q. Yang, X. Wang, C. Hou, H. Bian, W. Liang, J. Si, and X. Hou, “Maskless fabrication of concave microlens arrays on silica glasses by a femtosecond-laser-enhanced local wet etching method,” Opt. Express 18(19), 20334–20343 (2010).
    [Crossref] [PubMed]
  33. M. Malinauskas, A. Gaidukevičiūtė, V. Purlys, A. Žukauskas, I. Sakellari, E. Kabouraki, A. Candiani, D. Gray, S. Pissadakis, R. Gadonas, A. Piskarskas, C. Fotakis, M. Vamvakaki, and M. Farsari, “Direct laser writing of microoptical structures using a Ge-containing hybrid material,” Metamaterials (Amst.) 5(2-3), 135–140 (2011).
    [Crossref]
  34. A. Zukauskas, K. K. Tikuisis, M. Sciuka, A. Melninkaitis, R. Gadonas, C. Reinhardt, and M. Malinauskas, “Single-step direct laser fabrication of complex shaped microoptical components,” Proc. SPIE 8428, 84280K (2012).
    [Crossref]
  35. Y. Shen, D. Ye, L. Wang, I. Celanovic, L. Ran, J. D. Joannopoulos, and M. Soljačić, “Metamaterial broadband angular selectivity,” Phys. Rev. B 90(12), 125422 (2014).
    [Crossref]
  36. W. P. Dumke, “Spontaneous radiative recombination in semiconductors,” Phys. Rev. 105(1), 139–144 (1957).
    [Crossref]
  37. Y. Shen, C. W. Hsu, Y. X. Yeng, J. D. Joannopoulos, and M. S. Soljačić, “Broadband angular selectivity of light at the nanoscale: progress, applications, and outlook,” Appl. Phys. Lett. 3(1), 011103 (2016).

2016 (2)

M. R. Wu, J. C. Chien, C. J. Wu, and S. J. Chang, “Near-infrared multichannel filter in a finite semiconductor metamaterial photonic crystal,” IEEE Photonics J. 8(1), 2700309 (2016).
[Crossref]

Y. Shen, C. W. Hsu, Y. X. Yeng, J. D. Joannopoulos, and M. S. Soljačić, “Broadband angular selectivity of light at the nanoscale: progress, applications, and outlook,” Appl. Phys. Lett. 3(1), 011103 (2016).

2015 (3)

2014 (3)

Y. Shen, D. Ye, I. Celanovic, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Optical Broadband Angular Selectivity,” Science 343(6178), 1499–1501 (2014).
[Crossref] [PubMed]

Y. Shen, D. Ye, L. Wang, I. Celanovic, L. Ran, J. D. Joannopoulos, and M. Soljačić, “Metamaterial broadband angular selectivity,” Phys. Rev. B 90(12), 125422 (2014).
[Crossref]

V. Rinnerbauer, Y. Shen, J. D. Joannopoulos, M. Soljačić, F. Schäffler, and I. Celanovic, “Superlattice photonic crystal as broadband solar absorber for high temperature operation,” Opt. Express 22(S7), A1895–A1906 (2014).
[Crossref] [PubMed]

2013 (2)

C. Argyropoulos, K. Q. Le, N. Mattiucci, G. D’Aguanno, and A. Alù, “Broadband absorbers and selective emitters based on plasmonic Brewster metasurfaces,” Phys. Rev. B 87(20), 205112 (2013).
[Crossref]

E. D. Kosten, J. H. Atwater, J. Parsons, A. Polman, and H. A. Atwater, “Highly efficient GaAs solar cells by limiting light emission angle,” Light Sci. Appl. 2(1), e45 (2013).
[Crossref]

2012 (4)

K. Q. Le, C. Argyropoulos, N. Mattiucci, G. D’Aguanno, M. J. Bloemer, and A. Alù, “Broadband Brewster transmission through 2D metallic gratings,” J. Appl. Phys. 112(9), 094317 (2012).
[Crossref]

N. Aközbek, N. Mattiucci, D. de Ceglia, R. Trimm, A. Alù, G. D’Aguanno, M. Vincenti, M. Scalora, and M. Bloemer, “Experimental demonstration of plasmonic Brewster angle extraordinary transmission through extreme subwavelength slit arrays in the microwave,” Phys. Rev. B 85(20), 205430 (2012).
[Crossref]

C. Argyropoulos, N. D’Aguanno, N. Mattiucci, N. Akozbek, M. J. Bloemer, and A. Alù, “Matching and funneling light at the plasmonic Brewster angle,” Phys. Rev. B 85(2), 024304 (2012).
[Crossref]

A. Zukauskas, K. K. Tikuisis, M. Sciuka, A. Melninkaitis, R. Gadonas, C. Reinhardt, and M. Malinauskas, “Single-step direct laser fabrication of complex shaped microoptical components,” Proc. SPIE 8428, 84280K (2012).
[Crossref]

2011 (7)

M. Beresna, M. Gecevicius, and P. G. Kazansky, “Polarization sensitive elements fabricated by femtosecond laser nanostructuring of glass,” Opt. Mater. Express 1(4), 783–795 (2011).
[Crossref]

H. T. Hsieh, V. Lin, J. L. Hsieh, and G. D. J. Su, “Design and fabrication of long focal length microlens arrays,” Opt. Commun. 284(21), 5225–5230 (2011).
[Crossref]

M. Malinauskas, A. Gaidukevičiūtė, V. Purlys, A. Žukauskas, I. Sakellari, E. Kabouraki, A. Candiani, D. Gray, S. Pissadakis, R. Gadonas, A. Piskarskas, C. Fotakis, M. Vamvakaki, and M. Farsari, “Direct laser writing of microoptical structures using a Ge-containing hybrid material,” Metamaterials (Amst.) 5(2-3), 135–140 (2011).
[Crossref]

R. E. Hamam, I. Celanovic, and M. Soljačić, “Angular photonic band gap,” Phys. Rev. A 83(3), 035806 (2011).
[Crossref]

R. Guo, D. J. Yuan, and S. Das, “Large-area microlens arrays fabricated on flexible polycarbonate sheets via single-step laser interference ablation,” Journal of Micromachines and Microengineering 21(1), 015010 (2011).
[Crossref]

A. Alù, G. D’Aguanno, N. Mattiucci, and M. J. Bloemer, “Plasmonic Brewster angle: broadband extraordinary transmission through optical gratings,” Phys. Rev. Lett. 106(12), 123902 (2011).
[Crossref] [PubMed]

P. Bermel, M. Ghebrebrhan, M. Harradon, Y. X. Yeng, I. Celanovic, J. D. Joannopoulos, and M. Soljačić, “Tailoring photonic metamaterial resonances for thermal radiation,” Nanoscale Res. Lett. 6(1), 549 (2011).
[Crossref] [PubMed]

2010 (2)

J. Üpping, P. Miclea, R. Wehrspohn, T. Baumgarten, and S. Greulich-Weber, “Direction-selective optical transmission of 3D FCC photonic crystals in the microwave regime,” Photon. Nanostructures 8(2), 102–106 (2010).
[Crossref]

F. Chen, H. Liu, Q. Yang, X. Wang, C. Hou, H. Bian, W. Liang, J. Si, and X. Hou, “Maskless fabrication of concave microlens arrays on silica glasses by a femtosecond-laser-enhanced local wet etching method,” Opt. Express 18(19), 20334–20343 (2010).
[Crossref] [PubMed]

2007 (1)

F. G. De Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79(4), 1267–1290 (2007).
[Crossref]

2005 (1)

W. C. Cheong, B. P. S. Ahluwalia, X. C. Yuan, L. S. Zhang, H. Wang, H. B. Niu, and X. Peng, “Fabrication of efficient microaxicon by direct electron-beam lithography for long nondiffracting distance of Bessel beams for optical manipulation,” Appl. Phys. Lett. 87(2), 024104 (2005).
[Crossref]

2003 (1)

2002 (1)

X. Wang, X. Hu, Y. Li, W. Jia, C. Xu, X. Liu, and J. Zi, “Enlargement of omnidirectional total reflection frequency range in one-dimensional photonic crystals by using photonic heterostructures,” Appl. Phys. Lett. 80(23), 4291–4293 (2002).
[Crossref]

2000 (2)

S. G. Johnson and J. D. Joannopoulos, “Three-dimensionally periodic dielectric layered structure with omnidirectional photonic band gap,” Appl. Phys. Lett. 77(22), 3490–3492 (2000).
[Crossref]

C. Zhang, F. Qiao, J. Wan, and J. Zi, “Enlargement of nontransmission frequency range in photonic crystals by using multiple heterostructures,” J. Appl. Phys. 87(6), 3174–3176 (2000).
[Crossref]

1998 (1)

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998).
[Crossref] [PubMed]

1994 (1)

J. B. Pendry, “Photonic band structures,” J. Mod. Opt. 41(2), 209–229 (1994).
[Crossref]

1993 (1)

1987 (1)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[Crossref] [PubMed]

1957 (1)

W. P. Dumke, “Spontaneous radiative recombination in semiconductors,” Phys. Rev. 105(1), 139–144 (1957).
[Crossref]

Ahluwalia, B. P. S.

W. C. Cheong, B. P. S. Ahluwalia, X. C. Yuan, L. S. Zhang, H. Wang, H. B. Niu, and X. Peng, “Fabrication of efficient microaxicon by direct electron-beam lithography for long nondiffracting distance of Bessel beams for optical manipulation,” Appl. Phys. Lett. 87(2), 024104 (2005).
[Crossref]

Akozbek, N.

C. Argyropoulos, N. D’Aguanno, N. Mattiucci, N. Akozbek, M. J. Bloemer, and A. Alù, “Matching and funneling light at the plasmonic Brewster angle,” Phys. Rev. B 85(2), 024304 (2012).
[Crossref]

Aközbek, N.

N. Aközbek, N. Mattiucci, D. de Ceglia, R. Trimm, A. Alù, G. D’Aguanno, M. Vincenti, M. Scalora, and M. Bloemer, “Experimental demonstration of plasmonic Brewster angle extraordinary transmission through extreme subwavelength slit arrays in the microwave,” Phys. Rev. B 85(20), 205430 (2012).
[Crossref]

Alù, A.

C. Argyropoulos, K. Q. Le, N. Mattiucci, G. D’Aguanno, and A. Alù, “Broadband absorbers and selective emitters based on plasmonic Brewster metasurfaces,” Phys. Rev. B 87(20), 205112 (2013).
[Crossref]

C. Argyropoulos, N. D’Aguanno, N. Mattiucci, N. Akozbek, M. J. Bloemer, and A. Alù, “Matching and funneling light at the plasmonic Brewster angle,” Phys. Rev. B 85(2), 024304 (2012).
[Crossref]

N. Aközbek, N. Mattiucci, D. de Ceglia, R. Trimm, A. Alù, G. D’Aguanno, M. Vincenti, M. Scalora, and M. Bloemer, “Experimental demonstration of plasmonic Brewster angle extraordinary transmission through extreme subwavelength slit arrays in the microwave,” Phys. Rev. B 85(20), 205430 (2012).
[Crossref]

K. Q. Le, C. Argyropoulos, N. Mattiucci, G. D’Aguanno, M. J. Bloemer, and A. Alù, “Broadband Brewster transmission through 2D metallic gratings,” J. Appl. Phys. 112(9), 094317 (2012).
[Crossref]

A. Alù, G. D’Aguanno, N. Mattiucci, and M. J. Bloemer, “Plasmonic Brewster angle: broadband extraordinary transmission through optical gratings,” Phys. Rev. Lett. 106(12), 123902 (2011).
[Crossref] [PubMed]

Argyropoulos, C.

C. Argyropoulos, K. Q. Le, N. Mattiucci, G. D’Aguanno, and A. Alù, “Broadband absorbers and selective emitters based on plasmonic Brewster metasurfaces,” Phys. Rev. B 87(20), 205112 (2013).
[Crossref]

C. Argyropoulos, N. D’Aguanno, N. Mattiucci, N. Akozbek, M. J. Bloemer, and A. Alù, “Matching and funneling light at the plasmonic Brewster angle,” Phys. Rev. B 85(2), 024304 (2012).
[Crossref]

K. Q. Le, C. Argyropoulos, N. Mattiucci, G. D’Aguanno, M. J. Bloemer, and A. Alù, “Broadband Brewster transmission through 2D metallic gratings,” J. Appl. Phys. 112(9), 094317 (2012).
[Crossref]

Atwater, H. A.

E. D. Kosten, J. H. Atwater, J. Parsons, A. Polman, and H. A. Atwater, “Highly efficient GaAs solar cells by limiting light emission angle,” Light Sci. Appl. 2(1), e45 (2013).
[Crossref]

Atwater, J. H.

E. D. Kosten, J. H. Atwater, J. Parsons, A. Polman, and H. A. Atwater, “Highly efficient GaAs solar cells by limiting light emission angle,” Light Sci. Appl. 2(1), e45 (2013).
[Crossref]

Baumgarten, T.

J. Üpping, P. Miclea, R. Wehrspohn, T. Baumgarten, and S. Greulich-Weber, “Direction-selective optical transmission of 3D FCC photonic crystals in the microwave regime,” Photon. Nanostructures 8(2), 102–106 (2010).
[Crossref]

Beresna, M.

Bermel, P.

P. Bermel, M. Ghebrebrhan, M. Harradon, Y. X. Yeng, I. Celanovic, J. D. Joannopoulos, and M. Soljačić, “Tailoring photonic metamaterial resonances for thermal radiation,” Nanoscale Res. Lett. 6(1), 549 (2011).
[Crossref] [PubMed]

Bian, H.

Bloemer, M.

N. Aközbek, N. Mattiucci, D. de Ceglia, R. Trimm, A. Alù, G. D’Aguanno, M. Vincenti, M. Scalora, and M. Bloemer, “Experimental demonstration of plasmonic Brewster angle extraordinary transmission through extreme subwavelength slit arrays in the microwave,” Phys. Rev. B 85(20), 205430 (2012).
[Crossref]

Bloemer, M. J.

K. Q. Le, C. Argyropoulos, N. Mattiucci, G. D’Aguanno, M. J. Bloemer, and A. Alù, “Broadband Brewster transmission through 2D metallic gratings,” J. Appl. Phys. 112(9), 094317 (2012).
[Crossref]

C. Argyropoulos, N. D’Aguanno, N. Mattiucci, N. Akozbek, M. J. Bloemer, and A. Alù, “Matching and funneling light at the plasmonic Brewster angle,” Phys. Rev. B 85(2), 024304 (2012).
[Crossref]

A. Alù, G. D’Aguanno, N. Mattiucci, and M. J. Bloemer, “Plasmonic Brewster angle: broadband extraordinary transmission through optical gratings,” Phys. Rev. Lett. 106(12), 123902 (2011).
[Crossref] [PubMed]

Candiani, A.

M. Malinauskas, A. Gaidukevičiūtė, V. Purlys, A. Žukauskas, I. Sakellari, E. Kabouraki, A. Candiani, D. Gray, S. Pissadakis, R. Gadonas, A. Piskarskas, C. Fotakis, M. Vamvakaki, and M. Farsari, “Direct laser writing of microoptical structures using a Ge-containing hybrid material,” Metamaterials (Amst.) 5(2-3), 135–140 (2011).
[Crossref]

Celanovic, I.

Y. Shen, D. Ye, L. Wang, I. Celanovic, L. Ran, J. D. Joannopoulos, and M. Soljačić, “Metamaterial broadband angular selectivity,” Phys. Rev. B 90(12), 125422 (2014).
[Crossref]

Y. Shen, D. Ye, I. Celanovic, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Optical Broadband Angular Selectivity,” Science 343(6178), 1499–1501 (2014).
[Crossref] [PubMed]

V. Rinnerbauer, Y. Shen, J. D. Joannopoulos, M. Soljačić, F. Schäffler, and I. Celanovic, “Superlattice photonic crystal as broadband solar absorber for high temperature operation,” Opt. Express 22(S7), A1895–A1906 (2014).
[Crossref] [PubMed]

R. E. Hamam, I. Celanovic, and M. Soljačić, “Angular photonic band gap,” Phys. Rev. A 83(3), 035806 (2011).
[Crossref]

P. Bermel, M. Ghebrebrhan, M. Harradon, Y. X. Yeng, I. Celanovic, J. D. Joannopoulos, and M. Soljačić, “Tailoring photonic metamaterial resonances for thermal radiation,” Nanoscale Res. Lett. 6(1), 549 (2011).
[Crossref] [PubMed]

Chang, S. J.

M. R. Wu, J. C. Chien, C. J. Wu, and S. J. Chang, “Near-infrared multichannel filter in a finite semiconductor metamaterial photonic crystal,” IEEE Photonics J. 8(1), 2700309 (2016).
[Crossref]

Chen, C.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998).
[Crossref] [PubMed]

Chen, F.

Cheong, W. C.

W. C. Cheong, B. P. S. Ahluwalia, X. C. Yuan, L. S. Zhang, H. Wang, H. B. Niu, and X. Peng, “Fabrication of efficient microaxicon by direct electron-beam lithography for long nondiffracting distance of Bessel beams for optical manipulation,” Appl. Phys. Lett. 87(2), 024104 (2005).
[Crossref]

Chien, J. C.

M. R. Wu, J. C. Chien, C. J. Wu, and S. J. Chang, “Near-infrared multichannel filter in a finite semiconductor metamaterial photonic crystal,” IEEE Photonics J. 8(1), 2700309 (2016).
[Crossref]

D’Aguanno, G.

C. Argyropoulos, K. Q. Le, N. Mattiucci, G. D’Aguanno, and A. Alù, “Broadband absorbers and selective emitters based on plasmonic Brewster metasurfaces,” Phys. Rev. B 87(20), 205112 (2013).
[Crossref]

N. Aközbek, N. Mattiucci, D. de Ceglia, R. Trimm, A. Alù, G. D’Aguanno, M. Vincenti, M. Scalora, and M. Bloemer, “Experimental demonstration of plasmonic Brewster angle extraordinary transmission through extreme subwavelength slit arrays in the microwave,” Phys. Rev. B 85(20), 205430 (2012).
[Crossref]

K. Q. Le, C. Argyropoulos, N. Mattiucci, G. D’Aguanno, M. J. Bloemer, and A. Alù, “Broadband Brewster transmission through 2D metallic gratings,” J. Appl. Phys. 112(9), 094317 (2012).
[Crossref]

A. Alù, G. D’Aguanno, N. Mattiucci, and M. J. Bloemer, “Plasmonic Brewster angle: broadband extraordinary transmission through optical gratings,” Phys. Rev. Lett. 106(12), 123902 (2011).
[Crossref] [PubMed]

D’Aguanno, N.

C. Argyropoulos, N. D’Aguanno, N. Mattiucci, N. Akozbek, M. J. Bloemer, and A. Alù, “Matching and funneling light at the plasmonic Brewster angle,” Phys. Rev. B 85(2), 024304 (2012).
[Crossref]

Das, S.

R. Guo, D. J. Yuan, and S. Das, “Large-area microlens arrays fabricated on flexible polycarbonate sheets via single-step laser interference ablation,” Journal of Micromachines and Microengineering 21(1), 015010 (2011).
[Crossref]

De Abajo, F. G.

F. G. De Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79(4), 1267–1290 (2007).
[Crossref]

de Ceglia, D.

N. Aközbek, N. Mattiucci, D. de Ceglia, R. Trimm, A. Alù, G. D’Aguanno, M. Vincenti, M. Scalora, and M. Bloemer, “Experimental demonstration of plasmonic Brewster angle extraordinary transmission through extreme subwavelength slit arrays in the microwave,” Phys. Rev. B 85(20), 205430 (2012).
[Crossref]

Dumke, W. P.

W. P. Dumke, “Spontaneous radiative recombination in semiconductors,” Phys. Rev. 105(1), 139–144 (1957).
[Crossref]

Fan, S.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998).
[Crossref] [PubMed]

Farsari, M.

M. Malinauskas, A. Gaidukevičiūtė, V. Purlys, A. Žukauskas, I. Sakellari, E. Kabouraki, A. Candiani, D. Gray, S. Pissadakis, R. Gadonas, A. Piskarskas, C. Fotakis, M. Vamvakaki, and M. Farsari, “Direct laser writing of microoptical structures using a Ge-containing hybrid material,” Metamaterials (Amst.) 5(2-3), 135–140 (2011).
[Crossref]

Fink, Y.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998).
[Crossref] [PubMed]

Fotakis, C.

M. Malinauskas, A. Gaidukevičiūtė, V. Purlys, A. Žukauskas, I. Sakellari, E. Kabouraki, A. Candiani, D. Gray, S. Pissadakis, R. Gadonas, A. Piskarskas, C. Fotakis, M. Vamvakaki, and M. Farsari, “Direct laser writing of microoptical structures using a Ge-containing hybrid material,” Metamaterials (Amst.) 5(2-3), 135–140 (2011).
[Crossref]

Gadonas, R.

A. Zukauskas, K. K. Tikuisis, M. Sciuka, A. Melninkaitis, R. Gadonas, C. Reinhardt, and M. Malinauskas, “Single-step direct laser fabrication of complex shaped microoptical components,” Proc. SPIE 8428, 84280K (2012).
[Crossref]

M. Malinauskas, A. Gaidukevičiūtė, V. Purlys, A. Žukauskas, I. Sakellari, E. Kabouraki, A. Candiani, D. Gray, S. Pissadakis, R. Gadonas, A. Piskarskas, C. Fotakis, M. Vamvakaki, and M. Farsari, “Direct laser writing of microoptical structures using a Ge-containing hybrid material,” Metamaterials (Amst.) 5(2-3), 135–140 (2011).
[Crossref]

Gaidukeviciute, A.

M. Malinauskas, A. Gaidukevičiūtė, V. Purlys, A. Žukauskas, I. Sakellari, E. Kabouraki, A. Candiani, D. Gray, S. Pissadakis, R. Gadonas, A. Piskarskas, C. Fotakis, M. Vamvakaki, and M. Farsari, “Direct laser writing of microoptical structures using a Ge-containing hybrid material,” Metamaterials (Amst.) 5(2-3), 135–140 (2011).
[Crossref]

Gecevicius, M.

Ghebrebrhan, M.

P. Bermel, M. Ghebrebrhan, M. Harradon, Y. X. Yeng, I. Celanovic, J. D. Joannopoulos, and M. Soljačić, “Tailoring photonic metamaterial resonances for thermal radiation,” Nanoscale Res. Lett. 6(1), 549 (2011).
[Crossref] [PubMed]

Gray, D.

M. Malinauskas, A. Gaidukevičiūtė, V. Purlys, A. Žukauskas, I. Sakellari, E. Kabouraki, A. Candiani, D. Gray, S. Pissadakis, R. Gadonas, A. Piskarskas, C. Fotakis, M. Vamvakaki, and M. Farsari, “Direct laser writing of microoptical structures using a Ge-containing hybrid material,” Metamaterials (Amst.) 5(2-3), 135–140 (2011).
[Crossref]

Greulich-Weber, S.

J. Üpping, P. Miclea, R. Wehrspohn, T. Baumgarten, and S. Greulich-Weber, “Direction-selective optical transmission of 3D FCC photonic crystals in the microwave regime,” Photon. Nanostructures 8(2), 102–106 (2010).
[Crossref]

Guo, R.

R. Guo, D. J. Yuan, and S. Das, “Large-area microlens arrays fabricated on flexible polycarbonate sheets via single-step laser interference ablation,” Journal of Micromachines and Microengineering 21(1), 015010 (2011).
[Crossref]

Guo, Y.

Y. Guo, Y. Wang, M. Pu, Z. Zhao, X. Wu, X. Ma, C. Wang, L. Yan, and X. Luo, “Dispersion management of anisotropic metamirror for super-octave bandwidth polarization conversion,” Sci. Rep. 5, 8434 (2015).
[Crossref] [PubMed]

Y. Guo, L. Yan, W. Pan, and B. Luo, “Achromatic polarization manipulation by dispersion management of anisotropic meta-mirror with dual-metasurface,” Opt. Express 23(21), 27566–27575 (2015).
[Crossref] [PubMed]

Hamam, R. E.

R. E. Hamam, I. Celanovic, and M. Soljačić, “Angular photonic band gap,” Phys. Rev. A 83(3), 035806 (2011).
[Crossref]

Harradon, M.

P. Bermel, M. Ghebrebrhan, M. Harradon, Y. X. Yeng, I. Celanovic, J. D. Joannopoulos, and M. Soljačić, “Tailoring photonic metamaterial resonances for thermal radiation,” Nanoscale Res. Lett. 6(1), 549 (2011).
[Crossref] [PubMed]

Hou, C.

Hou, X.

Hsieh, H. T.

H. T. Hsieh, V. Lin, J. L. Hsieh, and G. D. J. Su, “Design and fabrication of long focal length microlens arrays,” Opt. Commun. 284(21), 5225–5230 (2011).
[Crossref]

Hsieh, J. L.

H. T. Hsieh, V. Lin, J. L. Hsieh, and G. D. J. Su, “Design and fabrication of long focal length microlens arrays,” Opt. Commun. 284(21), 5225–5230 (2011).
[Crossref]

Hsu, C. W.

Y. Shen, C. W. Hsu, Y. X. Yeng, J. D. Joannopoulos, and M. S. Soljačić, “Broadband angular selectivity of light at the nanoscale: progress, applications, and outlook,” Appl. Phys. Lett. 3(1), 011103 (2016).

Hu, X.

X. Wang, X. Hu, Y. Li, W. Jia, C. Xu, X. Liu, and J. Zi, “Enlargement of omnidirectional total reflection frequency range in one-dimensional photonic crystals by using photonic heterostructures,” Appl. Phys. Lett. 80(23), 4291–4293 (2002).
[Crossref]

Jia, W.

X. Wang, X. Hu, Y. Li, W. Jia, C. Xu, X. Liu, and J. Zi, “Enlargement of omnidirectional total reflection frequency range in one-dimensional photonic crystals by using photonic heterostructures,” Appl. Phys. Lett. 80(23), 4291–4293 (2002).
[Crossref]

Joannopoulos, J. D.

Y. Shen, C. W. Hsu, Y. X. Yeng, J. D. Joannopoulos, and M. S. Soljačić, “Broadband angular selectivity of light at the nanoscale: progress, applications, and outlook,” Appl. Phys. Lett. 3(1), 011103 (2016).

Y. Shen, D. Ye, L. Wang, I. Celanovic, L. Ran, J. D. Joannopoulos, and M. Soljačić, “Metamaterial broadband angular selectivity,” Phys. Rev. B 90(12), 125422 (2014).
[Crossref]

Y. Shen, D. Ye, I. Celanovic, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Optical Broadband Angular Selectivity,” Science 343(6178), 1499–1501 (2014).
[Crossref] [PubMed]

V. Rinnerbauer, Y. Shen, J. D. Joannopoulos, M. Soljačić, F. Schäffler, and I. Celanovic, “Superlattice photonic crystal as broadband solar absorber for high temperature operation,” Opt. Express 22(S7), A1895–A1906 (2014).
[Crossref] [PubMed]

P. Bermel, M. Ghebrebrhan, M. Harradon, Y. X. Yeng, I. Celanovic, J. D. Joannopoulos, and M. Soljačić, “Tailoring photonic metamaterial resonances for thermal radiation,” Nanoscale Res. Lett. 6(1), 549 (2011).
[Crossref] [PubMed]

S. G. Johnson and J. D. Joannopoulos, “Three-dimensionally periodic dielectric layered structure with omnidirectional photonic band gap,” Appl. Phys. Lett. 77(22), 3490–3492 (2000).
[Crossref]

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998).
[Crossref] [PubMed]

Johnson, S. G.

Y. Shen, D. Ye, I. Celanovic, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Optical Broadband Angular Selectivity,” Science 343(6178), 1499–1501 (2014).
[Crossref] [PubMed]

S. G. Johnson and J. D. Joannopoulos, “Three-dimensionally periodic dielectric layered structure with omnidirectional photonic band gap,” Appl. Phys. Lett. 77(22), 3490–3492 (2000).
[Crossref]

Kabouraki, E.

M. Malinauskas, A. Gaidukevičiūtė, V. Purlys, A. Žukauskas, I. Sakellari, E. Kabouraki, A. Candiani, D. Gray, S. Pissadakis, R. Gadonas, A. Piskarskas, C. Fotakis, M. Vamvakaki, and M. Farsari, “Direct laser writing of microoptical structures using a Ge-containing hybrid material,” Metamaterials (Amst.) 5(2-3), 135–140 (2011).
[Crossref]

Kafesaki, M.

Kazansky, P. G.

Koschny, T.

Kosten, E. D.

E. D. Kosten, J. H. Atwater, J. Parsons, A. Polman, and H. A. Atwater, “Highly efficient GaAs solar cells by limiting light emission angle,” Light Sci. Appl. 2(1), e45 (2013).
[Crossref]

Le, K. Q.

C. Argyropoulos, K. Q. Le, N. Mattiucci, G. D’Aguanno, and A. Alù, “Broadband absorbers and selective emitters based on plasmonic Brewster metasurfaces,” Phys. Rev. B 87(20), 205112 (2013).
[Crossref]

K. Q. Le, C. Argyropoulos, N. Mattiucci, G. D’Aguanno, M. J. Bloemer, and A. Alù, “Broadband Brewster transmission through 2D metallic gratings,” J. Appl. Phys. 112(9), 094317 (2012).
[Crossref]

Li, Y.

X. Wang, X. Hu, Y. Li, W. Jia, C. Xu, X. Liu, and J. Zi, “Enlargement of omnidirectional total reflection frequency range in one-dimensional photonic crystals by using photonic heterostructures,” Appl. Phys. Lett. 80(23), 4291–4293 (2002).
[Crossref]

Liang, W.

Lin, V.

H. T. Hsieh, V. Lin, J. L. Hsieh, and G. D. J. Su, “Design and fabrication of long focal length microlens arrays,” Opt. Commun. 284(21), 5225–5230 (2011).
[Crossref]

Liu, H.

Liu, X.

X. Wang, X. Hu, Y. Li, W. Jia, C. Xu, X. Liu, and J. Zi, “Enlargement of omnidirectional total reflection frequency range in one-dimensional photonic crystals by using photonic heterostructures,” Appl. Phys. Lett. 80(23), 4291–4293 (2002).
[Crossref]

Luo, B.

Luo, X.

Y. Guo, Y. Wang, M. Pu, Z. Zhao, X. Wu, X. Ma, C. Wang, L. Yan, and X. Luo, “Dispersion management of anisotropic metamirror for super-octave bandwidth polarization conversion,” Sci. Rep. 5, 8434 (2015).
[Crossref] [PubMed]

Ma, X.

Y. Guo, Y. Wang, M. Pu, Z. Zhao, X. Wu, X. Ma, C. Wang, L. Yan, and X. Luo, “Dispersion management of anisotropic metamirror for super-octave bandwidth polarization conversion,” Sci. Rep. 5, 8434 (2015).
[Crossref] [PubMed]

Malinauskas, M.

A. Zukauskas, K. K. Tikuisis, M. Sciuka, A. Melninkaitis, R. Gadonas, C. Reinhardt, and M. Malinauskas, “Single-step direct laser fabrication of complex shaped microoptical components,” Proc. SPIE 8428, 84280K (2012).
[Crossref]

M. Malinauskas, A. Gaidukevičiūtė, V. Purlys, A. Žukauskas, I. Sakellari, E. Kabouraki, A. Candiani, D. Gray, S. Pissadakis, R. Gadonas, A. Piskarskas, C. Fotakis, M. Vamvakaki, and M. Farsari, “Direct laser writing of microoptical structures using a Ge-containing hybrid material,” Metamaterials (Amst.) 5(2-3), 135–140 (2011).
[Crossref]

Mattiucci, N.

C. Argyropoulos, K. Q. Le, N. Mattiucci, G. D’Aguanno, and A. Alù, “Broadband absorbers and selective emitters based on plasmonic Brewster metasurfaces,” Phys. Rev. B 87(20), 205112 (2013).
[Crossref]

N. Aközbek, N. Mattiucci, D. de Ceglia, R. Trimm, A. Alù, G. D’Aguanno, M. Vincenti, M. Scalora, and M. Bloemer, “Experimental demonstration of plasmonic Brewster angle extraordinary transmission through extreme subwavelength slit arrays in the microwave,” Phys. Rev. B 85(20), 205430 (2012).
[Crossref]

K. Q. Le, C. Argyropoulos, N. Mattiucci, G. D’Aguanno, M. J. Bloemer, and A. Alù, “Broadband Brewster transmission through 2D metallic gratings,” J. Appl. Phys. 112(9), 094317 (2012).
[Crossref]

C. Argyropoulos, N. D’Aguanno, N. Mattiucci, N. Akozbek, M. J. Bloemer, and A. Alù, “Matching and funneling light at the plasmonic Brewster angle,” Phys. Rev. B 85(2), 024304 (2012).
[Crossref]

A. Alù, G. D’Aguanno, N. Mattiucci, and M. J. Bloemer, “Plasmonic Brewster angle: broadband extraordinary transmission through optical gratings,” Phys. Rev. Lett. 106(12), 123902 (2011).
[Crossref] [PubMed]

Melninkaitis, A.

A. Zukauskas, K. K. Tikuisis, M. Sciuka, A. Melninkaitis, R. Gadonas, C. Reinhardt, and M. Malinauskas, “Single-step direct laser fabrication of complex shaped microoptical components,” Proc. SPIE 8428, 84280K (2012).
[Crossref]

Michel, J.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998).
[Crossref] [PubMed]

Miclea, P.

J. Üpping, P. Miclea, R. Wehrspohn, T. Baumgarten, and S. Greulich-Weber, “Direction-selective optical transmission of 3D FCC photonic crystals in the microwave regime,” Photon. Nanostructures 8(2), 102–106 (2010).
[Crossref]

Niu, H. B.

W. C. Cheong, B. P. S. Ahluwalia, X. C. Yuan, L. S. Zhang, H. Wang, H. B. Niu, and X. Peng, “Fabrication of efficient microaxicon by direct electron-beam lithography for long nondiffracting distance of Bessel beams for optical manipulation,” Appl. Phys. Lett. 87(2), 024104 (2005).
[Crossref]

Pan, W.

Parsons, J.

E. D. Kosten, J. H. Atwater, J. Parsons, A. Polman, and H. A. Atwater, “Highly efficient GaAs solar cells by limiting light emission angle,” Light Sci. Appl. 2(1), e45 (2013).
[Crossref]

Pendry, J. B.

J. B. Pendry, “Photonic band structures,” J. Mod. Opt. 41(2), 209–229 (1994).
[Crossref]

Peng, X.

W. C. Cheong, B. P. S. Ahluwalia, X. C. Yuan, L. S. Zhang, H. Wang, H. B. Niu, and X. Peng, “Fabrication of efficient microaxicon by direct electron-beam lithography for long nondiffracting distance of Bessel beams for optical manipulation,” Appl. Phys. Lett. 87(2), 024104 (2005).
[Crossref]

Piestun, R.

Piskarskas, A.

M. Malinauskas, A. Gaidukevičiūtė, V. Purlys, A. Žukauskas, I. Sakellari, E. Kabouraki, A. Candiani, D. Gray, S. Pissadakis, R. Gadonas, A. Piskarskas, C. Fotakis, M. Vamvakaki, and M. Farsari, “Direct laser writing of microoptical structures using a Ge-containing hybrid material,” Metamaterials (Amst.) 5(2-3), 135–140 (2011).
[Crossref]

Pissadakis, S.

M. Malinauskas, A. Gaidukevičiūtė, V. Purlys, A. Žukauskas, I. Sakellari, E. Kabouraki, A. Candiani, D. Gray, S. Pissadakis, R. Gadonas, A. Piskarskas, C. Fotakis, M. Vamvakaki, and M. Farsari, “Direct laser writing of microoptical structures using a Ge-containing hybrid material,” Metamaterials (Amst.) 5(2-3), 135–140 (2011).
[Crossref]

Polman, A.

E. D. Kosten, J. H. Atwater, J. Parsons, A. Polman, and H. A. Atwater, “Highly efficient GaAs solar cells by limiting light emission angle,” Light Sci. Appl. 2(1), e45 (2013).
[Crossref]

Pu, M.

Y. Guo, Y. Wang, M. Pu, Z. Zhao, X. Wu, X. Ma, C. Wang, L. Yan, and X. Luo, “Dispersion management of anisotropic metamirror for super-octave bandwidth polarization conversion,” Sci. Rep. 5, 8434 (2015).
[Crossref] [PubMed]

Purlys, V.

M. Malinauskas, A. Gaidukevičiūtė, V. Purlys, A. Žukauskas, I. Sakellari, E. Kabouraki, A. Candiani, D. Gray, S. Pissadakis, R. Gadonas, A. Piskarskas, C. Fotakis, M. Vamvakaki, and M. Farsari, “Direct laser writing of microoptical structures using a Ge-containing hybrid material,” Metamaterials (Amst.) 5(2-3), 135–140 (2011).
[Crossref]

Qiao, F.

C. Zhang, F. Qiao, J. Wan, and J. Zi, “Enlargement of nontransmission frequency range in photonic crystals by using multiple heterostructures,” J. Appl. Phys. 87(6), 3174–3176 (2000).
[Crossref]

Ran, L.

Y. Shen, D. Ye, L. Wang, I. Celanovic, L. Ran, J. D. Joannopoulos, and M. Soljačić, “Metamaterial broadband angular selectivity,” Phys. Rev. B 90(12), 125422 (2014).
[Crossref]

Reinhardt, C.

A. Zukauskas, K. K. Tikuisis, M. Sciuka, A. Melninkaitis, R. Gadonas, C. Reinhardt, and M. Malinauskas, “Single-step direct laser fabrication of complex shaped microoptical components,” Proc. SPIE 8428, 84280K (2012).
[Crossref]

Rinnerbauer, V.

Sakellari, I.

M. Malinauskas, A. Gaidukevičiūtė, V. Purlys, A. Žukauskas, I. Sakellari, E. Kabouraki, A. Candiani, D. Gray, S. Pissadakis, R. Gadonas, A. Piskarskas, C. Fotakis, M. Vamvakaki, and M. Farsari, “Direct laser writing of microoptical structures using a Ge-containing hybrid material,” Metamaterials (Amst.) 5(2-3), 135–140 (2011).
[Crossref]

Scalora, M.

N. Aközbek, N. Mattiucci, D. de Ceglia, R. Trimm, A. Alù, G. D’Aguanno, M. Vincenti, M. Scalora, and M. Bloemer, “Experimental demonstration of plasmonic Brewster angle extraordinary transmission through extreme subwavelength slit arrays in the microwave,” Phys. Rev. B 85(20), 205430 (2012).
[Crossref]

Schäffler, F.

Schwartz, B. T.

Sciuka, M.

A. Zukauskas, K. K. Tikuisis, M. Sciuka, A. Melninkaitis, R. Gadonas, C. Reinhardt, and M. Malinauskas, “Single-step direct laser fabrication of complex shaped microoptical components,” Proc. SPIE 8428, 84280K (2012).
[Crossref]

Shen, Y.

Y. Shen, C. W. Hsu, Y. X. Yeng, J. D. Joannopoulos, and M. S. Soljačić, “Broadband angular selectivity of light at the nanoscale: progress, applications, and outlook,” Appl. Phys. Lett. 3(1), 011103 (2016).

Y. Shen, D. Ye, L. Wang, I. Celanovic, L. Ran, J. D. Joannopoulos, and M. Soljačić, “Metamaterial broadband angular selectivity,” Phys. Rev. B 90(12), 125422 (2014).
[Crossref]

Y. Shen, D. Ye, I. Celanovic, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Optical Broadband Angular Selectivity,” Science 343(6178), 1499–1501 (2014).
[Crossref] [PubMed]

V. Rinnerbauer, Y. Shen, J. D. Joannopoulos, M. Soljačić, F. Schäffler, and I. Celanovic, “Superlattice photonic crystal as broadband solar absorber for high temperature operation,” Opt. Express 22(S7), A1895–A1906 (2014).
[Crossref] [PubMed]

Si, J.

Soljacic, M.

V. Rinnerbauer, Y. Shen, J. D. Joannopoulos, M. Soljačić, F. Schäffler, and I. Celanovic, “Superlattice photonic crystal as broadband solar absorber for high temperature operation,” Opt. Express 22(S7), A1895–A1906 (2014).
[Crossref] [PubMed]

Y. Shen, D. Ye, I. Celanovic, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Optical Broadband Angular Selectivity,” Science 343(6178), 1499–1501 (2014).
[Crossref] [PubMed]

Y. Shen, D. Ye, L. Wang, I. Celanovic, L. Ran, J. D. Joannopoulos, and M. Soljačić, “Metamaterial broadband angular selectivity,” Phys. Rev. B 90(12), 125422 (2014).
[Crossref]

P. Bermel, M. Ghebrebrhan, M. Harradon, Y. X. Yeng, I. Celanovic, J. D. Joannopoulos, and M. Soljačić, “Tailoring photonic metamaterial resonances for thermal radiation,” Nanoscale Res. Lett. 6(1), 549 (2011).
[Crossref] [PubMed]

R. E. Hamam, I. Celanovic, and M. Soljačić, “Angular photonic band gap,” Phys. Rev. A 83(3), 035806 (2011).
[Crossref]

Soljacic, M. S.

Y. Shen, C. W. Hsu, Y. X. Yeng, J. D. Joannopoulos, and M. S. Soljačić, “Broadband angular selectivity of light at the nanoscale: progress, applications, and outlook,” Appl. Phys. Lett. 3(1), 011103 (2016).

Soukoulis, C. M.

Su, G. D. J.

H. T. Hsieh, V. Lin, J. L. Hsieh, and G. D. J. Su, “Design and fabrication of long focal length microlens arrays,” Opt. Commun. 284(21), 5225–5230 (2011).
[Crossref]

Tasolamprou, A. C.

Thomas, E. L.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998).
[Crossref] [PubMed]

Tikuisis, K. K.

A. Zukauskas, K. K. Tikuisis, M. Sciuka, A. Melninkaitis, R. Gadonas, C. Reinhardt, and M. Malinauskas, “Single-step direct laser fabrication of complex shaped microoptical components,” Proc. SPIE 8428, 84280K (2012).
[Crossref]

Trimm, R.

N. Aközbek, N. Mattiucci, D. de Ceglia, R. Trimm, A. Alù, G. D’Aguanno, M. Vincenti, M. Scalora, and M. Bloemer, “Experimental demonstration of plasmonic Brewster angle extraordinary transmission through extreme subwavelength slit arrays in the microwave,” Phys. Rev. B 85(20), 205430 (2012).
[Crossref]

Üpping, J.

J. Üpping, P. Miclea, R. Wehrspohn, T. Baumgarten, and S. Greulich-Weber, “Direction-selective optical transmission of 3D FCC photonic crystals in the microwave regime,” Photon. Nanostructures 8(2), 102–106 (2010).
[Crossref]

Vamvakaki, M.

M. Malinauskas, A. Gaidukevičiūtė, V. Purlys, A. Žukauskas, I. Sakellari, E. Kabouraki, A. Candiani, D. Gray, S. Pissadakis, R. Gadonas, A. Piskarskas, C. Fotakis, M. Vamvakaki, and M. Farsari, “Direct laser writing of microoptical structures using a Ge-containing hybrid material,” Metamaterials (Amst.) 5(2-3), 135–140 (2011).
[Crossref]

Vincenti, M.

N. Aközbek, N. Mattiucci, D. de Ceglia, R. Trimm, A. Alù, G. D’Aguanno, M. Vincenti, M. Scalora, and M. Bloemer, “Experimental demonstration of plasmonic Brewster angle extraordinary transmission through extreme subwavelength slit arrays in the microwave,” Phys. Rev. B 85(20), 205430 (2012).
[Crossref]

Wan, J.

C. Zhang, F. Qiao, J. Wan, and J. Zi, “Enlargement of nontransmission frequency range in photonic crystals by using multiple heterostructures,” J. Appl. Phys. 87(6), 3174–3176 (2000).
[Crossref]

Wang, C.

Y. Guo, Y. Wang, M. Pu, Z. Zhao, X. Wu, X. Ma, C. Wang, L. Yan, and X. Luo, “Dispersion management of anisotropic metamirror for super-octave bandwidth polarization conversion,” Sci. Rep. 5, 8434 (2015).
[Crossref] [PubMed]

Wang, H.

W. C. Cheong, B. P. S. Ahluwalia, X. C. Yuan, L. S. Zhang, H. Wang, H. B. Niu, and X. Peng, “Fabrication of efficient microaxicon by direct electron-beam lithography for long nondiffracting distance of Bessel beams for optical manipulation,” Appl. Phys. Lett. 87(2), 024104 (2005).
[Crossref]

Wang, L.

Y. Shen, D. Ye, L. Wang, I. Celanovic, L. Ran, J. D. Joannopoulos, and M. Soljačić, “Metamaterial broadband angular selectivity,” Phys. Rev. B 90(12), 125422 (2014).
[Crossref]

Wang, X.

F. Chen, H. Liu, Q. Yang, X. Wang, C. Hou, H. Bian, W. Liang, J. Si, and X. Hou, “Maskless fabrication of concave microlens arrays on silica glasses by a femtosecond-laser-enhanced local wet etching method,” Opt. Express 18(19), 20334–20343 (2010).
[Crossref] [PubMed]

X. Wang, X. Hu, Y. Li, W. Jia, C. Xu, X. Liu, and J. Zi, “Enlargement of omnidirectional total reflection frequency range in one-dimensional photonic crystals by using photonic heterostructures,” Appl. Phys. Lett. 80(23), 4291–4293 (2002).
[Crossref]

Wang, Y.

Y. Guo, Y. Wang, M. Pu, Z. Zhao, X. Wu, X. Ma, C. Wang, L. Yan, and X. Luo, “Dispersion management of anisotropic metamirror for super-octave bandwidth polarization conversion,” Sci. Rep. 5, 8434 (2015).
[Crossref] [PubMed]

Wehrspohn, R.

J. Üpping, P. Miclea, R. Wehrspohn, T. Baumgarten, and S. Greulich-Weber, “Direction-selective optical transmission of 3D FCC photonic crystals in the microwave regime,” Photon. Nanostructures 8(2), 102–106 (2010).
[Crossref]

Winn, J. N.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998).
[Crossref] [PubMed]

Wu, C. J.

M. R. Wu, J. C. Chien, C. J. Wu, and S. J. Chang, “Near-infrared multichannel filter in a finite semiconductor metamaterial photonic crystal,” IEEE Photonics J. 8(1), 2700309 (2016).
[Crossref]

Wu, M. R.

M. R. Wu, J. C. Chien, C. J. Wu, and S. J. Chang, “Near-infrared multichannel filter in a finite semiconductor metamaterial photonic crystal,” IEEE Photonics J. 8(1), 2700309 (2016).
[Crossref]

Wu, X.

Y. Guo, Y. Wang, M. Pu, Z. Zhao, X. Wu, X. Ma, C. Wang, L. Yan, and X. Luo, “Dispersion management of anisotropic metamirror for super-octave bandwidth polarization conversion,” Sci. Rep. 5, 8434 (2015).
[Crossref] [PubMed]

Xu, C.

X. Wang, X. Hu, Y. Li, W. Jia, C. Xu, X. Liu, and J. Zi, “Enlargement of omnidirectional total reflection frequency range in one-dimensional photonic crystals by using photonic heterostructures,” Appl. Phys. Lett. 80(23), 4291–4293 (2002).
[Crossref]

Yablonovitch, E.

E. Yablonovitch, “Photonic band-gap structures,” J. Opt. Soc. Am. B 10(2), 283–295 (1993).
[Crossref]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[Crossref] [PubMed]

Yan, L.

Y. Guo, Y. Wang, M. Pu, Z. Zhao, X. Wu, X. Ma, C. Wang, L. Yan, and X. Luo, “Dispersion management of anisotropic metamirror for super-octave bandwidth polarization conversion,” Sci. Rep. 5, 8434 (2015).
[Crossref] [PubMed]

Y. Guo, L. Yan, W. Pan, and B. Luo, “Achromatic polarization manipulation by dispersion management of anisotropic meta-mirror with dual-metasurface,” Opt. Express 23(21), 27566–27575 (2015).
[Crossref] [PubMed]

Yang, Q.

Ye, D.

Y. Shen, D. Ye, L. Wang, I. Celanovic, L. Ran, J. D. Joannopoulos, and M. Soljačić, “Metamaterial broadband angular selectivity,” Phys. Rev. B 90(12), 125422 (2014).
[Crossref]

Y. Shen, D. Ye, I. Celanovic, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Optical Broadband Angular Selectivity,” Science 343(6178), 1499–1501 (2014).
[Crossref] [PubMed]

Yeng, Y. X.

Y. Shen, C. W. Hsu, Y. X. Yeng, J. D. Joannopoulos, and M. S. Soljačić, “Broadband angular selectivity of light at the nanoscale: progress, applications, and outlook,” Appl. Phys. Lett. 3(1), 011103 (2016).

P. Bermel, M. Ghebrebrhan, M. Harradon, Y. X. Yeng, I. Celanovic, J. D. Joannopoulos, and M. Soljačić, “Tailoring photonic metamaterial resonances for thermal radiation,” Nanoscale Res. Lett. 6(1), 549 (2011).
[Crossref] [PubMed]

Yuan, D. J.

R. Guo, D. J. Yuan, and S. Das, “Large-area microlens arrays fabricated on flexible polycarbonate sheets via single-step laser interference ablation,” Journal of Micromachines and Microengineering 21(1), 015010 (2011).
[Crossref]

Yuan, X. C.

W. C. Cheong, B. P. S. Ahluwalia, X. C. Yuan, L. S. Zhang, H. Wang, H. B. Niu, and X. Peng, “Fabrication of efficient microaxicon by direct electron-beam lithography for long nondiffracting distance of Bessel beams for optical manipulation,” Appl. Phys. Lett. 87(2), 024104 (2005).
[Crossref]

Zhang, C.

C. Zhang, F. Qiao, J. Wan, and J. Zi, “Enlargement of nontransmission frequency range in photonic crystals by using multiple heterostructures,” J. Appl. Phys. 87(6), 3174–3176 (2000).
[Crossref]

Zhang, L.

Zhang, L. S.

W. C. Cheong, B. P. S. Ahluwalia, X. C. Yuan, L. S. Zhang, H. Wang, H. B. Niu, and X. Peng, “Fabrication of efficient microaxicon by direct electron-beam lithography for long nondiffracting distance of Bessel beams for optical manipulation,” Appl. Phys. Lett. 87(2), 024104 (2005).
[Crossref]

Zhao, Z.

Y. Guo, Y. Wang, M. Pu, Z. Zhao, X. Wu, X. Ma, C. Wang, L. Yan, and X. Luo, “Dispersion management of anisotropic metamirror for super-octave bandwidth polarization conversion,” Sci. Rep. 5, 8434 (2015).
[Crossref] [PubMed]

Zi, J.

X. Wang, X. Hu, Y. Li, W. Jia, C. Xu, X. Liu, and J. Zi, “Enlargement of omnidirectional total reflection frequency range in one-dimensional photonic crystals by using photonic heterostructures,” Appl. Phys. Lett. 80(23), 4291–4293 (2002).
[Crossref]

C. Zhang, F. Qiao, J. Wan, and J. Zi, “Enlargement of nontransmission frequency range in photonic crystals by using multiple heterostructures,” J. Appl. Phys. 87(6), 3174–3176 (2000).
[Crossref]

Zukauskas, A.

A. Zukauskas, K. K. Tikuisis, M. Sciuka, A. Melninkaitis, R. Gadonas, C. Reinhardt, and M. Malinauskas, “Single-step direct laser fabrication of complex shaped microoptical components,” Proc. SPIE 8428, 84280K (2012).
[Crossref]

Žukauskas, A.

M. Malinauskas, A. Gaidukevičiūtė, V. Purlys, A. Žukauskas, I. Sakellari, E. Kabouraki, A. Candiani, D. Gray, S. Pissadakis, R. Gadonas, A. Piskarskas, C. Fotakis, M. Vamvakaki, and M. Farsari, “Direct laser writing of microoptical structures using a Ge-containing hybrid material,” Metamaterials (Amst.) 5(2-3), 135–140 (2011).
[Crossref]

Appl. Phys. Lett. (4)

S. G. Johnson and J. D. Joannopoulos, “Three-dimensionally periodic dielectric layered structure with omnidirectional photonic band gap,” Appl. Phys. Lett. 77(22), 3490–3492 (2000).
[Crossref]

X. Wang, X. Hu, Y. Li, W. Jia, C. Xu, X. Liu, and J. Zi, “Enlargement of omnidirectional total reflection frequency range in one-dimensional photonic crystals by using photonic heterostructures,” Appl. Phys. Lett. 80(23), 4291–4293 (2002).
[Crossref]

W. C. Cheong, B. P. S. Ahluwalia, X. C. Yuan, L. S. Zhang, H. Wang, H. B. Niu, and X. Peng, “Fabrication of efficient microaxicon by direct electron-beam lithography for long nondiffracting distance of Bessel beams for optical manipulation,” Appl. Phys. Lett. 87(2), 024104 (2005).
[Crossref]

Y. Shen, C. W. Hsu, Y. X. Yeng, J. D. Joannopoulos, and M. S. Soljačić, “Broadband angular selectivity of light at the nanoscale: progress, applications, and outlook,” Appl. Phys. Lett. 3(1), 011103 (2016).

IEEE Photonics J. (1)

M. R. Wu, J. C. Chien, C. J. Wu, and S. J. Chang, “Near-infrared multichannel filter in a finite semiconductor metamaterial photonic crystal,” IEEE Photonics J. 8(1), 2700309 (2016).
[Crossref]

J. Appl. Phys. (2)

K. Q. Le, C. Argyropoulos, N. Mattiucci, G. D’Aguanno, M. J. Bloemer, and A. Alù, “Broadband Brewster transmission through 2D metallic gratings,” J. Appl. Phys. 112(9), 094317 (2012).
[Crossref]

C. Zhang, F. Qiao, J. Wan, and J. Zi, “Enlargement of nontransmission frequency range in photonic crystals by using multiple heterostructures,” J. Appl. Phys. 87(6), 3174–3176 (2000).
[Crossref]

J. Mod. Opt. (1)

J. B. Pendry, “Photonic band structures,” J. Mod. Opt. 41(2), 209–229 (1994).
[Crossref]

J. Opt. Soc. Am. B (2)

Journal of Micromachines and Microengineering (1)

R. Guo, D. J. Yuan, and S. Das, “Large-area microlens arrays fabricated on flexible polycarbonate sheets via single-step laser interference ablation,” Journal of Micromachines and Microengineering 21(1), 015010 (2011).
[Crossref]

Light Sci. Appl. (1)

E. D. Kosten, J. H. Atwater, J. Parsons, A. Polman, and H. A. Atwater, “Highly efficient GaAs solar cells by limiting light emission angle,” Light Sci. Appl. 2(1), e45 (2013).
[Crossref]

Metamaterials (Amst.) (1)

M. Malinauskas, A. Gaidukevičiūtė, V. Purlys, A. Žukauskas, I. Sakellari, E. Kabouraki, A. Candiani, D. Gray, S. Pissadakis, R. Gadonas, A. Piskarskas, C. Fotakis, M. Vamvakaki, and M. Farsari, “Direct laser writing of microoptical structures using a Ge-containing hybrid material,” Metamaterials (Amst.) 5(2-3), 135–140 (2011).
[Crossref]

Nanoscale Res. Lett. (1)

P. Bermel, M. Ghebrebrhan, M. Harradon, Y. X. Yeng, I. Celanovic, J. D. Joannopoulos, and M. Soljačić, “Tailoring photonic metamaterial resonances for thermal radiation,” Nanoscale Res. Lett. 6(1), 549 (2011).
[Crossref] [PubMed]

Opt. Commun. (1)

H. T. Hsieh, V. Lin, J. L. Hsieh, and G. D. J. Su, “Design and fabrication of long focal length microlens arrays,” Opt. Commun. 284(21), 5225–5230 (2011).
[Crossref]

Opt. Express (4)

Opt. Mater. Express (1)

Photon. Nanostructures (1)

J. Üpping, P. Miclea, R. Wehrspohn, T. Baumgarten, and S. Greulich-Weber, “Direction-selective optical transmission of 3D FCC photonic crystals in the microwave regime,” Photon. Nanostructures 8(2), 102–106 (2010).
[Crossref]

Phys. Rev. (1)

W. P. Dumke, “Spontaneous radiative recombination in semiconductors,” Phys. Rev. 105(1), 139–144 (1957).
[Crossref]

Phys. Rev. A (1)

R. E. Hamam, I. Celanovic, and M. Soljačić, “Angular photonic band gap,” Phys. Rev. A 83(3), 035806 (2011).
[Crossref]

Phys. Rev. B (4)

C. Argyropoulos, K. Q. Le, N. Mattiucci, G. D’Aguanno, and A. Alù, “Broadband absorbers and selective emitters based on plasmonic Brewster metasurfaces,” Phys. Rev. B 87(20), 205112 (2013).
[Crossref]

N. Aközbek, N. Mattiucci, D. de Ceglia, R. Trimm, A. Alù, G. D’Aguanno, M. Vincenti, M. Scalora, and M. Bloemer, “Experimental demonstration of plasmonic Brewster angle extraordinary transmission through extreme subwavelength slit arrays in the microwave,” Phys. Rev. B 85(20), 205430 (2012).
[Crossref]

C. Argyropoulos, N. D’Aguanno, N. Mattiucci, N. Akozbek, M. J. Bloemer, and A. Alù, “Matching and funneling light at the plasmonic Brewster angle,” Phys. Rev. B 85(2), 024304 (2012).
[Crossref]

Y. Shen, D. Ye, L. Wang, I. Celanovic, L. Ran, J. D. Joannopoulos, and M. Soljačić, “Metamaterial broadband angular selectivity,” Phys. Rev. B 90(12), 125422 (2014).
[Crossref]

Phys. Rev. Lett. (2)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[Crossref] [PubMed]

A. Alù, G. D’Aguanno, N. Mattiucci, and M. J. Bloemer, “Plasmonic Brewster angle: broadband extraordinary transmission through optical gratings,” Phys. Rev. Lett. 106(12), 123902 (2011).
[Crossref] [PubMed]

Proc. SPIE (1)

A. Zukauskas, K. K. Tikuisis, M. Sciuka, A. Melninkaitis, R. Gadonas, C. Reinhardt, and M. Malinauskas, “Single-step direct laser fabrication of complex shaped microoptical components,” Proc. SPIE 8428, 84280K (2012).
[Crossref]

Rev. Mod. Phys. (1)

F. G. De Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys. 79(4), 1267–1290 (2007).
[Crossref]

Sci. Rep. (1)

Y. Guo, Y. Wang, M. Pu, Z. Zhao, X. Wu, X. Ma, C. Wang, L. Yan, and X. Luo, “Dispersion management of anisotropic metamirror for super-octave bandwidth polarization conversion,” Sci. Rep. 5, 8434 (2015).
[Crossref] [PubMed]

Science (2)

Y. Shen, D. Ye, I. Celanovic, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, “Optical Broadband Angular Selectivity,” Science 343(6178), 1499–1501 (2014).
[Crossref] [PubMed]

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, “A dielectric omnidirectional reflector,” Science 282(5394), 1679–1682 (1998).
[Crossref] [PubMed]

Other (3)

S. W. MacMaster, U.S. patent 7052746 filed 26 November 2003, issued 30 May 2006.

Y. Shen, C. W. Hsu, J. D. Joannopoulos, and M. Soljačić, “Air-compatible broadband angular selective material systems,” http://arxiv.org/abs/1502.00243 .

B. Perilloux, Thin-film Design: Modulated Thickness and other Stopband Design Methods (SPIE Press, 2002).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic illustration. (a) Overall view of the proposed APC (b) The layout of stack i, middle layer and stack m + j. (c) Illustration of the cross-section and βi. (d) The cross-section of the proposed PhC with different βi.
Fig. 2
Fig. 2 Schematic layout of the cross-section plane of the modified APC with asymmetric PhC1 and PhC2, when βi = 0°.
Fig. 3
Fig. 3 The distribution of the electric field in the APC. (a) (φ1,0, φ2,0) are (0°, 16°) and (γi, βi) = (38°, 59°). (b) (φ1,0, φ2,0) are (−18°, −10°) and (γi, βi) = (20°, 0°).
Fig. 4
Fig. 4 Numerical result of the angular selectivity of the APC. (a) The simulated elevation-angular selectivity of the APC. (b) The simulated azimuth-angular selectivity of the APC. (c) The theoretically calculated angular selectivity of the APC, when φ1,0 = 0° and φ2,0 = 16°. Elevation-azimuth-angular selectivity of the APC, when (d) φ1,0 = 10° and φ2,0 = 25°; (e) φ1,0 = −25° and φ2,0 = 10° and (f) φ1,0 = −25° and φ2,0 = −10°.
Fig. 5
Fig. 5 Schematic illustration. (a) The structure of the angular-frequency filter. (b) Schematic layout of the cascaded PhC, which consists of PhC3 and PhC4.
Fig. 6
Fig. 6 Illustration of the wave vector map. (a) Wave vector of PhC3 when the periodicity of stack i is Ti = 180*1.0212(i-1) nm (i = 1, 2, 3…50). (b)(c) Wave vector of PhC4 when the periodicity of stack t is Tt = 200*1.021(t-1) nm: (b) t = 1 and (c) t = 3.
Fig. 7
Fig. 7 Numerical result of the angle-frequency filter. (a) Angle-frequency low-pass filter. (b) Angle- frequency high-pass filter. (c) Angle-frequency band-pass filter. (d) Angle-frequency band-stop filter. (e) Angle-frequency two-channel filter.

Tables (1)

Tables Icon

Table 1 Structural parameters of PhC4

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

θ B1 = tan -1 ε b ε a
θ B2 = tan -1 ε c ε a
90 γ i +arctan(tan φ 0 *cos β i )= θ B2 and γ i = 90 θ B1
{ 90 o - γ i +arctan(tan φ 1,0 *cos β i )= θ B1 90 o - γ i +arctan(tan φ 2,0 *cos β i )= θ B2 or { γ i - 90 o -arctan(tan φ 1,0 *cos β i )= θ B1 γ i - 90 o -arctan(tan φ 2,0 *cos β i )= θ B2
{ 90 o -arccos( 5 7 cos γ i )+arctan(tan φ 1,0 *cos β i )= θ B1 90 o -arccos( 5 7 cos γ i )+arctan(tan φ 2,0 *cos β i )= θ B2
ε x = ε y = ε 1 +r ε 2 1+r ,
1 ε z = 1 1+r ( 1 ε 1 + r ε 2 ),

Metrics