Abstract

Non-orthogonal multiple access (NOMA) offers a good balance between throughput and fairness for visible light communication (VLC). This work presents a phase pre-distortion method to improve the symbol error rate performance of NOMA uplink with successive interference cancellation (SIC) decoding in VLC. Both theoretical analysis and experimental evaluation have shown that the proposed phase pre-distortion method improves the bit-error-rate (BER) performance for NOMA under both low and high relative power ratios. Specifically, at low relative power ratios, the proposed method can eliminate the possible BER floors and alleviate the power ratio requirement by 2 dB at the BER of 3.8 × 10−3.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Experimental demonstration of bidirectional NOMA-OFDMA visible light communications

Bangjiang Lin, Weiping Ye, Xuan Tang, and Zabih Ghassemlooy
Opt. Express 25(4) 4348-4355 (2017)

Power-code division non-orthogonal multiple access scheme for next-generation passive optical networks

Bangjiang Lin, Junxiang Xu, Zabih Ghassemlooy, and Xuan Tang
Opt. Express 27(24) 35740-35749 (2019)

Performance improvement of NOMA visible light communication system by adjusting superposition constellation: a convex optimization approach

Hao Ren, Zixiong Wang, She Du, Yuxuan He, Jian Chen, Shiying Han, Changyuan Yu, Chao Xu, and Jinlong Yu
Opt. Express 26(23) 29796-29806 (2018)

References

  • View by:
  • |
  • |
  • |

  1. A. Jovicic, J. Li, and T. Richardson, “Visible light communication: opportunities, challenges and the path to market,” IEEE Commun. Mag. 51(12), 26–32 (2013).
    [Crossref]
  2. M. Biagi, A. M. Vegni, and T. D. C. Little, “LAT indoor MIMO-VLC localize, access and transmit,” in IEEE International Workshop on Wireless Optical Communications (IEEE, 2012).
    [Crossref]
  3. Y. Saito, Y. Kishiyama, A. Benjebbour, T. Nakamura, A. Li, and K. Higuchi, “Non-orthogonal multiple access (NOMA) for cellular future radio access,” in Proceedings of IEEE Vehicular Technology Conference (IEEE, 2013), pp. 1–5.
    [Crossref]
  4. L. Dai, B. Wang, Y. Yuan, S. Han, C. i, and Z. Wang, “Non-orthogonal multiple access for 5G: solutions, challenges, opportunities, and future research trends,” IEEE Commun. Mag. 53(9), 74–81 (2015).
    [Crossref]
  5. Y. Endo, Y. Kishiyama, and K. Higuchi, “Uplink non-orthogonal access with MMSE-SIC in the presence of inter-cell interference,” in Proceedings of International Symposium on Wireless Communication Systems (IEEE 2012), pp. 261–265.
    [Crossref]
  6. J. Schaepperle and A. Ruegg, “Enhancement of throughput and fairness in 4G wireless access systems by non-orthogonal signaling,” Bell Labs Tech. J. 13(4), 59–77 (2009).
    [Crossref]
  7. H. Marshoud, V. M. Kapinas, G. K. Karagiannidis, and S. Muhaidat, “Non-orthogonal multiple access for visible light communications,” IEEE Photonics Technol. Lett. 28(1), 51–54 (2016).
    [Crossref]
  8. R. C. Kizilirmak, C. R. Rowell, and M. Uysal, “Non-orthogonal multiple access (NOMA) for indoor visible light communications,” in Proceedings of International Workshop on Optical Wireless Communications (IWOW 2015), pp. 98–101.
    [Crossref]
  9. H. Haas, L. Yin, Y. Wang, and C. Chen, “What is LiFi?” J. Lightwave Technol. 34(6), 1533–1544 (2016).
    [Crossref]
  10. X. Guan, Y. Hong, Q. Yang, and C. C. K. Chan, “Phase pre-distortion for non-orthogonal multiple access in visible light communications,” in Optical Fiber Communication Conference (OFC, 2016), paper Th1H.4.
    [Crossref]
  11. S. D. Dissanayake and J. Armstrong, “Comparison of ACO-OFDM, DCO-OFDM and ADO-OFDM in IM/DD systems,” J. Lightwave Technol. 31(7), 1063–1072 (2013).
    [Crossref]

2016 (2)

H. Marshoud, V. M. Kapinas, G. K. Karagiannidis, and S. Muhaidat, “Non-orthogonal multiple access for visible light communications,” IEEE Photonics Technol. Lett. 28(1), 51–54 (2016).
[Crossref]

H. Haas, L. Yin, Y. Wang, and C. Chen, “What is LiFi?” J. Lightwave Technol. 34(6), 1533–1544 (2016).
[Crossref]

2015 (1)

L. Dai, B. Wang, Y. Yuan, S. Han, C. i, and Z. Wang, “Non-orthogonal multiple access for 5G: solutions, challenges, opportunities, and future research trends,” IEEE Commun. Mag. 53(9), 74–81 (2015).
[Crossref]

2013 (2)

S. D. Dissanayake and J. Armstrong, “Comparison of ACO-OFDM, DCO-OFDM and ADO-OFDM in IM/DD systems,” J. Lightwave Technol. 31(7), 1063–1072 (2013).
[Crossref]

A. Jovicic, J. Li, and T. Richardson, “Visible light communication: opportunities, challenges and the path to market,” IEEE Commun. Mag. 51(12), 26–32 (2013).
[Crossref]

2009 (1)

J. Schaepperle and A. Ruegg, “Enhancement of throughput and fairness in 4G wireless access systems by non-orthogonal signaling,” Bell Labs Tech. J. 13(4), 59–77 (2009).
[Crossref]

Armstrong, J.

Benjebbour, A.

Y. Saito, Y. Kishiyama, A. Benjebbour, T. Nakamura, A. Li, and K. Higuchi, “Non-orthogonal multiple access (NOMA) for cellular future radio access,” in Proceedings of IEEE Vehicular Technology Conference (IEEE, 2013), pp. 1–5.
[Crossref]

Biagi, M.

M. Biagi, A. M. Vegni, and T. D. C. Little, “LAT indoor MIMO-VLC localize, access and transmit,” in IEEE International Workshop on Wireless Optical Communications (IEEE, 2012).
[Crossref]

Chen, C.

Dai, L.

L. Dai, B. Wang, Y. Yuan, S. Han, C. i, and Z. Wang, “Non-orthogonal multiple access for 5G: solutions, challenges, opportunities, and future research trends,” IEEE Commun. Mag. 53(9), 74–81 (2015).
[Crossref]

Dissanayake, S. D.

Haas, H.

Han, S.

L. Dai, B. Wang, Y. Yuan, S. Han, C. i, and Z. Wang, “Non-orthogonal multiple access for 5G: solutions, challenges, opportunities, and future research trends,” IEEE Commun. Mag. 53(9), 74–81 (2015).
[Crossref]

Higuchi, K.

Y. Saito, Y. Kishiyama, A. Benjebbour, T. Nakamura, A. Li, and K. Higuchi, “Non-orthogonal multiple access (NOMA) for cellular future radio access,” in Proceedings of IEEE Vehicular Technology Conference (IEEE, 2013), pp. 1–5.
[Crossref]

i, C.

L. Dai, B. Wang, Y. Yuan, S. Han, C. i, and Z. Wang, “Non-orthogonal multiple access for 5G: solutions, challenges, opportunities, and future research trends,” IEEE Commun. Mag. 53(9), 74–81 (2015).
[Crossref]

Jovicic, A.

A. Jovicic, J. Li, and T. Richardson, “Visible light communication: opportunities, challenges and the path to market,” IEEE Commun. Mag. 51(12), 26–32 (2013).
[Crossref]

Kapinas, V. M.

H. Marshoud, V. M. Kapinas, G. K. Karagiannidis, and S. Muhaidat, “Non-orthogonal multiple access for visible light communications,” IEEE Photonics Technol. Lett. 28(1), 51–54 (2016).
[Crossref]

Karagiannidis, G. K.

H. Marshoud, V. M. Kapinas, G. K. Karagiannidis, and S. Muhaidat, “Non-orthogonal multiple access for visible light communications,” IEEE Photonics Technol. Lett. 28(1), 51–54 (2016).
[Crossref]

Kishiyama, Y.

Y. Saito, Y. Kishiyama, A. Benjebbour, T. Nakamura, A. Li, and K. Higuchi, “Non-orthogonal multiple access (NOMA) for cellular future radio access,” in Proceedings of IEEE Vehicular Technology Conference (IEEE, 2013), pp. 1–5.
[Crossref]

Li, A.

Y. Saito, Y. Kishiyama, A. Benjebbour, T. Nakamura, A. Li, and K. Higuchi, “Non-orthogonal multiple access (NOMA) for cellular future radio access,” in Proceedings of IEEE Vehicular Technology Conference (IEEE, 2013), pp. 1–5.
[Crossref]

Li, J.

A. Jovicic, J. Li, and T. Richardson, “Visible light communication: opportunities, challenges and the path to market,” IEEE Commun. Mag. 51(12), 26–32 (2013).
[Crossref]

Little, T. D. C.

M. Biagi, A. M. Vegni, and T. D. C. Little, “LAT indoor MIMO-VLC localize, access and transmit,” in IEEE International Workshop on Wireless Optical Communications (IEEE, 2012).
[Crossref]

Marshoud, H.

H. Marshoud, V. M. Kapinas, G. K. Karagiannidis, and S. Muhaidat, “Non-orthogonal multiple access for visible light communications,” IEEE Photonics Technol. Lett. 28(1), 51–54 (2016).
[Crossref]

Muhaidat, S.

H. Marshoud, V. M. Kapinas, G. K. Karagiannidis, and S. Muhaidat, “Non-orthogonal multiple access for visible light communications,” IEEE Photonics Technol. Lett. 28(1), 51–54 (2016).
[Crossref]

Nakamura, T.

Y. Saito, Y. Kishiyama, A. Benjebbour, T. Nakamura, A. Li, and K. Higuchi, “Non-orthogonal multiple access (NOMA) for cellular future radio access,” in Proceedings of IEEE Vehicular Technology Conference (IEEE, 2013), pp. 1–5.
[Crossref]

Richardson, T.

A. Jovicic, J. Li, and T. Richardson, “Visible light communication: opportunities, challenges and the path to market,” IEEE Commun. Mag. 51(12), 26–32 (2013).
[Crossref]

Ruegg, A.

J. Schaepperle and A. Ruegg, “Enhancement of throughput and fairness in 4G wireless access systems by non-orthogonal signaling,” Bell Labs Tech. J. 13(4), 59–77 (2009).
[Crossref]

Saito, Y.

Y. Saito, Y. Kishiyama, A. Benjebbour, T. Nakamura, A. Li, and K. Higuchi, “Non-orthogonal multiple access (NOMA) for cellular future radio access,” in Proceedings of IEEE Vehicular Technology Conference (IEEE, 2013), pp. 1–5.
[Crossref]

Schaepperle, J.

J. Schaepperle and A. Ruegg, “Enhancement of throughput and fairness in 4G wireless access systems by non-orthogonal signaling,” Bell Labs Tech. J. 13(4), 59–77 (2009).
[Crossref]

Vegni, A. M.

M. Biagi, A. M. Vegni, and T. D. C. Little, “LAT indoor MIMO-VLC localize, access and transmit,” in IEEE International Workshop on Wireless Optical Communications (IEEE, 2012).
[Crossref]

Wang, B.

L. Dai, B. Wang, Y. Yuan, S. Han, C. i, and Z. Wang, “Non-orthogonal multiple access for 5G: solutions, challenges, opportunities, and future research trends,” IEEE Commun. Mag. 53(9), 74–81 (2015).
[Crossref]

Wang, Y.

Wang, Z.

L. Dai, B. Wang, Y. Yuan, S. Han, C. i, and Z. Wang, “Non-orthogonal multiple access for 5G: solutions, challenges, opportunities, and future research trends,” IEEE Commun. Mag. 53(9), 74–81 (2015).
[Crossref]

Yin, L.

Yuan, Y.

L. Dai, B. Wang, Y. Yuan, S. Han, C. i, and Z. Wang, “Non-orthogonal multiple access for 5G: solutions, challenges, opportunities, and future research trends,” IEEE Commun. Mag. 53(9), 74–81 (2015).
[Crossref]

Bell Labs Tech. J. (1)

J. Schaepperle and A. Ruegg, “Enhancement of throughput and fairness in 4G wireless access systems by non-orthogonal signaling,” Bell Labs Tech. J. 13(4), 59–77 (2009).
[Crossref]

IEEE Commun. Mag. (2)

A. Jovicic, J. Li, and T. Richardson, “Visible light communication: opportunities, challenges and the path to market,” IEEE Commun. Mag. 51(12), 26–32 (2013).
[Crossref]

L. Dai, B. Wang, Y. Yuan, S. Han, C. i, and Z. Wang, “Non-orthogonal multiple access for 5G: solutions, challenges, opportunities, and future research trends,” IEEE Commun. Mag. 53(9), 74–81 (2015).
[Crossref]

IEEE Photonics Technol. Lett. (1)

H. Marshoud, V. M. Kapinas, G. K. Karagiannidis, and S. Muhaidat, “Non-orthogonal multiple access for visible light communications,” IEEE Photonics Technol. Lett. 28(1), 51–54 (2016).
[Crossref]

J. Lightwave Technol. (2)

Other (5)

R. C. Kizilirmak, C. R. Rowell, and M. Uysal, “Non-orthogonal multiple access (NOMA) for indoor visible light communications,” in Proceedings of International Workshop on Optical Wireless Communications (IWOW 2015), pp. 98–101.
[Crossref]

X. Guan, Y. Hong, Q. Yang, and C. C. K. Chan, “Phase pre-distortion for non-orthogonal multiple access in visible light communications,” in Optical Fiber Communication Conference (OFC, 2016), paper Th1H.4.
[Crossref]

Y. Endo, Y. Kishiyama, and K. Higuchi, “Uplink non-orthogonal access with MMSE-SIC in the presence of inter-cell interference,” in Proceedings of International Symposium on Wireless Communication Systems (IEEE 2012), pp. 261–265.
[Crossref]

M. Biagi, A. M. Vegni, and T. D. C. Little, “LAT indoor MIMO-VLC localize, access and transmit,” in IEEE International Workshop on Wireless Optical Communications (IEEE, 2012).
[Crossref]

Y. Saito, Y. Kishiyama, A. Benjebbour, T. Nakamura, A. Li, and K. Higuchi, “Non-orthogonal multiple access (NOMA) for cellular future radio access,” in Proceedings of IEEE Vehicular Technology Conference (IEEE, 2013), pp. 1–5.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) System model for the non-orthogonal multiple access in visible light communication; (b) power levels of S and W; (c) time asynchrony in NOMA.
Fig. 2
Fig. 2 (a) The symbol error rate (Pe1) in step (1) of successive interference cancellation decoding versus the phase difference between the two users that both adopt QPSK modulation when r = 1.41 (rdB = 3 dB); (b) an example of constellations without phase pre-distortion; (c) constellations with phase pre-distortion corresponding to (b).
Fig. 3
Fig. 3 (a) Experimental Setup to evaluate the proposed phase pre-distortion method, AWG: arbitrary waveform generator, AMP: amplifier, DC: direct current, LED: lighting emitted diode, PD: photodiode, TIA: trans-impedance amplifier, DSO: digital storage oscilloscope; (b) frame format for the NOMA users.
Fig. 4
Fig. 4 (a)-(c) Bit error rate (BER) versus the SNR of the strong signal (S). The power ratios rdB between the strong signal and the weak signal are fixed to be (a) 1.2 dB, (b) 4.2 dB, and (c) 6.9 dB.
Fig. 5
Fig. 5 Bit error rate (BER) versus the power ratio (rdB) between the strong signal (S) and the weak signal (W) when the SNR of S is fixed to be 20.5 dB.
Fig. 6
Fig. 6 Examples of the received signal constellations when S and W adopted QPSK modulation at rdB = 4.2 dB, with the scheme of (a) conventional NOMA, (b) phase pre-distorted NOMA.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

x( n )= k=0 N1 ( X( k ) e j2π kn N ),forn( 0,N1 ] ,nZ,
x c ( n )= x s ( n ) h s ( n )+ x w ( n+m ) h w ( n ),
X c ( k )=F{ x c ( n ) }= X s ( k ) H s ( k )+ X w ( k ) H w ( k ) e j2π km N ,
Y c = X s H s + X w H w .
H s H w =r e jφ , r dB =20lg( r ),
P e1 = m=1 4 P m n=1 4 P n P e|mn ,
P e|mn =1 P c|mn =1 P Ic|mn P Qc|mn = P Ie|mn + P Qe|mn P Ie|mn P Qe|mn ,
P Ie|mn =Q( Re{ s mn } N 0 /2 ) P Qe|mn =Q( Im{ s mn } N 0 /2 ),
P e1 = m=1 4 P m n=1 4 P n P e| mn = m=1 4 P m n=1 4 P n ( P Ie| mn + P Qe| mn P Ie| mn P Qe| mn ) = 1 4 n=1 4 { Q( 2 2 +rcos( φ+ nπ 2 π 4 ) N 0 /2 )+Q( 2 2 +rsin( φ+ nπ 2 π 4 ) N 0 /2 ) Q( 2 2 +rcos( φ+ nπ 2 π 4 ) N 0 /2 )Q( 2 2 +rsin( φ+ nπ 2 π 4 ) N 0 /2 ) }.
P e2 = P e1 +( 1 P e1 )[ 2Q( 1 r N 0 ) Q 2 1 r N 0 ] ={ 1[ 2Q( 1 r N 0 ) Q 2 1 r N 0 ] } P e1 +2Q( 1 r N 0 ) Q 2 ( 1 r N 0 ).
φ opt = argmin φ P e1 ,φ(π/4 ,0].

Metrics