Abstract

We present a novel coupled design method that both optimizes light absorption and predicts electrical performance of fully infiltrated inorganic semiconductor nanowires (NWs) based hybrid solar cells (HSC). This method provides a thorough insight of hybrid photovoltaic process as a function of geometrical parameters of NWs. An active layer consisting of GaAs NWs as acceptor and poly(3-hexylthiophene-2,5-diyl) (P3HT) as donor were used as a design example. Absorption spectra features were studied by the evolution of the leaky modes and Fabry-Perot resonance with wavelength focusing firstly on the GaAs/air layer before extending to GaAs/P3HT hybrid active layer. The highest absorption efficiency reached 39% for the hybrid active layer of 2 μm thickness under AM 1.5G illumination. Combined with the optical absorption analysis, our method further codesigns the energy harvesting to predict electrical performance of HSC considering exciton dissociation efficiencies within both inorganic NWs and a polymeric shell of 20 nm thickness. The validity of the simulation model was also proved by the well agreement of the simulation results with the published experimental work indicating an effective guidance for future high performance HSC design.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Reduced energy offset via substitutional doping for efficient organic/inorganic hybrid solar cells

Xiao Jin, Weifu Sun, Qin Zhang, Kelian Ruan, Yuanyuan Cheng, Haijiao Xu, Zhongyuan Xu, and Qinghua Li
Opt. Express 23(11) A444-A455 (2015)

Homogeneous PCBM layers fabricated by horizontal-dip coating for efficient bilayer heterojunction organic photovoltaic cells

Yoon Ho Huh, In-Gon Bae, Hong Goo Jeon, and Byoungchoo Park
Opt. Express 24(22) A1321-A1335 (2016)

References

  • View by:
  • |
  • |
  • |

  1. J. Weickert, R. B. Dunbar, H. C. Hesse, W. Wiedemann, and L. Schmidt-Mende, “Nanostructured organic and hybrid solar cells,” Adv. Mater. 23(16), 1810–1828 (2011).
    [Crossref] [PubMed]
  2. M. Wright and A. Uddin, “Organic—inorganic hybrid solar cells: A comparative review,” Sol. Energy Mater. Sol. Cells 10, 87–111 (2012).
  3. S. Dayal, N. Kopidakis, D. C. Olson, D. S. Ginley, and G. Rumbles, “Photovoltaic devices with a low band gap polymer and CdSe nanostructures exceeding 3% efficiency,” Nano Lett. 10(1), 239–242 (2010).
    [Crossref] [PubMed]
  4. L. Yan and W. You, “Real function of semiconducting polymer in GaAs/polymer planar heterojunction solar cells,” ACS Nano 7(8), 6619–6626 (2013).
    [Crossref] [PubMed]
  5. T. Xu and Q. Qiao, “Conjugated polymer–inorganic semiconductor hybrid solar cells,” Energy Environ. Sci. 4(8), 2700 (2011).
    [Crossref]
  6. L. Whittaker-Brooks, W. E. McClain, J. Schwartz, and Y.-L. Loo, “Donor-acceptor interfacial interactions dominate device performance in hybrid P3HT-ZnO nanowire-array solar cells,” Adv. Energy Mater. 4(16), 1400585 (2014).
    [Crossref]
  7. B. M. Kayes, H. A. Atwater, and N. S. Lewis, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells,” J. Appl. Phys. 97(11), 114302 (2005).
    [Crossref]
  8. G. Shalev, S. W. Schmitt, G. Bronstrup, and S. Christiansen, “Maximizing the ultimate absorption efficiency of vertically-aligned semiconductor nanowire arrays with wires of a low absorption cross-section,” Nano Energy 12, 801–809 (2015).
    [Crossref]
  9. K. T. Fountaine, C. G. Kendall, and H. A. Atwater, “Near-unity broadband absorption designs for semiconducting nanowire arrays via localized radial mode excitation,” Opt. Express 22(S3Suppl 3), A930–A940 (2014).
    [Crossref] [PubMed]
  10. K. T. Fountaine, W. S. Whitney, and H. A. Atwater, “Resonant absorption in semiconductor nanowires and nanowire arrays: Relating leaky waveguide modes to Bloch photonic crystal modes,” J. Appl. Phys. 116(15), 153106 (2014).
    [Crossref]
  11. K.-T. Park, H.-J. Kim, M.-J. Park, J.-H. Jeong, J. Lee, D.-G. Choi, J.-H. Lee, and J.-H. Choi, “13.2% efficiency Si nanowire/PEDOT:PSS hybrid solar cell using a transfer-imprinted Au mesh electrode,” Sci. Rep. 5, 12093 (2015).
    [Crossref] [PubMed]
  12. L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7(11), 3249–3252 (2007).
    [Crossref] [PubMed]
  13. M. Foldyna, L. Yu, and P. Roca i Cabarrocas, “Theoretical short-circuit current density for different geometries and organizations of silicon nanowires in solar cells,” Sol. Energy Mater. Sol. Cells 117, 645–651 (2013).
    [Crossref]
  14. B. Wang and P. W. Leu, “Tunable and selective resonant absorption in vertical nanowires,” Opt. Lett. 37(18), 3756–3758 (2012).
    [Crossref] [PubMed]
  15. M. Zanuccoli, I. Semenihin, J. Michallon, E. Sangiorgi, and C. Fiegna, “Advanced electro-optical simulation of nanowire-based solar cells,” J. Comput. Electron. 12(4), 572–584 (2013).
    [Crossref]
  16. A. P. Foster and L. R. Wilson, “Design parameters for nanowire-planar tandem solar cells,” Phys. Status Solidi A 210(2), 425–429 (2013).
    [Crossref]
  17. R. R. LaPierre, “Numerical model of current-voltage characteristics and efficiency of GaAs nanowire solar cells,” J. Appl. Phys. 109(3), 034311 (2011).
    [Crossref]
  18. S.-H. Tsai, H.-C. Chang, H.-H. Wang, S.-Y. Chen, C.-A. Lin, S.-A. Chen, Y.-L. Chueh, and J.-H. He, “Significant efficiency enhancement of hybrid solar cells using core-shell nanowire geometry for energy harvesting,” ACS Nano 5(12), 9501–9510 (2011).
    [Crossref] [PubMed]
  19. B. Kannan, K. Castelino, and A. Majumdar, “Design of nanostructured heterojunction polymer photovoltaic devices,” Nano Lett. 3(12), 1729–1733 (2003).
    [Crossref]
  20. D. Wu, X. Tang, and X. Li, “Optimization of the nanowire size and distribution of compound semiconductor nanowire-based hybrid solar cells,” IEEE J. Photovolt. 99, 1–7 (2015).
  21. J. Kupec and B. Witzigmann, “Dispersion, wave propagation and efficiency analysis of nanowire solar cells,” Opt. Express 17(12), 10399–10410 (2009).
    [Crossref] [PubMed]
  22. X. Li, N. P. Hylton, V. Giannini, K.-H. Lee, N. J. Ekins-Daukes, and S. A. Maier, “Bridging electromagnetic and carrier transport calculations for three-dimensional modelling of plasmonic solar cells,” Opt. Express 19(S4), A888–A896 (2011).
    [Crossref] [PubMed]
  23. W. E. I. Sha, W. C. H. Choy, Y. Wu, and W. C. Chew, “Optical and electrical study of organic solar cells with a 2D grating anode,” Opt. Express 20(3), 2572–2580 (2012).
    [Crossref] [PubMed]
  24. M. G. Deceglie, V. E. Ferry, A. P. Alivisatos, and H. A. Atwater, “Design of nanostructured solar cells using coupled optical and electrical modeling,” Nano Lett. 12(6), 2894–2900 (2012).
    [Crossref] [PubMed]
  25. X. Li, N. P. Hylton, V. Giannini, K.-H. Lee, N. J. Ekins-Daukes, and S. A. Maier, “Multi-dimensional modeling of solar cells with electromagnetic and carrier transport calculations,” Prog. Photovolt. Res. Appl. 21(1), 109–120 (2013).
    [Crossref]
  26. W. B. Wang, X. H. Li, L. Wen, G. Q. Liu, T. F. Shi, H. H. Duan, B. K. Zhou, N. Li, Y. F. Zhao, X. S. Zeng, and Y. Q. Wang, “Optical and electrical simulations of silicon nanowire array/Poly(3-hexylthiophene):Phenyl-C61-butyric acid methyl ester hybrid solar cell,” Appl. Phys. Lett. 105(23), 233115 (2014).
    [Crossref]
  27. W. Wang, X. Li, L. Wen, Y. Zhao, H. Duan, B. Zhou, T. Shi, X. Zeng, N. Li, and Y. Wang, “Optical simulations of P3HT/Si nanowire array hybrid solar cells,” Nanoscale Res. Lett. 9(1), 238 (2014).
    [Crossref] [PubMed]
  28. B. R. Saunders and M. L. Turner, “Nanoparticle-polymer photovoltaic cells,” Adv. Colloid Interface Sci. 138(1), 1–23 (2008).
    [Crossref] [PubMed]
  29. “Standard Tables for Reference Solar Spectral Irradiance at Air Mass 1.5: Direct Normal and Hemispherical for a 37 Degree Tilted Surface, ISO 9845-1. .”
  30. J. Li, H. Yu, S. M. Wong, G. Zhang, X. Sun, P. G.-Q. Lo, and D.-L. Kwong, “Si nanopillar array optimization on Si thin films for solar energy harvesting,” Appl. Phys. Lett. 95(3), 033102 (2009).
    [Crossref]
  31. K. M. Azizur-Rahman and R. R. LaPierre, “Wavelength-selective absorptance in GaAs, InP and InAs nanowire arrays,” Nanotechnology 26(29), 295202 (2015).
    [Crossref] [PubMed]
  32. B. C. P. Sturmberg, K. B. Dossou, L. C. Botten, A. A. Asatryan, C. G. Poulton, R. C. McPhedran, and C. M. de Sterke, “Optimizing photovoltaic charge generation of nanowire arrays: a simple semi-analytic approach,” ACS Photonics 1(8), 683–689 (2014).
    [Crossref]
  33. M. D. Kelzenberg, M. C. Putnam, D. B. Turner-Evans, N. S. Lewis, and H. A. Atwater, “Predicted efficiency of Si wire array solar cells,” in 2009 34th IEEE Photovoltaic Specialists Conference (PVSC, 2009), paper 001948.
    [Crossref]
  34. S. Kato, Y. Kurokawa, S. Miyajima, Y. Watanabe, A. Yamada, Y. Ohta, Y. Niwa, and M. Hirota, “Improvement of carrier diffusion length in silicon nanowire arrays using atomic layer deposition,” Nanoscale Res. Lett. 8(1), 361 (2013).
    [Crossref] [PubMed]
  35. L. W. Aukerman, M. F. Millea, and M. McColl, “Diffusion lengths of electrons and holes in GaAs,” J. Appl. Phys. 38(2), 685–690 (1967).
    [Crossref]
  36. A. Moliton and J.-M. Nunzi, “How to model the behaviour of organic photovoltaic cells,” Polym. Int. 55(6), 583–600 (2006).
    [Crossref]
  37. G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nat. Mater. 4(11), 864–868 (2005).
    [Crossref]
  38. C. J. Novotny, E. T. Yu, and P. K. L. Yu, “InP nanowire/polymer hybrid photodiode,” Nano Lett. 8(3), 775–779 (2008).
    [Crossref] [PubMed]
  39. J.-J. Chao, S.-C. Shiu, and C.-F. Lin, “GaAs nanowire/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) hybrid solar cells with incorporating electron blocking poly(3-hexylthiophene) layer,” Sol. Energy Mater. Sol. Cells 105, 40–45 (2012).
    [Crossref]

2015 (4)

G. Shalev, S. W. Schmitt, G. Bronstrup, and S. Christiansen, “Maximizing the ultimate absorption efficiency of vertically-aligned semiconductor nanowire arrays with wires of a low absorption cross-section,” Nano Energy 12, 801–809 (2015).
[Crossref]

D. Wu, X. Tang, and X. Li, “Optimization of the nanowire size and distribution of compound semiconductor nanowire-based hybrid solar cells,” IEEE J. Photovolt. 99, 1–7 (2015).

K. M. Azizur-Rahman and R. R. LaPierre, “Wavelength-selective absorptance in GaAs, InP and InAs nanowire arrays,” Nanotechnology 26(29), 295202 (2015).
[Crossref] [PubMed]

K.-T. Park, H.-J. Kim, M.-J. Park, J.-H. Jeong, J. Lee, D.-G. Choi, J.-H. Lee, and J.-H. Choi, “13.2% efficiency Si nanowire/PEDOT:PSS hybrid solar cell using a transfer-imprinted Au mesh electrode,” Sci. Rep. 5, 12093 (2015).
[Crossref] [PubMed]

2014 (6)

K. T. Fountaine, W. S. Whitney, and H. A. Atwater, “Resonant absorption in semiconductor nanowires and nanowire arrays: Relating leaky waveguide modes to Bloch photonic crystal modes,” J. Appl. Phys. 116(15), 153106 (2014).
[Crossref]

B. C. P. Sturmberg, K. B. Dossou, L. C. Botten, A. A. Asatryan, C. G. Poulton, R. C. McPhedran, and C. M. de Sterke, “Optimizing photovoltaic charge generation of nanowire arrays: a simple semi-analytic approach,” ACS Photonics 1(8), 683–689 (2014).
[Crossref]

L. Whittaker-Brooks, W. E. McClain, J. Schwartz, and Y.-L. Loo, “Donor-acceptor interfacial interactions dominate device performance in hybrid P3HT-ZnO nanowire-array solar cells,” Adv. Energy Mater. 4(16), 1400585 (2014).
[Crossref]

W. B. Wang, X. H. Li, L. Wen, G. Q. Liu, T. F. Shi, H. H. Duan, B. K. Zhou, N. Li, Y. F. Zhao, X. S. Zeng, and Y. Q. Wang, “Optical and electrical simulations of silicon nanowire array/Poly(3-hexylthiophene):Phenyl-C61-butyric acid methyl ester hybrid solar cell,” Appl. Phys. Lett. 105(23), 233115 (2014).
[Crossref]

W. Wang, X. Li, L. Wen, Y. Zhao, H. Duan, B. Zhou, T. Shi, X. Zeng, N. Li, and Y. Wang, “Optical simulations of P3HT/Si nanowire array hybrid solar cells,” Nanoscale Res. Lett. 9(1), 238 (2014).
[Crossref] [PubMed]

K. T. Fountaine, C. G. Kendall, and H. A. Atwater, “Near-unity broadband absorption designs for semiconducting nanowire arrays via localized radial mode excitation,” Opt. Express 22(S3Suppl 3), A930–A940 (2014).
[Crossref] [PubMed]

2013 (6)

X. Li, N. P. Hylton, V. Giannini, K.-H. Lee, N. J. Ekins-Daukes, and S. A. Maier, “Multi-dimensional modeling of solar cells with electromagnetic and carrier transport calculations,” Prog. Photovolt. Res. Appl. 21(1), 109–120 (2013).
[Crossref]

M. Zanuccoli, I. Semenihin, J. Michallon, E. Sangiorgi, and C. Fiegna, “Advanced electro-optical simulation of nanowire-based solar cells,” J. Comput. Electron. 12(4), 572–584 (2013).
[Crossref]

A. P. Foster and L. R. Wilson, “Design parameters for nanowire-planar tandem solar cells,” Phys. Status Solidi A 210(2), 425–429 (2013).
[Crossref]

L. Yan and W. You, “Real function of semiconducting polymer in GaAs/polymer planar heterojunction solar cells,” ACS Nano 7(8), 6619–6626 (2013).
[Crossref] [PubMed]

S. Kato, Y. Kurokawa, S. Miyajima, Y. Watanabe, A. Yamada, Y. Ohta, Y. Niwa, and M. Hirota, “Improvement of carrier diffusion length in silicon nanowire arrays using atomic layer deposition,” Nanoscale Res. Lett. 8(1), 361 (2013).
[Crossref] [PubMed]

M. Foldyna, L. Yu, and P. Roca i Cabarrocas, “Theoretical short-circuit current density for different geometries and organizations of silicon nanowires in solar cells,” Sol. Energy Mater. Sol. Cells 117, 645–651 (2013).
[Crossref]

2012 (5)

W. E. I. Sha, W. C. H. Choy, Y. Wu, and W. C. Chew, “Optical and electrical study of organic solar cells with a 2D grating anode,” Opt. Express 20(3), 2572–2580 (2012).
[Crossref] [PubMed]

B. Wang and P. W. Leu, “Tunable and selective resonant absorption in vertical nanowires,” Opt. Lett. 37(18), 3756–3758 (2012).
[Crossref] [PubMed]

J.-J. Chao, S.-C. Shiu, and C.-F. Lin, “GaAs nanowire/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) hybrid solar cells with incorporating electron blocking poly(3-hexylthiophene) layer,” Sol. Energy Mater. Sol. Cells 105, 40–45 (2012).
[Crossref]

M. Wright and A. Uddin, “Organic—inorganic hybrid solar cells: A comparative review,” Sol. Energy Mater. Sol. Cells 10, 87–111 (2012).

M. G. Deceglie, V. E. Ferry, A. P. Alivisatos, and H. A. Atwater, “Design of nanostructured solar cells using coupled optical and electrical modeling,” Nano Lett. 12(6), 2894–2900 (2012).
[Crossref] [PubMed]

2011 (5)

J. Weickert, R. B. Dunbar, H. C. Hesse, W. Wiedemann, and L. Schmidt-Mende, “Nanostructured organic and hybrid solar cells,” Adv. Mater. 23(16), 1810–1828 (2011).
[Crossref] [PubMed]

T. Xu and Q. Qiao, “Conjugated polymer–inorganic semiconductor hybrid solar cells,” Energy Environ. Sci. 4(8), 2700 (2011).
[Crossref]

R. R. LaPierre, “Numerical model of current-voltage characteristics and efficiency of GaAs nanowire solar cells,” J. Appl. Phys. 109(3), 034311 (2011).
[Crossref]

S.-H. Tsai, H.-C. Chang, H.-H. Wang, S.-Y. Chen, C.-A. Lin, S.-A. Chen, Y.-L. Chueh, and J.-H. He, “Significant efficiency enhancement of hybrid solar cells using core-shell nanowire geometry for energy harvesting,” ACS Nano 5(12), 9501–9510 (2011).
[Crossref] [PubMed]

X. Li, N. P. Hylton, V. Giannini, K.-H. Lee, N. J. Ekins-Daukes, and S. A. Maier, “Bridging electromagnetic and carrier transport calculations for three-dimensional modelling of plasmonic solar cells,” Opt. Express 19(S4), A888–A896 (2011).
[Crossref] [PubMed]

2010 (1)

S. Dayal, N. Kopidakis, D. C. Olson, D. S. Ginley, and G. Rumbles, “Photovoltaic devices with a low band gap polymer and CdSe nanostructures exceeding 3% efficiency,” Nano Lett. 10(1), 239–242 (2010).
[Crossref] [PubMed]

2009 (2)

J. Kupec and B. Witzigmann, “Dispersion, wave propagation and efficiency analysis of nanowire solar cells,” Opt. Express 17(12), 10399–10410 (2009).
[Crossref] [PubMed]

J. Li, H. Yu, S. M. Wong, G. Zhang, X. Sun, P. G.-Q. Lo, and D.-L. Kwong, “Si nanopillar array optimization on Si thin films for solar energy harvesting,” Appl. Phys. Lett. 95(3), 033102 (2009).
[Crossref]

2008 (2)

C. J. Novotny, E. T. Yu, and P. K. L. Yu, “InP nanowire/polymer hybrid photodiode,” Nano Lett. 8(3), 775–779 (2008).
[Crossref] [PubMed]

B. R. Saunders and M. L. Turner, “Nanoparticle-polymer photovoltaic cells,” Adv. Colloid Interface Sci. 138(1), 1–23 (2008).
[Crossref] [PubMed]

2007 (1)

L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7(11), 3249–3252 (2007).
[Crossref] [PubMed]

2006 (1)

A. Moliton and J.-M. Nunzi, “How to model the behaviour of organic photovoltaic cells,” Polym. Int. 55(6), 583–600 (2006).
[Crossref]

2005 (2)

G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nat. Mater. 4(11), 864–868 (2005).
[Crossref]

B. M. Kayes, H. A. Atwater, and N. S. Lewis, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells,” J. Appl. Phys. 97(11), 114302 (2005).
[Crossref]

2003 (1)

B. Kannan, K. Castelino, and A. Majumdar, “Design of nanostructured heterojunction polymer photovoltaic devices,” Nano Lett. 3(12), 1729–1733 (2003).
[Crossref]

1967 (1)

L. W. Aukerman, M. F. Millea, and M. McColl, “Diffusion lengths of electrons and holes in GaAs,” J. Appl. Phys. 38(2), 685–690 (1967).
[Crossref]

Alivisatos, A. P.

M. G. Deceglie, V. E. Ferry, A. P. Alivisatos, and H. A. Atwater, “Design of nanostructured solar cells using coupled optical and electrical modeling,” Nano Lett. 12(6), 2894–2900 (2012).
[Crossref] [PubMed]

Asatryan, A. A.

B. C. P. Sturmberg, K. B. Dossou, L. C. Botten, A. A. Asatryan, C. G. Poulton, R. C. McPhedran, and C. M. de Sterke, “Optimizing photovoltaic charge generation of nanowire arrays: a simple semi-analytic approach,” ACS Photonics 1(8), 683–689 (2014).
[Crossref]

Atwater, H. A.

K. T. Fountaine, W. S. Whitney, and H. A. Atwater, “Resonant absorption in semiconductor nanowires and nanowire arrays: Relating leaky waveguide modes to Bloch photonic crystal modes,” J. Appl. Phys. 116(15), 153106 (2014).
[Crossref]

K. T. Fountaine, C. G. Kendall, and H. A. Atwater, “Near-unity broadband absorption designs for semiconducting nanowire arrays via localized radial mode excitation,” Opt. Express 22(S3Suppl 3), A930–A940 (2014).
[Crossref] [PubMed]

M. G. Deceglie, V. E. Ferry, A. P. Alivisatos, and H. A. Atwater, “Design of nanostructured solar cells using coupled optical and electrical modeling,” Nano Lett. 12(6), 2894–2900 (2012).
[Crossref] [PubMed]

B. M. Kayes, H. A. Atwater, and N. S. Lewis, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells,” J. Appl. Phys. 97(11), 114302 (2005).
[Crossref]

Aukerman, L. W.

L. W. Aukerman, M. F. Millea, and M. McColl, “Diffusion lengths of electrons and holes in GaAs,” J. Appl. Phys. 38(2), 685–690 (1967).
[Crossref]

Azizur-Rahman, K. M.

K. M. Azizur-Rahman and R. R. LaPierre, “Wavelength-selective absorptance in GaAs, InP and InAs nanowire arrays,” Nanotechnology 26(29), 295202 (2015).
[Crossref] [PubMed]

Botten, L. C.

B. C. P. Sturmberg, K. B. Dossou, L. C. Botten, A. A. Asatryan, C. G. Poulton, R. C. McPhedran, and C. M. de Sterke, “Optimizing photovoltaic charge generation of nanowire arrays: a simple semi-analytic approach,” ACS Photonics 1(8), 683–689 (2014).
[Crossref]

Bronstrup, G.

G. Shalev, S. W. Schmitt, G. Bronstrup, and S. Christiansen, “Maximizing the ultimate absorption efficiency of vertically-aligned semiconductor nanowire arrays with wires of a low absorption cross-section,” Nano Energy 12, 801–809 (2015).
[Crossref]

Castelino, K.

B. Kannan, K. Castelino, and A. Majumdar, “Design of nanostructured heterojunction polymer photovoltaic devices,” Nano Lett. 3(12), 1729–1733 (2003).
[Crossref]

Chang, H.-C.

S.-H. Tsai, H.-C. Chang, H.-H. Wang, S.-Y. Chen, C.-A. Lin, S.-A. Chen, Y.-L. Chueh, and J.-H. He, “Significant efficiency enhancement of hybrid solar cells using core-shell nanowire geometry for energy harvesting,” ACS Nano 5(12), 9501–9510 (2011).
[Crossref] [PubMed]

Chao, J.-J.

J.-J. Chao, S.-C. Shiu, and C.-F. Lin, “GaAs nanowire/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) hybrid solar cells with incorporating electron blocking poly(3-hexylthiophene) layer,” Sol. Energy Mater. Sol. Cells 105, 40–45 (2012).
[Crossref]

Chen, G.

L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7(11), 3249–3252 (2007).
[Crossref] [PubMed]

Chen, S.-A.

S.-H. Tsai, H.-C. Chang, H.-H. Wang, S.-Y. Chen, C.-A. Lin, S.-A. Chen, Y.-L. Chueh, and J.-H. He, “Significant efficiency enhancement of hybrid solar cells using core-shell nanowire geometry for energy harvesting,” ACS Nano 5(12), 9501–9510 (2011).
[Crossref] [PubMed]

Chen, S.-Y.

S.-H. Tsai, H.-C. Chang, H.-H. Wang, S.-Y. Chen, C.-A. Lin, S.-A. Chen, Y.-L. Chueh, and J.-H. He, “Significant efficiency enhancement of hybrid solar cells using core-shell nanowire geometry for energy harvesting,” ACS Nano 5(12), 9501–9510 (2011).
[Crossref] [PubMed]

Chew, W. C.

Choi, D.-G.

K.-T. Park, H.-J. Kim, M.-J. Park, J.-H. Jeong, J. Lee, D.-G. Choi, J.-H. Lee, and J.-H. Choi, “13.2% efficiency Si nanowire/PEDOT:PSS hybrid solar cell using a transfer-imprinted Au mesh electrode,” Sci. Rep. 5, 12093 (2015).
[Crossref] [PubMed]

Choi, J.-H.

K.-T. Park, H.-J. Kim, M.-J. Park, J.-H. Jeong, J. Lee, D.-G. Choi, J.-H. Lee, and J.-H. Choi, “13.2% efficiency Si nanowire/PEDOT:PSS hybrid solar cell using a transfer-imprinted Au mesh electrode,” Sci. Rep. 5, 12093 (2015).
[Crossref] [PubMed]

Choy, W. C. H.

Christiansen, S.

G. Shalev, S. W. Schmitt, G. Bronstrup, and S. Christiansen, “Maximizing the ultimate absorption efficiency of vertically-aligned semiconductor nanowire arrays with wires of a low absorption cross-section,” Nano Energy 12, 801–809 (2015).
[Crossref]

Chueh, Y.-L.

S.-H. Tsai, H.-C. Chang, H.-H. Wang, S.-Y. Chen, C.-A. Lin, S.-A. Chen, Y.-L. Chueh, and J.-H. He, “Significant efficiency enhancement of hybrid solar cells using core-shell nanowire geometry for energy harvesting,” ACS Nano 5(12), 9501–9510 (2011).
[Crossref] [PubMed]

Dayal, S.

S. Dayal, N. Kopidakis, D. C. Olson, D. S. Ginley, and G. Rumbles, “Photovoltaic devices with a low band gap polymer and CdSe nanostructures exceeding 3% efficiency,” Nano Lett. 10(1), 239–242 (2010).
[Crossref] [PubMed]

de Sterke, C. M.

B. C. P. Sturmberg, K. B. Dossou, L. C. Botten, A. A. Asatryan, C. G. Poulton, R. C. McPhedran, and C. M. de Sterke, “Optimizing photovoltaic charge generation of nanowire arrays: a simple semi-analytic approach,” ACS Photonics 1(8), 683–689 (2014).
[Crossref]

Deceglie, M. G.

M. G. Deceglie, V. E. Ferry, A. P. Alivisatos, and H. A. Atwater, “Design of nanostructured solar cells using coupled optical and electrical modeling,” Nano Lett. 12(6), 2894–2900 (2012).
[Crossref] [PubMed]

Dossou, K. B.

B. C. P. Sturmberg, K. B. Dossou, L. C. Botten, A. A. Asatryan, C. G. Poulton, R. C. McPhedran, and C. M. de Sterke, “Optimizing photovoltaic charge generation of nanowire arrays: a simple semi-analytic approach,” ACS Photonics 1(8), 683–689 (2014).
[Crossref]

Duan, H.

W. Wang, X. Li, L. Wen, Y. Zhao, H. Duan, B. Zhou, T. Shi, X. Zeng, N. Li, and Y. Wang, “Optical simulations of P3HT/Si nanowire array hybrid solar cells,” Nanoscale Res. Lett. 9(1), 238 (2014).
[Crossref] [PubMed]

Duan, H. H.

W. B. Wang, X. H. Li, L. Wen, G. Q. Liu, T. F. Shi, H. H. Duan, B. K. Zhou, N. Li, Y. F. Zhao, X. S. Zeng, and Y. Q. Wang, “Optical and electrical simulations of silicon nanowire array/Poly(3-hexylthiophene):Phenyl-C61-butyric acid methyl ester hybrid solar cell,” Appl. Phys. Lett. 105(23), 233115 (2014).
[Crossref]

Dunbar, R. B.

J. Weickert, R. B. Dunbar, H. C. Hesse, W. Wiedemann, and L. Schmidt-Mende, “Nanostructured organic and hybrid solar cells,” Adv. Mater. 23(16), 1810–1828 (2011).
[Crossref] [PubMed]

Ekins-Daukes, N. J.

X. Li, N. P. Hylton, V. Giannini, K.-H. Lee, N. J. Ekins-Daukes, and S. A. Maier, “Multi-dimensional modeling of solar cells with electromagnetic and carrier transport calculations,” Prog. Photovolt. Res. Appl. 21(1), 109–120 (2013).
[Crossref]

X. Li, N. P. Hylton, V. Giannini, K.-H. Lee, N. J. Ekins-Daukes, and S. A. Maier, “Bridging electromagnetic and carrier transport calculations for three-dimensional modelling of plasmonic solar cells,” Opt. Express 19(S4), A888–A896 (2011).
[Crossref] [PubMed]

Emery, K.

G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nat. Mater. 4(11), 864–868 (2005).
[Crossref]

Ferry, V. E.

M. G. Deceglie, V. E. Ferry, A. P. Alivisatos, and H. A. Atwater, “Design of nanostructured solar cells using coupled optical and electrical modeling,” Nano Lett. 12(6), 2894–2900 (2012).
[Crossref] [PubMed]

Fiegna, C.

M. Zanuccoli, I. Semenihin, J. Michallon, E. Sangiorgi, and C. Fiegna, “Advanced electro-optical simulation of nanowire-based solar cells,” J. Comput. Electron. 12(4), 572–584 (2013).
[Crossref]

Foldyna, M.

M. Foldyna, L. Yu, and P. Roca i Cabarrocas, “Theoretical short-circuit current density for different geometries and organizations of silicon nanowires in solar cells,” Sol. Energy Mater. Sol. Cells 117, 645–651 (2013).
[Crossref]

Foster, A. P.

A. P. Foster and L. R. Wilson, “Design parameters for nanowire-planar tandem solar cells,” Phys. Status Solidi A 210(2), 425–429 (2013).
[Crossref]

Fountaine, K. T.

K. T. Fountaine, W. S. Whitney, and H. A. Atwater, “Resonant absorption in semiconductor nanowires and nanowire arrays: Relating leaky waveguide modes to Bloch photonic crystal modes,” J. Appl. Phys. 116(15), 153106 (2014).
[Crossref]

K. T. Fountaine, C. G. Kendall, and H. A. Atwater, “Near-unity broadband absorption designs for semiconducting nanowire arrays via localized radial mode excitation,” Opt. Express 22(S3Suppl 3), A930–A940 (2014).
[Crossref] [PubMed]

Giannini, V.

X. Li, N. P. Hylton, V. Giannini, K.-H. Lee, N. J. Ekins-Daukes, and S. A. Maier, “Multi-dimensional modeling of solar cells with electromagnetic and carrier transport calculations,” Prog. Photovolt. Res. Appl. 21(1), 109–120 (2013).
[Crossref]

X. Li, N. P. Hylton, V. Giannini, K.-H. Lee, N. J. Ekins-Daukes, and S. A. Maier, “Bridging electromagnetic and carrier transport calculations for three-dimensional modelling of plasmonic solar cells,” Opt. Express 19(S4), A888–A896 (2011).
[Crossref] [PubMed]

Ginley, D. S.

S. Dayal, N. Kopidakis, D. C. Olson, D. S. Ginley, and G. Rumbles, “Photovoltaic devices with a low band gap polymer and CdSe nanostructures exceeding 3% efficiency,” Nano Lett. 10(1), 239–242 (2010).
[Crossref] [PubMed]

He, J.-H.

S.-H. Tsai, H.-C. Chang, H.-H. Wang, S.-Y. Chen, C.-A. Lin, S.-A. Chen, Y.-L. Chueh, and J.-H. He, “Significant efficiency enhancement of hybrid solar cells using core-shell nanowire geometry for energy harvesting,” ACS Nano 5(12), 9501–9510 (2011).
[Crossref] [PubMed]

Hesse, H. C.

J. Weickert, R. B. Dunbar, H. C. Hesse, W. Wiedemann, and L. Schmidt-Mende, “Nanostructured organic and hybrid solar cells,” Adv. Mater. 23(16), 1810–1828 (2011).
[Crossref] [PubMed]

Hirota, M.

S. Kato, Y. Kurokawa, S. Miyajima, Y. Watanabe, A. Yamada, Y. Ohta, Y. Niwa, and M. Hirota, “Improvement of carrier diffusion length in silicon nanowire arrays using atomic layer deposition,” Nanoscale Res. Lett. 8(1), 361 (2013).
[Crossref] [PubMed]

Hu, L.

L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7(11), 3249–3252 (2007).
[Crossref] [PubMed]

Huang, J.

G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nat. Mater. 4(11), 864–868 (2005).
[Crossref]

Hylton, N. P.

X. Li, N. P. Hylton, V. Giannini, K.-H. Lee, N. J. Ekins-Daukes, and S. A. Maier, “Multi-dimensional modeling of solar cells with electromagnetic and carrier transport calculations,” Prog. Photovolt. Res. Appl. 21(1), 109–120 (2013).
[Crossref]

X. Li, N. P. Hylton, V. Giannini, K.-H. Lee, N. J. Ekins-Daukes, and S. A. Maier, “Bridging electromagnetic and carrier transport calculations for three-dimensional modelling of plasmonic solar cells,” Opt. Express 19(S4), A888–A896 (2011).
[Crossref] [PubMed]

Jeong, J.-H.

K.-T. Park, H.-J. Kim, M.-J. Park, J.-H. Jeong, J. Lee, D.-G. Choi, J.-H. Lee, and J.-H. Choi, “13.2% efficiency Si nanowire/PEDOT:PSS hybrid solar cell using a transfer-imprinted Au mesh electrode,” Sci. Rep. 5, 12093 (2015).
[Crossref] [PubMed]

Kannan, B.

B. Kannan, K. Castelino, and A. Majumdar, “Design of nanostructured heterojunction polymer photovoltaic devices,” Nano Lett. 3(12), 1729–1733 (2003).
[Crossref]

Kato, S.

S. Kato, Y. Kurokawa, S. Miyajima, Y. Watanabe, A. Yamada, Y. Ohta, Y. Niwa, and M. Hirota, “Improvement of carrier diffusion length in silicon nanowire arrays using atomic layer deposition,” Nanoscale Res. Lett. 8(1), 361 (2013).
[Crossref] [PubMed]

Kayes, B. M.

B. M. Kayes, H. A. Atwater, and N. S. Lewis, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells,” J. Appl. Phys. 97(11), 114302 (2005).
[Crossref]

Kendall, C. G.

Kim, H.-J.

K.-T. Park, H.-J. Kim, M.-J. Park, J.-H. Jeong, J. Lee, D.-G. Choi, J.-H. Lee, and J.-H. Choi, “13.2% efficiency Si nanowire/PEDOT:PSS hybrid solar cell using a transfer-imprinted Au mesh electrode,” Sci. Rep. 5, 12093 (2015).
[Crossref] [PubMed]

Kopidakis, N.

S. Dayal, N. Kopidakis, D. C. Olson, D. S. Ginley, and G. Rumbles, “Photovoltaic devices with a low band gap polymer and CdSe nanostructures exceeding 3% efficiency,” Nano Lett. 10(1), 239–242 (2010).
[Crossref] [PubMed]

Kupec, J.

Kurokawa, Y.

S. Kato, Y. Kurokawa, S. Miyajima, Y. Watanabe, A. Yamada, Y. Ohta, Y. Niwa, and M. Hirota, “Improvement of carrier diffusion length in silicon nanowire arrays using atomic layer deposition,” Nanoscale Res. Lett. 8(1), 361 (2013).
[Crossref] [PubMed]

Kwong, D.-L.

J. Li, H. Yu, S. M. Wong, G. Zhang, X. Sun, P. G.-Q. Lo, and D.-L. Kwong, “Si nanopillar array optimization on Si thin films for solar energy harvesting,” Appl. Phys. Lett. 95(3), 033102 (2009).
[Crossref]

LaPierre, R. R.

K. M. Azizur-Rahman and R. R. LaPierre, “Wavelength-selective absorptance in GaAs, InP and InAs nanowire arrays,” Nanotechnology 26(29), 295202 (2015).
[Crossref] [PubMed]

R. R. LaPierre, “Numerical model of current-voltage characteristics and efficiency of GaAs nanowire solar cells,” J. Appl. Phys. 109(3), 034311 (2011).
[Crossref]

Lee, J.

K.-T. Park, H.-J. Kim, M.-J. Park, J.-H. Jeong, J. Lee, D.-G. Choi, J.-H. Lee, and J.-H. Choi, “13.2% efficiency Si nanowire/PEDOT:PSS hybrid solar cell using a transfer-imprinted Au mesh electrode,” Sci. Rep. 5, 12093 (2015).
[Crossref] [PubMed]

Lee, J.-H.

K.-T. Park, H.-J. Kim, M.-J. Park, J.-H. Jeong, J. Lee, D.-G. Choi, J.-H. Lee, and J.-H. Choi, “13.2% efficiency Si nanowire/PEDOT:PSS hybrid solar cell using a transfer-imprinted Au mesh electrode,” Sci. Rep. 5, 12093 (2015).
[Crossref] [PubMed]

Lee, K.-H.

X. Li, N. P. Hylton, V. Giannini, K.-H. Lee, N. J. Ekins-Daukes, and S. A. Maier, “Multi-dimensional modeling of solar cells with electromagnetic and carrier transport calculations,” Prog. Photovolt. Res. Appl. 21(1), 109–120 (2013).
[Crossref]

X. Li, N. P. Hylton, V. Giannini, K.-H. Lee, N. J. Ekins-Daukes, and S. A. Maier, “Bridging electromagnetic and carrier transport calculations for three-dimensional modelling of plasmonic solar cells,” Opt. Express 19(S4), A888–A896 (2011).
[Crossref] [PubMed]

Leu, P. W.

Lewis, N. S.

B. M. Kayes, H. A. Atwater, and N. S. Lewis, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells,” J. Appl. Phys. 97(11), 114302 (2005).
[Crossref]

Li, G.

G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nat. Mater. 4(11), 864–868 (2005).
[Crossref]

Li, J.

J. Li, H. Yu, S. M. Wong, G. Zhang, X. Sun, P. G.-Q. Lo, and D.-L. Kwong, “Si nanopillar array optimization on Si thin films for solar energy harvesting,” Appl. Phys. Lett. 95(3), 033102 (2009).
[Crossref]

Li, N.

W. Wang, X. Li, L. Wen, Y. Zhao, H. Duan, B. Zhou, T. Shi, X. Zeng, N. Li, and Y. Wang, “Optical simulations of P3HT/Si nanowire array hybrid solar cells,” Nanoscale Res. Lett. 9(1), 238 (2014).
[Crossref] [PubMed]

W. B. Wang, X. H. Li, L. Wen, G. Q. Liu, T. F. Shi, H. H. Duan, B. K. Zhou, N. Li, Y. F. Zhao, X. S. Zeng, and Y. Q. Wang, “Optical and electrical simulations of silicon nanowire array/Poly(3-hexylthiophene):Phenyl-C61-butyric acid methyl ester hybrid solar cell,” Appl. Phys. Lett. 105(23), 233115 (2014).
[Crossref]

Li, X.

D. Wu, X. Tang, and X. Li, “Optimization of the nanowire size and distribution of compound semiconductor nanowire-based hybrid solar cells,” IEEE J. Photovolt. 99, 1–7 (2015).

W. Wang, X. Li, L. Wen, Y. Zhao, H. Duan, B. Zhou, T. Shi, X. Zeng, N. Li, and Y. Wang, “Optical simulations of P3HT/Si nanowire array hybrid solar cells,” Nanoscale Res. Lett. 9(1), 238 (2014).
[Crossref] [PubMed]

X. Li, N. P. Hylton, V. Giannini, K.-H. Lee, N. J. Ekins-Daukes, and S. A. Maier, “Multi-dimensional modeling of solar cells with electromagnetic and carrier transport calculations,” Prog. Photovolt. Res. Appl. 21(1), 109–120 (2013).
[Crossref]

X. Li, N. P. Hylton, V. Giannini, K.-H. Lee, N. J. Ekins-Daukes, and S. A. Maier, “Bridging electromagnetic and carrier transport calculations for three-dimensional modelling of plasmonic solar cells,” Opt. Express 19(S4), A888–A896 (2011).
[Crossref] [PubMed]

Li, X. H.

W. B. Wang, X. H. Li, L. Wen, G. Q. Liu, T. F. Shi, H. H. Duan, B. K. Zhou, N. Li, Y. F. Zhao, X. S. Zeng, and Y. Q. Wang, “Optical and electrical simulations of silicon nanowire array/Poly(3-hexylthiophene):Phenyl-C61-butyric acid methyl ester hybrid solar cell,” Appl. Phys. Lett. 105(23), 233115 (2014).
[Crossref]

Lin, C.-A.

S.-H. Tsai, H.-C. Chang, H.-H. Wang, S.-Y. Chen, C.-A. Lin, S.-A. Chen, Y.-L. Chueh, and J.-H. He, “Significant efficiency enhancement of hybrid solar cells using core-shell nanowire geometry for energy harvesting,” ACS Nano 5(12), 9501–9510 (2011).
[Crossref] [PubMed]

Lin, C.-F.

J.-J. Chao, S.-C. Shiu, and C.-F. Lin, “GaAs nanowire/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) hybrid solar cells with incorporating electron blocking poly(3-hexylthiophene) layer,” Sol. Energy Mater. Sol. Cells 105, 40–45 (2012).
[Crossref]

Liu, G. Q.

W. B. Wang, X. H. Li, L. Wen, G. Q. Liu, T. F. Shi, H. H. Duan, B. K. Zhou, N. Li, Y. F. Zhao, X. S. Zeng, and Y. Q. Wang, “Optical and electrical simulations of silicon nanowire array/Poly(3-hexylthiophene):Phenyl-C61-butyric acid methyl ester hybrid solar cell,” Appl. Phys. Lett. 105(23), 233115 (2014).
[Crossref]

Lo, P. G.-Q.

J. Li, H. Yu, S. M. Wong, G. Zhang, X. Sun, P. G.-Q. Lo, and D.-L. Kwong, “Si nanopillar array optimization on Si thin films for solar energy harvesting,” Appl. Phys. Lett. 95(3), 033102 (2009).
[Crossref]

Loo, Y.-L.

L. Whittaker-Brooks, W. E. McClain, J. Schwartz, and Y.-L. Loo, “Donor-acceptor interfacial interactions dominate device performance in hybrid P3HT-ZnO nanowire-array solar cells,” Adv. Energy Mater. 4(16), 1400585 (2014).
[Crossref]

Maier, S. A.

X. Li, N. P. Hylton, V. Giannini, K.-H. Lee, N. J. Ekins-Daukes, and S. A. Maier, “Multi-dimensional modeling of solar cells with electromagnetic and carrier transport calculations,” Prog. Photovolt. Res. Appl. 21(1), 109–120 (2013).
[Crossref]

X. Li, N. P. Hylton, V. Giannini, K.-H. Lee, N. J. Ekins-Daukes, and S. A. Maier, “Bridging electromagnetic and carrier transport calculations for three-dimensional modelling of plasmonic solar cells,” Opt. Express 19(S4), A888–A896 (2011).
[Crossref] [PubMed]

Majumdar, A.

B. Kannan, K. Castelino, and A. Majumdar, “Design of nanostructured heterojunction polymer photovoltaic devices,” Nano Lett. 3(12), 1729–1733 (2003).
[Crossref]

McClain, W. E.

L. Whittaker-Brooks, W. E. McClain, J. Schwartz, and Y.-L. Loo, “Donor-acceptor interfacial interactions dominate device performance in hybrid P3HT-ZnO nanowire-array solar cells,” Adv. Energy Mater. 4(16), 1400585 (2014).
[Crossref]

McColl, M.

L. W. Aukerman, M. F. Millea, and M. McColl, “Diffusion lengths of electrons and holes in GaAs,” J. Appl. Phys. 38(2), 685–690 (1967).
[Crossref]

McPhedran, R. C.

B. C. P. Sturmberg, K. B. Dossou, L. C. Botten, A. A. Asatryan, C. G. Poulton, R. C. McPhedran, and C. M. de Sterke, “Optimizing photovoltaic charge generation of nanowire arrays: a simple semi-analytic approach,” ACS Photonics 1(8), 683–689 (2014).
[Crossref]

Michallon, J.

M. Zanuccoli, I. Semenihin, J. Michallon, E. Sangiorgi, and C. Fiegna, “Advanced electro-optical simulation of nanowire-based solar cells,” J. Comput. Electron. 12(4), 572–584 (2013).
[Crossref]

Millea, M. F.

L. W. Aukerman, M. F. Millea, and M. McColl, “Diffusion lengths of electrons and holes in GaAs,” J. Appl. Phys. 38(2), 685–690 (1967).
[Crossref]

Miyajima, S.

S. Kato, Y. Kurokawa, S. Miyajima, Y. Watanabe, A. Yamada, Y. Ohta, Y. Niwa, and M. Hirota, “Improvement of carrier diffusion length in silicon nanowire arrays using atomic layer deposition,” Nanoscale Res. Lett. 8(1), 361 (2013).
[Crossref] [PubMed]

Moliton, A.

A. Moliton and J.-M. Nunzi, “How to model the behaviour of organic photovoltaic cells,” Polym. Int. 55(6), 583–600 (2006).
[Crossref]

Moriarty, T.

G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nat. Mater. 4(11), 864–868 (2005).
[Crossref]

Niwa, Y.

S. Kato, Y. Kurokawa, S. Miyajima, Y. Watanabe, A. Yamada, Y. Ohta, Y. Niwa, and M. Hirota, “Improvement of carrier diffusion length in silicon nanowire arrays using atomic layer deposition,” Nanoscale Res. Lett. 8(1), 361 (2013).
[Crossref] [PubMed]

Novotny, C. J.

C. J. Novotny, E. T. Yu, and P. K. L. Yu, “InP nanowire/polymer hybrid photodiode,” Nano Lett. 8(3), 775–779 (2008).
[Crossref] [PubMed]

Nunzi, J.-M.

A. Moliton and J.-M. Nunzi, “How to model the behaviour of organic photovoltaic cells,” Polym. Int. 55(6), 583–600 (2006).
[Crossref]

Ohta, Y.

S. Kato, Y. Kurokawa, S. Miyajima, Y. Watanabe, A. Yamada, Y. Ohta, Y. Niwa, and M. Hirota, “Improvement of carrier diffusion length in silicon nanowire arrays using atomic layer deposition,” Nanoscale Res. Lett. 8(1), 361 (2013).
[Crossref] [PubMed]

Olson, D. C.

S. Dayal, N. Kopidakis, D. C. Olson, D. S. Ginley, and G. Rumbles, “Photovoltaic devices with a low band gap polymer and CdSe nanostructures exceeding 3% efficiency,” Nano Lett. 10(1), 239–242 (2010).
[Crossref] [PubMed]

Park, K.-T.

K.-T. Park, H.-J. Kim, M.-J. Park, J.-H. Jeong, J. Lee, D.-G. Choi, J.-H. Lee, and J.-H. Choi, “13.2% efficiency Si nanowire/PEDOT:PSS hybrid solar cell using a transfer-imprinted Au mesh electrode,” Sci. Rep. 5, 12093 (2015).
[Crossref] [PubMed]

Park, M.-J.

K.-T. Park, H.-J. Kim, M.-J. Park, J.-H. Jeong, J. Lee, D.-G. Choi, J.-H. Lee, and J.-H. Choi, “13.2% efficiency Si nanowire/PEDOT:PSS hybrid solar cell using a transfer-imprinted Au mesh electrode,” Sci. Rep. 5, 12093 (2015).
[Crossref] [PubMed]

Poulton, C. G.

B. C. P. Sturmberg, K. B. Dossou, L. C. Botten, A. A. Asatryan, C. G. Poulton, R. C. McPhedran, and C. M. de Sterke, “Optimizing photovoltaic charge generation of nanowire arrays: a simple semi-analytic approach,” ACS Photonics 1(8), 683–689 (2014).
[Crossref]

Qiao, Q.

T. Xu and Q. Qiao, “Conjugated polymer–inorganic semiconductor hybrid solar cells,” Energy Environ. Sci. 4(8), 2700 (2011).
[Crossref]

Roca i Cabarrocas, P.

M. Foldyna, L. Yu, and P. Roca i Cabarrocas, “Theoretical short-circuit current density for different geometries and organizations of silicon nanowires in solar cells,” Sol. Energy Mater. Sol. Cells 117, 645–651 (2013).
[Crossref]

Rumbles, G.

S. Dayal, N. Kopidakis, D. C. Olson, D. S. Ginley, and G. Rumbles, “Photovoltaic devices with a low band gap polymer and CdSe nanostructures exceeding 3% efficiency,” Nano Lett. 10(1), 239–242 (2010).
[Crossref] [PubMed]

Sangiorgi, E.

M. Zanuccoli, I. Semenihin, J. Michallon, E. Sangiorgi, and C. Fiegna, “Advanced electro-optical simulation of nanowire-based solar cells,” J. Comput. Electron. 12(4), 572–584 (2013).
[Crossref]

Saunders, B. R.

B. R. Saunders and M. L. Turner, “Nanoparticle-polymer photovoltaic cells,” Adv. Colloid Interface Sci. 138(1), 1–23 (2008).
[Crossref] [PubMed]

Schmidt-Mende, L.

J. Weickert, R. B. Dunbar, H. C. Hesse, W. Wiedemann, and L. Schmidt-Mende, “Nanostructured organic and hybrid solar cells,” Adv. Mater. 23(16), 1810–1828 (2011).
[Crossref] [PubMed]

Schmitt, S. W.

G. Shalev, S. W. Schmitt, G. Bronstrup, and S. Christiansen, “Maximizing the ultimate absorption efficiency of vertically-aligned semiconductor nanowire arrays with wires of a low absorption cross-section,” Nano Energy 12, 801–809 (2015).
[Crossref]

Schwartz, J.

L. Whittaker-Brooks, W. E. McClain, J. Schwartz, and Y.-L. Loo, “Donor-acceptor interfacial interactions dominate device performance in hybrid P3HT-ZnO nanowire-array solar cells,” Adv. Energy Mater. 4(16), 1400585 (2014).
[Crossref]

Semenihin, I.

M. Zanuccoli, I. Semenihin, J. Michallon, E. Sangiorgi, and C. Fiegna, “Advanced electro-optical simulation of nanowire-based solar cells,” J. Comput. Electron. 12(4), 572–584 (2013).
[Crossref]

Sha, W. E. I.

Shalev, G.

G. Shalev, S. W. Schmitt, G. Bronstrup, and S. Christiansen, “Maximizing the ultimate absorption efficiency of vertically-aligned semiconductor nanowire arrays with wires of a low absorption cross-section,” Nano Energy 12, 801–809 (2015).
[Crossref]

Shi, T.

W. Wang, X. Li, L. Wen, Y. Zhao, H. Duan, B. Zhou, T. Shi, X. Zeng, N. Li, and Y. Wang, “Optical simulations of P3HT/Si nanowire array hybrid solar cells,” Nanoscale Res. Lett. 9(1), 238 (2014).
[Crossref] [PubMed]

Shi, T. F.

W. B. Wang, X. H. Li, L. Wen, G. Q. Liu, T. F. Shi, H. H. Duan, B. K. Zhou, N. Li, Y. F. Zhao, X. S. Zeng, and Y. Q. Wang, “Optical and electrical simulations of silicon nanowire array/Poly(3-hexylthiophene):Phenyl-C61-butyric acid methyl ester hybrid solar cell,” Appl. Phys. Lett. 105(23), 233115 (2014).
[Crossref]

Shiu, S.-C.

J.-J. Chao, S.-C. Shiu, and C.-F. Lin, “GaAs nanowire/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) hybrid solar cells with incorporating electron blocking poly(3-hexylthiophene) layer,” Sol. Energy Mater. Sol. Cells 105, 40–45 (2012).
[Crossref]

Shrotriya, V.

G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nat. Mater. 4(11), 864–868 (2005).
[Crossref]

Sturmberg, B. C. P.

B. C. P. Sturmberg, K. B. Dossou, L. C. Botten, A. A. Asatryan, C. G. Poulton, R. C. McPhedran, and C. M. de Sterke, “Optimizing photovoltaic charge generation of nanowire arrays: a simple semi-analytic approach,” ACS Photonics 1(8), 683–689 (2014).
[Crossref]

Sun, X.

J. Li, H. Yu, S. M. Wong, G. Zhang, X. Sun, P. G.-Q. Lo, and D.-L. Kwong, “Si nanopillar array optimization on Si thin films for solar energy harvesting,” Appl. Phys. Lett. 95(3), 033102 (2009).
[Crossref]

Tang, X.

D. Wu, X. Tang, and X. Li, “Optimization of the nanowire size and distribution of compound semiconductor nanowire-based hybrid solar cells,” IEEE J. Photovolt. 99, 1–7 (2015).

Tsai, S.-H.

S.-H. Tsai, H.-C. Chang, H.-H. Wang, S.-Y. Chen, C.-A. Lin, S.-A. Chen, Y.-L. Chueh, and J.-H. He, “Significant efficiency enhancement of hybrid solar cells using core-shell nanowire geometry for energy harvesting,” ACS Nano 5(12), 9501–9510 (2011).
[Crossref] [PubMed]

Turner, M. L.

B. R. Saunders and M. L. Turner, “Nanoparticle-polymer photovoltaic cells,” Adv. Colloid Interface Sci. 138(1), 1–23 (2008).
[Crossref] [PubMed]

Uddin, A.

M. Wright and A. Uddin, “Organic—inorganic hybrid solar cells: A comparative review,” Sol. Energy Mater. Sol. Cells 10, 87–111 (2012).

Wang, B.

Wang, H.-H.

S.-H. Tsai, H.-C. Chang, H.-H. Wang, S.-Y. Chen, C.-A. Lin, S.-A. Chen, Y.-L. Chueh, and J.-H. He, “Significant efficiency enhancement of hybrid solar cells using core-shell nanowire geometry for energy harvesting,” ACS Nano 5(12), 9501–9510 (2011).
[Crossref] [PubMed]

Wang, W.

W. Wang, X. Li, L. Wen, Y. Zhao, H. Duan, B. Zhou, T. Shi, X. Zeng, N. Li, and Y. Wang, “Optical simulations of P3HT/Si nanowire array hybrid solar cells,” Nanoscale Res. Lett. 9(1), 238 (2014).
[Crossref] [PubMed]

Wang, W. B.

W. B. Wang, X. H. Li, L. Wen, G. Q. Liu, T. F. Shi, H. H. Duan, B. K. Zhou, N. Li, Y. F. Zhao, X. S. Zeng, and Y. Q. Wang, “Optical and electrical simulations of silicon nanowire array/Poly(3-hexylthiophene):Phenyl-C61-butyric acid methyl ester hybrid solar cell,” Appl. Phys. Lett. 105(23), 233115 (2014).
[Crossref]

Wang, Y.

W. Wang, X. Li, L. Wen, Y. Zhao, H. Duan, B. Zhou, T. Shi, X. Zeng, N. Li, and Y. Wang, “Optical simulations of P3HT/Si nanowire array hybrid solar cells,” Nanoscale Res. Lett. 9(1), 238 (2014).
[Crossref] [PubMed]

Wang, Y. Q.

W. B. Wang, X. H. Li, L. Wen, G. Q. Liu, T. F. Shi, H. H. Duan, B. K. Zhou, N. Li, Y. F. Zhao, X. S. Zeng, and Y. Q. Wang, “Optical and electrical simulations of silicon nanowire array/Poly(3-hexylthiophene):Phenyl-C61-butyric acid methyl ester hybrid solar cell,” Appl. Phys. Lett. 105(23), 233115 (2014).
[Crossref]

Watanabe, Y.

S. Kato, Y. Kurokawa, S. Miyajima, Y. Watanabe, A. Yamada, Y. Ohta, Y. Niwa, and M. Hirota, “Improvement of carrier diffusion length in silicon nanowire arrays using atomic layer deposition,” Nanoscale Res. Lett. 8(1), 361 (2013).
[Crossref] [PubMed]

Weickert, J.

J. Weickert, R. B. Dunbar, H. C. Hesse, W. Wiedemann, and L. Schmidt-Mende, “Nanostructured organic and hybrid solar cells,” Adv. Mater. 23(16), 1810–1828 (2011).
[Crossref] [PubMed]

Wen, L.

W. Wang, X. Li, L. Wen, Y. Zhao, H. Duan, B. Zhou, T. Shi, X. Zeng, N. Li, and Y. Wang, “Optical simulations of P3HT/Si nanowire array hybrid solar cells,” Nanoscale Res. Lett. 9(1), 238 (2014).
[Crossref] [PubMed]

W. B. Wang, X. H. Li, L. Wen, G. Q. Liu, T. F. Shi, H. H. Duan, B. K. Zhou, N. Li, Y. F. Zhao, X. S. Zeng, and Y. Q. Wang, “Optical and electrical simulations of silicon nanowire array/Poly(3-hexylthiophene):Phenyl-C61-butyric acid methyl ester hybrid solar cell,” Appl. Phys. Lett. 105(23), 233115 (2014).
[Crossref]

Whitney, W. S.

K. T. Fountaine, W. S. Whitney, and H. A. Atwater, “Resonant absorption in semiconductor nanowires and nanowire arrays: Relating leaky waveguide modes to Bloch photonic crystal modes,” J. Appl. Phys. 116(15), 153106 (2014).
[Crossref]

Whittaker-Brooks, L.

L. Whittaker-Brooks, W. E. McClain, J. Schwartz, and Y.-L. Loo, “Donor-acceptor interfacial interactions dominate device performance in hybrid P3HT-ZnO nanowire-array solar cells,” Adv. Energy Mater. 4(16), 1400585 (2014).
[Crossref]

Wiedemann, W.

J. Weickert, R. B. Dunbar, H. C. Hesse, W. Wiedemann, and L. Schmidt-Mende, “Nanostructured organic and hybrid solar cells,” Adv. Mater. 23(16), 1810–1828 (2011).
[Crossref] [PubMed]

Wilson, L. R.

A. P. Foster and L. R. Wilson, “Design parameters for nanowire-planar tandem solar cells,” Phys. Status Solidi A 210(2), 425–429 (2013).
[Crossref]

Witzigmann, B.

Wong, S. M.

J. Li, H. Yu, S. M. Wong, G. Zhang, X. Sun, P. G.-Q. Lo, and D.-L. Kwong, “Si nanopillar array optimization on Si thin films for solar energy harvesting,” Appl. Phys. Lett. 95(3), 033102 (2009).
[Crossref]

Wright, M.

M. Wright and A. Uddin, “Organic—inorganic hybrid solar cells: A comparative review,” Sol. Energy Mater. Sol. Cells 10, 87–111 (2012).

Wu, D.

D. Wu, X. Tang, and X. Li, “Optimization of the nanowire size and distribution of compound semiconductor nanowire-based hybrid solar cells,” IEEE J. Photovolt. 99, 1–7 (2015).

Wu, Y.

Xu, T.

T. Xu and Q. Qiao, “Conjugated polymer–inorganic semiconductor hybrid solar cells,” Energy Environ. Sci. 4(8), 2700 (2011).
[Crossref]

Yamada, A.

S. Kato, Y. Kurokawa, S. Miyajima, Y. Watanabe, A. Yamada, Y. Ohta, Y. Niwa, and M. Hirota, “Improvement of carrier diffusion length in silicon nanowire arrays using atomic layer deposition,” Nanoscale Res. Lett. 8(1), 361 (2013).
[Crossref] [PubMed]

Yan, L.

L. Yan and W. You, “Real function of semiconducting polymer in GaAs/polymer planar heterojunction solar cells,” ACS Nano 7(8), 6619–6626 (2013).
[Crossref] [PubMed]

Yang, Y.

G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nat. Mater. 4(11), 864–868 (2005).
[Crossref]

Yao, Y.

G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nat. Mater. 4(11), 864–868 (2005).
[Crossref]

You, W.

L. Yan and W. You, “Real function of semiconducting polymer in GaAs/polymer planar heterojunction solar cells,” ACS Nano 7(8), 6619–6626 (2013).
[Crossref] [PubMed]

Yu, E. T.

C. J. Novotny, E. T. Yu, and P. K. L. Yu, “InP nanowire/polymer hybrid photodiode,” Nano Lett. 8(3), 775–779 (2008).
[Crossref] [PubMed]

Yu, H.

J. Li, H. Yu, S. M. Wong, G. Zhang, X. Sun, P. G.-Q. Lo, and D.-L. Kwong, “Si nanopillar array optimization on Si thin films for solar energy harvesting,” Appl. Phys. Lett. 95(3), 033102 (2009).
[Crossref]

Yu, L.

M. Foldyna, L. Yu, and P. Roca i Cabarrocas, “Theoretical short-circuit current density for different geometries and organizations of silicon nanowires in solar cells,” Sol. Energy Mater. Sol. Cells 117, 645–651 (2013).
[Crossref]

Yu, P. K. L.

C. J. Novotny, E. T. Yu, and P. K. L. Yu, “InP nanowire/polymer hybrid photodiode,” Nano Lett. 8(3), 775–779 (2008).
[Crossref] [PubMed]

Zanuccoli, M.

M. Zanuccoli, I. Semenihin, J. Michallon, E. Sangiorgi, and C. Fiegna, “Advanced electro-optical simulation of nanowire-based solar cells,” J. Comput. Electron. 12(4), 572–584 (2013).
[Crossref]

Zeng, X.

W. Wang, X. Li, L. Wen, Y. Zhao, H. Duan, B. Zhou, T. Shi, X. Zeng, N. Li, and Y. Wang, “Optical simulations of P3HT/Si nanowire array hybrid solar cells,” Nanoscale Res. Lett. 9(1), 238 (2014).
[Crossref] [PubMed]

Zeng, X. S.

W. B. Wang, X. H. Li, L. Wen, G. Q. Liu, T. F. Shi, H. H. Duan, B. K. Zhou, N. Li, Y. F. Zhao, X. S. Zeng, and Y. Q. Wang, “Optical and electrical simulations of silicon nanowire array/Poly(3-hexylthiophene):Phenyl-C61-butyric acid methyl ester hybrid solar cell,” Appl. Phys. Lett. 105(23), 233115 (2014).
[Crossref]

Zhang, G.

J. Li, H. Yu, S. M. Wong, G. Zhang, X. Sun, P. G.-Q. Lo, and D.-L. Kwong, “Si nanopillar array optimization on Si thin films for solar energy harvesting,” Appl. Phys. Lett. 95(3), 033102 (2009).
[Crossref]

Zhao, Y.

W. Wang, X. Li, L. Wen, Y. Zhao, H. Duan, B. Zhou, T. Shi, X. Zeng, N. Li, and Y. Wang, “Optical simulations of P3HT/Si nanowire array hybrid solar cells,” Nanoscale Res. Lett. 9(1), 238 (2014).
[Crossref] [PubMed]

Zhao, Y. F.

W. B. Wang, X. H. Li, L. Wen, G. Q. Liu, T. F. Shi, H. H. Duan, B. K. Zhou, N. Li, Y. F. Zhao, X. S. Zeng, and Y. Q. Wang, “Optical and electrical simulations of silicon nanowire array/Poly(3-hexylthiophene):Phenyl-C61-butyric acid methyl ester hybrid solar cell,” Appl. Phys. Lett. 105(23), 233115 (2014).
[Crossref]

Zhou, B.

W. Wang, X. Li, L. Wen, Y. Zhao, H. Duan, B. Zhou, T. Shi, X. Zeng, N. Li, and Y. Wang, “Optical simulations of P3HT/Si nanowire array hybrid solar cells,” Nanoscale Res. Lett. 9(1), 238 (2014).
[Crossref] [PubMed]

Zhou, B. K.

W. B. Wang, X. H. Li, L. Wen, G. Q. Liu, T. F. Shi, H. H. Duan, B. K. Zhou, N. Li, Y. F. Zhao, X. S. Zeng, and Y. Q. Wang, “Optical and electrical simulations of silicon nanowire array/Poly(3-hexylthiophene):Phenyl-C61-butyric acid methyl ester hybrid solar cell,” Appl. Phys. Lett. 105(23), 233115 (2014).
[Crossref]

ACS Nano (2)

L. Yan and W. You, “Real function of semiconducting polymer in GaAs/polymer planar heterojunction solar cells,” ACS Nano 7(8), 6619–6626 (2013).
[Crossref] [PubMed]

S.-H. Tsai, H.-C. Chang, H.-H. Wang, S.-Y. Chen, C.-A. Lin, S.-A. Chen, Y.-L. Chueh, and J.-H. He, “Significant efficiency enhancement of hybrid solar cells using core-shell nanowire geometry for energy harvesting,” ACS Nano 5(12), 9501–9510 (2011).
[Crossref] [PubMed]

ACS Photonics (1)

B. C. P. Sturmberg, K. B. Dossou, L. C. Botten, A. A. Asatryan, C. G. Poulton, R. C. McPhedran, and C. M. de Sterke, “Optimizing photovoltaic charge generation of nanowire arrays: a simple semi-analytic approach,” ACS Photonics 1(8), 683–689 (2014).
[Crossref]

Adv. Colloid Interface Sci. (1)

B. R. Saunders and M. L. Turner, “Nanoparticle-polymer photovoltaic cells,” Adv. Colloid Interface Sci. 138(1), 1–23 (2008).
[Crossref] [PubMed]

Adv. Energy Mater. (1)

L. Whittaker-Brooks, W. E. McClain, J. Schwartz, and Y.-L. Loo, “Donor-acceptor interfacial interactions dominate device performance in hybrid P3HT-ZnO nanowire-array solar cells,” Adv. Energy Mater. 4(16), 1400585 (2014).
[Crossref]

Adv. Mater. (1)

J. Weickert, R. B. Dunbar, H. C. Hesse, W. Wiedemann, and L. Schmidt-Mende, “Nanostructured organic and hybrid solar cells,” Adv. Mater. 23(16), 1810–1828 (2011).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

W. B. Wang, X. H. Li, L. Wen, G. Q. Liu, T. F. Shi, H. H. Duan, B. K. Zhou, N. Li, Y. F. Zhao, X. S. Zeng, and Y. Q. Wang, “Optical and electrical simulations of silicon nanowire array/Poly(3-hexylthiophene):Phenyl-C61-butyric acid methyl ester hybrid solar cell,” Appl. Phys. Lett. 105(23), 233115 (2014).
[Crossref]

J. Li, H. Yu, S. M. Wong, G. Zhang, X. Sun, P. G.-Q. Lo, and D.-L. Kwong, “Si nanopillar array optimization on Si thin films for solar energy harvesting,” Appl. Phys. Lett. 95(3), 033102 (2009).
[Crossref]

Energy Environ. Sci. (1)

T. Xu and Q. Qiao, “Conjugated polymer–inorganic semiconductor hybrid solar cells,” Energy Environ. Sci. 4(8), 2700 (2011).
[Crossref]

IEEE J. Photovolt. (1)

D. Wu, X. Tang, and X. Li, “Optimization of the nanowire size and distribution of compound semiconductor nanowire-based hybrid solar cells,” IEEE J. Photovolt. 99, 1–7 (2015).

J. Appl. Phys. (4)

B. M. Kayes, H. A. Atwater, and N. S. Lewis, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells,” J. Appl. Phys. 97(11), 114302 (2005).
[Crossref]

K. T. Fountaine, W. S. Whitney, and H. A. Atwater, “Resonant absorption in semiconductor nanowires and nanowire arrays: Relating leaky waveguide modes to Bloch photonic crystal modes,” J. Appl. Phys. 116(15), 153106 (2014).
[Crossref]

R. R. LaPierre, “Numerical model of current-voltage characteristics and efficiency of GaAs nanowire solar cells,” J. Appl. Phys. 109(3), 034311 (2011).
[Crossref]

L. W. Aukerman, M. F. Millea, and M. McColl, “Diffusion lengths of electrons and holes in GaAs,” J. Appl. Phys. 38(2), 685–690 (1967).
[Crossref]

J. Comput. Electron. (1)

M. Zanuccoli, I. Semenihin, J. Michallon, E. Sangiorgi, and C. Fiegna, “Advanced electro-optical simulation of nanowire-based solar cells,” J. Comput. Electron. 12(4), 572–584 (2013).
[Crossref]

Nano Energy (1)

G. Shalev, S. W. Schmitt, G. Bronstrup, and S. Christiansen, “Maximizing the ultimate absorption efficiency of vertically-aligned semiconductor nanowire arrays with wires of a low absorption cross-section,” Nano Energy 12, 801–809 (2015).
[Crossref]

Nano Lett. (5)

S. Dayal, N. Kopidakis, D. C. Olson, D. S. Ginley, and G. Rumbles, “Photovoltaic devices with a low band gap polymer and CdSe nanostructures exceeding 3% efficiency,” Nano Lett. 10(1), 239–242 (2010).
[Crossref] [PubMed]

L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7(11), 3249–3252 (2007).
[Crossref] [PubMed]

B. Kannan, K. Castelino, and A. Majumdar, “Design of nanostructured heterojunction polymer photovoltaic devices,” Nano Lett. 3(12), 1729–1733 (2003).
[Crossref]

M. G. Deceglie, V. E. Ferry, A. P. Alivisatos, and H. A. Atwater, “Design of nanostructured solar cells using coupled optical and electrical modeling,” Nano Lett. 12(6), 2894–2900 (2012).
[Crossref] [PubMed]

C. J. Novotny, E. T. Yu, and P. K. L. Yu, “InP nanowire/polymer hybrid photodiode,” Nano Lett. 8(3), 775–779 (2008).
[Crossref] [PubMed]

Nanoscale Res. Lett. (2)

S. Kato, Y. Kurokawa, S. Miyajima, Y. Watanabe, A. Yamada, Y. Ohta, Y. Niwa, and M. Hirota, “Improvement of carrier diffusion length in silicon nanowire arrays using atomic layer deposition,” Nanoscale Res. Lett. 8(1), 361 (2013).
[Crossref] [PubMed]

W. Wang, X. Li, L. Wen, Y. Zhao, H. Duan, B. Zhou, T. Shi, X. Zeng, N. Li, and Y. Wang, “Optical simulations of P3HT/Si nanowire array hybrid solar cells,” Nanoscale Res. Lett. 9(1), 238 (2014).
[Crossref] [PubMed]

Nanotechnology (1)

K. M. Azizur-Rahman and R. R. LaPierre, “Wavelength-selective absorptance in GaAs, InP and InAs nanowire arrays,” Nanotechnology 26(29), 295202 (2015).
[Crossref] [PubMed]

Nat. Mater. (1)

G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends,” Nat. Mater. 4(11), 864–868 (2005).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Phys. Status Solidi A (1)

A. P. Foster and L. R. Wilson, “Design parameters for nanowire-planar tandem solar cells,” Phys. Status Solidi A 210(2), 425–429 (2013).
[Crossref]

Polym. Int. (1)

A. Moliton and J.-M. Nunzi, “How to model the behaviour of organic photovoltaic cells,” Polym. Int. 55(6), 583–600 (2006).
[Crossref]

Prog. Photovolt. Res. Appl. (1)

X. Li, N. P. Hylton, V. Giannini, K.-H. Lee, N. J. Ekins-Daukes, and S. A. Maier, “Multi-dimensional modeling of solar cells with electromagnetic and carrier transport calculations,” Prog. Photovolt. Res. Appl. 21(1), 109–120 (2013).
[Crossref]

Sci. Rep. (1)

K.-T. Park, H.-J. Kim, M.-J. Park, J.-H. Jeong, J. Lee, D.-G. Choi, J.-H. Lee, and J.-H. Choi, “13.2% efficiency Si nanowire/PEDOT:PSS hybrid solar cell using a transfer-imprinted Au mesh electrode,” Sci. Rep. 5, 12093 (2015).
[Crossref] [PubMed]

Sol. Energy Mater. Sol. Cells (3)

M. Foldyna, L. Yu, and P. Roca i Cabarrocas, “Theoretical short-circuit current density for different geometries and organizations of silicon nanowires in solar cells,” Sol. Energy Mater. Sol. Cells 117, 645–651 (2013).
[Crossref]

M. Wright and A. Uddin, “Organic—inorganic hybrid solar cells: A comparative review,” Sol. Energy Mater. Sol. Cells 10, 87–111 (2012).

J.-J. Chao, S.-C. Shiu, and C.-F. Lin, “GaAs nanowire/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) hybrid solar cells with incorporating electron blocking poly(3-hexylthiophene) layer,” Sol. Energy Mater. Sol. Cells 105, 40–45 (2012).
[Crossref]

Other (2)

M. D. Kelzenberg, M. C. Putnam, D. B. Turner-Evans, N. S. Lewis, and H. A. Atwater, “Predicted efficiency of Si wire array solar cells,” in 2009 34th IEEE Photovoltaic Specialists Conference (PVSC, 2009), paper 001948.
[Crossref]

“Standard Tables for Reference Solar Spectral Irradiance at Air Mass 1.5: Direct Normal and Hemispherical for a 37 Degree Tilted Surface, ISO 9845-1. .”

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic of the energy level arrangement and photovoltaic process for inorganic nanowires (NWs) based hybrid solar cell (HSC) (LUMO: lowest unoccupied molecular orbital; HOMO: highest occupied molecular orbital; CB: conduction band; VB: valance band; hυ: incident photon energy).
Fig. 2
Fig. 2 Schematic of the active layer in the HSC including (a) side view, (b) top view and (c) a unit cell with characteristic dimensions for the simulation.
Fig. 3
Fig. 3 Light absorption efficiency changes with diameter of NWs for (a), (b) GaAs NWs/air layer and (c), (d) GaAs NWs/P3HT when filling ratio (FR) is 0.05.
Fig. 4
Fig. 4 Electric field intensity distribution of GaAs NWs/air and 160 nm GaAs NWs/P3HT unit cell. Plots at the top (a)-(c) correspond to GaAs NWs/air whereas bottom ones (d)-(f) correspond to GaAs NWs/P3HT layer. Left, middle and right plots correspond to: (a), (d) 400 nm, (b), (e) 600 nm, and (c), (f) resonant wavelengths of 809 and 827 nm for HE11 modes in GaAs NWs/air and GaAs NWs/P3HT layer, respectively. White lines indicate the edges of the NWs.
Fig. 5
Fig. 5 Light absorption efficiency changes with incident wavelength and FR when diameter of NW is (a) 80 nm and (b) 160 nm.
Fig. 6
Fig. 6 Top view (a) and isometric view (b) for effective region and (c) light absorption efficiencies as a function of FR and diameter at AM 1.5G illumination.
Fig. 7
Fig. 7 Photocurrent density (a) and external quantum efficiency (EQEAM1.5G) (b) change with diameter of NWs and FR.
Fig. 8
Fig. 8 Current density-voltage (J-V) curves (a) and power conversion efficiency (PCE) (b) of the GaAs NWs/P3HT HSC change with diameter and FR.

Tables (1)

Tables Icon

Table 1 Summarized parameters used in the simulation

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

G opt = 1 2ω re{ P }= ε" | E | 2 2 [c m 3 s 1 ].
J ph_Unit (λ)=[ i ph_Poly (λ)+ i ph_NW (λ) ]/Are a Unit .
J ph = λ I(λ) J ph_Unit (λ)dλ .
EQ E AM1.5G = J ph / λ qλI(λ)dλ hc .
J= J sat [ exp( VqJR s k B T )1 ] J ph .
η PCE =J V m m / P in .

Metrics