Abstract

In this work, we investigate the nonreciprocal circular dichroism for terahertz (THz) waves in magnetized InSb by the theoretical calculation and numerical simulation, which indicates that longitudinally magnetized InSb can be applied to the circular polarizer and nonreciprocal one-way transmission for the circular polarization THz waves. Furthermore, we propose a double-layer magnetoplasmonics based on the longitudinally magnetized InSb, and find two MO enhancement mechanisms in this device: the magneto surface plasmon resonance on the InSb-metal surface and Fabry–Pérot resonances between two orthogonal metallic gratings. These two resonance mechanisms enlarge the MO polarization rotation and greatly reduce the external magnetic field below 0.1T. The one-way transmission and perfect linear polarization conversion can be realized over 70dB, of which the transmittance can be modulated from 0 to 80% when the weak magnetic field changes from 0 to 0.1T under the low temperature around 200K. This magnetoplasmonic device has broad potential as a THz isolator, modulator, polarization convertor, and filter in the THz application systems.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Tunable magneto-optical polarization device for terahertz waves based on InSb and its plasmonic structure

Qianyi Mu, Fei Fan, Sai Chen, Shitong Xu, Chuanzhong Xiong, Xin Zhang, Xianghui Wang, and Shengjiang Chang
Photon. Res. 7(3) 325-331 (2019)

Multifunctional magneto-metasurface for terahertz one-way transmission and magnetic field sensing

Sai Chen, Fei Fan, Xiaotong He, Meng Chen, and Shengjiang Chang
Appl. Opt. 54(31) 9177-9182 (2015)

Terahertz isolator based on nonreciprocal magneto-metasurface

Sai Chen, Fei Fan, Xianghui Wang, Pengfei Wu, Hui Zhang, and Shengjiang Chang
Opt. Express 23(2) 1015-1024 (2015)

References

  • View by:
  • |
  • |
  • |

  1. H. T. Chen, R. Kersting, and G. C. Cho, “Terahertz imaging with nanometer resolution,” Appl. Phys. Lett. 83(15), 3009–3011 (2003).
    [Crossref]
  2. F. Fan, X. Zhang, S. Li, D. Deng, N. Wang, H. Zhang, and S. Chang, “Terahertz transmission and sensing properties of microstructured PMMA tube waveguide,” Opt. Express 23(21), 27204–27212 (2015).
    [Crossref] [PubMed]
  3. H. J. Song and T. Nagatsuma, “Present and future of terahertz communications,” IEEE Trans. Terahertz Sci. Technol. 1(1), 256–263 (2011).
    [Crossref]
  4. Z. Li, Y. Zhang, and B. Li, “Terahertz photonic crystal switch in silicon based on self-imaging principle,” Opt. Express 14(9), 3887–3892 (2006).
    [Crossref] [PubMed]
  5. H. T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
    [Crossref] [PubMed]
  6. A. K. Azad, J. F. O’Hara, R. Singh, and H. T. Chen, “A review of terahertz plasmonics in subwavelength holes on conducting films,” IEEE J. Sel. Top. Quantum Electron. 19(1), 8400416 (2013).
    [Crossref]
  7. M. Shalaby, M. Peccianti, Y. Ozturk, and R. Morandotti, “A magnetic non-reciprocal isolator for broadband terahertz operation,” Nat. Commun. 4(3), 1558 (2013).
    [Crossref] [PubMed]
  8. B. Hu, J. Tao, Y. Zhang, and Q. J. Wang, “Magneto-plasmonics in graphene-dielectric sandwich,” Opt. Express 22(18), 21727–21738 (2014).
    [Crossref] [PubMed]
  9. Y. Zhou, X. Xu, H. Fan, Z. Ren, J. Bai, and L. Wang, “Tunable magnetoplasmons for efficient terahertz modulator and isolator by gated monolayer graphene,” Phys. Chem. Chem. Phys. 15(14), 5084–5090 (2013).
    [Crossref] [PubMed]
  10. F. Fan, Z. Guo, J. Bai, X. Wang, and S. Chang, “Magnetic photonic crystals for terahertz tunable filter and multifunctional polarization controller,” J. Opt. Soc. Am. B 28(4), 697–702 (2011).
    [Crossref]
  11. S. Chen, F. Fan, X. He, M. Chen, and S. Chang, “Multifunctional magneto-metasurface for terahertz one-way transmission and magnetic field sensing,” Appl. Opt. 54(31), 9177–9182 (2015).
    [Crossref] [PubMed]
  12. Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljacić, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461(7265), 772–775 (2009).
    [Crossref] [PubMed]
  13. V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal–ferromagnet structures,” Nat. Photonics 4(2), 107–111 (2010).
    [Crossref]
  14. K. Lodewijks, N. Maccaferri, T. Pakizeh, R. K. Dumas, I. Zubritskaya, J. Akerman, P. Vavassori, and A. Dmitriev, “Magnetoplasmonic design rules for active magneto-optics,” Nano Lett. 14(12), 7207–7214 (2014).
    [Crossref] [PubMed]
  15. G. Armelles, A. Cebollada, A. García-Martín, and M. U. González, “Magnetoplasmonics: combining magnetic and plasmonic functionalities,” Adv. Opt. Mat. 1(1), 10–35 (2013).
    [Crossref]
  16. V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6(6), 370–376 (2011).
    [Crossref] [PubMed]
  17. L. E. Kreilkamp, V. I. Belotelov, J. Y. Chin, S. Neutzner, D. Dregely, T. Wehlus, I. A. Akimov, M. Bayer, B. Stritzker, and H. Giessen, “Waveguide-plasmon polaritons enhance transverse magneto-optical Kerr effect,” Phys. Rev. X 3(4), 041019 (2013).
    [Crossref]
  18. H. Yan, Z. Li, X. Li, W. Zhu, P. Avouris, and F. Xia, “Infrared spectroscopy of tunable Dirac terahertz magneto-plasmons in graphene,” Nano Lett. 12(7), 3766–3771 (2012).
    [Crossref] [PubMed]
  19. V. I. Belotelov, L. E. Kreilkamp, I. A. Akimov, A. N. Kalish, D. A. Bykov, S. Kasture, V. J. Yallapragada, A. Venu Gopal, A. M. Grishin, S. I. Khartsev, M. Nur-E-Alam, M. Vasiliev, L. L. Doskolovich, D. R. Yakovlev, K. Alameh, A. K. Zvezdin, and M. Bayer, “Plasmon-mediated magneto-optical transparency,” Nat. Commun. 4(7), 2128 (2013).
    [PubMed]
  20. D. Floess, J. Y. Chin, A. Kawatani, D. Dregely, H. U. Habermeier, T. Weiss, and H. Giessen, “Tunable and switchable polarization rotation with non-reciprocal plasmonic thin films at designated wavelengths,” Light Sci. Appl. 4(5), 257–277 (2015).
    [Crossref]
  21. J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat. Commun. 4(3), 1599 (2013).
    [Crossref] [PubMed]
  22. X. Wang, A. A. Belyanin, S. A. Crooker, D. M. Mittleman, and J. Kono, “Interference-induced terahertz transparency in a semiconductor magneto-plasma,” Nat. Phys. 6(2), 126–130 (2009).
    [Crossref]
  23. I. Crassee, M. Orlita, M. Potemski, A. L. Walter, M. Ostler, T. Seyller, I. Gaponenko, J. Chen, and A. B. Kuzmenko, “Intrinsic terahertz plasmons and magnetoplasmons in large scale monolayer graphene,” Nano Lett. 12(5), 2470–2474 (2012).
    [Crossref] [PubMed]
  24. F. Fan, S. Chen, W. Lin, Y. P. Miao, S. J. Chang, B. Liu, X. H. Wang, and L. Lin, “Magnetically tunable terahertz magnetoplasmons in ferrofluid-filled photonic crystals,” Appl. Phys. Lett. 103(16), 161115 (2013).
    [Crossref]
  25. F. Fan, S. Chen, X. H. Wang, and S. J. Chang, “Tunable nonreciprocal terahertz transmission and enhancement based on metal/magneto-optic plasmonic lens,” Opt. Express 21(7), 8614–8621 (2013).
    [Crossref] [PubMed]
  26. S. Chen, F. Fan, X. Wang, P. Wu, H. Zhang, and S. Chang, “Terahertz isolator based on nonreciprocal magneto-metasurface,” Opt. Express 23(2), 1015–1024 (2015).
    [Crossref] [PubMed]
  27. F. Fan, S. Chen, and S. J. Chang, “A review of magneto-optical microstructure devices at terahertz frequencies,” IEEE J. Sel. Top. Quantum Electron. 23(4), 1–11 (2017).
    [Crossref]
  28. T. Arikawa, X. Wang, A. A. Belyanin, and J. Kono, “Giant tunable Faraday effect in a semiconductor magneto-plasma for broadband terahertz polarization optics,” Opt. Express 20(17), 19484–19492 (2012).
    [Crossref] [PubMed]
  29. A. M. Shuvaev, G. V. Astakhov, A. Pimenov, C. Brüne, H. Buhmann, and L. W. Molenkamp, “Giant magneto-optical faraday effect in HgTe thin films in the terahertz spectral range,” Phys. Rev. Lett. 106(10), 107404 (2011).
    [Crossref] [PubMed]
  30. R. Shimano, G. Yumoto, J. Y. Yoo, R. Matsunaga, S. Tanabe, H. Hibino, T. Morimoto, and H. Aoki, “Quantum Faraday and Kerr rotations in graphene,” Nat. Commun. 4(5), 1841 (2013).
    [Crossref] [PubMed]
  31. A. Fallahi and J. Perruisseau-Carrier, “Manipulation of giant Faraday rotation in graphene metasurfaces,” Appl. Phys. Lett. 101(23), 231605 (2012).
    [Crossref]
  32. M. Tamagnone, C. Moldovan, J.-M. Poumirol, A. B. Kuzmenko, A. M. Ionescu, J. R. Mosig, and J. Perruisseau-Carrier, “Near optimal graphene terahertz non-reciprocal isolator,” Nat. Commun. 7, 11216 (2016).
    [Crossref] [PubMed]
  33. G. Zegrya, N. Gunko, and A. Polkovnikov, “Electrical properties of Indium Antimonide,” http://www.ioffe.ru/SVA/NSM/Semicond/InSb/electric.html .
  34. M. Levinshtein, M. S. Shur, and S. Rumyanstev, Handbook Series on Semiconductor Parameters, vol. 1 (World Scientific, 1996), pp. 191–213.
  35. J. Gómez Rivas, C. Janke, P. Bolivar, and H. Kurz, “Transmission of THz radiation through InSb gratings of subwavelength apertures,” Opt. Express 13(3), 847–859 (2005).
    [Crossref] [PubMed]
  36. B. S. Passmore, D. G. Allen, S. R. Vangala, W. D. Goodhue, D. Wasserman, and E. A. Shaner, “Mid-infrared doping tunable transmission through subwavelength metal hole arrays on InSb,” Opt. Express 17(12), 10223–10230 (2009).
    [Crossref] [PubMed]
  37. K. Zhang and D. Li, “Electromagnetic waves in dispersive media and anisotropic media,” in Electromagnetic Theory for Microwaves and Optoelectronics (Springer, 2008), pp. 475–576.

2017 (1)

F. Fan, S. Chen, and S. J. Chang, “A review of magneto-optical microstructure devices at terahertz frequencies,” IEEE J. Sel. Top. Quantum Electron. 23(4), 1–11 (2017).
[Crossref]

2016 (1)

M. Tamagnone, C. Moldovan, J.-M. Poumirol, A. B. Kuzmenko, A. M. Ionescu, J. R. Mosig, and J. Perruisseau-Carrier, “Near optimal graphene terahertz non-reciprocal isolator,” Nat. Commun. 7, 11216 (2016).
[Crossref] [PubMed]

2015 (4)

2014 (2)

K. Lodewijks, N. Maccaferri, T. Pakizeh, R. K. Dumas, I. Zubritskaya, J. Akerman, P. Vavassori, and A. Dmitriev, “Magnetoplasmonic design rules for active magneto-optics,” Nano Lett. 14(12), 7207–7214 (2014).
[Crossref] [PubMed]

B. Hu, J. Tao, Y. Zhang, and Q. J. Wang, “Magneto-plasmonics in graphene-dielectric sandwich,” Opt. Express 22(18), 21727–21738 (2014).
[Crossref] [PubMed]

2013 (10)

Y. Zhou, X. Xu, H. Fan, Z. Ren, J. Bai, and L. Wang, “Tunable magnetoplasmons for efficient terahertz modulator and isolator by gated monolayer graphene,” Phys. Chem. Chem. Phys. 15(14), 5084–5090 (2013).
[Crossref] [PubMed]

A. K. Azad, J. F. O’Hara, R. Singh, and H. T. Chen, “A review of terahertz plasmonics in subwavelength holes on conducting films,” IEEE J. Sel. Top. Quantum Electron. 19(1), 8400416 (2013).
[Crossref]

M. Shalaby, M. Peccianti, Y. Ozturk, and R. Morandotti, “A magnetic non-reciprocal isolator for broadband terahertz operation,” Nat. Commun. 4(3), 1558 (2013).
[Crossref] [PubMed]

G. Armelles, A. Cebollada, A. García-Martín, and M. U. González, “Magnetoplasmonics: combining magnetic and plasmonic functionalities,” Adv. Opt. Mat. 1(1), 10–35 (2013).
[Crossref]

L. E. Kreilkamp, V. I. Belotelov, J. Y. Chin, S. Neutzner, D. Dregely, T. Wehlus, I. A. Akimov, M. Bayer, B. Stritzker, and H. Giessen, “Waveguide-plasmon polaritons enhance transverse magneto-optical Kerr effect,” Phys. Rev. X 3(4), 041019 (2013).
[Crossref]

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat. Commun. 4(3), 1599 (2013).
[Crossref] [PubMed]

V. I. Belotelov, L. E. Kreilkamp, I. A. Akimov, A. N. Kalish, D. A. Bykov, S. Kasture, V. J. Yallapragada, A. Venu Gopal, A. M. Grishin, S. I. Khartsev, M. Nur-E-Alam, M. Vasiliev, L. L. Doskolovich, D. R. Yakovlev, K. Alameh, A. K. Zvezdin, and M. Bayer, “Plasmon-mediated magneto-optical transparency,” Nat. Commun. 4(7), 2128 (2013).
[PubMed]

F. Fan, S. Chen, W. Lin, Y. P. Miao, S. J. Chang, B. Liu, X. H. Wang, and L. Lin, “Magnetically tunable terahertz magnetoplasmons in ferrofluid-filled photonic crystals,” Appl. Phys. Lett. 103(16), 161115 (2013).
[Crossref]

F. Fan, S. Chen, X. H. Wang, and S. J. Chang, “Tunable nonreciprocal terahertz transmission and enhancement based on metal/magneto-optic plasmonic lens,” Opt. Express 21(7), 8614–8621 (2013).
[Crossref] [PubMed]

R. Shimano, G. Yumoto, J. Y. Yoo, R. Matsunaga, S. Tanabe, H. Hibino, T. Morimoto, and H. Aoki, “Quantum Faraday and Kerr rotations in graphene,” Nat. Commun. 4(5), 1841 (2013).
[Crossref] [PubMed]

2012 (4)

A. Fallahi and J. Perruisseau-Carrier, “Manipulation of giant Faraday rotation in graphene metasurfaces,” Appl. Phys. Lett. 101(23), 231605 (2012).
[Crossref]

T. Arikawa, X. Wang, A. A. Belyanin, and J. Kono, “Giant tunable Faraday effect in a semiconductor magneto-plasma for broadband terahertz polarization optics,” Opt. Express 20(17), 19484–19492 (2012).
[Crossref] [PubMed]

I. Crassee, M. Orlita, M. Potemski, A. L. Walter, M. Ostler, T. Seyller, I. Gaponenko, J. Chen, and A. B. Kuzmenko, “Intrinsic terahertz plasmons and magnetoplasmons in large scale monolayer graphene,” Nano Lett. 12(5), 2470–2474 (2012).
[Crossref] [PubMed]

H. Yan, Z. Li, X. Li, W. Zhu, P. Avouris, and F. Xia, “Infrared spectroscopy of tunable Dirac terahertz magneto-plasmons in graphene,” Nano Lett. 12(7), 3766–3771 (2012).
[Crossref] [PubMed]

2011 (4)

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6(6), 370–376 (2011).
[Crossref] [PubMed]

F. Fan, Z. Guo, J. Bai, X. Wang, and S. Chang, “Magnetic photonic crystals for terahertz tunable filter and multifunctional polarization controller,” J. Opt. Soc. Am. B 28(4), 697–702 (2011).
[Crossref]

H. J. Song and T. Nagatsuma, “Present and future of terahertz communications,” IEEE Trans. Terahertz Sci. Technol. 1(1), 256–263 (2011).
[Crossref]

A. M. Shuvaev, G. V. Astakhov, A. Pimenov, C. Brüne, H. Buhmann, and L. W. Molenkamp, “Giant magneto-optical faraday effect in HgTe thin films in the terahertz spectral range,” Phys. Rev. Lett. 106(10), 107404 (2011).
[Crossref] [PubMed]

2010 (1)

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal–ferromagnet structures,” Nat. Photonics 4(2), 107–111 (2010).
[Crossref]

2009 (3)

Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljacić, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461(7265), 772–775 (2009).
[Crossref] [PubMed]

X. Wang, A. A. Belyanin, S. A. Crooker, D. M. Mittleman, and J. Kono, “Interference-induced terahertz transparency in a semiconductor magneto-plasma,” Nat. Phys. 6(2), 126–130 (2009).
[Crossref]

B. S. Passmore, D. G. Allen, S. R. Vangala, W. D. Goodhue, D. Wasserman, and E. A. Shaner, “Mid-infrared doping tunable transmission through subwavelength metal hole arrays on InSb,” Opt. Express 17(12), 10223–10230 (2009).
[Crossref] [PubMed]

2006 (2)

Z. Li, Y. Zhang, and B. Li, “Terahertz photonic crystal switch in silicon based on self-imaging principle,” Opt. Express 14(9), 3887–3892 (2006).
[Crossref] [PubMed]

H. T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

2005 (1)

2003 (1)

H. T. Chen, R. Kersting, and G. C. Cho, “Terahertz imaging with nanometer resolution,” Appl. Phys. Lett. 83(15), 3009–3011 (2003).
[Crossref]

Akerman, J.

K. Lodewijks, N. Maccaferri, T. Pakizeh, R. K. Dumas, I. Zubritskaya, J. Akerman, P. Vavassori, and A. Dmitriev, “Magnetoplasmonic design rules for active magneto-optics,” Nano Lett. 14(12), 7207–7214 (2014).
[Crossref] [PubMed]

Akimov, I. A.

L. E. Kreilkamp, V. I. Belotelov, J. Y. Chin, S. Neutzner, D. Dregely, T. Wehlus, I. A. Akimov, M. Bayer, B. Stritzker, and H. Giessen, “Waveguide-plasmon polaritons enhance transverse magneto-optical Kerr effect,” Phys. Rev. X 3(4), 041019 (2013).
[Crossref]

V. I. Belotelov, L. E. Kreilkamp, I. A. Akimov, A. N. Kalish, D. A. Bykov, S. Kasture, V. J. Yallapragada, A. Venu Gopal, A. M. Grishin, S. I. Khartsev, M. Nur-E-Alam, M. Vasiliev, L. L. Doskolovich, D. R. Yakovlev, K. Alameh, A. K. Zvezdin, and M. Bayer, “Plasmon-mediated magneto-optical transparency,” Nat. Commun. 4(7), 2128 (2013).
[PubMed]

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6(6), 370–376 (2011).
[Crossref] [PubMed]

Alameh, K.

V. I. Belotelov, L. E. Kreilkamp, I. A. Akimov, A. N. Kalish, D. A. Bykov, S. Kasture, V. J. Yallapragada, A. Venu Gopal, A. M. Grishin, S. I. Khartsev, M. Nur-E-Alam, M. Vasiliev, L. L. Doskolovich, D. R. Yakovlev, K. Alameh, A. K. Zvezdin, and M. Bayer, “Plasmon-mediated magneto-optical transparency,” Nat. Commun. 4(7), 2128 (2013).
[PubMed]

Allen, D. G.

Aoki, H.

R. Shimano, G. Yumoto, J. Y. Yoo, R. Matsunaga, S. Tanabe, H. Hibino, T. Morimoto, and H. Aoki, “Quantum Faraday and Kerr rotations in graphene,” Nat. Commun. 4(5), 1841 (2013).
[Crossref] [PubMed]

Arikawa, T.

Armelles, G.

G. Armelles, A. Cebollada, A. García-Martín, and M. U. González, “Magnetoplasmonics: combining magnetic and plasmonic functionalities,” Adv. Opt. Mat. 1(1), 10–35 (2013).
[Crossref]

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal–ferromagnet structures,” Nat. Photonics 4(2), 107–111 (2010).
[Crossref]

Astakhov, G. V.

A. M. Shuvaev, G. V. Astakhov, A. Pimenov, C. Brüne, H. Buhmann, and L. W. Molenkamp, “Giant magneto-optical faraday effect in HgTe thin films in the terahertz spectral range,” Phys. Rev. Lett. 106(10), 107404 (2011).
[Crossref] [PubMed]

Averitt, R. D.

H. T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Avouris, P.

H. Yan, Z. Li, X. Li, W. Zhu, P. Avouris, and F. Xia, “Infrared spectroscopy of tunable Dirac terahertz magneto-plasmons in graphene,” Nano Lett. 12(7), 3766–3771 (2012).
[Crossref] [PubMed]

Azad, A. K.

A. K. Azad, J. F. O’Hara, R. Singh, and H. T. Chen, “A review of terahertz plasmonics in subwavelength holes on conducting films,” IEEE J. Sel. Top. Quantum Electron. 19(1), 8400416 (2013).
[Crossref]

Bai, J.

Y. Zhou, X. Xu, H. Fan, Z. Ren, J. Bai, and L. Wang, “Tunable magnetoplasmons for efficient terahertz modulator and isolator by gated monolayer graphene,” Phys. Chem. Chem. Phys. 15(14), 5084–5090 (2013).
[Crossref] [PubMed]

F. Fan, Z. Guo, J. Bai, X. Wang, and S. Chang, “Magnetic photonic crystals for terahertz tunable filter and multifunctional polarization controller,” J. Opt. Soc. Am. B 28(4), 697–702 (2011).
[Crossref]

Bayer, M.

V. I. Belotelov, L. E. Kreilkamp, I. A. Akimov, A. N. Kalish, D. A. Bykov, S. Kasture, V. J. Yallapragada, A. Venu Gopal, A. M. Grishin, S. I. Khartsev, M. Nur-E-Alam, M. Vasiliev, L. L. Doskolovich, D. R. Yakovlev, K. Alameh, A. K. Zvezdin, and M. Bayer, “Plasmon-mediated magneto-optical transparency,” Nat. Commun. 4(7), 2128 (2013).
[PubMed]

L. E. Kreilkamp, V. I. Belotelov, J. Y. Chin, S. Neutzner, D. Dregely, T. Wehlus, I. A. Akimov, M. Bayer, B. Stritzker, and H. Giessen, “Waveguide-plasmon polaritons enhance transverse magneto-optical Kerr effect,” Phys. Rev. X 3(4), 041019 (2013).
[Crossref]

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6(6), 370–376 (2011).
[Crossref] [PubMed]

Belotelov, V. I.

L. E. Kreilkamp, V. I. Belotelov, J. Y. Chin, S. Neutzner, D. Dregely, T. Wehlus, I. A. Akimov, M. Bayer, B. Stritzker, and H. Giessen, “Waveguide-plasmon polaritons enhance transverse magneto-optical Kerr effect,” Phys. Rev. X 3(4), 041019 (2013).
[Crossref]

V. I. Belotelov, L. E. Kreilkamp, I. A. Akimov, A. N. Kalish, D. A. Bykov, S. Kasture, V. J. Yallapragada, A. Venu Gopal, A. M. Grishin, S. I. Khartsev, M. Nur-E-Alam, M. Vasiliev, L. L. Doskolovich, D. R. Yakovlev, K. Alameh, A. K. Zvezdin, and M. Bayer, “Plasmon-mediated magneto-optical transparency,” Nat. Commun. 4(7), 2128 (2013).
[PubMed]

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat. Commun. 4(3), 1599 (2013).
[Crossref] [PubMed]

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6(6), 370–376 (2011).
[Crossref] [PubMed]

Belyanin, A. A.

T. Arikawa, X. Wang, A. A. Belyanin, and J. Kono, “Giant tunable Faraday effect in a semiconductor magneto-plasma for broadband terahertz polarization optics,” Opt. Express 20(17), 19484–19492 (2012).
[Crossref] [PubMed]

X. Wang, A. A. Belyanin, S. A. Crooker, D. M. Mittleman, and J. Kono, “Interference-induced terahertz transparency in a semiconductor magneto-plasma,” Nat. Phys. 6(2), 126–130 (2009).
[Crossref]

Bolivar, P.

Bratschitsch, R.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal–ferromagnet structures,” Nat. Photonics 4(2), 107–111 (2010).
[Crossref]

Brüne, C.

A. M. Shuvaev, G. V. Astakhov, A. Pimenov, C. Brüne, H. Buhmann, and L. W. Molenkamp, “Giant magneto-optical faraday effect in HgTe thin films in the terahertz spectral range,” Phys. Rev. Lett. 106(10), 107404 (2011).
[Crossref] [PubMed]

Buhmann, H.

A. M. Shuvaev, G. V. Astakhov, A. Pimenov, C. Brüne, H. Buhmann, and L. W. Molenkamp, “Giant magneto-optical faraday effect in HgTe thin films in the terahertz spectral range,” Phys. Rev. Lett. 106(10), 107404 (2011).
[Crossref] [PubMed]

Bykov, D. A.

V. I. Belotelov, L. E. Kreilkamp, I. A. Akimov, A. N. Kalish, D. A. Bykov, S. Kasture, V. J. Yallapragada, A. Venu Gopal, A. M. Grishin, S. I. Khartsev, M. Nur-E-Alam, M. Vasiliev, L. L. Doskolovich, D. R. Yakovlev, K. Alameh, A. K. Zvezdin, and M. Bayer, “Plasmon-mediated magneto-optical transparency,” Nat. Commun. 4(7), 2128 (2013).
[PubMed]

Cebollada, A.

G. Armelles, A. Cebollada, A. García-Martín, and M. U. González, “Magnetoplasmonics: combining magnetic and plasmonic functionalities,” Adv. Opt. Mat. 1(1), 10–35 (2013).
[Crossref]

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal–ferromagnet structures,” Nat. Photonics 4(2), 107–111 (2010).
[Crossref]

Chang, S.

Chang, S. J.

F. Fan, S. Chen, and S. J. Chang, “A review of magneto-optical microstructure devices at terahertz frequencies,” IEEE J. Sel. Top. Quantum Electron. 23(4), 1–11 (2017).
[Crossref]

F. Fan, S. Chen, X. H. Wang, and S. J. Chang, “Tunable nonreciprocal terahertz transmission and enhancement based on metal/magneto-optic plasmonic lens,” Opt. Express 21(7), 8614–8621 (2013).
[Crossref] [PubMed]

F. Fan, S. Chen, W. Lin, Y. P. Miao, S. J. Chang, B. Liu, X. H. Wang, and L. Lin, “Magnetically tunable terahertz magnetoplasmons in ferrofluid-filled photonic crystals,” Appl. Phys. Lett. 103(16), 161115 (2013).
[Crossref]

Chen, H. T.

A. K. Azad, J. F. O’Hara, R. Singh, and H. T. Chen, “A review of terahertz plasmonics in subwavelength holes on conducting films,” IEEE J. Sel. Top. Quantum Electron. 19(1), 8400416 (2013).
[Crossref]

H. T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

H. T. Chen, R. Kersting, and G. C. Cho, “Terahertz imaging with nanometer resolution,” Appl. Phys. Lett. 83(15), 3009–3011 (2003).
[Crossref]

Chen, J.

I. Crassee, M. Orlita, M. Potemski, A. L. Walter, M. Ostler, T. Seyller, I. Gaponenko, J. Chen, and A. B. Kuzmenko, “Intrinsic terahertz plasmons and magnetoplasmons in large scale monolayer graphene,” Nano Lett. 12(5), 2470–2474 (2012).
[Crossref] [PubMed]

Chen, M.

Chen, S.

Chin, J. Y.

D. Floess, J. Y. Chin, A. Kawatani, D. Dregely, H. U. Habermeier, T. Weiss, and H. Giessen, “Tunable and switchable polarization rotation with non-reciprocal plasmonic thin films at designated wavelengths,” Light Sci. Appl. 4(5), 257–277 (2015).
[Crossref]

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat. Commun. 4(3), 1599 (2013).
[Crossref] [PubMed]

L. E. Kreilkamp, V. I. Belotelov, J. Y. Chin, S. Neutzner, D. Dregely, T. Wehlus, I. A. Akimov, M. Bayer, B. Stritzker, and H. Giessen, “Waveguide-plasmon polaritons enhance transverse magneto-optical Kerr effect,” Phys. Rev. X 3(4), 041019 (2013).
[Crossref]

Cho, G. C.

H. T. Chen, R. Kersting, and G. C. Cho, “Terahertz imaging with nanometer resolution,” Appl. Phys. Lett. 83(15), 3009–3011 (2003).
[Crossref]

Chong, Y.

Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljacić, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461(7265), 772–775 (2009).
[Crossref] [PubMed]

Crassee, I.

I. Crassee, M. Orlita, M. Potemski, A. L. Walter, M. Ostler, T. Seyller, I. Gaponenko, J. Chen, and A. B. Kuzmenko, “Intrinsic terahertz plasmons and magnetoplasmons in large scale monolayer graphene,” Nano Lett. 12(5), 2470–2474 (2012).
[Crossref] [PubMed]

Crooker, S. A.

X. Wang, A. A. Belyanin, S. A. Crooker, D. M. Mittleman, and J. Kono, “Interference-induced terahertz transparency in a semiconductor magneto-plasma,” Nat. Phys. 6(2), 126–130 (2009).
[Crossref]

Deng, D.

Dmitriev, A.

K. Lodewijks, N. Maccaferri, T. Pakizeh, R. K. Dumas, I. Zubritskaya, J. Akerman, P. Vavassori, and A. Dmitriev, “Magnetoplasmonic design rules for active magneto-optics,” Nano Lett. 14(12), 7207–7214 (2014).
[Crossref] [PubMed]

Doskolovich, L. L.

V. I. Belotelov, L. E. Kreilkamp, I. A. Akimov, A. N. Kalish, D. A. Bykov, S. Kasture, V. J. Yallapragada, A. Venu Gopal, A. M. Grishin, S. I. Khartsev, M. Nur-E-Alam, M. Vasiliev, L. L. Doskolovich, D. R. Yakovlev, K. Alameh, A. K. Zvezdin, and M. Bayer, “Plasmon-mediated magneto-optical transparency,” Nat. Commun. 4(7), 2128 (2013).
[PubMed]

Dregely, D.

D. Floess, J. Y. Chin, A. Kawatani, D. Dregely, H. U. Habermeier, T. Weiss, and H. Giessen, “Tunable and switchable polarization rotation with non-reciprocal plasmonic thin films at designated wavelengths,” Light Sci. Appl. 4(5), 257–277 (2015).
[Crossref]

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat. Commun. 4(3), 1599 (2013).
[Crossref] [PubMed]

L. E. Kreilkamp, V. I. Belotelov, J. Y. Chin, S. Neutzner, D. Dregely, T. Wehlus, I. A. Akimov, M. Bayer, B. Stritzker, and H. Giessen, “Waveguide-plasmon polaritons enhance transverse magneto-optical Kerr effect,” Phys. Rev. X 3(4), 041019 (2013).
[Crossref]

Dumas, R. K.

K. Lodewijks, N. Maccaferri, T. Pakizeh, R. K. Dumas, I. Zubritskaya, J. Akerman, P. Vavassori, and A. Dmitriev, “Magnetoplasmonic design rules for active magneto-optics,” Nano Lett. 14(12), 7207–7214 (2014).
[Crossref] [PubMed]

Fallahi, A.

A. Fallahi and J. Perruisseau-Carrier, “Manipulation of giant Faraday rotation in graphene metasurfaces,” Appl. Phys. Lett. 101(23), 231605 (2012).
[Crossref]

Fan, F.

Fan, H.

Y. Zhou, X. Xu, H. Fan, Z. Ren, J. Bai, and L. Wang, “Tunable magnetoplasmons for efficient terahertz modulator and isolator by gated monolayer graphene,” Phys. Chem. Chem. Phys. 15(14), 5084–5090 (2013).
[Crossref] [PubMed]

Floess, D.

D. Floess, J. Y. Chin, A. Kawatani, D. Dregely, H. U. Habermeier, T. Weiss, and H. Giessen, “Tunable and switchable polarization rotation with non-reciprocal plasmonic thin films at designated wavelengths,” Light Sci. Appl. 4(5), 257–277 (2015).
[Crossref]

Gaponenko, I.

I. Crassee, M. Orlita, M. Potemski, A. L. Walter, M. Ostler, T. Seyller, I. Gaponenko, J. Chen, and A. B. Kuzmenko, “Intrinsic terahertz plasmons and magnetoplasmons in large scale monolayer graphene,” Nano Lett. 12(5), 2470–2474 (2012).
[Crossref] [PubMed]

Garcia-Martin, A.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal–ferromagnet structures,” Nat. Photonics 4(2), 107–111 (2010).
[Crossref]

Garcia-Martin, J.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal–ferromagnet structures,” Nat. Photonics 4(2), 107–111 (2010).
[Crossref]

García-Martín, A.

G. Armelles, A. Cebollada, A. García-Martín, and M. U. González, “Magnetoplasmonics: combining magnetic and plasmonic functionalities,” Adv. Opt. Mat. 1(1), 10–35 (2013).
[Crossref]

Giessen, H.

D. Floess, J. Y. Chin, A. Kawatani, D. Dregely, H. U. Habermeier, T. Weiss, and H. Giessen, “Tunable and switchable polarization rotation with non-reciprocal plasmonic thin films at designated wavelengths,” Light Sci. Appl. 4(5), 257–277 (2015).
[Crossref]

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat. Commun. 4(3), 1599 (2013).
[Crossref] [PubMed]

L. E. Kreilkamp, V. I. Belotelov, J. Y. Chin, S. Neutzner, D. Dregely, T. Wehlus, I. A. Akimov, M. Bayer, B. Stritzker, and H. Giessen, “Waveguide-plasmon polaritons enhance transverse magneto-optical Kerr effect,” Phys. Rev. X 3(4), 041019 (2013).
[Crossref]

Gómez Rivas, J.

González, M. U.

G. Armelles, A. Cebollada, A. García-Martín, and M. U. González, “Magnetoplasmonics: combining magnetic and plasmonic functionalities,” Adv. Opt. Mat. 1(1), 10–35 (2013).
[Crossref]

Goodhue, W. D.

Gopal, A. V.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6(6), 370–376 (2011).
[Crossref] [PubMed]

Gossard, A. C.

H. T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Grishin, A. M.

V. I. Belotelov, L. E. Kreilkamp, I. A. Akimov, A. N. Kalish, D. A. Bykov, S. Kasture, V. J. Yallapragada, A. Venu Gopal, A. M. Grishin, S. I. Khartsev, M. Nur-E-Alam, M. Vasiliev, L. L. Doskolovich, D. R. Yakovlev, K. Alameh, A. K. Zvezdin, and M. Bayer, “Plasmon-mediated magneto-optical transparency,” Nat. Commun. 4(7), 2128 (2013).
[PubMed]

Guo, Z.

Guzatov, D.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal–ferromagnet structures,” Nat. Photonics 4(2), 107–111 (2010).
[Crossref]

Habermeier, H. U.

D. Floess, J. Y. Chin, A. Kawatani, D. Dregely, H. U. Habermeier, T. Weiss, and H. Giessen, “Tunable and switchable polarization rotation with non-reciprocal plasmonic thin films at designated wavelengths,” Light Sci. Appl. 4(5), 257–277 (2015).
[Crossref]

He, X.

Hibino, H.

R. Shimano, G. Yumoto, J. Y. Yoo, R. Matsunaga, S. Tanabe, H. Hibino, T. Morimoto, and H. Aoki, “Quantum Faraday and Kerr rotations in graphene,” Nat. Commun. 4(5), 1841 (2013).
[Crossref] [PubMed]

Hu, B.

Ionescu, A. M.

M. Tamagnone, C. Moldovan, J.-M. Poumirol, A. B. Kuzmenko, A. M. Ionescu, J. R. Mosig, and J. Perruisseau-Carrier, “Near optimal graphene terahertz non-reciprocal isolator,” Nat. Commun. 7, 11216 (2016).
[Crossref] [PubMed]

Janke, C.

Joannopoulos, J. D.

Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljacić, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461(7265), 772–775 (2009).
[Crossref] [PubMed]

Kalish, A. N.

V. I. Belotelov, L. E. Kreilkamp, I. A. Akimov, A. N. Kalish, D. A. Bykov, S. Kasture, V. J. Yallapragada, A. Venu Gopal, A. M. Grishin, S. I. Khartsev, M. Nur-E-Alam, M. Vasiliev, L. L. Doskolovich, D. R. Yakovlev, K. Alameh, A. K. Zvezdin, and M. Bayer, “Plasmon-mediated magneto-optical transparency,” Nat. Commun. 4(7), 2128 (2013).
[PubMed]

Kasture, S.

V. I. Belotelov, L. E. Kreilkamp, I. A. Akimov, A. N. Kalish, D. A. Bykov, S. Kasture, V. J. Yallapragada, A. Venu Gopal, A. M. Grishin, S. I. Khartsev, M. Nur-E-Alam, M. Vasiliev, L. L. Doskolovich, D. R. Yakovlev, K. Alameh, A. K. Zvezdin, and M. Bayer, “Plasmon-mediated magneto-optical transparency,” Nat. Commun. 4(7), 2128 (2013).
[PubMed]

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6(6), 370–376 (2011).
[Crossref] [PubMed]

Kawatani, A.

D. Floess, J. Y. Chin, A. Kawatani, D. Dregely, H. U. Habermeier, T. Weiss, and H. Giessen, “Tunable and switchable polarization rotation with non-reciprocal plasmonic thin films at designated wavelengths,” Light Sci. Appl. 4(5), 257–277 (2015).
[Crossref]

Kersting, R.

H. T. Chen, R. Kersting, and G. C. Cho, “Terahertz imaging with nanometer resolution,” Appl. Phys. Lett. 83(15), 3009–3011 (2003).
[Crossref]

Khartsev, S. I.

V. I. Belotelov, L. E. Kreilkamp, I. A. Akimov, A. N. Kalish, D. A. Bykov, S. Kasture, V. J. Yallapragada, A. Venu Gopal, A. M. Grishin, S. I. Khartsev, M. Nur-E-Alam, M. Vasiliev, L. L. Doskolovich, D. R. Yakovlev, K. Alameh, A. K. Zvezdin, and M. Bayer, “Plasmon-mediated magneto-optical transparency,” Nat. Commun. 4(7), 2128 (2013).
[PubMed]

Kono, J.

T. Arikawa, X. Wang, A. A. Belyanin, and J. Kono, “Giant tunable Faraday effect in a semiconductor magneto-plasma for broadband terahertz polarization optics,” Opt. Express 20(17), 19484–19492 (2012).
[Crossref] [PubMed]

X. Wang, A. A. Belyanin, S. A. Crooker, D. M. Mittleman, and J. Kono, “Interference-induced terahertz transparency in a semiconductor magneto-plasma,” Nat. Phys. 6(2), 126–130 (2009).
[Crossref]

Kotov, V. A.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6(6), 370–376 (2011).
[Crossref] [PubMed]

Kreilkamp, L. E.

V. I. Belotelov, L. E. Kreilkamp, I. A. Akimov, A. N. Kalish, D. A. Bykov, S. Kasture, V. J. Yallapragada, A. Venu Gopal, A. M. Grishin, S. I. Khartsev, M. Nur-E-Alam, M. Vasiliev, L. L. Doskolovich, D. R. Yakovlev, K. Alameh, A. K. Zvezdin, and M. Bayer, “Plasmon-mediated magneto-optical transparency,” Nat. Commun. 4(7), 2128 (2013).
[PubMed]

L. E. Kreilkamp, V. I. Belotelov, J. Y. Chin, S. Neutzner, D. Dregely, T. Wehlus, I. A. Akimov, M. Bayer, B. Stritzker, and H. Giessen, “Waveguide-plasmon polaritons enhance transverse magneto-optical Kerr effect,” Phys. Rev. X 3(4), 041019 (2013).
[Crossref]

Kurz, H.

Kuzmenko, A. B.

M. Tamagnone, C. Moldovan, J.-M. Poumirol, A. B. Kuzmenko, A. M. Ionescu, J. R. Mosig, and J. Perruisseau-Carrier, “Near optimal graphene terahertz non-reciprocal isolator,” Nat. Commun. 7, 11216 (2016).
[Crossref] [PubMed]

I. Crassee, M. Orlita, M. Potemski, A. L. Walter, M. Ostler, T. Seyller, I. Gaponenko, J. Chen, and A. B. Kuzmenko, “Intrinsic terahertz plasmons and magnetoplasmons in large scale monolayer graphene,” Nano Lett. 12(5), 2470–2474 (2012).
[Crossref] [PubMed]

Leitenstorfer, A.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal–ferromagnet structures,” Nat. Photonics 4(2), 107–111 (2010).
[Crossref]

Li, B.

Li, S.

Li, X.

H. Yan, Z. Li, X. Li, W. Zhu, P. Avouris, and F. Xia, “Infrared spectroscopy of tunable Dirac terahertz magneto-plasmons in graphene,” Nano Lett. 12(7), 3766–3771 (2012).
[Crossref] [PubMed]

Li, Z.

H. Yan, Z. Li, X. Li, W. Zhu, P. Avouris, and F. Xia, “Infrared spectroscopy of tunable Dirac terahertz magneto-plasmons in graphene,” Nano Lett. 12(7), 3766–3771 (2012).
[Crossref] [PubMed]

Z. Li, Y. Zhang, and B. Li, “Terahertz photonic crystal switch in silicon based on self-imaging principle,” Opt. Express 14(9), 3887–3892 (2006).
[Crossref] [PubMed]

Lin, L.

F. Fan, S. Chen, W. Lin, Y. P. Miao, S. J. Chang, B. Liu, X. H. Wang, and L. Lin, “Magnetically tunable terahertz magnetoplasmons in ferrofluid-filled photonic crystals,” Appl. Phys. Lett. 103(16), 161115 (2013).
[Crossref]

Lin, W.

F. Fan, S. Chen, W. Lin, Y. P. Miao, S. J. Chang, B. Liu, X. H. Wang, and L. Lin, “Magnetically tunable terahertz magnetoplasmons in ferrofluid-filled photonic crystals,” Appl. Phys. Lett. 103(16), 161115 (2013).
[Crossref]

Liu, B.

F. Fan, S. Chen, W. Lin, Y. P. Miao, S. J. Chang, B. Liu, X. H. Wang, and L. Lin, “Magnetically tunable terahertz magnetoplasmons in ferrofluid-filled photonic crystals,” Appl. Phys. Lett. 103(16), 161115 (2013).
[Crossref]

Lodewijks, K.

K. Lodewijks, N. Maccaferri, T. Pakizeh, R. K. Dumas, I. Zubritskaya, J. Akerman, P. Vavassori, and A. Dmitriev, “Magnetoplasmonic design rules for active magneto-optics,” Nano Lett. 14(12), 7207–7214 (2014).
[Crossref] [PubMed]

Maccaferri, N.

K. Lodewijks, N. Maccaferri, T. Pakizeh, R. K. Dumas, I. Zubritskaya, J. Akerman, P. Vavassori, and A. Dmitriev, “Magnetoplasmonic design rules for active magneto-optics,” Nano Lett. 14(12), 7207–7214 (2014).
[Crossref] [PubMed]

Matsunaga, R.

R. Shimano, G. Yumoto, J. Y. Yoo, R. Matsunaga, S. Tanabe, H. Hibino, T. Morimoto, and H. Aoki, “Quantum Faraday and Kerr rotations in graphene,” Nat. Commun. 4(5), 1841 (2013).
[Crossref] [PubMed]

Miao, Y. P.

F. Fan, S. Chen, W. Lin, Y. P. Miao, S. J. Chang, B. Liu, X. H. Wang, and L. Lin, “Magnetically tunable terahertz magnetoplasmons in ferrofluid-filled photonic crystals,” Appl. Phys. Lett. 103(16), 161115 (2013).
[Crossref]

Mittleman, D. M.

X. Wang, A. A. Belyanin, S. A. Crooker, D. M. Mittleman, and J. Kono, “Interference-induced terahertz transparency in a semiconductor magneto-plasma,” Nat. Phys. 6(2), 126–130 (2009).
[Crossref]

Moldovan, C.

M. Tamagnone, C. Moldovan, J.-M. Poumirol, A. B. Kuzmenko, A. M. Ionescu, J. R. Mosig, and J. Perruisseau-Carrier, “Near optimal graphene terahertz non-reciprocal isolator,” Nat. Commun. 7, 11216 (2016).
[Crossref] [PubMed]

Molenkamp, L. W.

A. M. Shuvaev, G. V. Astakhov, A. Pimenov, C. Brüne, H. Buhmann, and L. W. Molenkamp, “Giant magneto-optical faraday effect in HgTe thin films in the terahertz spectral range,” Phys. Rev. Lett. 106(10), 107404 (2011).
[Crossref] [PubMed]

Morandotti, R.

M. Shalaby, M. Peccianti, Y. Ozturk, and R. Morandotti, “A magnetic non-reciprocal isolator for broadband terahertz operation,” Nat. Commun. 4(3), 1558 (2013).
[Crossref] [PubMed]

Morimoto, T.

R. Shimano, G. Yumoto, J. Y. Yoo, R. Matsunaga, S. Tanabe, H. Hibino, T. Morimoto, and H. Aoki, “Quantum Faraday and Kerr rotations in graphene,” Nat. Commun. 4(5), 1841 (2013).
[Crossref] [PubMed]

Mosig, J. R.

M. Tamagnone, C. Moldovan, J.-M. Poumirol, A. B. Kuzmenko, A. M. Ionescu, J. R. Mosig, and J. Perruisseau-Carrier, “Near optimal graphene terahertz non-reciprocal isolator,” Nat. Commun. 7, 11216 (2016).
[Crossref] [PubMed]

Nagatsuma, T.

H. J. Song and T. Nagatsuma, “Present and future of terahertz communications,” IEEE Trans. Terahertz Sci. Technol. 1(1), 256–263 (2011).
[Crossref]

Neutzner, S.

L. E. Kreilkamp, V. I. Belotelov, J. Y. Chin, S. Neutzner, D. Dregely, T. Wehlus, I. A. Akimov, M. Bayer, B. Stritzker, and H. Giessen, “Waveguide-plasmon polaritons enhance transverse magneto-optical Kerr effect,” Phys. Rev. X 3(4), 041019 (2013).
[Crossref]

Nur-E-Alam, M.

V. I. Belotelov, L. E. Kreilkamp, I. A. Akimov, A. N. Kalish, D. A. Bykov, S. Kasture, V. J. Yallapragada, A. Venu Gopal, A. M. Grishin, S. I. Khartsev, M. Nur-E-Alam, M. Vasiliev, L. L. Doskolovich, D. R. Yakovlev, K. Alameh, A. K. Zvezdin, and M. Bayer, “Plasmon-mediated magneto-optical transparency,” Nat. Commun. 4(7), 2128 (2013).
[PubMed]

O’Hara, J. F.

A. K. Azad, J. F. O’Hara, R. Singh, and H. T. Chen, “A review of terahertz plasmonics in subwavelength holes on conducting films,” IEEE J. Sel. Top. Quantum Electron. 19(1), 8400416 (2013).
[Crossref]

Orlita, M.

I. Crassee, M. Orlita, M. Potemski, A. L. Walter, M. Ostler, T. Seyller, I. Gaponenko, J. Chen, and A. B. Kuzmenko, “Intrinsic terahertz plasmons and magnetoplasmons in large scale monolayer graphene,” Nano Lett. 12(5), 2470–2474 (2012).
[Crossref] [PubMed]

Ostler, M.

I. Crassee, M. Orlita, M. Potemski, A. L. Walter, M. Ostler, T. Seyller, I. Gaponenko, J. Chen, and A. B. Kuzmenko, “Intrinsic terahertz plasmons and magnetoplasmons in large scale monolayer graphene,” Nano Lett. 12(5), 2470–2474 (2012).
[Crossref] [PubMed]

Ozturk, Y.

M. Shalaby, M. Peccianti, Y. Ozturk, and R. Morandotti, “A magnetic non-reciprocal isolator for broadband terahertz operation,” Nat. Commun. 4(3), 1558 (2013).
[Crossref] [PubMed]

Padilla, W. J.

H. T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Pakizeh, T.

K. Lodewijks, N. Maccaferri, T. Pakizeh, R. K. Dumas, I. Zubritskaya, J. Akerman, P. Vavassori, and A. Dmitriev, “Magnetoplasmonic design rules for active magneto-optics,” Nano Lett. 14(12), 7207–7214 (2014).
[Crossref] [PubMed]

Passmore, B. S.

Peccianti, M.

M. Shalaby, M. Peccianti, Y. Ozturk, and R. Morandotti, “A magnetic non-reciprocal isolator for broadband terahertz operation,” Nat. Commun. 4(3), 1558 (2013).
[Crossref] [PubMed]

Perruisseau-Carrier, J.

M. Tamagnone, C. Moldovan, J.-M. Poumirol, A. B. Kuzmenko, A. M. Ionescu, J. R. Mosig, and J. Perruisseau-Carrier, “Near optimal graphene terahertz non-reciprocal isolator,” Nat. Commun. 7, 11216 (2016).
[Crossref] [PubMed]

A. Fallahi and J. Perruisseau-Carrier, “Manipulation of giant Faraday rotation in graphene metasurfaces,” Appl. Phys. Lett. 101(23), 231605 (2012).
[Crossref]

Pimenov, A.

A. M. Shuvaev, G. V. Astakhov, A. Pimenov, C. Brüne, H. Buhmann, and L. W. Molenkamp, “Giant magneto-optical faraday effect in HgTe thin films in the terahertz spectral range,” Phys. Rev. Lett. 106(10), 107404 (2011).
[Crossref] [PubMed]

Pohl, M.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6(6), 370–376 (2011).
[Crossref] [PubMed]

Potemski, M.

I. Crassee, M. Orlita, M. Potemski, A. L. Walter, M. Ostler, T. Seyller, I. Gaponenko, J. Chen, and A. B. Kuzmenko, “Intrinsic terahertz plasmons and magnetoplasmons in large scale monolayer graphene,” Nano Lett. 12(5), 2470–2474 (2012).
[Crossref] [PubMed]

Poumirol, J.-M.

M. Tamagnone, C. Moldovan, J.-M. Poumirol, A. B. Kuzmenko, A. M. Ionescu, J. R. Mosig, and J. Perruisseau-Carrier, “Near optimal graphene terahertz non-reciprocal isolator,” Nat. Commun. 7, 11216 (2016).
[Crossref] [PubMed]

Ren, Z.

Y. Zhou, X. Xu, H. Fan, Z. Ren, J. Bai, and L. Wang, “Tunable magnetoplasmons for efficient terahertz modulator and isolator by gated monolayer graphene,” Phys. Chem. Chem. Phys. 15(14), 5084–5090 (2013).
[Crossref] [PubMed]

Seyller, T.

I. Crassee, M. Orlita, M. Potemski, A. L. Walter, M. Ostler, T. Seyller, I. Gaponenko, J. Chen, and A. B. Kuzmenko, “Intrinsic terahertz plasmons and magnetoplasmons in large scale monolayer graphene,” Nano Lett. 12(5), 2470–2474 (2012).
[Crossref] [PubMed]

Shalaby, M.

M. Shalaby, M. Peccianti, Y. Ozturk, and R. Morandotti, “A magnetic non-reciprocal isolator for broadband terahertz operation,” Nat. Commun. 4(3), 1558 (2013).
[Crossref] [PubMed]

Shaner, E. A.

Shimano, R.

R. Shimano, G. Yumoto, J. Y. Yoo, R. Matsunaga, S. Tanabe, H. Hibino, T. Morimoto, and H. Aoki, “Quantum Faraday and Kerr rotations in graphene,” Nat. Commun. 4(5), 1841 (2013).
[Crossref] [PubMed]

Shuvaev, A. M.

A. M. Shuvaev, G. V. Astakhov, A. Pimenov, C. Brüne, H. Buhmann, and L. W. Molenkamp, “Giant magneto-optical faraday effect in HgTe thin films in the terahertz spectral range,” Phys. Rev. Lett. 106(10), 107404 (2011).
[Crossref] [PubMed]

Singh, R.

A. K. Azad, J. F. O’Hara, R. Singh, and H. T. Chen, “A review of terahertz plasmonics in subwavelength holes on conducting films,” IEEE J. Sel. Top. Quantum Electron. 19(1), 8400416 (2013).
[Crossref]

Soljacic, M.

Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljacić, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461(7265), 772–775 (2009).
[Crossref] [PubMed]

Song, H. J.

H. J. Song and T. Nagatsuma, “Present and future of terahertz communications,” IEEE Trans. Terahertz Sci. Technol. 1(1), 256–263 (2011).
[Crossref]

Steinle, T.

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat. Commun. 4(3), 1599 (2013).
[Crossref] [PubMed]

Stritzker, B.

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat. Commun. 4(3), 1599 (2013).
[Crossref] [PubMed]

L. E. Kreilkamp, V. I. Belotelov, J. Y. Chin, S. Neutzner, D. Dregely, T. Wehlus, I. A. Akimov, M. Bayer, B. Stritzker, and H. Giessen, “Waveguide-plasmon polaritons enhance transverse magneto-optical Kerr effect,” Phys. Rev. X 3(4), 041019 (2013).
[Crossref]

Tamagnone, M.

M. Tamagnone, C. Moldovan, J.-M. Poumirol, A. B. Kuzmenko, A. M. Ionescu, J. R. Mosig, and J. Perruisseau-Carrier, “Near optimal graphene terahertz non-reciprocal isolator,” Nat. Commun. 7, 11216 (2016).
[Crossref] [PubMed]

Tanabe, S.

R. Shimano, G. Yumoto, J. Y. Yoo, R. Matsunaga, S. Tanabe, H. Hibino, T. Morimoto, and H. Aoki, “Quantum Faraday and Kerr rotations in graphene,” Nat. Commun. 4(5), 1841 (2013).
[Crossref] [PubMed]

Tao, J.

Taylor, A. J.

H. T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Temnov, V. V.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal–ferromagnet structures,” Nat. Photonics 4(2), 107–111 (2010).
[Crossref]

Thomay, T.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal–ferromagnet structures,” Nat. Photonics 4(2), 107–111 (2010).
[Crossref]

Vangala, S. R.

Vasiliev, M.

V. I. Belotelov, L. E. Kreilkamp, I. A. Akimov, A. N. Kalish, D. A. Bykov, S. Kasture, V. J. Yallapragada, A. Venu Gopal, A. M. Grishin, S. I. Khartsev, M. Nur-E-Alam, M. Vasiliev, L. L. Doskolovich, D. R. Yakovlev, K. Alameh, A. K. Zvezdin, and M. Bayer, “Plasmon-mediated magneto-optical transparency,” Nat. Commun. 4(7), 2128 (2013).
[PubMed]

Vavassori, P.

K. Lodewijks, N. Maccaferri, T. Pakizeh, R. K. Dumas, I. Zubritskaya, J. Akerman, P. Vavassori, and A. Dmitriev, “Magnetoplasmonic design rules for active magneto-optics,” Nano Lett. 14(12), 7207–7214 (2014).
[Crossref] [PubMed]

Vengurlekar, A. S.

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6(6), 370–376 (2011).
[Crossref] [PubMed]

Venu Gopal, A.

V. I. Belotelov, L. E. Kreilkamp, I. A. Akimov, A. N. Kalish, D. A. Bykov, S. Kasture, V. J. Yallapragada, A. Venu Gopal, A. M. Grishin, S. I. Khartsev, M. Nur-E-Alam, M. Vasiliev, L. L. Doskolovich, D. R. Yakovlev, K. Alameh, A. K. Zvezdin, and M. Bayer, “Plasmon-mediated magneto-optical transparency,” Nat. Commun. 4(7), 2128 (2013).
[PubMed]

Walter, A. L.

I. Crassee, M. Orlita, M. Potemski, A. L. Walter, M. Ostler, T. Seyller, I. Gaponenko, J. Chen, and A. B. Kuzmenko, “Intrinsic terahertz plasmons and magnetoplasmons in large scale monolayer graphene,” Nano Lett. 12(5), 2470–2474 (2012).
[Crossref] [PubMed]

Wang, L.

Y. Zhou, X. Xu, H. Fan, Z. Ren, J. Bai, and L. Wang, “Tunable magnetoplasmons for efficient terahertz modulator and isolator by gated monolayer graphene,” Phys. Chem. Chem. Phys. 15(14), 5084–5090 (2013).
[Crossref] [PubMed]

Wang, N.

Wang, Q. J.

Wang, X.

Wang, X. H.

F. Fan, S. Chen, W. Lin, Y. P. Miao, S. J. Chang, B. Liu, X. H. Wang, and L. Lin, “Magnetically tunable terahertz magnetoplasmons in ferrofluid-filled photonic crystals,” Appl. Phys. Lett. 103(16), 161115 (2013).
[Crossref]

F. Fan, S. Chen, X. H. Wang, and S. J. Chang, “Tunable nonreciprocal terahertz transmission and enhancement based on metal/magneto-optic plasmonic lens,” Opt. Express 21(7), 8614–8621 (2013).
[Crossref] [PubMed]

Wang, Z.

Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljacić, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461(7265), 772–775 (2009).
[Crossref] [PubMed]

Wasserman, D.

Wehlus, T.

L. E. Kreilkamp, V. I. Belotelov, J. Y. Chin, S. Neutzner, D. Dregely, T. Wehlus, I. A. Akimov, M. Bayer, B. Stritzker, and H. Giessen, “Waveguide-plasmon polaritons enhance transverse magneto-optical Kerr effect,” Phys. Rev. X 3(4), 041019 (2013).
[Crossref]

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat. Commun. 4(3), 1599 (2013).
[Crossref] [PubMed]

Weiss, T.

D. Floess, J. Y. Chin, A. Kawatani, D. Dregely, H. U. Habermeier, T. Weiss, and H. Giessen, “Tunable and switchable polarization rotation with non-reciprocal plasmonic thin films at designated wavelengths,” Light Sci. Appl. 4(5), 257–277 (2015).
[Crossref]

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat. Commun. 4(3), 1599 (2013).
[Crossref] [PubMed]

Woggon, U.

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal–ferromagnet structures,” Nat. Photonics 4(2), 107–111 (2010).
[Crossref]

Wu, P.

Xia, F.

H. Yan, Z. Li, X. Li, W. Zhu, P. Avouris, and F. Xia, “Infrared spectroscopy of tunable Dirac terahertz magneto-plasmons in graphene,” Nano Lett. 12(7), 3766–3771 (2012).
[Crossref] [PubMed]

Xu, X.

Y. Zhou, X. Xu, H. Fan, Z. Ren, J. Bai, and L. Wang, “Tunable magnetoplasmons for efficient terahertz modulator and isolator by gated monolayer graphene,” Phys. Chem. Chem. Phys. 15(14), 5084–5090 (2013).
[Crossref] [PubMed]

Yakovlev, D. R.

V. I. Belotelov, L. E. Kreilkamp, I. A. Akimov, A. N. Kalish, D. A. Bykov, S. Kasture, V. J. Yallapragada, A. Venu Gopal, A. M. Grishin, S. I. Khartsev, M. Nur-E-Alam, M. Vasiliev, L. L. Doskolovich, D. R. Yakovlev, K. Alameh, A. K. Zvezdin, and M. Bayer, “Plasmon-mediated magneto-optical transparency,” Nat. Commun. 4(7), 2128 (2013).
[PubMed]

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6(6), 370–376 (2011).
[Crossref] [PubMed]

Yallapragada, V. J.

V. I. Belotelov, L. E. Kreilkamp, I. A. Akimov, A. N. Kalish, D. A. Bykov, S. Kasture, V. J. Yallapragada, A. Venu Gopal, A. M. Grishin, S. I. Khartsev, M. Nur-E-Alam, M. Vasiliev, L. L. Doskolovich, D. R. Yakovlev, K. Alameh, A. K. Zvezdin, and M. Bayer, “Plasmon-mediated magneto-optical transparency,” Nat. Commun. 4(7), 2128 (2013).
[PubMed]

Yan, H.

H. Yan, Z. Li, X. Li, W. Zhu, P. Avouris, and F. Xia, “Infrared spectroscopy of tunable Dirac terahertz magneto-plasmons in graphene,” Nano Lett. 12(7), 3766–3771 (2012).
[Crossref] [PubMed]

Yoo, J. Y.

R. Shimano, G. Yumoto, J. Y. Yoo, R. Matsunaga, S. Tanabe, H. Hibino, T. Morimoto, and H. Aoki, “Quantum Faraday and Kerr rotations in graphene,” Nat. Commun. 4(5), 1841 (2013).
[Crossref] [PubMed]

Yumoto, G.

R. Shimano, G. Yumoto, J. Y. Yoo, R. Matsunaga, S. Tanabe, H. Hibino, T. Morimoto, and H. Aoki, “Quantum Faraday and Kerr rotations in graphene,” Nat. Commun. 4(5), 1841 (2013).
[Crossref] [PubMed]

Zhang, H.

Zhang, X.

Zhang, Y.

Zhou, Y.

Y. Zhou, X. Xu, H. Fan, Z. Ren, J. Bai, and L. Wang, “Tunable magnetoplasmons for efficient terahertz modulator and isolator by gated monolayer graphene,” Phys. Chem. Chem. Phys. 15(14), 5084–5090 (2013).
[Crossref] [PubMed]

Zhu, W.

H. Yan, Z. Li, X. Li, W. Zhu, P. Avouris, and F. Xia, “Infrared spectroscopy of tunable Dirac terahertz magneto-plasmons in graphene,” Nano Lett. 12(7), 3766–3771 (2012).
[Crossref] [PubMed]

Zide, J. M.

H. T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Zubritskaya, I.

K. Lodewijks, N. Maccaferri, T. Pakizeh, R. K. Dumas, I. Zubritskaya, J. Akerman, P. Vavassori, and A. Dmitriev, “Magnetoplasmonic design rules for active magneto-optics,” Nano Lett. 14(12), 7207–7214 (2014).
[Crossref] [PubMed]

Zvezdin, A. K.

V. I. Belotelov, L. E. Kreilkamp, I. A. Akimov, A. N. Kalish, D. A. Bykov, S. Kasture, V. J. Yallapragada, A. Venu Gopal, A. M. Grishin, S. I. Khartsev, M. Nur-E-Alam, M. Vasiliev, L. L. Doskolovich, D. R. Yakovlev, K. Alameh, A. K. Zvezdin, and M. Bayer, “Plasmon-mediated magneto-optical transparency,” Nat. Commun. 4(7), 2128 (2013).
[PubMed]

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6(6), 370–376 (2011).
[Crossref] [PubMed]

Adv. Opt. Mat. (1)

G. Armelles, A. Cebollada, A. García-Martín, and M. U. González, “Magnetoplasmonics: combining magnetic and plasmonic functionalities,” Adv. Opt. Mat. 1(1), 10–35 (2013).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

H. T. Chen, R. Kersting, and G. C. Cho, “Terahertz imaging with nanometer resolution,” Appl. Phys. Lett. 83(15), 3009–3011 (2003).
[Crossref]

F. Fan, S. Chen, W. Lin, Y. P. Miao, S. J. Chang, B. Liu, X. H. Wang, and L. Lin, “Magnetically tunable terahertz magnetoplasmons in ferrofluid-filled photonic crystals,” Appl. Phys. Lett. 103(16), 161115 (2013).
[Crossref]

A. Fallahi and J. Perruisseau-Carrier, “Manipulation of giant Faraday rotation in graphene metasurfaces,” Appl. Phys. Lett. 101(23), 231605 (2012).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

F. Fan, S. Chen, and S. J. Chang, “A review of magneto-optical microstructure devices at terahertz frequencies,” IEEE J. Sel. Top. Quantum Electron. 23(4), 1–11 (2017).
[Crossref]

A. K. Azad, J. F. O’Hara, R. Singh, and H. T. Chen, “A review of terahertz plasmonics in subwavelength holes on conducting films,” IEEE J. Sel. Top. Quantum Electron. 19(1), 8400416 (2013).
[Crossref]

IEEE Trans. Terahertz Sci. Technol. (1)

H. J. Song and T. Nagatsuma, “Present and future of terahertz communications,” IEEE Trans. Terahertz Sci. Technol. 1(1), 256–263 (2011).
[Crossref]

J. Opt. Soc. Am. B (1)

Light Sci. Appl. (1)

D. Floess, J. Y. Chin, A. Kawatani, D. Dregely, H. U. Habermeier, T. Weiss, and H. Giessen, “Tunable and switchable polarization rotation with non-reciprocal plasmonic thin films at designated wavelengths,” Light Sci. Appl. 4(5), 257–277 (2015).
[Crossref]

Nano Lett. (3)

H. Yan, Z. Li, X. Li, W. Zhu, P. Avouris, and F. Xia, “Infrared spectroscopy of tunable Dirac terahertz magneto-plasmons in graphene,” Nano Lett. 12(7), 3766–3771 (2012).
[Crossref] [PubMed]

I. Crassee, M. Orlita, M. Potemski, A. L. Walter, M. Ostler, T. Seyller, I. Gaponenko, J. Chen, and A. B. Kuzmenko, “Intrinsic terahertz plasmons and magnetoplasmons in large scale monolayer graphene,” Nano Lett. 12(5), 2470–2474 (2012).
[Crossref] [PubMed]

K. Lodewijks, N. Maccaferri, T. Pakizeh, R. K. Dumas, I. Zubritskaya, J. Akerman, P. Vavassori, and A. Dmitriev, “Magnetoplasmonic design rules for active magneto-optics,” Nano Lett. 14(12), 7207–7214 (2014).
[Crossref] [PubMed]

Nat. Commun. (5)

M. Shalaby, M. Peccianti, Y. Ozturk, and R. Morandotti, “A magnetic non-reciprocal isolator for broadband terahertz operation,” Nat. Commun. 4(3), 1558 (2013).
[Crossref] [PubMed]

R. Shimano, G. Yumoto, J. Y. Yoo, R. Matsunaga, S. Tanabe, H. Hibino, T. Morimoto, and H. Aoki, “Quantum Faraday and Kerr rotations in graphene,” Nat. Commun. 4(5), 1841 (2013).
[Crossref] [PubMed]

M. Tamagnone, C. Moldovan, J.-M. Poumirol, A. B. Kuzmenko, A. M. Ionescu, J. R. Mosig, and J. Perruisseau-Carrier, “Near optimal graphene terahertz non-reciprocal isolator,” Nat. Commun. 7, 11216 (2016).
[Crossref] [PubMed]

V. I. Belotelov, L. E. Kreilkamp, I. A. Akimov, A. N. Kalish, D. A. Bykov, S. Kasture, V. J. Yallapragada, A. Venu Gopal, A. M. Grishin, S. I. Khartsev, M. Nur-E-Alam, M. Vasiliev, L. L. Doskolovich, D. R. Yakovlev, K. Alameh, A. K. Zvezdin, and M. Bayer, “Plasmon-mediated magneto-optical transparency,” Nat. Commun. 4(7), 2128 (2013).
[PubMed]

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat. Commun. 4(3), 1599 (2013).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

V. I. Belotelov, I. A. Akimov, M. Pohl, V. A. Kotov, S. Kasture, A. S. Vengurlekar, A. V. Gopal, D. R. Yakovlev, A. K. Zvezdin, and M. Bayer, “Enhanced magneto-optical effects in magnetoplasmonic crystals,” Nat. Nanotechnol. 6(6), 370–376 (2011).
[Crossref] [PubMed]

Nat. Photonics (1)

V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active magneto-plasmonics in hybrid metal–ferromagnet structures,” Nat. Photonics 4(2), 107–111 (2010).
[Crossref]

Nat. Phys. (1)

X. Wang, A. A. Belyanin, S. A. Crooker, D. M. Mittleman, and J. Kono, “Interference-induced terahertz transparency in a semiconductor magneto-plasma,” Nat. Phys. 6(2), 126–130 (2009).
[Crossref]

Nature (2)

H. T. Chen, W. J. Padilla, J. M. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, “Active terahertz metamaterial devices,” Nature 444(7119), 597–600 (2006).
[Crossref] [PubMed]

Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljacić, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461(7265), 772–775 (2009).
[Crossref] [PubMed]

Opt. Express (8)

B. Hu, J. Tao, Y. Zhang, and Q. J. Wang, “Magneto-plasmonics in graphene-dielectric sandwich,” Opt. Express 22(18), 21727–21738 (2014).
[Crossref] [PubMed]

Z. Li, Y. Zhang, and B. Li, “Terahertz photonic crystal switch in silicon based on self-imaging principle,” Opt. Express 14(9), 3887–3892 (2006).
[Crossref] [PubMed]

F. Fan, X. Zhang, S. Li, D. Deng, N. Wang, H. Zhang, and S. Chang, “Terahertz transmission and sensing properties of microstructured PMMA tube waveguide,” Opt. Express 23(21), 27204–27212 (2015).
[Crossref] [PubMed]

T. Arikawa, X. Wang, A. A. Belyanin, and J. Kono, “Giant tunable Faraday effect in a semiconductor magneto-plasma for broadband terahertz polarization optics,” Opt. Express 20(17), 19484–19492 (2012).
[Crossref] [PubMed]

F. Fan, S. Chen, X. H. Wang, and S. J. Chang, “Tunable nonreciprocal terahertz transmission and enhancement based on metal/magneto-optic plasmonic lens,” Opt. Express 21(7), 8614–8621 (2013).
[Crossref] [PubMed]

S. Chen, F. Fan, X. Wang, P. Wu, H. Zhang, and S. Chang, “Terahertz isolator based on nonreciprocal magneto-metasurface,” Opt. Express 23(2), 1015–1024 (2015).
[Crossref] [PubMed]

J. Gómez Rivas, C. Janke, P. Bolivar, and H. Kurz, “Transmission of THz radiation through InSb gratings of subwavelength apertures,” Opt. Express 13(3), 847–859 (2005).
[Crossref] [PubMed]

B. S. Passmore, D. G. Allen, S. R. Vangala, W. D. Goodhue, D. Wasserman, and E. A. Shaner, “Mid-infrared doping tunable transmission through subwavelength metal hole arrays on InSb,” Opt. Express 17(12), 10223–10230 (2009).
[Crossref] [PubMed]

Phys. Chem. Chem. Phys. (1)

Y. Zhou, X. Xu, H. Fan, Z. Ren, J. Bai, and L. Wang, “Tunable magnetoplasmons for efficient terahertz modulator and isolator by gated monolayer graphene,” Phys. Chem. Chem. Phys. 15(14), 5084–5090 (2013).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

A. M. Shuvaev, G. V. Astakhov, A. Pimenov, C. Brüne, H. Buhmann, and L. W. Molenkamp, “Giant magneto-optical faraday effect in HgTe thin films in the terahertz spectral range,” Phys. Rev. Lett. 106(10), 107404 (2011).
[Crossref] [PubMed]

Phys. Rev. X (1)

L. E. Kreilkamp, V. I. Belotelov, J. Y. Chin, S. Neutzner, D. Dregely, T. Wehlus, I. A. Akimov, M. Bayer, B. Stritzker, and H. Giessen, “Waveguide-plasmon polaritons enhance transverse magneto-optical Kerr effect,” Phys. Rev. X 3(4), 041019 (2013).
[Crossref]

Other (3)

K. Zhang and D. Li, “Electromagnetic waves in dispersive media and anisotropic media,” in Electromagnetic Theory for Microwaves and Optoelectronics (Springer, 2008), pp. 475–576.

G. Zegrya, N. Gunko, and A. Polkovnikov, “Electrical properties of Indium Antimonide,” http://www.ioffe.ru/SVA/NSM/Semicond/InSb/electric.html .

M. Levinshtein, M. S. Shur, and S. Rumyanstev, Handbook Series on Semiconductor Parameters, vol. 1 (World Scientific, 1996), pp. 191–213.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 (a) The real and imaginary parts of εL and (b) εR curves of longitudinally magnetized InSb in the THz regime under the different temperatures from 180 to 240K at the fixed external magnetic field of 0.3T; (c) The εL and (d) εR curves in the THz regime under the different magnetic field from 0.1 to 0.5 T at the fixed temperature of 200K.
Fig. 2
Fig. 2 Schematic diagram of nonreciprocal circular dichroism in the longitudinally magnetized InSb crystal. Both the light propagation and biased magnetic field directions are along the + z axis.
Fig. 3
Fig. 3 (a) Simulative transmission spectra of left-handed and (b) right-handed wave in longitudinally magnetized InSb in the THz regime under the different temperatures from 180 to 240K at 0.3T of the fixed external magnetic field along the + z axis; (c) Simulative transmission spectra of left-handed and (d) right-handed circular polarized wave under the different magnetic fields from 0.1 to 0.5 T along the + z axis at 200K of the fixed temperature.
Fig. 4
Fig. 4 The structure of the double-layer magnetoplasmonics. (a) 3D view; (b) Top view.
Fig. 5
Fig. 5 The working principle diagram of the double-layer magnetoplasmonics. (a) X-linear polarized wave and (b) Y-linear polarized wave are normally incident into the vertical grating surface of double-layer magnetoplasmonics. The external magnetic field is parallel to the direction of light propagation.
Fig. 6
Fig. 6 Simulative transmission spectra of double-layer magnetoplasmonics under the different magnetic fields at 180K. The X-linear polarized wave is normally incident into the positive surface of double-layer magnetoplasmonics. (a) Amplitude transmission spectra from 0.001 to 0.08T; (b) amplitude transmission spectra from 0.1 to 0.3T; (c) power transmission spectra from 0.01 to 0.08T; (d) power transmission spectra from 0.08 to 0.3T.
Fig. 7
Fig. 7 The simulative distribution of power flow density in the double-layer magneto-plasmonics at four frequencies of transmission peaks: P0 = 0.38THz, P1 = 0.6THz, P2 = 0.9THz, P3 = 1.22THz under 0.06T and 180K.
Fig. 8
Fig. 8 (a) The electirc field distributions in x-z cutting plane of the double-layer magneto-plasmonics at the frequencies of first four transmission peaks and two resonance dips under 0.06T and 180K. (b) The electirc field distributions of double-layer magneto-plasmonics in the 3D x-z cutting plane, input and output planes at the first transmission peak of 0.38THz.
Fig. 9
Fig. 9 (a) Power transmission spectra of double-layer magnetoplasmonics at the different temperatures under 0.06T. The X-linear polarized waves are normally incident into both the front and back surfaces of double-layer magnetoplasmonics, which are labeled by P (positive) and N (negative) to represent propagation directions in this figure. (b) Isolation spectra of the devices at the different temperatures under 0.05T calculated by the data from Fig. 9(a).
Fig. 10
Fig. 10 Transmission spectra of double-layer magnetoplasmonics with different structure geometry. (a) Varying the grating grid d width from 16 to 28μm with the fixed 100μm InSb length and 30μm grating period. (b) Varying the grating period a from 20 to 50 μm with the fixed grating grid gap 2μm and 100μm InSb length. (c) Varying the InSb length h from 50 to 100μm with the fixed 28μm grating grid width and 30μm grating period.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

[ ε 1 i ε 2 0 i ε 2 ε 1 0 0 0 ε 3 ]
ε 1 = ε ω p 2 ( ω + γ i ) ω [ ( ω + γ i ) 2 ω c 2 ] , ε 2 = ω p 2 ω c ω [ ( ω + γ i ) 2 ω c 2 ] , ε 3 = ε ω p 2 ω ( ω + γ i ) .
N ( cm -3 ) = 5.76 × 10 14 T 1.5 × exp [ 0.26 / ( 2 × 8.625 × 10 5 × T ) ] .
β 2 [ E x E y E z ] + [ 0 0 β 2 E z ] + ω 2 μ 0 ε 0 [ ε 1 i ε 2 0 i ε 2 ε 1 0 0 0 ε 3 ] [ E x E y E z ] = 0.
β 1 = ω μ 0 ( ε 1 ε 2 ) , E y = j E x , E z = 0 ,
β 2 = ω μ 0 ( ε 1 + ε 2 ) , E y = j E x , E z = 0
ω p 1 = ω c 2 + 4 ω p 2 ω c 2 ,
ω p 2 = ω c 2 + 4 ω p 2 + ω c 2 ,
Δ ω p 2 = ω c 2 + 4 ω p 2 ω c 2
4 n e f f h = ( m + 1 ) λ P m ( m = 1 , 2 , 3 )

Metrics