Abstract

Indoor visible light communications (VLC) combines illumination and communication by utilizing the high-modulation-speed of LEDs. VLC is anticipated to be complementary to radio frequency communications and an important part of next generation heterogeneous networks. In order to make the maximum use of VLC technology in a networking environment, we need to expand existing research from studies of traditional point-to-point links to encompass scheduling and resource allocation related to multi-user scenarios. This work aims to maximize the downlink throughput of an indoor VLC network, while taking both user fairness and time latency into consideration. Inter-user interference is eliminated by appropriately allocating LEDs to users with the aid of graph theory. A three-term priority factor model is derived and is shown to improve the throughput performance of the network scheduling scheme over those previously reported. Simulations of VLC downlink scheduling have been performed under proportional fairness scheduling principles where our newly formulated priority factor model has been applied. The downlink throughput is improved by 19.6% compared to previous two-term priority models, while achieving similar fairness and latency performance. When the number of users grows larger, the three-term priority model indicates an improvement in Fairness performance compared to two-term priority model scheduling.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Scheduling for indoor visible light communication based on graph theory

Yuyang Tao, Xiao Liang, Jiaheng Wang, and Chunming Zhao
Opt. Express 23(3) 2737-2752 (2015)

Distributed user-centric scheduling for visible light communication networks

Lingjiao Chen, Jiaheng Wang, Jiantao Zhou, Derrick Wing Kwan Ng, Robert Schober, and Chunming Zhao
Opt. Express 24(14) 15570-15589 (2016)

User-centric quality of experience optimized resource allocation algorithm in VLC network with multi-color LED

Xu Bao, Xinxin Gu, and Wence Zhang
Opt. Express 26(21) 27826-27841 (2018)

References

  • View by:
  • |
  • |
  • |

  1. Y. Tanaka, S. Haruyama, and M. Nakagawa, “Wireless optical transmissions with white colored LED for wireless home links,” in Proceedings of IEEE Conference on Personal indoor and Mobile Radio Communications (IEEE, 2000), pp. 1325–1329.
    [Crossref]
  2. Y. Tanaka, T. Komine, S. Haruyama, and M. Nakagawa, “Indoor visible communication utilizing plural white LED as lighting,” in Proceedings of IEEE International Symposium on Personal indoor and Mobile Radio Communications (IEEE, 2000), pp. F-81–F-85.
  3. D. Tsonev, H. Chun, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride µLED,” IEEE Photonics Technol. Lett. 26(7), 637–640 (2014).
    [Crossref]
  4. Y. Wang, Y. Shao, H. Shang, X. Lu, Y. Wang, J. Yu, and N. Chi, “875-Mb/s asynchronous Bi-directional 64QAM-OFDM SCM-WDM transmission over RGB-LED-based visible light communication system,” in Optical Fiber Communication Conference (Optical Society of America, 2013), paper OTh1G.3.
    [Crossref]
  5. H. Haas, “Wireless data from every light bulb” (TEDGlobal 2011), http://www.ted.com/talks/harald_haas_wireless_data_from_every_light_bulb?language=en .
  6. IEEE standard for local and metropolitan area networks – part 15.7: “Short-range wireless optical communication using visible light,” IEEE Std 802.15.7–2011, pp. 1–309, Sep. 2011.
  7. Y. Li, L. Wang, J. Ning, K. Pelechrinis, S. V. Krishnamurthy, and Z. Xu, “VICO: A framework for configuring indoor visible light communication networks,” in Proceedings of IEEE 9th International Conference on Mobile Adhoc and Sensor Systems, (IEEE, 2012), pp. 136–144.
    [Crossref]
  8. Z. Wu and T. D. C. Little, “Network solutions for the LOS problem of new indoor free space optical system,” in Proceedings of IEEE IET International Symposium on Communications Systems, Networks, and Digital Signal Processing (IEEE, 2012), pp.582–587.
  9. X. Li, R. Zhang, J. Wang, and L. Hanzo, “Cell-centric and user-centric multi-user scheduling in visible light communication aided networks,” in Proceedings of 2015 IEEE International Conference on Communications (IEEE, 2015), pp. 5120–5125.
    [Crossref]
  10. F. Jin, R. Zhang, and L. Hanzo, “Resource allocation under delay guarantee constraints for heterogeneous visible-light and RF femtocell,” IEEE Trans. Wirel. Commun. 14(2), 1020–1034 (2015).
    [Crossref]
  11. R. Zhang, J. Wang, Z. Wang, Z. Xu, C. Zhao, and L. Hanzo, “Visible light communication in heterogeneous works: paving the way for user-centric design,” Wireless Commun. 22(2), 8–16 (2015).
    [Crossref]
  12. C. Chen, N. Serafimovski, and H. Haas, “Fractional frequency reuse in optical wireless cellular networks, in Proceedings of IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (IEEE, 2013), pp. 3594–3598.
    [Crossref]
  13. R. K. Mondal, N. Saha, and Y. M. Jang, “Joint scheduling and rate allocation for IEEE 802.15.7 WPAN system,” in Proceedings of 2013 Fifth International Conference on Ubiquitous and Future Networks (IEEE, 2013), pp. 691–695.
    [Crossref]
  14. D. Bykhovsky and S. Arnon, “Multiple access resource allocation in visible light communication systems,” J. Lightwave Technol. 32(8), 1594–1600 (2014).
    [Crossref]
  15. M. Biagi, S. Pergoloni, and A. Vegni, “Last: a framework to localize, access, schedule and transmit in indoor VLC systems,” J. Lightwave Technol. 33(9), 1872–1887 (2015).
    [Crossref]
  16. O. Babatundi, L. Qian, and J. Cheng, “Downlink scheduling in visible light communications,” in Proceedings of Sixth International Conference on Wireless Communications and Signal Processing (IEEE, 2014), pp. 1–6.
  17. Y. Tao, X. Liang, J. Wang, and C. Zhao, “Scheduling for indoor visible light communication based on graph theory,” Opt. Express 23(3), 2737–2752 (2015).
    [Crossref] [PubMed]
  18. S. Shakkottai and A. Stolyar, “Scheduling algorithms for a mixture of real-time and non-real-time data in HDR,” in Proceedings of the International Teletraffic Congress – ITC-I7, J. M. Souza et al. ed. (Elsevier, 2001), pp. 793–801.
    [Crossref]
  19. J. R. Barry, Wireless Infrared Communications (Kluwer Academic Press, 1994).
  20. G. Miao, J. Zander, K. W. Sung, and B. Slimane, Fundamentals of Mobile Data Networks (Cambridge University Press, 2016), pp. 78–79.
  21. K. Jain, J. Padhye, V. Padmanabhan, and L. Qiu, “Impact of interference on multi-hop wireless network performance,” Wirel. Netw. 11(4), 471–487 (2005).
    [Crossref]
  22. A. Jalali, R. Padovani, and R. Pankaj, “Data throughput of CDMA-HDR a high efficiency-high data rate personal communication wireless system,” in Proceedings of IEEE 51st Vehicular Technology Conference (IEEE, 2000), pp. 1854–1858.
    [Crossref]
  23. S. Sakai, M. Togasaki, and K. Yamazaki, “A note on greedy algorithms for the maximum weighted independent set problem,” Discrete Appl. Math. 126(2-3), 313–322 (2003).
    [Crossref]
  24. J. Nah, R. Parthiban, and M. Jaward, “Visible light communications localization using TDOA-based coherent heterodyne detection,” in Proceedings of 4th International Conference on Photonics, F. Abdullah et al, ed (IEEE, 2013), pp. 247–249.
    [Crossref]
  25. S. H. Yang, E. M. Jeong, D. R. Kim, H. S. Kim, Y. H. Son, and S. K. Han, “Indoor three-dimensional location estimation based on LED visible light communication,” Electron. Lett. 49(1), 54–56 (2013).
    [Crossref]
  26. M. Oğuz Sunay, Ali Ekşim, “Wireless multicast with multi-user diversity,” in Proceedings of IEEE Vehicular Technology Conference,2004 (IEEE, 2004), pp. 1584–1588.

2015 (4)

M. Biagi, S. Pergoloni, and A. Vegni, “Last: a framework to localize, access, schedule and transmit in indoor VLC systems,” J. Lightwave Technol. 33(9), 1872–1887 (2015).
[Crossref]

Y. Tao, X. Liang, J. Wang, and C. Zhao, “Scheduling for indoor visible light communication based on graph theory,” Opt. Express 23(3), 2737–2752 (2015).
[Crossref] [PubMed]

F. Jin, R. Zhang, and L. Hanzo, “Resource allocation under delay guarantee constraints for heterogeneous visible-light and RF femtocell,” IEEE Trans. Wirel. Commun. 14(2), 1020–1034 (2015).
[Crossref]

R. Zhang, J. Wang, Z. Wang, Z. Xu, C. Zhao, and L. Hanzo, “Visible light communication in heterogeneous works: paving the way for user-centric design,” Wireless Commun. 22(2), 8–16 (2015).
[Crossref]

2014 (2)

D. Bykhovsky and S. Arnon, “Multiple access resource allocation in visible light communication systems,” J. Lightwave Technol. 32(8), 1594–1600 (2014).
[Crossref]

D. Tsonev, H. Chun, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride µLED,” IEEE Photonics Technol. Lett. 26(7), 637–640 (2014).
[Crossref]

2013 (1)

S. H. Yang, E. M. Jeong, D. R. Kim, H. S. Kim, Y. H. Son, and S. K. Han, “Indoor three-dimensional location estimation based on LED visible light communication,” Electron. Lett. 49(1), 54–56 (2013).
[Crossref]

2005 (1)

K. Jain, J. Padhye, V. Padmanabhan, and L. Qiu, “Impact of interference on multi-hop wireless network performance,” Wirel. Netw. 11(4), 471–487 (2005).
[Crossref]

2003 (1)

S. Sakai, M. Togasaki, and K. Yamazaki, “A note on greedy algorithms for the maximum weighted independent set problem,” Discrete Appl. Math. 126(2-3), 313–322 (2003).
[Crossref]

Arnon, S.

Babatundi, O.

O. Babatundi, L. Qian, and J. Cheng, “Downlink scheduling in visible light communications,” in Proceedings of Sixth International Conference on Wireless Communications and Signal Processing (IEEE, 2014), pp. 1–6.

Biagi, M.

Bykhovsky, D.

Chen, C.

C. Chen, N. Serafimovski, and H. Haas, “Fractional frequency reuse in optical wireless cellular networks, in Proceedings of IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (IEEE, 2013), pp. 3594–3598.
[Crossref]

Cheng, J.

O. Babatundi, L. Qian, and J. Cheng, “Downlink scheduling in visible light communications,” in Proceedings of Sixth International Conference on Wireless Communications and Signal Processing (IEEE, 2014), pp. 1–6.

Chun, H.

D. Tsonev, H. Chun, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride µLED,” IEEE Photonics Technol. Lett. 26(7), 637–640 (2014).
[Crossref]

Dawson, M. D.

D. Tsonev, H. Chun, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride µLED,” IEEE Photonics Technol. Lett. 26(7), 637–640 (2014).
[Crossref]

Faulkner, G.

D. Tsonev, H. Chun, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride µLED,” IEEE Photonics Technol. Lett. 26(7), 637–640 (2014).
[Crossref]

Gu, E.

D. Tsonev, H. Chun, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride µLED,” IEEE Photonics Technol. Lett. 26(7), 637–640 (2014).
[Crossref]

Haas, H.

D. Tsonev, H. Chun, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride µLED,” IEEE Photonics Technol. Lett. 26(7), 637–640 (2014).
[Crossref]

C. Chen, N. Serafimovski, and H. Haas, “Fractional frequency reuse in optical wireless cellular networks, in Proceedings of IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (IEEE, 2013), pp. 3594–3598.
[Crossref]

Haji, M.

D. Tsonev, H. Chun, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride µLED,” IEEE Photonics Technol. Lett. 26(7), 637–640 (2014).
[Crossref]

Han, S. K.

S. H. Yang, E. M. Jeong, D. R. Kim, H. S. Kim, Y. H. Son, and S. K. Han, “Indoor three-dimensional location estimation based on LED visible light communication,” Electron. Lett. 49(1), 54–56 (2013).
[Crossref]

Hanzo, L.

F. Jin, R. Zhang, and L. Hanzo, “Resource allocation under delay guarantee constraints for heterogeneous visible-light and RF femtocell,” IEEE Trans. Wirel. Commun. 14(2), 1020–1034 (2015).
[Crossref]

R. Zhang, J. Wang, Z. Wang, Z. Xu, C. Zhao, and L. Hanzo, “Visible light communication in heterogeneous works: paving the way for user-centric design,” Wireless Commun. 22(2), 8–16 (2015).
[Crossref]

X. Li, R. Zhang, J. Wang, and L. Hanzo, “Cell-centric and user-centric multi-user scheduling in visible light communication aided networks,” in Proceedings of 2015 IEEE International Conference on Communications (IEEE, 2015), pp. 5120–5125.
[Crossref]

Haruyama, S.

Y. Tanaka, T. Komine, S. Haruyama, and M. Nakagawa, “Indoor visible communication utilizing plural white LED as lighting,” in Proceedings of IEEE International Symposium on Personal indoor and Mobile Radio Communications (IEEE, 2000), pp. F-81–F-85.

Y. Tanaka, S. Haruyama, and M. Nakagawa, “Wireless optical transmissions with white colored LED for wireless home links,” in Proceedings of IEEE Conference on Personal indoor and Mobile Radio Communications (IEEE, 2000), pp. 1325–1329.
[Crossref]

Jain, K.

K. Jain, J. Padhye, V. Padmanabhan, and L. Qiu, “Impact of interference on multi-hop wireless network performance,” Wirel. Netw. 11(4), 471–487 (2005).
[Crossref]

Jang, Y. M.

R. K. Mondal, N. Saha, and Y. M. Jang, “Joint scheduling and rate allocation for IEEE 802.15.7 WPAN system,” in Proceedings of 2013 Fifth International Conference on Ubiquitous and Future Networks (IEEE, 2013), pp. 691–695.
[Crossref]

Jeong, E. M.

S. H. Yang, E. M. Jeong, D. R. Kim, H. S. Kim, Y. H. Son, and S. K. Han, “Indoor three-dimensional location estimation based on LED visible light communication,” Electron. Lett. 49(1), 54–56 (2013).
[Crossref]

Jin, F.

F. Jin, R. Zhang, and L. Hanzo, “Resource allocation under delay guarantee constraints for heterogeneous visible-light and RF femtocell,” IEEE Trans. Wirel. Commun. 14(2), 1020–1034 (2015).
[Crossref]

Kelly, A. E.

D. Tsonev, H. Chun, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride µLED,” IEEE Photonics Technol. Lett. 26(7), 637–640 (2014).
[Crossref]

Kim, D. R.

S. H. Yang, E. M. Jeong, D. R. Kim, H. S. Kim, Y. H. Son, and S. K. Han, “Indoor three-dimensional location estimation based on LED visible light communication,” Electron. Lett. 49(1), 54–56 (2013).
[Crossref]

Kim, H. S.

S. H. Yang, E. M. Jeong, D. R. Kim, H. S. Kim, Y. H. Son, and S. K. Han, “Indoor three-dimensional location estimation based on LED visible light communication,” Electron. Lett. 49(1), 54–56 (2013).
[Crossref]

Komine, T.

Y. Tanaka, T. Komine, S. Haruyama, and M. Nakagawa, “Indoor visible communication utilizing plural white LED as lighting,” in Proceedings of IEEE International Symposium on Personal indoor and Mobile Radio Communications (IEEE, 2000), pp. F-81–F-85.

Krishnamurthy, S. V.

Y. Li, L. Wang, J. Ning, K. Pelechrinis, S. V. Krishnamurthy, and Z. Xu, “VICO: A framework for configuring indoor visible light communication networks,” in Proceedings of IEEE 9th International Conference on Mobile Adhoc and Sensor Systems, (IEEE, 2012), pp. 136–144.
[Crossref]

Li, X.

X. Li, R. Zhang, J. Wang, and L. Hanzo, “Cell-centric and user-centric multi-user scheduling in visible light communication aided networks,” in Proceedings of 2015 IEEE International Conference on Communications (IEEE, 2015), pp. 5120–5125.
[Crossref]

Li, Y.

Y. Li, L. Wang, J. Ning, K. Pelechrinis, S. V. Krishnamurthy, and Z. Xu, “VICO: A framework for configuring indoor visible light communication networks,” in Proceedings of IEEE 9th International Conference on Mobile Adhoc and Sensor Systems, (IEEE, 2012), pp. 136–144.
[Crossref]

Liang, X.

Little, T. D. C.

Z. Wu and T. D. C. Little, “Network solutions for the LOS problem of new indoor free space optical system,” in Proceedings of IEEE IET International Symposium on Communications Systems, Networks, and Digital Signal Processing (IEEE, 2012), pp.582–587.

McKendry, J. J. D.

D. Tsonev, H. Chun, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride µLED,” IEEE Photonics Technol. Lett. 26(7), 637–640 (2014).
[Crossref]

Mondal, R. K.

R. K. Mondal, N. Saha, and Y. M. Jang, “Joint scheduling and rate allocation for IEEE 802.15.7 WPAN system,” in Proceedings of 2013 Fifth International Conference on Ubiquitous and Future Networks (IEEE, 2013), pp. 691–695.
[Crossref]

Nakagawa, M.

Y. Tanaka, S. Haruyama, and M. Nakagawa, “Wireless optical transmissions with white colored LED for wireless home links,” in Proceedings of IEEE Conference on Personal indoor and Mobile Radio Communications (IEEE, 2000), pp. 1325–1329.
[Crossref]

Y. Tanaka, T. Komine, S. Haruyama, and M. Nakagawa, “Indoor visible communication utilizing plural white LED as lighting,” in Proceedings of IEEE International Symposium on Personal indoor and Mobile Radio Communications (IEEE, 2000), pp. F-81–F-85.

Ning, J.

Y. Li, L. Wang, J. Ning, K. Pelechrinis, S. V. Krishnamurthy, and Z. Xu, “VICO: A framework for configuring indoor visible light communication networks,” in Proceedings of IEEE 9th International Conference on Mobile Adhoc and Sensor Systems, (IEEE, 2012), pp. 136–144.
[Crossref]

O’Brien, D.

D. Tsonev, H. Chun, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride µLED,” IEEE Photonics Technol. Lett. 26(7), 637–640 (2014).
[Crossref]

Padhye, J.

K. Jain, J. Padhye, V. Padmanabhan, and L. Qiu, “Impact of interference on multi-hop wireless network performance,” Wirel. Netw. 11(4), 471–487 (2005).
[Crossref]

Padmanabhan, V.

K. Jain, J. Padhye, V. Padmanabhan, and L. Qiu, “Impact of interference on multi-hop wireless network performance,” Wirel. Netw. 11(4), 471–487 (2005).
[Crossref]

Pelechrinis, K.

Y. Li, L. Wang, J. Ning, K. Pelechrinis, S. V. Krishnamurthy, and Z. Xu, “VICO: A framework for configuring indoor visible light communication networks,” in Proceedings of IEEE 9th International Conference on Mobile Adhoc and Sensor Systems, (IEEE, 2012), pp. 136–144.
[Crossref]

Pergoloni, S.

Qian, L.

O. Babatundi, L. Qian, and J. Cheng, “Downlink scheduling in visible light communications,” in Proceedings of Sixth International Conference on Wireless Communications and Signal Processing (IEEE, 2014), pp. 1–6.

Qiu, L.

K. Jain, J. Padhye, V. Padmanabhan, and L. Qiu, “Impact of interference on multi-hop wireless network performance,” Wirel. Netw. 11(4), 471–487 (2005).
[Crossref]

Rajbhandari, S.

D. Tsonev, H. Chun, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride µLED,” IEEE Photonics Technol. Lett. 26(7), 637–640 (2014).
[Crossref]

Saha, N.

R. K. Mondal, N. Saha, and Y. M. Jang, “Joint scheduling and rate allocation for IEEE 802.15.7 WPAN system,” in Proceedings of 2013 Fifth International Conference on Ubiquitous and Future Networks (IEEE, 2013), pp. 691–695.
[Crossref]

Sakai, S.

S. Sakai, M. Togasaki, and K. Yamazaki, “A note on greedy algorithms for the maximum weighted independent set problem,” Discrete Appl. Math. 126(2-3), 313–322 (2003).
[Crossref]

Serafimovski, N.

C. Chen, N. Serafimovski, and H. Haas, “Fractional frequency reuse in optical wireless cellular networks, in Proceedings of IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (IEEE, 2013), pp. 3594–3598.
[Crossref]

Son, Y. H.

S. H. Yang, E. M. Jeong, D. R. Kim, H. S. Kim, Y. H. Son, and S. K. Han, “Indoor three-dimensional location estimation based on LED visible light communication,” Electron. Lett. 49(1), 54–56 (2013).
[Crossref]

Tanaka, Y.

Y. Tanaka, T. Komine, S. Haruyama, and M. Nakagawa, “Indoor visible communication utilizing plural white LED as lighting,” in Proceedings of IEEE International Symposium on Personal indoor and Mobile Radio Communications (IEEE, 2000), pp. F-81–F-85.

Y. Tanaka, S. Haruyama, and M. Nakagawa, “Wireless optical transmissions with white colored LED for wireless home links,” in Proceedings of IEEE Conference on Personal indoor and Mobile Radio Communications (IEEE, 2000), pp. 1325–1329.
[Crossref]

Tao, Y.

Togasaki, M.

S. Sakai, M. Togasaki, and K. Yamazaki, “A note on greedy algorithms for the maximum weighted independent set problem,” Discrete Appl. Math. 126(2-3), 313–322 (2003).
[Crossref]

Tsonev, D.

D. Tsonev, H. Chun, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride µLED,” IEEE Photonics Technol. Lett. 26(7), 637–640 (2014).
[Crossref]

Vegni, A.

Videv, S.

D. Tsonev, H. Chun, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride µLED,” IEEE Photonics Technol. Lett. 26(7), 637–640 (2014).
[Crossref]

Wang, J.

R. Zhang, J. Wang, Z. Wang, Z. Xu, C. Zhao, and L. Hanzo, “Visible light communication in heterogeneous works: paving the way for user-centric design,” Wireless Commun. 22(2), 8–16 (2015).
[Crossref]

Y. Tao, X. Liang, J. Wang, and C. Zhao, “Scheduling for indoor visible light communication based on graph theory,” Opt. Express 23(3), 2737–2752 (2015).
[Crossref] [PubMed]

X. Li, R. Zhang, J. Wang, and L. Hanzo, “Cell-centric and user-centric multi-user scheduling in visible light communication aided networks,” in Proceedings of 2015 IEEE International Conference on Communications (IEEE, 2015), pp. 5120–5125.
[Crossref]

Wang, L.

Y. Li, L. Wang, J. Ning, K. Pelechrinis, S. V. Krishnamurthy, and Z. Xu, “VICO: A framework for configuring indoor visible light communication networks,” in Proceedings of IEEE 9th International Conference on Mobile Adhoc and Sensor Systems, (IEEE, 2012), pp. 136–144.
[Crossref]

Wang, Z.

R. Zhang, J. Wang, Z. Wang, Z. Xu, C. Zhao, and L. Hanzo, “Visible light communication in heterogeneous works: paving the way for user-centric design,” Wireless Commun. 22(2), 8–16 (2015).
[Crossref]

Watson, S.

D. Tsonev, H. Chun, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride µLED,” IEEE Photonics Technol. Lett. 26(7), 637–640 (2014).
[Crossref]

Wu, Z.

Z. Wu and T. D. C. Little, “Network solutions for the LOS problem of new indoor free space optical system,” in Proceedings of IEEE IET International Symposium on Communications Systems, Networks, and Digital Signal Processing (IEEE, 2012), pp.582–587.

Xu, Z.

R. Zhang, J. Wang, Z. Wang, Z. Xu, C. Zhao, and L. Hanzo, “Visible light communication in heterogeneous works: paving the way for user-centric design,” Wireless Commun. 22(2), 8–16 (2015).
[Crossref]

Y. Li, L. Wang, J. Ning, K. Pelechrinis, S. V. Krishnamurthy, and Z. Xu, “VICO: A framework for configuring indoor visible light communication networks,” in Proceedings of IEEE 9th International Conference on Mobile Adhoc and Sensor Systems, (IEEE, 2012), pp. 136–144.
[Crossref]

Yamazaki, K.

S. Sakai, M. Togasaki, and K. Yamazaki, “A note on greedy algorithms for the maximum weighted independent set problem,” Discrete Appl. Math. 126(2-3), 313–322 (2003).
[Crossref]

Yang, S. H.

S. H. Yang, E. M. Jeong, D. R. Kim, H. S. Kim, Y. H. Son, and S. K. Han, “Indoor three-dimensional location estimation based on LED visible light communication,” Electron. Lett. 49(1), 54–56 (2013).
[Crossref]

Zhang, R.

R. Zhang, J. Wang, Z. Wang, Z. Xu, C. Zhao, and L. Hanzo, “Visible light communication in heterogeneous works: paving the way for user-centric design,” Wireless Commun. 22(2), 8–16 (2015).
[Crossref]

F. Jin, R. Zhang, and L. Hanzo, “Resource allocation under delay guarantee constraints for heterogeneous visible-light and RF femtocell,” IEEE Trans. Wirel. Commun. 14(2), 1020–1034 (2015).
[Crossref]

X. Li, R. Zhang, J. Wang, and L. Hanzo, “Cell-centric and user-centric multi-user scheduling in visible light communication aided networks,” in Proceedings of 2015 IEEE International Conference on Communications (IEEE, 2015), pp. 5120–5125.
[Crossref]

Zhao, C.

R. Zhang, J. Wang, Z. Wang, Z. Xu, C. Zhao, and L. Hanzo, “Visible light communication in heterogeneous works: paving the way for user-centric design,” Wireless Commun. 22(2), 8–16 (2015).
[Crossref]

Y. Tao, X. Liang, J. Wang, and C. Zhao, “Scheduling for indoor visible light communication based on graph theory,” Opt. Express 23(3), 2737–2752 (2015).
[Crossref] [PubMed]

Discrete Appl. Math. (1)

S. Sakai, M. Togasaki, and K. Yamazaki, “A note on greedy algorithms for the maximum weighted independent set problem,” Discrete Appl. Math. 126(2-3), 313–322 (2003).
[Crossref]

Electron. Lett. (1)

S. H. Yang, E. M. Jeong, D. R. Kim, H. S. Kim, Y. H. Son, and S. K. Han, “Indoor three-dimensional location estimation based on LED visible light communication,” Electron. Lett. 49(1), 54–56 (2013).
[Crossref]

IEEE Photonics Technol. Lett. (1)

D. Tsonev, H. Chun, S. Rajbhandari, J. J. D. McKendry, S. Videv, E. Gu, M. Haji, S. Watson, A. E. Kelly, G. Faulkner, M. D. Dawson, H. Haas, and D. O’Brien, “A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride µLED,” IEEE Photonics Technol. Lett. 26(7), 637–640 (2014).
[Crossref]

IEEE Trans. Wirel. Commun. (1)

F. Jin, R. Zhang, and L. Hanzo, “Resource allocation under delay guarantee constraints for heterogeneous visible-light and RF femtocell,” IEEE Trans. Wirel. Commun. 14(2), 1020–1034 (2015).
[Crossref]

J. Lightwave Technol. (2)

Opt. Express (1)

Wirel. Netw. (1)

K. Jain, J. Padhye, V. Padmanabhan, and L. Qiu, “Impact of interference on multi-hop wireless network performance,” Wirel. Netw. 11(4), 471–487 (2005).
[Crossref]

Wireless Commun. (1)

R. Zhang, J. Wang, Z. Wang, Z. Xu, C. Zhao, and L. Hanzo, “Visible light communication in heterogeneous works: paving the way for user-centric design,” Wireless Commun. 22(2), 8–16 (2015).
[Crossref]

Other (17)

C. Chen, N. Serafimovski, and H. Haas, “Fractional frequency reuse in optical wireless cellular networks, in Proceedings of IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (IEEE, 2013), pp. 3594–3598.
[Crossref]

R. K. Mondal, N. Saha, and Y. M. Jang, “Joint scheduling and rate allocation for IEEE 802.15.7 WPAN system,” in Proceedings of 2013 Fifth International Conference on Ubiquitous and Future Networks (IEEE, 2013), pp. 691–695.
[Crossref]

O. Babatundi, L. Qian, and J. Cheng, “Downlink scheduling in visible light communications,” in Proceedings of Sixth International Conference on Wireless Communications and Signal Processing (IEEE, 2014), pp. 1–6.

S. Shakkottai and A. Stolyar, “Scheduling algorithms for a mixture of real-time and non-real-time data in HDR,” in Proceedings of the International Teletraffic Congress – ITC-I7, J. M. Souza et al. ed. (Elsevier, 2001), pp. 793–801.
[Crossref]

J. R. Barry, Wireless Infrared Communications (Kluwer Academic Press, 1994).

G. Miao, J. Zander, K. W. Sung, and B. Slimane, Fundamentals of Mobile Data Networks (Cambridge University Press, 2016), pp. 78–79.

A. Jalali, R. Padovani, and R. Pankaj, “Data throughput of CDMA-HDR a high efficiency-high data rate personal communication wireless system,” in Proceedings of IEEE 51st Vehicular Technology Conference (IEEE, 2000), pp. 1854–1858.
[Crossref]

Y. Tanaka, S. Haruyama, and M. Nakagawa, “Wireless optical transmissions with white colored LED for wireless home links,” in Proceedings of IEEE Conference on Personal indoor and Mobile Radio Communications (IEEE, 2000), pp. 1325–1329.
[Crossref]

Y. Tanaka, T. Komine, S. Haruyama, and M. Nakagawa, “Indoor visible communication utilizing plural white LED as lighting,” in Proceedings of IEEE International Symposium on Personal indoor and Mobile Radio Communications (IEEE, 2000), pp. F-81–F-85.

Y. Wang, Y. Shao, H. Shang, X. Lu, Y. Wang, J. Yu, and N. Chi, “875-Mb/s asynchronous Bi-directional 64QAM-OFDM SCM-WDM transmission over RGB-LED-based visible light communication system,” in Optical Fiber Communication Conference (Optical Society of America, 2013), paper OTh1G.3.
[Crossref]

H. Haas, “Wireless data from every light bulb” (TEDGlobal 2011), http://www.ted.com/talks/harald_haas_wireless_data_from_every_light_bulb?language=en .

IEEE standard for local and metropolitan area networks – part 15.7: “Short-range wireless optical communication using visible light,” IEEE Std 802.15.7–2011, pp. 1–309, Sep. 2011.

Y. Li, L. Wang, J. Ning, K. Pelechrinis, S. V. Krishnamurthy, and Z. Xu, “VICO: A framework for configuring indoor visible light communication networks,” in Proceedings of IEEE 9th International Conference on Mobile Adhoc and Sensor Systems, (IEEE, 2012), pp. 136–144.
[Crossref]

Z. Wu and T. D. C. Little, “Network solutions for the LOS problem of new indoor free space optical system,” in Proceedings of IEEE IET International Symposium on Communications Systems, Networks, and Digital Signal Processing (IEEE, 2012), pp.582–587.

X. Li, R. Zhang, J. Wang, and L. Hanzo, “Cell-centric and user-centric multi-user scheduling in visible light communication aided networks,” in Proceedings of 2015 IEEE International Conference on Communications (IEEE, 2015), pp. 5120–5125.
[Crossref]

M. Oğuz Sunay, Ali Ekşim, “Wireless multicast with multi-user diversity,” in Proceedings of IEEE Vehicular Technology Conference,2004 (IEEE, 2004), pp. 1584–1588.

J. Nah, R. Parthiban, and M. Jaward, “Visible light communications localization using TDOA-based coherent heterodyne detection,” in Proceedings of 4th International Conference on Photonics, F. Abdullah et al, ed (IEEE, 2013), pp. 247–249.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 An indoor UC-VLC network.
Fig. 2
Fig. 2 Throughput performance: (a) robustness of our simulation codes. (b) Throughput performance comparison between 2- and 3-term models as function of number of users.
Fig. 3
Fig. 3 Fairness performance: (a) robustness of our simulation codes. (b) Fairness performance for 2-term model and 3-term model as function of number of users.
Fig. 4
Fig. 4 Average latency performance as function of number of users.

Tables (3)

Tables Icon

Table 1 Algorithm 1: the MIN-Greedy algorithm for MWIS searching

Tables Icon

Table 2 Algorithm 2: Scheduling situation algorithm.

Tables Icon

Table 1 Performance comparison summary

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

p i,k =f( r i,k )q( D i,k )
p i,k =F( r i,k )G(CI R i,k )Q( D i,k )
γ= i=1 K r i = i=1 K log 2 [ 1+ ( jV C i h ij P ot R ) 2 σ t 2 + σ s 2 + I i ]
h ij ={ A i ( k+1 )m 2π d ij 2 cos k ( ϕ ij )cos( ψ ij ) T i g i ( ϕ ij FO V i ) 0 ( ϕ ij >FO V i )
Max γ = i=1 K r i
Max γ= i=1 K r i V C i V C j = i,j=1,...,K,ij i=1 K V C i =U
p i,k =f( r i,k )= r i,k r i,k
r i,k ={ ( 1 1 T c ) r i,k1 + 1 T c r i,k1 (scheduled in last slot) ( 1 1 T c ) r i,k1 (else)
p i,k =f( r i,k )q( D i,k )= r i,k r i,k exp( D i,k D i,k ' 1+ D i,k ' )
G(CI R i,k )=1/ T C CI R i,k1 +(11/ T C )CI R i,k
SFI= Max i,j | ρ i ρ j | 1/k i=1 K ρ i ( i,j=1,...K )
p i,k =F( r i,k )G(CI R i,k )Q( D i,k )=exp( r i,k r i,k )G(CI R i,k ) 8 D i,k D i,k ' 1+ D i,k '
Ave_Latency= i=1 SIMU [ i=1 K delay( u i )/K ] SIMU

Metrics