Abstract

The lasing behaviours of semiconductor micro/nanostructures were studied in different gaseous surroundings, and the lasing threshold of the nanowire was reduced from 10.5 MW/cm2 in air to 9.82 MW/cm2, 8.25 MW/cm2 and 7.22 MW/cm2 in Ar, N2 and He environment, respectively. It is attributed to the transient polarization of molecular gas. Moreover, the narrow-bandwidth lasing from the junction of a comb-like microstructure is hard to realize compared to that in nanowire and nanobelt due to the absence of good resonance cavities, and the only amplified spontaneous emission was observed by the ICCD dynamic images of the photoluminescence. The PL spectra and ICCD dynamic images, as well as lifetime measurement, prove the occurrence of lasing in nanowires and nanobelts with the pumping power increase, which should originate from the exciton-electron scattering and the formation of EHP, respectively. The whispering-gallery-mode lasing in nanowire and Fabry-Perot-Mode lasing in nanobelt were intuitively demonstrated by the ICCD images. The results provide one route to reduce the lasing threshold by the gas protection.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Semiconductor nanowire lasers

Yaoguang Ma, Xin Guo, Xiaoqin Wu, Lun Dai, and Limin Tong
Adv. Opt. Photon. 5(3) 216-273 (2013)

Lasing characteristics of an optically pumped single ZnO nanosheet

Kota Okazaki, Daisuke Nakamura, Mitsuhiro Higashihata, Palani Iyamperumal, and Tatsuo Okada
Opt. Express 19(21) 20389-20394 (2011)

Ultraviolet nanolaser of inverted hexagonal ZnO pyramid resonating in helical whispering-gallery-like mode

Xiuru Yao, Zhongqi Li, Chang Liu, Liu Yang, Hongqi Li, Xinxia Liu, Junsong Liu, Xiaoping Huang, Pinwen Zhu, Tian Cui, and Yongjun Bao
Opt. Express 27(23) 34454-34462 (2019)

References

  • View by:
  • |
  • |
  • |

  1. C. J. Barrelet, H. S. Ee, S. H. Kwon, and H. G. Park, “Nonlinear mixing in nanowire subwavelength waveguides,” Nano Lett. 11(7), 3022–3025 (2011).
    [Crossref] [PubMed]
  2. V. S. Muthukumar, J. Reppert, C. S. S. Sandeep, S. S. R. Krishnan, R. Podila, N. Kuthirummal, S. S. S. Sai, K. Venkataramaniah, R. Philip, and A. M. Rao, “Optical limiting properties of CdS nanowires,” Opt. Commun. 283(20), 4104–4107 (2010).
    [Crossref]
  3. X. Liu, Q. Zhang, W. K. Chong, J. N. Yip, X. Wen, Z. Li, F. Wei, G. Yu, Q. Xiong, and T. C. Sum, “Cooperative Enhancement of Second-Harmonic Generation from a Single CdS Nanobelt-Hybrid Plasmonic Structure,” ACS Nano 9(5), 5018–5026 (2015).
    [Crossref] [PubMed]
  4. X. Gao, N. Zhuo, C. Liao, L. Xiao, H. Wang, Y. Cui, and J. Zhang, “Industrial fabrication of Mn-doped CdS/ZnS core/shell nanocrystals for white-light-emitting diodes,” Opt. Mater. Express 5(10), 2164 (2015).
    [Crossref]
  5. A. K. Bansal, F. Antolini, S. Zhang, L. Stroea, L. Ortolani, M. Lanzi, E. Serra, S. Allard, U. Scherf, and I. D. W. Samuel, “Highly Luminescent Colloidal CdS Quantum Dots with Efficient Near-Infrared Electroluminescence in Light-Emitting Diodes,” J. Phys. Chem. C 120(3), 1871–1880 (2016).
    [Crossref]
  6. O. Hayden, A. B. Greytak, and D. C. Bell, “Core—Shell Nanowire Light-Emitting Diodes,” Adv. Mater. 17(6), 701–704 (2005).
    [Crossref]
  7. B. Liu, R. Chen, X. L. Xu, D. H. Li, Y. Y. Zhao, Z. X. Shen, Q. H. Xiong, and H. D. Sun, “Exciton-Related Photoluminescence and Lasing in CdS Nanobelts,” J. Phys. Chem. C 115(26), 12826–12830 (2011).
    [Crossref]
  8. Z. Yang, D. Wang, C. Meng, Z. Wu, Y. Wang, Y. Ma, L. Dai, X. Liu, T. Hasan, X. Liu, and Q. Yang, “Broadly defining lasing wavelengths in single bandgap-graded semiconductor nanowires,” Nano Lett. 14(6), 3153–3159 (2014).
    [Crossref] [PubMed]
  9. D. Wang, H. W. Seo, C. C. Tin, M. J. Bozack, J. R. Williams, M. Park, and Y. Tzeng, “Lasing in whispering gallery mode in ZnO nanonails,” J. Appl. Phys. 99(9), 093112 (2006).
    [Crossref]
  10. C. Zhang, Y. Lu, Y. Ni, M. Li, L. Mao, C. Liu, D. Zhang, H. Ming, and P. Wang, “Plasmonic lasing of nanocavity embedding in metallic nanoantenna array,” Nano Lett. 15(2), 1382–1387 (2015).
    [Crossref] [PubMed]
  11. P. Guo, X. Zhuang, J. Xu, Q. Zhang, W. Hu, X. Zhu, X. Wang, Q. Wan, P. He, H. Zhou, and A. Pan, “Low-threshold nanowire laser based on composition-symmetric semiconductor nanowires,” Nano Lett. 13(3), 1251–1256 (2013).
    [Crossref] [PubMed]
  12. C.-S. Wang, H.-Y. Lin, J.-M. Lin, and Y.-F. Chen, “Surface-Plasmon-Enhanced Ultraviolet Random Lasing from ZnO Nanowires Assisted by Pt Nanoparticles,” Appl. Phys. Express 5(6), 062003 (2012).
    [Crossref]
  13. J. Li, C. Xu, H. Nan, M. Jiang, G. Gao, Y. Lin, J. Dai, G. Zhu, Z. Ni, S. Wang, and Y. Li, “Graphene surface plasmon induced optical field confinement and lasing enhancement in ZnO whispering-gallery microcavity,” ACS Appl. Mater. Interfaces 6(13), 10469–10475 (2014).
    [Crossref] [PubMed]
  14. G. Zhu, C. Xu, L. Cai, J. Li, Z. Shi, Y. Lin, G. Chen, T. Ding, Z. Tian, and J. Dai, “Lasing behavior modulation for ZnO whispering-gallery microcavities,” ACS Appl. Mater. Interfaces 4(11), 6195–6201 (2012).
    [Crossref] [PubMed]
  15. Y.-T. Chen, H. Zhao, J. H. Yum, Y. Wang, F. Xue, F. Zhou, and J. C. Lee, “Improved electrical characteristics of TaN/Al[sub 2]O[sub 3]/In[sub 0.53]Ga[sub 0.47]As metal-oxide-semiconductor field-effect transistors by fluorine incorporation,” Appl. Phys. Lett. 95(1), 013501 (2009).
    [Crossref]
  16. C.-M. Yang, I. S. Wang, Y.-T. Lin, C.-H. Huang, T.-F. Lu, C.-E. Lue, D. G. Pijanowska, M.-Y. Hua, and C.-S. Lai, “Low cost and flexible electrodes with NH3 plasma treatments in extended gate field effect transistors for urea detection,” Sens. Actuators B Chem. 187(10), 274–279 (2013).
    [Crossref]
  17. Y. G. Yoon, T. K. Kim, I. C. Hwang, H. S. Lee, B. W. Hwang, J. M. Moon, Y. J. Seo, S. W. Lee, M. H. Jo, and S. H. Lee, “Enhanced device performance of germanium nanowire junctionless (GeNW-JL) MOSFETs by germanide contact formation with Ar plasma treatment,” ACS Appl. Mater. Interfaces 6(5), 3150–3155 (2014).
    [Crossref] [PubMed]
  18. K. Panda, K. J. Sankaran, B. K. Panigrahi, N. H. Tai, and I. N. Lin, “Direct observation and mechanism for enhanced electron emission in hydrogen plasma-treated diamond nanowire films,” ACS Appl. Mater. Interfaces 6(11), 8531–8541 (2014).
    [Crossref] [PubMed]
  19. K. J. Sankaran, S. Kunuku, K. C. Leou, N. H. Tai, and I. N. Lin, “Enhancement of the electron field emission properties of ultrananocrystalline diamond films via hydrogen post-treatment,” ACS Appl. Mater. Interfaces 6(16), 14543–14551 (2014).
    [Crossref] [PubMed]
  20. M. Abrar, G. U. Farwa, S. Naseer, A. Saeed, A. W. Khan, Z. Iqbal, S. T. Hussain, and M. Zakaullah, “Enhancement of the electrical properties of carbon nanotubes with Ar–N2 plasma treatment,” Curr. Appl. Phys. 13(3), 567–575 (2013).
    [Crossref]
  21. B. Hua, J. Motohisa, Y. Ding, S. Hara, and T. Fukui, “Characterization of Fabry-Pérot microcavity modes in GaAs nanowires fabricated by selective-area metal organic vapor phase epitaxy,” Appl. Phys. Lett. 91(13), 131112 (2007).
    [Crossref]
  22. C. P. Dietrich, M. Lange, C. Sturm, R. Schmidt-Grund, and M. Grundmann, “One- and two-dimensional cavity modes in ZnO nanowires,” New J. Phys. 13(10), 103021 (2011).
    [Crossref]
  23. R. Liu, Z. A. Li, C. Zhang, X. Wang, M. A. Kamran, M. Farle, and B. Zou, “Single-step synthesis of monolithic comb-like CdS nanostructures with tunable waveguide properties,” Nano Lett. 13(6), 2997–3001 (2013).
    [Crossref] [PubMed]
  24. J. Park, S. Kim, Y. Sim, O. J. Yoon, M. S. Han, H. S. Yang, Y. Y. Kim, Y. M. Jhon, J. Kim, and M. J. Seong, “Simple synthesis of high-quality CdS nanowires using Au nanoparticles as catalyst,” J. Alloys Compd. 659, 38–43 (2016).
    [Crossref]
  25. T. Shih, E. Mazur, J. P. Richters, J. Gutowski, and T. Voss, “Ultrafast exciton dynamics in ZnO: Excitonic versus electron-hole plasma lasing,” J. Appl. Phys. 109(4), 043504 (2011).
    [Crossref]
  26. A. Pan, R. B. Liu, and B. S. Zou, “Phonon-assisted stimulated emission from single CdS nanoribbons at room temperature,” Appl. Phys. Lett. 88(17), 173102 (2006).
    [Crossref]
  27. T. F. J. Bille, “Recombination processes in highly excited CdS,” J. Appl. Phys. 45(9), 3937 (1974).
    [Crossref]
  28. Q. Zhang, X. Zhu, Y. Li, J. Liang, T. Chen, P. Fan, H. Zhou, W. Hu, X. Zhuang, and A. Pan, “Nanolaser arrays based on individual waved CdS nanoribbons,” Laser Photonics Rev. 10(3), 458–464 (2016).
    [Crossref]
  29. J. Dai, C. Xu, J. Li, Z. Tian, and Y. Lin, “Self-catalytic growth of CdS nanobelt and its Fabry–Perot lasing action,” Mater. Lett. 124(6), 43–46 (2014).
    [Crossref]
  30. B. Zou, R. Liu, F. Wang, A. Pan, L. Cao, and Z. L. Wang, “Lasing mechanism of ZnO nanowires/nanobelts at room temperature,” J. Phys. Chem. B 110(26), 12865–12873 (2006).
    [Crossref] [PubMed]
  31. D. Zhang, X. Ma, S. Wang, and X. Zhu, “Influence of Ambient Gas on Laser-Induced Breakdown Spectroscopy of Uranium Metal,” Plasma Sci. Technol. 17(11), 971–974 (2015).
    [Crossref]
  32. M. Dong, X. Mao, J. J. Gonzalez, J. Lu, and R. E. Russo, “Time-resolved LIBS of atomic and molecular carbon from coal in air, argon and helium,” J. Anal. At. Spectrom. 27(12), 2066 (2012).
    [Crossref]
  33. Y. Gu and L. J. Lauhon, “Space-charge-limited current in nanowires depleted by oxygen adsorption,” Appl. Phys. Lett. 89(14), 143102 (2006).
    [Crossref]
  34. H. W. Ra, R. Khan, J. T. Kim, B. R. Kang, K. H. Bai, and Y. H. Im, “Effects of surface modification of the individual ZnO nanowire with oxygen plasma treatment,” Mater. Lett. 63(28), 2516–2519 (2009).
    [Crossref]
  35. O. Ozcan, K. Pohl, P. Keil, and G. Grundmeier, “Effect of hydrogen and oxygen plasma treatments on the electrical and electrochemical properties of zinc oxide nanorod films on zinc substrates,” Electrochem. Commun. 13(8), 837–839 (2011).
    [Crossref]
  36. S. Park, H. Ko, Y. Mun, and C. Lee, “Photoluminescence in MgO-ZnO Nanorods Enhanced by Hydrogen Plasma Treatment,” Bull. Korean Chem. Soc. 34(11), 3367–3371 (2013).
    [Crossref]
  37. G. L. Song, S. Guo, X. X. Wang, Z. S. Li, B. S. Zou, H. M. Fan, and R. B. Liu, “Temperature dependent raman and photoluminescence of an individual Sn-doped CdS branched nanostructure,” New J. Phys. 17(6), 063024 (2015).
    [Crossref]
  38. J. S. Reparaz, F. Güell, M. R. Wagner, A. Hoffmann, A. Cornet, and J. R. Morante, “Size-dependent recombination dynamics in ZnO nanowires,” Appl. Phys. Lett. 96(5), 053105 (2010).
    [Crossref]

2016 (3)

A. K. Bansal, F. Antolini, S. Zhang, L. Stroea, L. Ortolani, M. Lanzi, E. Serra, S. Allard, U. Scherf, and I. D. W. Samuel, “Highly Luminescent Colloidal CdS Quantum Dots with Efficient Near-Infrared Electroluminescence in Light-Emitting Diodes,” J. Phys. Chem. C 120(3), 1871–1880 (2016).
[Crossref]

J. Park, S. Kim, Y. Sim, O. J. Yoon, M. S. Han, H. S. Yang, Y. Y. Kim, Y. M. Jhon, J. Kim, and M. J. Seong, “Simple synthesis of high-quality CdS nanowires using Au nanoparticles as catalyst,” J. Alloys Compd. 659, 38–43 (2016).
[Crossref]

Q. Zhang, X. Zhu, Y. Li, J. Liang, T. Chen, P. Fan, H. Zhou, W. Hu, X. Zhuang, and A. Pan, “Nanolaser arrays based on individual waved CdS nanoribbons,” Laser Photonics Rev. 10(3), 458–464 (2016).
[Crossref]

2015 (5)

D. Zhang, X. Ma, S. Wang, and X. Zhu, “Influence of Ambient Gas on Laser-Induced Breakdown Spectroscopy of Uranium Metal,” Plasma Sci. Technol. 17(11), 971–974 (2015).
[Crossref]

G. L. Song, S. Guo, X. X. Wang, Z. S. Li, B. S. Zou, H. M. Fan, and R. B. Liu, “Temperature dependent raman and photoluminescence of an individual Sn-doped CdS branched nanostructure,” New J. Phys. 17(6), 063024 (2015).
[Crossref]

X. Liu, Q. Zhang, W. K. Chong, J. N. Yip, X. Wen, Z. Li, F. Wei, G. Yu, Q. Xiong, and T. C. Sum, “Cooperative Enhancement of Second-Harmonic Generation from a Single CdS Nanobelt-Hybrid Plasmonic Structure,” ACS Nano 9(5), 5018–5026 (2015).
[Crossref] [PubMed]

X. Gao, N. Zhuo, C. Liao, L. Xiao, H. Wang, Y. Cui, and J. Zhang, “Industrial fabrication of Mn-doped CdS/ZnS core/shell nanocrystals for white-light-emitting diodes,” Opt. Mater. Express 5(10), 2164 (2015).
[Crossref]

C. Zhang, Y. Lu, Y. Ni, M. Li, L. Mao, C. Liu, D. Zhang, H. Ming, and P. Wang, “Plasmonic lasing of nanocavity embedding in metallic nanoantenna array,” Nano Lett. 15(2), 1382–1387 (2015).
[Crossref] [PubMed]

2014 (6)

J. Li, C. Xu, H. Nan, M. Jiang, G. Gao, Y. Lin, J. Dai, G. Zhu, Z. Ni, S. Wang, and Y. Li, “Graphene surface plasmon induced optical field confinement and lasing enhancement in ZnO whispering-gallery microcavity,” ACS Appl. Mater. Interfaces 6(13), 10469–10475 (2014).
[Crossref] [PubMed]

Y. G. Yoon, T. K. Kim, I. C. Hwang, H. S. Lee, B. W. Hwang, J. M. Moon, Y. J. Seo, S. W. Lee, M. H. Jo, and S. H. Lee, “Enhanced device performance of germanium nanowire junctionless (GeNW-JL) MOSFETs by germanide contact formation with Ar plasma treatment,” ACS Appl. Mater. Interfaces 6(5), 3150–3155 (2014).
[Crossref] [PubMed]

K. Panda, K. J. Sankaran, B. K. Panigrahi, N. H. Tai, and I. N. Lin, “Direct observation and mechanism for enhanced electron emission in hydrogen plasma-treated diamond nanowire films,” ACS Appl. Mater. Interfaces 6(11), 8531–8541 (2014).
[Crossref] [PubMed]

K. J. Sankaran, S. Kunuku, K. C. Leou, N. H. Tai, and I. N. Lin, “Enhancement of the electron field emission properties of ultrananocrystalline diamond films via hydrogen post-treatment,” ACS Appl. Mater. Interfaces 6(16), 14543–14551 (2014).
[Crossref] [PubMed]

Z. Yang, D. Wang, C. Meng, Z. Wu, Y. Wang, Y. Ma, L. Dai, X. Liu, T. Hasan, X. Liu, and Q. Yang, “Broadly defining lasing wavelengths in single bandgap-graded semiconductor nanowires,” Nano Lett. 14(6), 3153–3159 (2014).
[Crossref] [PubMed]

J. Dai, C. Xu, J. Li, Z. Tian, and Y. Lin, “Self-catalytic growth of CdS nanobelt and its Fabry–Perot lasing action,” Mater. Lett. 124(6), 43–46 (2014).
[Crossref]

2013 (5)

C.-M. Yang, I. S. Wang, Y.-T. Lin, C.-H. Huang, T.-F. Lu, C.-E. Lue, D. G. Pijanowska, M.-Y. Hua, and C.-S. Lai, “Low cost and flexible electrodes with NH3 plasma treatments in extended gate field effect transistors for urea detection,” Sens. Actuators B Chem. 187(10), 274–279 (2013).
[Crossref]

R. Liu, Z. A. Li, C. Zhang, X. Wang, M. A. Kamran, M. Farle, and B. Zou, “Single-step synthesis of monolithic comb-like CdS nanostructures with tunable waveguide properties,” Nano Lett. 13(6), 2997–3001 (2013).
[Crossref] [PubMed]

M. Abrar, G. U. Farwa, S. Naseer, A. Saeed, A. W. Khan, Z. Iqbal, S. T. Hussain, and M. Zakaullah, “Enhancement of the electrical properties of carbon nanotubes with Ar–N2 plasma treatment,” Curr. Appl. Phys. 13(3), 567–575 (2013).
[Crossref]

P. Guo, X. Zhuang, J. Xu, Q. Zhang, W. Hu, X. Zhu, X. Wang, Q. Wan, P. He, H. Zhou, and A. Pan, “Low-threshold nanowire laser based on composition-symmetric semiconductor nanowires,” Nano Lett. 13(3), 1251–1256 (2013).
[Crossref] [PubMed]

S. Park, H. Ko, Y. Mun, and C. Lee, “Photoluminescence in MgO-ZnO Nanorods Enhanced by Hydrogen Plasma Treatment,” Bull. Korean Chem. Soc. 34(11), 3367–3371 (2013).
[Crossref]

2012 (3)

C.-S. Wang, H.-Y. Lin, J.-M. Lin, and Y.-F. Chen, “Surface-Plasmon-Enhanced Ultraviolet Random Lasing from ZnO Nanowires Assisted by Pt Nanoparticles,” Appl. Phys. Express 5(6), 062003 (2012).
[Crossref]

G. Zhu, C. Xu, L. Cai, J. Li, Z. Shi, Y. Lin, G. Chen, T. Ding, Z. Tian, and J. Dai, “Lasing behavior modulation for ZnO whispering-gallery microcavities,” ACS Appl. Mater. Interfaces 4(11), 6195–6201 (2012).
[Crossref] [PubMed]

M. Dong, X. Mao, J. J. Gonzalez, J. Lu, and R. E. Russo, “Time-resolved LIBS of atomic and molecular carbon from coal in air, argon and helium,” J. Anal. At. Spectrom. 27(12), 2066 (2012).
[Crossref]

2011 (5)

O. Ozcan, K. Pohl, P. Keil, and G. Grundmeier, “Effect of hydrogen and oxygen plasma treatments on the electrical and electrochemical properties of zinc oxide nanorod films on zinc substrates,” Electrochem. Commun. 13(8), 837–839 (2011).
[Crossref]

C. P. Dietrich, M. Lange, C. Sturm, R. Schmidt-Grund, and M. Grundmann, “One- and two-dimensional cavity modes in ZnO nanowires,” New J. Phys. 13(10), 103021 (2011).
[Crossref]

B. Liu, R. Chen, X. L. Xu, D. H. Li, Y. Y. Zhao, Z. X. Shen, Q. H. Xiong, and H. D. Sun, “Exciton-Related Photoluminescence and Lasing in CdS Nanobelts,” J. Phys. Chem. C 115(26), 12826–12830 (2011).
[Crossref]

T. Shih, E. Mazur, J. P. Richters, J. Gutowski, and T. Voss, “Ultrafast exciton dynamics in ZnO: Excitonic versus electron-hole plasma lasing,” J. Appl. Phys. 109(4), 043504 (2011).
[Crossref]

C. J. Barrelet, H. S. Ee, S. H. Kwon, and H. G. Park, “Nonlinear mixing in nanowire subwavelength waveguides,” Nano Lett. 11(7), 3022–3025 (2011).
[Crossref] [PubMed]

2010 (2)

V. S. Muthukumar, J. Reppert, C. S. S. Sandeep, S. S. R. Krishnan, R. Podila, N. Kuthirummal, S. S. S. Sai, K. Venkataramaniah, R. Philip, and A. M. Rao, “Optical limiting properties of CdS nanowires,” Opt. Commun. 283(20), 4104–4107 (2010).
[Crossref]

J. S. Reparaz, F. Güell, M. R. Wagner, A. Hoffmann, A. Cornet, and J. R. Morante, “Size-dependent recombination dynamics in ZnO nanowires,” Appl. Phys. Lett. 96(5), 053105 (2010).
[Crossref]

2009 (2)

H. W. Ra, R. Khan, J. T. Kim, B. R. Kang, K. H. Bai, and Y. H. Im, “Effects of surface modification of the individual ZnO nanowire with oxygen plasma treatment,” Mater. Lett. 63(28), 2516–2519 (2009).
[Crossref]

Y.-T. Chen, H. Zhao, J. H. Yum, Y. Wang, F. Xue, F. Zhou, and J. C. Lee, “Improved electrical characteristics of TaN/Al[sub 2]O[sub 3]/In[sub 0.53]Ga[sub 0.47]As metal-oxide-semiconductor field-effect transistors by fluorine incorporation,” Appl. Phys. Lett. 95(1), 013501 (2009).
[Crossref]

2007 (1)

B. Hua, J. Motohisa, Y. Ding, S. Hara, and T. Fukui, “Characterization of Fabry-Pérot microcavity modes in GaAs nanowires fabricated by selective-area metal organic vapor phase epitaxy,” Appl. Phys. Lett. 91(13), 131112 (2007).
[Crossref]

2006 (4)

D. Wang, H. W. Seo, C. C. Tin, M. J. Bozack, J. R. Williams, M. Park, and Y. Tzeng, “Lasing in whispering gallery mode in ZnO nanonails,” J. Appl. Phys. 99(9), 093112 (2006).
[Crossref]

Y. Gu and L. J. Lauhon, “Space-charge-limited current in nanowires depleted by oxygen adsorption,” Appl. Phys. Lett. 89(14), 143102 (2006).
[Crossref]

B. Zou, R. Liu, F. Wang, A. Pan, L. Cao, and Z. L. Wang, “Lasing mechanism of ZnO nanowires/nanobelts at room temperature,” J. Phys. Chem. B 110(26), 12865–12873 (2006).
[Crossref] [PubMed]

A. Pan, R. B. Liu, and B. S. Zou, “Phonon-assisted stimulated emission from single CdS nanoribbons at room temperature,” Appl. Phys. Lett. 88(17), 173102 (2006).
[Crossref]

2005 (1)

O. Hayden, A. B. Greytak, and D. C. Bell, “Core—Shell Nanowire Light-Emitting Diodes,” Adv. Mater. 17(6), 701–704 (2005).
[Crossref]

1974 (1)

T. F. J. Bille, “Recombination processes in highly excited CdS,” J. Appl. Phys. 45(9), 3937 (1974).
[Crossref]

Abrar, M.

M. Abrar, G. U. Farwa, S. Naseer, A. Saeed, A. W. Khan, Z. Iqbal, S. T. Hussain, and M. Zakaullah, “Enhancement of the electrical properties of carbon nanotubes with Ar–N2 plasma treatment,” Curr. Appl. Phys. 13(3), 567–575 (2013).
[Crossref]

Allard, S.

A. K. Bansal, F. Antolini, S. Zhang, L. Stroea, L. Ortolani, M. Lanzi, E. Serra, S. Allard, U. Scherf, and I. D. W. Samuel, “Highly Luminescent Colloidal CdS Quantum Dots with Efficient Near-Infrared Electroluminescence in Light-Emitting Diodes,” J. Phys. Chem. C 120(3), 1871–1880 (2016).
[Crossref]

Antolini, F.

A. K. Bansal, F. Antolini, S. Zhang, L. Stroea, L. Ortolani, M. Lanzi, E. Serra, S. Allard, U. Scherf, and I. D. W. Samuel, “Highly Luminescent Colloidal CdS Quantum Dots with Efficient Near-Infrared Electroluminescence in Light-Emitting Diodes,” J. Phys. Chem. C 120(3), 1871–1880 (2016).
[Crossref]

Bai, K. H.

H. W. Ra, R. Khan, J. T. Kim, B. R. Kang, K. H. Bai, and Y. H. Im, “Effects of surface modification of the individual ZnO nanowire with oxygen plasma treatment,” Mater. Lett. 63(28), 2516–2519 (2009).
[Crossref]

Bansal, A. K.

A. K. Bansal, F. Antolini, S. Zhang, L. Stroea, L. Ortolani, M. Lanzi, E. Serra, S. Allard, U. Scherf, and I. D. W. Samuel, “Highly Luminescent Colloidal CdS Quantum Dots with Efficient Near-Infrared Electroluminescence in Light-Emitting Diodes,” J. Phys. Chem. C 120(3), 1871–1880 (2016).
[Crossref]

Barrelet, C. J.

C. J. Barrelet, H. S. Ee, S. H. Kwon, and H. G. Park, “Nonlinear mixing in nanowire subwavelength waveguides,” Nano Lett. 11(7), 3022–3025 (2011).
[Crossref] [PubMed]

Bell, D. C.

O. Hayden, A. B. Greytak, and D. C. Bell, “Core—Shell Nanowire Light-Emitting Diodes,” Adv. Mater. 17(6), 701–704 (2005).
[Crossref]

Bille, T. F. J.

T. F. J. Bille, “Recombination processes in highly excited CdS,” J. Appl. Phys. 45(9), 3937 (1974).
[Crossref]

Bozack, M. J.

D. Wang, H. W. Seo, C. C. Tin, M. J. Bozack, J. R. Williams, M. Park, and Y. Tzeng, “Lasing in whispering gallery mode in ZnO nanonails,” J. Appl. Phys. 99(9), 093112 (2006).
[Crossref]

Cai, L.

G. Zhu, C. Xu, L. Cai, J. Li, Z. Shi, Y. Lin, G. Chen, T. Ding, Z. Tian, and J. Dai, “Lasing behavior modulation for ZnO whispering-gallery microcavities,” ACS Appl. Mater. Interfaces 4(11), 6195–6201 (2012).
[Crossref] [PubMed]

Cao, L.

B. Zou, R. Liu, F. Wang, A. Pan, L. Cao, and Z. L. Wang, “Lasing mechanism of ZnO nanowires/nanobelts at room temperature,” J. Phys. Chem. B 110(26), 12865–12873 (2006).
[Crossref] [PubMed]

Chen, G.

G. Zhu, C. Xu, L. Cai, J. Li, Z. Shi, Y. Lin, G. Chen, T. Ding, Z. Tian, and J. Dai, “Lasing behavior modulation for ZnO whispering-gallery microcavities,” ACS Appl. Mater. Interfaces 4(11), 6195–6201 (2012).
[Crossref] [PubMed]

Chen, R.

B. Liu, R. Chen, X. L. Xu, D. H. Li, Y. Y. Zhao, Z. X. Shen, Q. H. Xiong, and H. D. Sun, “Exciton-Related Photoluminescence and Lasing in CdS Nanobelts,” J. Phys. Chem. C 115(26), 12826–12830 (2011).
[Crossref]

Chen, T.

Q. Zhang, X. Zhu, Y. Li, J. Liang, T. Chen, P. Fan, H. Zhou, W. Hu, X. Zhuang, and A. Pan, “Nanolaser arrays based on individual waved CdS nanoribbons,” Laser Photonics Rev. 10(3), 458–464 (2016).
[Crossref]

Chen, Y.-F.

C.-S. Wang, H.-Y. Lin, J.-M. Lin, and Y.-F. Chen, “Surface-Plasmon-Enhanced Ultraviolet Random Lasing from ZnO Nanowires Assisted by Pt Nanoparticles,” Appl. Phys. Express 5(6), 062003 (2012).
[Crossref]

Chen, Y.-T.

Y.-T. Chen, H. Zhao, J. H. Yum, Y. Wang, F. Xue, F. Zhou, and J. C. Lee, “Improved electrical characteristics of TaN/Al[sub 2]O[sub 3]/In[sub 0.53]Ga[sub 0.47]As metal-oxide-semiconductor field-effect transistors by fluorine incorporation,” Appl. Phys. Lett. 95(1), 013501 (2009).
[Crossref]

Chong, W. K.

X. Liu, Q. Zhang, W. K. Chong, J. N. Yip, X. Wen, Z. Li, F. Wei, G. Yu, Q. Xiong, and T. C. Sum, “Cooperative Enhancement of Second-Harmonic Generation from a Single CdS Nanobelt-Hybrid Plasmonic Structure,” ACS Nano 9(5), 5018–5026 (2015).
[Crossref] [PubMed]

Cornet, A.

J. S. Reparaz, F. Güell, M. R. Wagner, A. Hoffmann, A. Cornet, and J. R. Morante, “Size-dependent recombination dynamics in ZnO nanowires,” Appl. Phys. Lett. 96(5), 053105 (2010).
[Crossref]

Cui, Y.

Dai, J.

J. Dai, C. Xu, J. Li, Z. Tian, and Y. Lin, “Self-catalytic growth of CdS nanobelt and its Fabry–Perot lasing action,” Mater. Lett. 124(6), 43–46 (2014).
[Crossref]

J. Li, C. Xu, H. Nan, M. Jiang, G. Gao, Y. Lin, J. Dai, G. Zhu, Z. Ni, S. Wang, and Y. Li, “Graphene surface plasmon induced optical field confinement and lasing enhancement in ZnO whispering-gallery microcavity,” ACS Appl. Mater. Interfaces 6(13), 10469–10475 (2014).
[Crossref] [PubMed]

G. Zhu, C. Xu, L. Cai, J. Li, Z. Shi, Y. Lin, G. Chen, T. Ding, Z. Tian, and J. Dai, “Lasing behavior modulation for ZnO whispering-gallery microcavities,” ACS Appl. Mater. Interfaces 4(11), 6195–6201 (2012).
[Crossref] [PubMed]

Dai, L.

Z. Yang, D. Wang, C. Meng, Z. Wu, Y. Wang, Y. Ma, L. Dai, X. Liu, T. Hasan, X. Liu, and Q. Yang, “Broadly defining lasing wavelengths in single bandgap-graded semiconductor nanowires,” Nano Lett. 14(6), 3153–3159 (2014).
[Crossref] [PubMed]

Dietrich, C. P.

C. P. Dietrich, M. Lange, C. Sturm, R. Schmidt-Grund, and M. Grundmann, “One- and two-dimensional cavity modes in ZnO nanowires,” New J. Phys. 13(10), 103021 (2011).
[Crossref]

Ding, T.

G. Zhu, C. Xu, L. Cai, J. Li, Z. Shi, Y. Lin, G. Chen, T. Ding, Z. Tian, and J. Dai, “Lasing behavior modulation for ZnO whispering-gallery microcavities,” ACS Appl. Mater. Interfaces 4(11), 6195–6201 (2012).
[Crossref] [PubMed]

Ding, Y.

B. Hua, J. Motohisa, Y. Ding, S. Hara, and T. Fukui, “Characterization of Fabry-Pérot microcavity modes in GaAs nanowires fabricated by selective-area metal organic vapor phase epitaxy,” Appl. Phys. Lett. 91(13), 131112 (2007).
[Crossref]

Dong, M.

M. Dong, X. Mao, J. J. Gonzalez, J. Lu, and R. E. Russo, “Time-resolved LIBS of atomic and molecular carbon from coal in air, argon and helium,” J. Anal. At. Spectrom. 27(12), 2066 (2012).
[Crossref]

Ee, H. S.

C. J. Barrelet, H. S. Ee, S. H. Kwon, and H. G. Park, “Nonlinear mixing in nanowire subwavelength waveguides,” Nano Lett. 11(7), 3022–3025 (2011).
[Crossref] [PubMed]

Fan, H. M.

G. L. Song, S. Guo, X. X. Wang, Z. S. Li, B. S. Zou, H. M. Fan, and R. B. Liu, “Temperature dependent raman and photoluminescence of an individual Sn-doped CdS branched nanostructure,” New J. Phys. 17(6), 063024 (2015).
[Crossref]

Fan, P.

Q. Zhang, X. Zhu, Y. Li, J. Liang, T. Chen, P. Fan, H. Zhou, W. Hu, X. Zhuang, and A. Pan, “Nanolaser arrays based on individual waved CdS nanoribbons,” Laser Photonics Rev. 10(3), 458–464 (2016).
[Crossref]

Farle, M.

R. Liu, Z. A. Li, C. Zhang, X. Wang, M. A. Kamran, M. Farle, and B. Zou, “Single-step synthesis of monolithic comb-like CdS nanostructures with tunable waveguide properties,” Nano Lett. 13(6), 2997–3001 (2013).
[Crossref] [PubMed]

Farwa, G. U.

M. Abrar, G. U. Farwa, S. Naseer, A. Saeed, A. W. Khan, Z. Iqbal, S. T. Hussain, and M. Zakaullah, “Enhancement of the electrical properties of carbon nanotubes with Ar–N2 plasma treatment,” Curr. Appl. Phys. 13(3), 567–575 (2013).
[Crossref]

Fukui, T.

B. Hua, J. Motohisa, Y. Ding, S. Hara, and T. Fukui, “Characterization of Fabry-Pérot microcavity modes in GaAs nanowires fabricated by selective-area metal organic vapor phase epitaxy,” Appl. Phys. Lett. 91(13), 131112 (2007).
[Crossref]

Gao, G.

J. Li, C. Xu, H. Nan, M. Jiang, G. Gao, Y. Lin, J. Dai, G. Zhu, Z. Ni, S. Wang, and Y. Li, “Graphene surface plasmon induced optical field confinement and lasing enhancement in ZnO whispering-gallery microcavity,” ACS Appl. Mater. Interfaces 6(13), 10469–10475 (2014).
[Crossref] [PubMed]

Gao, X.

Gonzalez, J. J.

M. Dong, X. Mao, J. J. Gonzalez, J. Lu, and R. E. Russo, “Time-resolved LIBS of atomic and molecular carbon from coal in air, argon and helium,” J. Anal. At. Spectrom. 27(12), 2066 (2012).
[Crossref]

Greytak, A. B.

O. Hayden, A. B. Greytak, and D. C. Bell, “Core—Shell Nanowire Light-Emitting Diodes,” Adv. Mater. 17(6), 701–704 (2005).
[Crossref]

Grundmann, M.

C. P. Dietrich, M. Lange, C. Sturm, R. Schmidt-Grund, and M. Grundmann, “One- and two-dimensional cavity modes in ZnO nanowires,” New J. Phys. 13(10), 103021 (2011).
[Crossref]

Grundmeier, G.

O. Ozcan, K. Pohl, P. Keil, and G. Grundmeier, “Effect of hydrogen and oxygen plasma treatments on the electrical and electrochemical properties of zinc oxide nanorod films on zinc substrates,” Electrochem. Commun. 13(8), 837–839 (2011).
[Crossref]

Gu, Y.

Y. Gu and L. J. Lauhon, “Space-charge-limited current in nanowires depleted by oxygen adsorption,” Appl. Phys. Lett. 89(14), 143102 (2006).
[Crossref]

Güell, F.

J. S. Reparaz, F. Güell, M. R. Wagner, A. Hoffmann, A. Cornet, and J. R. Morante, “Size-dependent recombination dynamics in ZnO nanowires,” Appl. Phys. Lett. 96(5), 053105 (2010).
[Crossref]

Guo, P.

P. Guo, X. Zhuang, J. Xu, Q. Zhang, W. Hu, X. Zhu, X. Wang, Q. Wan, P. He, H. Zhou, and A. Pan, “Low-threshold nanowire laser based on composition-symmetric semiconductor nanowires,” Nano Lett. 13(3), 1251–1256 (2013).
[Crossref] [PubMed]

Guo, S.

G. L. Song, S. Guo, X. X. Wang, Z. S. Li, B. S. Zou, H. M. Fan, and R. B. Liu, “Temperature dependent raman and photoluminescence of an individual Sn-doped CdS branched nanostructure,” New J. Phys. 17(6), 063024 (2015).
[Crossref]

Gutowski, J.

T. Shih, E. Mazur, J. P. Richters, J. Gutowski, and T. Voss, “Ultrafast exciton dynamics in ZnO: Excitonic versus electron-hole plasma lasing,” J. Appl. Phys. 109(4), 043504 (2011).
[Crossref]

Han, M. S.

J. Park, S. Kim, Y. Sim, O. J. Yoon, M. S. Han, H. S. Yang, Y. Y. Kim, Y. M. Jhon, J. Kim, and M. J. Seong, “Simple synthesis of high-quality CdS nanowires using Au nanoparticles as catalyst,” J. Alloys Compd. 659, 38–43 (2016).
[Crossref]

Hara, S.

B. Hua, J. Motohisa, Y. Ding, S. Hara, and T. Fukui, “Characterization of Fabry-Pérot microcavity modes in GaAs nanowires fabricated by selective-area metal organic vapor phase epitaxy,” Appl. Phys. Lett. 91(13), 131112 (2007).
[Crossref]

Hasan, T.

Z. Yang, D. Wang, C. Meng, Z. Wu, Y. Wang, Y. Ma, L. Dai, X. Liu, T. Hasan, X. Liu, and Q. Yang, “Broadly defining lasing wavelengths in single bandgap-graded semiconductor nanowires,” Nano Lett. 14(6), 3153–3159 (2014).
[Crossref] [PubMed]

Hayden, O.

O. Hayden, A. B. Greytak, and D. C. Bell, “Core—Shell Nanowire Light-Emitting Diodes,” Adv. Mater. 17(6), 701–704 (2005).
[Crossref]

He, P.

P. Guo, X. Zhuang, J. Xu, Q. Zhang, W. Hu, X. Zhu, X. Wang, Q. Wan, P. He, H. Zhou, and A. Pan, “Low-threshold nanowire laser based on composition-symmetric semiconductor nanowires,” Nano Lett. 13(3), 1251–1256 (2013).
[Crossref] [PubMed]

Hoffmann, A.

J. S. Reparaz, F. Güell, M. R. Wagner, A. Hoffmann, A. Cornet, and J. R. Morante, “Size-dependent recombination dynamics in ZnO nanowires,” Appl. Phys. Lett. 96(5), 053105 (2010).
[Crossref]

Hu, W.

Q. Zhang, X. Zhu, Y. Li, J. Liang, T. Chen, P. Fan, H. Zhou, W. Hu, X. Zhuang, and A. Pan, “Nanolaser arrays based on individual waved CdS nanoribbons,” Laser Photonics Rev. 10(3), 458–464 (2016).
[Crossref]

P. Guo, X. Zhuang, J. Xu, Q. Zhang, W. Hu, X. Zhu, X. Wang, Q. Wan, P. He, H. Zhou, and A. Pan, “Low-threshold nanowire laser based on composition-symmetric semiconductor nanowires,” Nano Lett. 13(3), 1251–1256 (2013).
[Crossref] [PubMed]

Hua, B.

B. Hua, J. Motohisa, Y. Ding, S. Hara, and T. Fukui, “Characterization of Fabry-Pérot microcavity modes in GaAs nanowires fabricated by selective-area metal organic vapor phase epitaxy,” Appl. Phys. Lett. 91(13), 131112 (2007).
[Crossref]

Hua, M.-Y.

C.-M. Yang, I. S. Wang, Y.-T. Lin, C.-H. Huang, T.-F. Lu, C.-E. Lue, D. G. Pijanowska, M.-Y. Hua, and C.-S. Lai, “Low cost and flexible electrodes with NH3 plasma treatments in extended gate field effect transistors for urea detection,” Sens. Actuators B Chem. 187(10), 274–279 (2013).
[Crossref]

Huang, C.-H.

C.-M. Yang, I. S. Wang, Y.-T. Lin, C.-H. Huang, T.-F. Lu, C.-E. Lue, D. G. Pijanowska, M.-Y. Hua, and C.-S. Lai, “Low cost and flexible electrodes with NH3 plasma treatments in extended gate field effect transistors for urea detection,” Sens. Actuators B Chem. 187(10), 274–279 (2013).
[Crossref]

Hussain, S. T.

M. Abrar, G. U. Farwa, S. Naseer, A. Saeed, A. W. Khan, Z. Iqbal, S. T. Hussain, and M. Zakaullah, “Enhancement of the electrical properties of carbon nanotubes with Ar–N2 plasma treatment,” Curr. Appl. Phys. 13(3), 567–575 (2013).
[Crossref]

Hwang, B. W.

Y. G. Yoon, T. K. Kim, I. C. Hwang, H. S. Lee, B. W. Hwang, J. M. Moon, Y. J. Seo, S. W. Lee, M. H. Jo, and S. H. Lee, “Enhanced device performance of germanium nanowire junctionless (GeNW-JL) MOSFETs by germanide contact formation with Ar plasma treatment,” ACS Appl. Mater. Interfaces 6(5), 3150–3155 (2014).
[Crossref] [PubMed]

Hwang, I. C.

Y. G. Yoon, T. K. Kim, I. C. Hwang, H. S. Lee, B. W. Hwang, J. M. Moon, Y. J. Seo, S. W. Lee, M. H. Jo, and S. H. Lee, “Enhanced device performance of germanium nanowire junctionless (GeNW-JL) MOSFETs by germanide contact formation with Ar plasma treatment,” ACS Appl. Mater. Interfaces 6(5), 3150–3155 (2014).
[Crossref] [PubMed]

Im, Y. H.

H. W. Ra, R. Khan, J. T. Kim, B. R. Kang, K. H. Bai, and Y. H. Im, “Effects of surface modification of the individual ZnO nanowire with oxygen plasma treatment,” Mater. Lett. 63(28), 2516–2519 (2009).
[Crossref]

Iqbal, Z.

M. Abrar, G. U. Farwa, S. Naseer, A. Saeed, A. W. Khan, Z. Iqbal, S. T. Hussain, and M. Zakaullah, “Enhancement of the electrical properties of carbon nanotubes with Ar–N2 plasma treatment,” Curr. Appl. Phys. 13(3), 567–575 (2013).
[Crossref]

Jhon, Y. M.

J. Park, S. Kim, Y. Sim, O. J. Yoon, M. S. Han, H. S. Yang, Y. Y. Kim, Y. M. Jhon, J. Kim, and M. J. Seong, “Simple synthesis of high-quality CdS nanowires using Au nanoparticles as catalyst,” J. Alloys Compd. 659, 38–43 (2016).
[Crossref]

Jiang, M.

J. Li, C. Xu, H. Nan, M. Jiang, G. Gao, Y. Lin, J. Dai, G. Zhu, Z. Ni, S. Wang, and Y. Li, “Graphene surface plasmon induced optical field confinement and lasing enhancement in ZnO whispering-gallery microcavity,” ACS Appl. Mater. Interfaces 6(13), 10469–10475 (2014).
[Crossref] [PubMed]

Jo, M. H.

Y. G. Yoon, T. K. Kim, I. C. Hwang, H. S. Lee, B. W. Hwang, J. M. Moon, Y. J. Seo, S. W. Lee, M. H. Jo, and S. H. Lee, “Enhanced device performance of germanium nanowire junctionless (GeNW-JL) MOSFETs by germanide contact formation with Ar plasma treatment,” ACS Appl. Mater. Interfaces 6(5), 3150–3155 (2014).
[Crossref] [PubMed]

Kamran, M. A.

R. Liu, Z. A. Li, C. Zhang, X. Wang, M. A. Kamran, M. Farle, and B. Zou, “Single-step synthesis of monolithic comb-like CdS nanostructures with tunable waveguide properties,” Nano Lett. 13(6), 2997–3001 (2013).
[Crossref] [PubMed]

Kang, B. R.

H. W. Ra, R. Khan, J. T. Kim, B. R. Kang, K. H. Bai, and Y. H. Im, “Effects of surface modification of the individual ZnO nanowire with oxygen plasma treatment,” Mater. Lett. 63(28), 2516–2519 (2009).
[Crossref]

Keil, P.

O. Ozcan, K. Pohl, P. Keil, and G. Grundmeier, “Effect of hydrogen and oxygen plasma treatments on the electrical and electrochemical properties of zinc oxide nanorod films on zinc substrates,” Electrochem. Commun. 13(8), 837–839 (2011).
[Crossref]

Khan, A. W.

M. Abrar, G. U. Farwa, S. Naseer, A. Saeed, A. W. Khan, Z. Iqbal, S. T. Hussain, and M. Zakaullah, “Enhancement of the electrical properties of carbon nanotubes with Ar–N2 plasma treatment,” Curr. Appl. Phys. 13(3), 567–575 (2013).
[Crossref]

Khan, R.

H. W. Ra, R. Khan, J. T. Kim, B. R. Kang, K. H. Bai, and Y. H. Im, “Effects of surface modification of the individual ZnO nanowire with oxygen plasma treatment,” Mater. Lett. 63(28), 2516–2519 (2009).
[Crossref]

Kim, J.

J. Park, S. Kim, Y. Sim, O. J. Yoon, M. S. Han, H. S. Yang, Y. Y. Kim, Y. M. Jhon, J. Kim, and M. J. Seong, “Simple synthesis of high-quality CdS nanowires using Au nanoparticles as catalyst,” J. Alloys Compd. 659, 38–43 (2016).
[Crossref]

Kim, J. T.

H. W. Ra, R. Khan, J. T. Kim, B. R. Kang, K. H. Bai, and Y. H. Im, “Effects of surface modification of the individual ZnO nanowire with oxygen plasma treatment,” Mater. Lett. 63(28), 2516–2519 (2009).
[Crossref]

Kim, S.

J. Park, S. Kim, Y. Sim, O. J. Yoon, M. S. Han, H. S. Yang, Y. Y. Kim, Y. M. Jhon, J. Kim, and M. J. Seong, “Simple synthesis of high-quality CdS nanowires using Au nanoparticles as catalyst,” J. Alloys Compd. 659, 38–43 (2016).
[Crossref]

Kim, T. K.

Y. G. Yoon, T. K. Kim, I. C. Hwang, H. S. Lee, B. W. Hwang, J. M. Moon, Y. J. Seo, S. W. Lee, M. H. Jo, and S. H. Lee, “Enhanced device performance of germanium nanowire junctionless (GeNW-JL) MOSFETs by germanide contact formation with Ar plasma treatment,” ACS Appl. Mater. Interfaces 6(5), 3150–3155 (2014).
[Crossref] [PubMed]

Kim, Y. Y.

J. Park, S. Kim, Y. Sim, O. J. Yoon, M. S. Han, H. S. Yang, Y. Y. Kim, Y. M. Jhon, J. Kim, and M. J. Seong, “Simple synthesis of high-quality CdS nanowires using Au nanoparticles as catalyst,” J. Alloys Compd. 659, 38–43 (2016).
[Crossref]

Ko, H.

S. Park, H. Ko, Y. Mun, and C. Lee, “Photoluminescence in MgO-ZnO Nanorods Enhanced by Hydrogen Plasma Treatment,” Bull. Korean Chem. Soc. 34(11), 3367–3371 (2013).
[Crossref]

Krishnan, S. S. R.

V. S. Muthukumar, J. Reppert, C. S. S. Sandeep, S. S. R. Krishnan, R. Podila, N. Kuthirummal, S. S. S. Sai, K. Venkataramaniah, R. Philip, and A. M. Rao, “Optical limiting properties of CdS nanowires,” Opt. Commun. 283(20), 4104–4107 (2010).
[Crossref]

Kunuku, S.

K. J. Sankaran, S. Kunuku, K. C. Leou, N. H. Tai, and I. N. Lin, “Enhancement of the electron field emission properties of ultrananocrystalline diamond films via hydrogen post-treatment,” ACS Appl. Mater. Interfaces 6(16), 14543–14551 (2014).
[Crossref] [PubMed]

Kuthirummal, N.

V. S. Muthukumar, J. Reppert, C. S. S. Sandeep, S. S. R. Krishnan, R. Podila, N. Kuthirummal, S. S. S. Sai, K. Venkataramaniah, R. Philip, and A. M. Rao, “Optical limiting properties of CdS nanowires,” Opt. Commun. 283(20), 4104–4107 (2010).
[Crossref]

Kwon, S. H.

C. J. Barrelet, H. S. Ee, S. H. Kwon, and H. G. Park, “Nonlinear mixing in nanowire subwavelength waveguides,” Nano Lett. 11(7), 3022–3025 (2011).
[Crossref] [PubMed]

Lai, C.-S.

C.-M. Yang, I. S. Wang, Y.-T. Lin, C.-H. Huang, T.-F. Lu, C.-E. Lue, D. G. Pijanowska, M.-Y. Hua, and C.-S. Lai, “Low cost and flexible electrodes with NH3 plasma treatments in extended gate field effect transistors for urea detection,” Sens. Actuators B Chem. 187(10), 274–279 (2013).
[Crossref]

Lange, M.

C. P. Dietrich, M. Lange, C. Sturm, R. Schmidt-Grund, and M. Grundmann, “One- and two-dimensional cavity modes in ZnO nanowires,” New J. Phys. 13(10), 103021 (2011).
[Crossref]

Lanzi, M.

A. K. Bansal, F. Antolini, S. Zhang, L. Stroea, L. Ortolani, M. Lanzi, E. Serra, S. Allard, U. Scherf, and I. D. W. Samuel, “Highly Luminescent Colloidal CdS Quantum Dots with Efficient Near-Infrared Electroluminescence in Light-Emitting Diodes,” J. Phys. Chem. C 120(3), 1871–1880 (2016).
[Crossref]

Lauhon, L. J.

Y. Gu and L. J. Lauhon, “Space-charge-limited current in nanowires depleted by oxygen adsorption,” Appl. Phys. Lett. 89(14), 143102 (2006).
[Crossref]

Lee, C.

S. Park, H. Ko, Y. Mun, and C. Lee, “Photoluminescence in MgO-ZnO Nanorods Enhanced by Hydrogen Plasma Treatment,” Bull. Korean Chem. Soc. 34(11), 3367–3371 (2013).
[Crossref]

Lee, H. S.

Y. G. Yoon, T. K. Kim, I. C. Hwang, H. S. Lee, B. W. Hwang, J. M. Moon, Y. J. Seo, S. W. Lee, M. H. Jo, and S. H. Lee, “Enhanced device performance of germanium nanowire junctionless (GeNW-JL) MOSFETs by germanide contact formation with Ar plasma treatment,” ACS Appl. Mater. Interfaces 6(5), 3150–3155 (2014).
[Crossref] [PubMed]

Lee, J. C.

Y.-T. Chen, H. Zhao, J. H. Yum, Y. Wang, F. Xue, F. Zhou, and J. C. Lee, “Improved electrical characteristics of TaN/Al[sub 2]O[sub 3]/In[sub 0.53]Ga[sub 0.47]As metal-oxide-semiconductor field-effect transistors by fluorine incorporation,” Appl. Phys. Lett. 95(1), 013501 (2009).
[Crossref]

Lee, S. H.

Y. G. Yoon, T. K. Kim, I. C. Hwang, H. S. Lee, B. W. Hwang, J. M. Moon, Y. J. Seo, S. W. Lee, M. H. Jo, and S. H. Lee, “Enhanced device performance of germanium nanowire junctionless (GeNW-JL) MOSFETs by germanide contact formation with Ar plasma treatment,” ACS Appl. Mater. Interfaces 6(5), 3150–3155 (2014).
[Crossref] [PubMed]

Lee, S. W.

Y. G. Yoon, T. K. Kim, I. C. Hwang, H. S. Lee, B. W. Hwang, J. M. Moon, Y. J. Seo, S. W. Lee, M. H. Jo, and S. H. Lee, “Enhanced device performance of germanium nanowire junctionless (GeNW-JL) MOSFETs by germanide contact formation with Ar plasma treatment,” ACS Appl. Mater. Interfaces 6(5), 3150–3155 (2014).
[Crossref] [PubMed]

Leou, K. C.

K. J. Sankaran, S. Kunuku, K. C. Leou, N. H. Tai, and I. N. Lin, “Enhancement of the electron field emission properties of ultrananocrystalline diamond films via hydrogen post-treatment,” ACS Appl. Mater. Interfaces 6(16), 14543–14551 (2014).
[Crossref] [PubMed]

Li, D. H.

B. Liu, R. Chen, X. L. Xu, D. H. Li, Y. Y. Zhao, Z. X. Shen, Q. H. Xiong, and H. D. Sun, “Exciton-Related Photoluminescence and Lasing in CdS Nanobelts,” J. Phys. Chem. C 115(26), 12826–12830 (2011).
[Crossref]

Li, J.

J. Li, C. Xu, H. Nan, M. Jiang, G. Gao, Y. Lin, J. Dai, G. Zhu, Z. Ni, S. Wang, and Y. Li, “Graphene surface plasmon induced optical field confinement and lasing enhancement in ZnO whispering-gallery microcavity,” ACS Appl. Mater. Interfaces 6(13), 10469–10475 (2014).
[Crossref] [PubMed]

J. Dai, C. Xu, J. Li, Z. Tian, and Y. Lin, “Self-catalytic growth of CdS nanobelt and its Fabry–Perot lasing action,” Mater. Lett. 124(6), 43–46 (2014).
[Crossref]

G. Zhu, C. Xu, L. Cai, J. Li, Z. Shi, Y. Lin, G. Chen, T. Ding, Z. Tian, and J. Dai, “Lasing behavior modulation for ZnO whispering-gallery microcavities,” ACS Appl. Mater. Interfaces 4(11), 6195–6201 (2012).
[Crossref] [PubMed]

Li, M.

C. Zhang, Y. Lu, Y. Ni, M. Li, L. Mao, C. Liu, D. Zhang, H. Ming, and P. Wang, “Plasmonic lasing of nanocavity embedding in metallic nanoantenna array,” Nano Lett. 15(2), 1382–1387 (2015).
[Crossref] [PubMed]

Li, Y.

Q. Zhang, X. Zhu, Y. Li, J. Liang, T. Chen, P. Fan, H. Zhou, W. Hu, X. Zhuang, and A. Pan, “Nanolaser arrays based on individual waved CdS nanoribbons,” Laser Photonics Rev. 10(3), 458–464 (2016).
[Crossref]

J. Li, C. Xu, H. Nan, M. Jiang, G. Gao, Y. Lin, J. Dai, G. Zhu, Z. Ni, S. Wang, and Y. Li, “Graphene surface plasmon induced optical field confinement and lasing enhancement in ZnO whispering-gallery microcavity,” ACS Appl. Mater. Interfaces 6(13), 10469–10475 (2014).
[Crossref] [PubMed]

Li, Z.

X. Liu, Q. Zhang, W. K. Chong, J. N. Yip, X. Wen, Z. Li, F. Wei, G. Yu, Q. Xiong, and T. C. Sum, “Cooperative Enhancement of Second-Harmonic Generation from a Single CdS Nanobelt-Hybrid Plasmonic Structure,” ACS Nano 9(5), 5018–5026 (2015).
[Crossref] [PubMed]

Li, Z. A.

R. Liu, Z. A. Li, C. Zhang, X. Wang, M. A. Kamran, M. Farle, and B. Zou, “Single-step synthesis of monolithic comb-like CdS nanostructures with tunable waveguide properties,” Nano Lett. 13(6), 2997–3001 (2013).
[Crossref] [PubMed]

Li, Z. S.

G. L. Song, S. Guo, X. X. Wang, Z. S. Li, B. S. Zou, H. M. Fan, and R. B. Liu, “Temperature dependent raman and photoluminescence of an individual Sn-doped CdS branched nanostructure,” New J. Phys. 17(6), 063024 (2015).
[Crossref]

Liang, J.

Q. Zhang, X. Zhu, Y. Li, J. Liang, T. Chen, P. Fan, H. Zhou, W. Hu, X. Zhuang, and A. Pan, “Nanolaser arrays based on individual waved CdS nanoribbons,” Laser Photonics Rev. 10(3), 458–464 (2016).
[Crossref]

Liao, C.

Lin, H.-Y.

C.-S. Wang, H.-Y. Lin, J.-M. Lin, and Y.-F. Chen, “Surface-Plasmon-Enhanced Ultraviolet Random Lasing from ZnO Nanowires Assisted by Pt Nanoparticles,” Appl. Phys. Express 5(6), 062003 (2012).
[Crossref]

Lin, I. N.

K. J. Sankaran, S. Kunuku, K. C. Leou, N. H. Tai, and I. N. Lin, “Enhancement of the electron field emission properties of ultrananocrystalline diamond films via hydrogen post-treatment,” ACS Appl. Mater. Interfaces 6(16), 14543–14551 (2014).
[Crossref] [PubMed]

K. Panda, K. J. Sankaran, B. K. Panigrahi, N. H. Tai, and I. N. Lin, “Direct observation and mechanism for enhanced electron emission in hydrogen plasma-treated diamond nanowire films,” ACS Appl. Mater. Interfaces 6(11), 8531–8541 (2014).
[Crossref] [PubMed]

Lin, J.-M.

C.-S. Wang, H.-Y. Lin, J.-M. Lin, and Y.-F. Chen, “Surface-Plasmon-Enhanced Ultraviolet Random Lasing from ZnO Nanowires Assisted by Pt Nanoparticles,” Appl. Phys. Express 5(6), 062003 (2012).
[Crossref]

Lin, Y.

J. Li, C. Xu, H. Nan, M. Jiang, G. Gao, Y. Lin, J. Dai, G. Zhu, Z. Ni, S. Wang, and Y. Li, “Graphene surface plasmon induced optical field confinement and lasing enhancement in ZnO whispering-gallery microcavity,” ACS Appl. Mater. Interfaces 6(13), 10469–10475 (2014).
[Crossref] [PubMed]

J. Dai, C. Xu, J. Li, Z. Tian, and Y. Lin, “Self-catalytic growth of CdS nanobelt and its Fabry–Perot lasing action,” Mater. Lett. 124(6), 43–46 (2014).
[Crossref]

G. Zhu, C. Xu, L. Cai, J. Li, Z. Shi, Y. Lin, G. Chen, T. Ding, Z. Tian, and J. Dai, “Lasing behavior modulation for ZnO whispering-gallery microcavities,” ACS Appl. Mater. Interfaces 4(11), 6195–6201 (2012).
[Crossref] [PubMed]

Lin, Y.-T.

C.-M. Yang, I. S. Wang, Y.-T. Lin, C.-H. Huang, T.-F. Lu, C.-E. Lue, D. G. Pijanowska, M.-Y. Hua, and C.-S. Lai, “Low cost and flexible electrodes with NH3 plasma treatments in extended gate field effect transistors for urea detection,” Sens. Actuators B Chem. 187(10), 274–279 (2013).
[Crossref]

Liu, B.

B. Liu, R. Chen, X. L. Xu, D. H. Li, Y. Y. Zhao, Z. X. Shen, Q. H. Xiong, and H. D. Sun, “Exciton-Related Photoluminescence and Lasing in CdS Nanobelts,” J. Phys. Chem. C 115(26), 12826–12830 (2011).
[Crossref]

Liu, C.

C. Zhang, Y. Lu, Y. Ni, M. Li, L. Mao, C. Liu, D. Zhang, H. Ming, and P. Wang, “Plasmonic lasing of nanocavity embedding in metallic nanoantenna array,” Nano Lett. 15(2), 1382–1387 (2015).
[Crossref] [PubMed]

Liu, R.

R. Liu, Z. A. Li, C. Zhang, X. Wang, M. A. Kamran, M. Farle, and B. Zou, “Single-step synthesis of monolithic comb-like CdS nanostructures with tunable waveguide properties,” Nano Lett. 13(6), 2997–3001 (2013).
[Crossref] [PubMed]

B. Zou, R. Liu, F. Wang, A. Pan, L. Cao, and Z. L. Wang, “Lasing mechanism of ZnO nanowires/nanobelts at room temperature,” J. Phys. Chem. B 110(26), 12865–12873 (2006).
[Crossref] [PubMed]

Liu, R. B.

G. L. Song, S. Guo, X. X. Wang, Z. S. Li, B. S. Zou, H. M. Fan, and R. B. Liu, “Temperature dependent raman and photoluminescence of an individual Sn-doped CdS branched nanostructure,” New J. Phys. 17(6), 063024 (2015).
[Crossref]

A. Pan, R. B. Liu, and B. S. Zou, “Phonon-assisted stimulated emission from single CdS nanoribbons at room temperature,” Appl. Phys. Lett. 88(17), 173102 (2006).
[Crossref]

Liu, X.

X. Liu, Q. Zhang, W. K. Chong, J. N. Yip, X. Wen, Z. Li, F. Wei, G. Yu, Q. Xiong, and T. C. Sum, “Cooperative Enhancement of Second-Harmonic Generation from a Single CdS Nanobelt-Hybrid Plasmonic Structure,” ACS Nano 9(5), 5018–5026 (2015).
[Crossref] [PubMed]

Z. Yang, D. Wang, C. Meng, Z. Wu, Y. Wang, Y. Ma, L. Dai, X. Liu, T. Hasan, X. Liu, and Q. Yang, “Broadly defining lasing wavelengths in single bandgap-graded semiconductor nanowires,” Nano Lett. 14(6), 3153–3159 (2014).
[Crossref] [PubMed]

Z. Yang, D. Wang, C. Meng, Z. Wu, Y. Wang, Y. Ma, L. Dai, X. Liu, T. Hasan, X. Liu, and Q. Yang, “Broadly defining lasing wavelengths in single bandgap-graded semiconductor nanowires,” Nano Lett. 14(6), 3153–3159 (2014).
[Crossref] [PubMed]

Lu, J.

M. Dong, X. Mao, J. J. Gonzalez, J. Lu, and R. E. Russo, “Time-resolved LIBS of atomic and molecular carbon from coal in air, argon and helium,” J. Anal. At. Spectrom. 27(12), 2066 (2012).
[Crossref]

Lu, T.-F.

C.-M. Yang, I. S. Wang, Y.-T. Lin, C.-H. Huang, T.-F. Lu, C.-E. Lue, D. G. Pijanowska, M.-Y. Hua, and C.-S. Lai, “Low cost and flexible electrodes with NH3 plasma treatments in extended gate field effect transistors for urea detection,” Sens. Actuators B Chem. 187(10), 274–279 (2013).
[Crossref]

Lu, Y.

C. Zhang, Y. Lu, Y. Ni, M. Li, L. Mao, C. Liu, D. Zhang, H. Ming, and P. Wang, “Plasmonic lasing of nanocavity embedding in metallic nanoantenna array,” Nano Lett. 15(2), 1382–1387 (2015).
[Crossref] [PubMed]

Lue, C.-E.

C.-M. Yang, I. S. Wang, Y.-T. Lin, C.-H. Huang, T.-F. Lu, C.-E. Lue, D. G. Pijanowska, M.-Y. Hua, and C.-S. Lai, “Low cost and flexible electrodes with NH3 plasma treatments in extended gate field effect transistors for urea detection,” Sens. Actuators B Chem. 187(10), 274–279 (2013).
[Crossref]

Ma, X.

D. Zhang, X. Ma, S. Wang, and X. Zhu, “Influence of Ambient Gas on Laser-Induced Breakdown Spectroscopy of Uranium Metal,” Plasma Sci. Technol. 17(11), 971–974 (2015).
[Crossref]

Ma, Y.

Z. Yang, D. Wang, C. Meng, Z. Wu, Y. Wang, Y. Ma, L. Dai, X. Liu, T. Hasan, X. Liu, and Q. Yang, “Broadly defining lasing wavelengths in single bandgap-graded semiconductor nanowires,” Nano Lett. 14(6), 3153–3159 (2014).
[Crossref] [PubMed]

Mao, L.

C. Zhang, Y. Lu, Y. Ni, M. Li, L. Mao, C. Liu, D. Zhang, H. Ming, and P. Wang, “Plasmonic lasing of nanocavity embedding in metallic nanoantenna array,” Nano Lett. 15(2), 1382–1387 (2015).
[Crossref] [PubMed]

Mao, X.

M. Dong, X. Mao, J. J. Gonzalez, J. Lu, and R. E. Russo, “Time-resolved LIBS of atomic and molecular carbon from coal in air, argon and helium,” J. Anal. At. Spectrom. 27(12), 2066 (2012).
[Crossref]

Mazur, E.

T. Shih, E. Mazur, J. P. Richters, J. Gutowski, and T. Voss, “Ultrafast exciton dynamics in ZnO: Excitonic versus electron-hole plasma lasing,” J. Appl. Phys. 109(4), 043504 (2011).
[Crossref]

Meng, C.

Z. Yang, D. Wang, C. Meng, Z. Wu, Y. Wang, Y. Ma, L. Dai, X. Liu, T. Hasan, X. Liu, and Q. Yang, “Broadly defining lasing wavelengths in single bandgap-graded semiconductor nanowires,” Nano Lett. 14(6), 3153–3159 (2014).
[Crossref] [PubMed]

Ming, H.

C. Zhang, Y. Lu, Y. Ni, M. Li, L. Mao, C. Liu, D. Zhang, H. Ming, and P. Wang, “Plasmonic lasing of nanocavity embedding in metallic nanoantenna array,” Nano Lett. 15(2), 1382–1387 (2015).
[Crossref] [PubMed]

Moon, J. M.

Y. G. Yoon, T. K. Kim, I. C. Hwang, H. S. Lee, B. W. Hwang, J. M. Moon, Y. J. Seo, S. W. Lee, M. H. Jo, and S. H. Lee, “Enhanced device performance of germanium nanowire junctionless (GeNW-JL) MOSFETs by germanide contact formation with Ar plasma treatment,” ACS Appl. Mater. Interfaces 6(5), 3150–3155 (2014).
[Crossref] [PubMed]

Morante, J. R.

J. S. Reparaz, F. Güell, M. R. Wagner, A. Hoffmann, A. Cornet, and J. R. Morante, “Size-dependent recombination dynamics in ZnO nanowires,” Appl. Phys. Lett. 96(5), 053105 (2010).
[Crossref]

Motohisa, J.

B. Hua, J. Motohisa, Y. Ding, S. Hara, and T. Fukui, “Characterization of Fabry-Pérot microcavity modes in GaAs nanowires fabricated by selective-area metal organic vapor phase epitaxy,” Appl. Phys. Lett. 91(13), 131112 (2007).
[Crossref]

Mun, Y.

S. Park, H. Ko, Y. Mun, and C. Lee, “Photoluminescence in MgO-ZnO Nanorods Enhanced by Hydrogen Plasma Treatment,” Bull. Korean Chem. Soc. 34(11), 3367–3371 (2013).
[Crossref]

Muthukumar, V. S.

V. S. Muthukumar, J. Reppert, C. S. S. Sandeep, S. S. R. Krishnan, R. Podila, N. Kuthirummal, S. S. S. Sai, K. Venkataramaniah, R. Philip, and A. M. Rao, “Optical limiting properties of CdS nanowires,” Opt. Commun. 283(20), 4104–4107 (2010).
[Crossref]

Nan, H.

J. Li, C. Xu, H. Nan, M. Jiang, G. Gao, Y. Lin, J. Dai, G. Zhu, Z. Ni, S. Wang, and Y. Li, “Graphene surface plasmon induced optical field confinement and lasing enhancement in ZnO whispering-gallery microcavity,” ACS Appl. Mater. Interfaces 6(13), 10469–10475 (2014).
[Crossref] [PubMed]

Naseer, S.

M. Abrar, G. U. Farwa, S. Naseer, A. Saeed, A. W. Khan, Z. Iqbal, S. T. Hussain, and M. Zakaullah, “Enhancement of the electrical properties of carbon nanotubes with Ar–N2 plasma treatment,” Curr. Appl. Phys. 13(3), 567–575 (2013).
[Crossref]

Ni, Y.

C. Zhang, Y. Lu, Y. Ni, M. Li, L. Mao, C. Liu, D. Zhang, H. Ming, and P. Wang, “Plasmonic lasing of nanocavity embedding in metallic nanoantenna array,” Nano Lett. 15(2), 1382–1387 (2015).
[Crossref] [PubMed]

Ni, Z.

J. Li, C. Xu, H. Nan, M. Jiang, G. Gao, Y. Lin, J. Dai, G. Zhu, Z. Ni, S. Wang, and Y. Li, “Graphene surface plasmon induced optical field confinement and lasing enhancement in ZnO whispering-gallery microcavity,” ACS Appl. Mater. Interfaces 6(13), 10469–10475 (2014).
[Crossref] [PubMed]

Ortolani, L.

A. K. Bansal, F. Antolini, S. Zhang, L. Stroea, L. Ortolani, M. Lanzi, E. Serra, S. Allard, U. Scherf, and I. D. W. Samuel, “Highly Luminescent Colloidal CdS Quantum Dots with Efficient Near-Infrared Electroluminescence in Light-Emitting Diodes,” J. Phys. Chem. C 120(3), 1871–1880 (2016).
[Crossref]

Ozcan, O.

O. Ozcan, K. Pohl, P. Keil, and G. Grundmeier, “Effect of hydrogen and oxygen plasma treatments on the electrical and electrochemical properties of zinc oxide nanorod films on zinc substrates,” Electrochem. Commun. 13(8), 837–839 (2011).
[Crossref]

Pan, A.

Q. Zhang, X. Zhu, Y. Li, J. Liang, T. Chen, P. Fan, H. Zhou, W. Hu, X. Zhuang, and A. Pan, “Nanolaser arrays based on individual waved CdS nanoribbons,” Laser Photonics Rev. 10(3), 458–464 (2016).
[Crossref]

P. Guo, X. Zhuang, J. Xu, Q. Zhang, W. Hu, X. Zhu, X. Wang, Q. Wan, P. He, H. Zhou, and A. Pan, “Low-threshold nanowire laser based on composition-symmetric semiconductor nanowires,” Nano Lett. 13(3), 1251–1256 (2013).
[Crossref] [PubMed]

B. Zou, R. Liu, F. Wang, A. Pan, L. Cao, and Z. L. Wang, “Lasing mechanism of ZnO nanowires/nanobelts at room temperature,” J. Phys. Chem. B 110(26), 12865–12873 (2006).
[Crossref] [PubMed]

A. Pan, R. B. Liu, and B. S. Zou, “Phonon-assisted stimulated emission from single CdS nanoribbons at room temperature,” Appl. Phys. Lett. 88(17), 173102 (2006).
[Crossref]

Panda, K.

K. Panda, K. J. Sankaran, B. K. Panigrahi, N. H. Tai, and I. N. Lin, “Direct observation and mechanism for enhanced electron emission in hydrogen plasma-treated diamond nanowire films,” ACS Appl. Mater. Interfaces 6(11), 8531–8541 (2014).
[Crossref] [PubMed]

Panigrahi, B. K.

K. Panda, K. J. Sankaran, B. K. Panigrahi, N. H. Tai, and I. N. Lin, “Direct observation and mechanism for enhanced electron emission in hydrogen plasma-treated diamond nanowire films,” ACS Appl. Mater. Interfaces 6(11), 8531–8541 (2014).
[Crossref] [PubMed]

Park, H. G.

C. J. Barrelet, H. S. Ee, S. H. Kwon, and H. G. Park, “Nonlinear mixing in nanowire subwavelength waveguides,” Nano Lett. 11(7), 3022–3025 (2011).
[Crossref] [PubMed]

Park, J.

J. Park, S. Kim, Y. Sim, O. J. Yoon, M. S. Han, H. S. Yang, Y. Y. Kim, Y. M. Jhon, J. Kim, and M. J. Seong, “Simple synthesis of high-quality CdS nanowires using Au nanoparticles as catalyst,” J. Alloys Compd. 659, 38–43 (2016).
[Crossref]

Park, M.

D. Wang, H. W. Seo, C. C. Tin, M. J. Bozack, J. R. Williams, M. Park, and Y. Tzeng, “Lasing in whispering gallery mode in ZnO nanonails,” J. Appl. Phys. 99(9), 093112 (2006).
[Crossref]

Park, S.

S. Park, H. Ko, Y. Mun, and C. Lee, “Photoluminescence in MgO-ZnO Nanorods Enhanced by Hydrogen Plasma Treatment,” Bull. Korean Chem. Soc. 34(11), 3367–3371 (2013).
[Crossref]

Philip, R.

V. S. Muthukumar, J. Reppert, C. S. S. Sandeep, S. S. R. Krishnan, R. Podila, N. Kuthirummal, S. S. S. Sai, K. Venkataramaniah, R. Philip, and A. M. Rao, “Optical limiting properties of CdS nanowires,” Opt. Commun. 283(20), 4104–4107 (2010).
[Crossref]

Pijanowska, D. G.

C.-M. Yang, I. S. Wang, Y.-T. Lin, C.-H. Huang, T.-F. Lu, C.-E. Lue, D. G. Pijanowska, M.-Y. Hua, and C.-S. Lai, “Low cost and flexible electrodes with NH3 plasma treatments in extended gate field effect transistors for urea detection,” Sens. Actuators B Chem. 187(10), 274–279 (2013).
[Crossref]

Podila, R.

V. S. Muthukumar, J. Reppert, C. S. S. Sandeep, S. S. R. Krishnan, R. Podila, N. Kuthirummal, S. S. S. Sai, K. Venkataramaniah, R. Philip, and A. M. Rao, “Optical limiting properties of CdS nanowires,” Opt. Commun. 283(20), 4104–4107 (2010).
[Crossref]

Pohl, K.

O. Ozcan, K. Pohl, P. Keil, and G. Grundmeier, “Effect of hydrogen and oxygen plasma treatments on the electrical and electrochemical properties of zinc oxide nanorod films on zinc substrates,” Electrochem. Commun. 13(8), 837–839 (2011).
[Crossref]

Ra, H. W.

H. W. Ra, R. Khan, J. T. Kim, B. R. Kang, K. H. Bai, and Y. H. Im, “Effects of surface modification of the individual ZnO nanowire with oxygen plasma treatment,” Mater. Lett. 63(28), 2516–2519 (2009).
[Crossref]

Rao, A. M.

V. S. Muthukumar, J. Reppert, C. S. S. Sandeep, S. S. R. Krishnan, R. Podila, N. Kuthirummal, S. S. S. Sai, K. Venkataramaniah, R. Philip, and A. M. Rao, “Optical limiting properties of CdS nanowires,” Opt. Commun. 283(20), 4104–4107 (2010).
[Crossref]

Reparaz, J. S.

J. S. Reparaz, F. Güell, M. R. Wagner, A. Hoffmann, A. Cornet, and J. R. Morante, “Size-dependent recombination dynamics in ZnO nanowires,” Appl. Phys. Lett. 96(5), 053105 (2010).
[Crossref]

Reppert, J.

V. S. Muthukumar, J. Reppert, C. S. S. Sandeep, S. S. R. Krishnan, R. Podila, N. Kuthirummal, S. S. S. Sai, K. Venkataramaniah, R. Philip, and A. M. Rao, “Optical limiting properties of CdS nanowires,” Opt. Commun. 283(20), 4104–4107 (2010).
[Crossref]

Richters, J. P.

T. Shih, E. Mazur, J. P. Richters, J. Gutowski, and T. Voss, “Ultrafast exciton dynamics in ZnO: Excitonic versus electron-hole plasma lasing,” J. Appl. Phys. 109(4), 043504 (2011).
[Crossref]

Russo, R. E.

M. Dong, X. Mao, J. J. Gonzalez, J. Lu, and R. E. Russo, “Time-resolved LIBS of atomic and molecular carbon from coal in air, argon and helium,” J. Anal. At. Spectrom. 27(12), 2066 (2012).
[Crossref]

Saeed, A.

M. Abrar, G. U. Farwa, S. Naseer, A. Saeed, A. W. Khan, Z. Iqbal, S. T. Hussain, and M. Zakaullah, “Enhancement of the electrical properties of carbon nanotubes with Ar–N2 plasma treatment,” Curr. Appl. Phys. 13(3), 567–575 (2013).
[Crossref]

Sai, S. S. S.

V. S. Muthukumar, J. Reppert, C. S. S. Sandeep, S. S. R. Krishnan, R. Podila, N. Kuthirummal, S. S. S. Sai, K. Venkataramaniah, R. Philip, and A. M. Rao, “Optical limiting properties of CdS nanowires,” Opt. Commun. 283(20), 4104–4107 (2010).
[Crossref]

Samuel, I. D. W.

A. K. Bansal, F. Antolini, S. Zhang, L. Stroea, L. Ortolani, M. Lanzi, E. Serra, S. Allard, U. Scherf, and I. D. W. Samuel, “Highly Luminescent Colloidal CdS Quantum Dots with Efficient Near-Infrared Electroluminescence in Light-Emitting Diodes,” J. Phys. Chem. C 120(3), 1871–1880 (2016).
[Crossref]

Sandeep, C. S. S.

V. S. Muthukumar, J. Reppert, C. S. S. Sandeep, S. S. R. Krishnan, R. Podila, N. Kuthirummal, S. S. S. Sai, K. Venkataramaniah, R. Philip, and A. M. Rao, “Optical limiting properties of CdS nanowires,” Opt. Commun. 283(20), 4104–4107 (2010).
[Crossref]

Sankaran, K. J.

K. J. Sankaran, S. Kunuku, K. C. Leou, N. H. Tai, and I. N. Lin, “Enhancement of the electron field emission properties of ultrananocrystalline diamond films via hydrogen post-treatment,” ACS Appl. Mater. Interfaces 6(16), 14543–14551 (2014).
[Crossref] [PubMed]

K. Panda, K. J. Sankaran, B. K. Panigrahi, N. H. Tai, and I. N. Lin, “Direct observation and mechanism for enhanced electron emission in hydrogen plasma-treated diamond nanowire films,” ACS Appl. Mater. Interfaces 6(11), 8531–8541 (2014).
[Crossref] [PubMed]

Scherf, U.

A. K. Bansal, F. Antolini, S. Zhang, L. Stroea, L. Ortolani, M. Lanzi, E. Serra, S. Allard, U. Scherf, and I. D. W. Samuel, “Highly Luminescent Colloidal CdS Quantum Dots with Efficient Near-Infrared Electroluminescence in Light-Emitting Diodes,” J. Phys. Chem. C 120(3), 1871–1880 (2016).
[Crossref]

Schmidt-Grund, R.

C. P. Dietrich, M. Lange, C. Sturm, R. Schmidt-Grund, and M. Grundmann, “One- and two-dimensional cavity modes in ZnO nanowires,” New J. Phys. 13(10), 103021 (2011).
[Crossref]

Seo, H. W.

D. Wang, H. W. Seo, C. C. Tin, M. J. Bozack, J. R. Williams, M. Park, and Y. Tzeng, “Lasing in whispering gallery mode in ZnO nanonails,” J. Appl. Phys. 99(9), 093112 (2006).
[Crossref]

Seo, Y. J.

Y. G. Yoon, T. K. Kim, I. C. Hwang, H. S. Lee, B. W. Hwang, J. M. Moon, Y. J. Seo, S. W. Lee, M. H. Jo, and S. H. Lee, “Enhanced device performance of germanium nanowire junctionless (GeNW-JL) MOSFETs by germanide contact formation with Ar plasma treatment,” ACS Appl. Mater. Interfaces 6(5), 3150–3155 (2014).
[Crossref] [PubMed]

Seong, M. J.

J. Park, S. Kim, Y. Sim, O. J. Yoon, M. S. Han, H. S. Yang, Y. Y. Kim, Y. M. Jhon, J. Kim, and M. J. Seong, “Simple synthesis of high-quality CdS nanowires using Au nanoparticles as catalyst,” J. Alloys Compd. 659, 38–43 (2016).
[Crossref]

Serra, E.

A. K. Bansal, F. Antolini, S. Zhang, L. Stroea, L. Ortolani, M. Lanzi, E. Serra, S. Allard, U. Scherf, and I. D. W. Samuel, “Highly Luminescent Colloidal CdS Quantum Dots with Efficient Near-Infrared Electroluminescence in Light-Emitting Diodes,” J. Phys. Chem. C 120(3), 1871–1880 (2016).
[Crossref]

Shen, Z. X.

B. Liu, R. Chen, X. L. Xu, D. H. Li, Y. Y. Zhao, Z. X. Shen, Q. H. Xiong, and H. D. Sun, “Exciton-Related Photoluminescence and Lasing in CdS Nanobelts,” J. Phys. Chem. C 115(26), 12826–12830 (2011).
[Crossref]

Shi, Z.

G. Zhu, C. Xu, L. Cai, J. Li, Z. Shi, Y. Lin, G. Chen, T. Ding, Z. Tian, and J. Dai, “Lasing behavior modulation for ZnO whispering-gallery microcavities,” ACS Appl. Mater. Interfaces 4(11), 6195–6201 (2012).
[Crossref] [PubMed]

Shih, T.

T. Shih, E. Mazur, J. P. Richters, J. Gutowski, and T. Voss, “Ultrafast exciton dynamics in ZnO: Excitonic versus electron-hole plasma lasing,” J. Appl. Phys. 109(4), 043504 (2011).
[Crossref]

Sim, Y.

J. Park, S. Kim, Y. Sim, O. J. Yoon, M. S. Han, H. S. Yang, Y. Y. Kim, Y. M. Jhon, J. Kim, and M. J. Seong, “Simple synthesis of high-quality CdS nanowires using Au nanoparticles as catalyst,” J. Alloys Compd. 659, 38–43 (2016).
[Crossref]

Song, G. L.

G. L. Song, S. Guo, X. X. Wang, Z. S. Li, B. S. Zou, H. M. Fan, and R. B. Liu, “Temperature dependent raman and photoluminescence of an individual Sn-doped CdS branched nanostructure,” New J. Phys. 17(6), 063024 (2015).
[Crossref]

Stroea, L.

A. K. Bansal, F. Antolini, S. Zhang, L. Stroea, L. Ortolani, M. Lanzi, E. Serra, S. Allard, U. Scherf, and I. D. W. Samuel, “Highly Luminescent Colloidal CdS Quantum Dots with Efficient Near-Infrared Electroluminescence in Light-Emitting Diodes,” J. Phys. Chem. C 120(3), 1871–1880 (2016).
[Crossref]

Sturm, C.

C. P. Dietrich, M. Lange, C. Sturm, R. Schmidt-Grund, and M. Grundmann, “One- and two-dimensional cavity modes in ZnO nanowires,” New J. Phys. 13(10), 103021 (2011).
[Crossref]

Sum, T. C.

X. Liu, Q. Zhang, W. K. Chong, J. N. Yip, X. Wen, Z. Li, F. Wei, G. Yu, Q. Xiong, and T. C. Sum, “Cooperative Enhancement of Second-Harmonic Generation from a Single CdS Nanobelt-Hybrid Plasmonic Structure,” ACS Nano 9(5), 5018–5026 (2015).
[Crossref] [PubMed]

Sun, H. D.

B. Liu, R. Chen, X. L. Xu, D. H. Li, Y. Y. Zhao, Z. X. Shen, Q. H. Xiong, and H. D. Sun, “Exciton-Related Photoluminescence and Lasing in CdS Nanobelts,” J. Phys. Chem. C 115(26), 12826–12830 (2011).
[Crossref]

Tai, N. H.

K. J. Sankaran, S. Kunuku, K. C. Leou, N. H. Tai, and I. N. Lin, “Enhancement of the electron field emission properties of ultrananocrystalline diamond films via hydrogen post-treatment,” ACS Appl. Mater. Interfaces 6(16), 14543–14551 (2014).
[Crossref] [PubMed]

K. Panda, K. J. Sankaran, B. K. Panigrahi, N. H. Tai, and I. N. Lin, “Direct observation and mechanism for enhanced electron emission in hydrogen plasma-treated diamond nanowire films,” ACS Appl. Mater. Interfaces 6(11), 8531–8541 (2014).
[Crossref] [PubMed]

Tian, Z.

J. Dai, C. Xu, J. Li, Z. Tian, and Y. Lin, “Self-catalytic growth of CdS nanobelt and its Fabry–Perot lasing action,” Mater. Lett. 124(6), 43–46 (2014).
[Crossref]

G. Zhu, C. Xu, L. Cai, J. Li, Z. Shi, Y. Lin, G. Chen, T. Ding, Z. Tian, and J. Dai, “Lasing behavior modulation for ZnO whispering-gallery microcavities,” ACS Appl. Mater. Interfaces 4(11), 6195–6201 (2012).
[Crossref] [PubMed]

Tin, C. C.

D. Wang, H. W. Seo, C. C. Tin, M. J. Bozack, J. R. Williams, M. Park, and Y. Tzeng, “Lasing in whispering gallery mode in ZnO nanonails,” J. Appl. Phys. 99(9), 093112 (2006).
[Crossref]

Tzeng, Y.

D. Wang, H. W. Seo, C. C. Tin, M. J. Bozack, J. R. Williams, M. Park, and Y. Tzeng, “Lasing in whispering gallery mode in ZnO nanonails,” J. Appl. Phys. 99(9), 093112 (2006).
[Crossref]

Venkataramaniah, K.

V. S. Muthukumar, J. Reppert, C. S. S. Sandeep, S. S. R. Krishnan, R. Podila, N. Kuthirummal, S. S. S. Sai, K. Venkataramaniah, R. Philip, and A. M. Rao, “Optical limiting properties of CdS nanowires,” Opt. Commun. 283(20), 4104–4107 (2010).
[Crossref]

Voss, T.

T. Shih, E. Mazur, J. P. Richters, J. Gutowski, and T. Voss, “Ultrafast exciton dynamics in ZnO: Excitonic versus electron-hole plasma lasing,” J. Appl. Phys. 109(4), 043504 (2011).
[Crossref]

Wagner, M. R.

J. S. Reparaz, F. Güell, M. R. Wagner, A. Hoffmann, A. Cornet, and J. R. Morante, “Size-dependent recombination dynamics in ZnO nanowires,” Appl. Phys. Lett. 96(5), 053105 (2010).
[Crossref]

Wan, Q.

P. Guo, X. Zhuang, J. Xu, Q. Zhang, W. Hu, X. Zhu, X. Wang, Q. Wan, P. He, H. Zhou, and A. Pan, “Low-threshold nanowire laser based on composition-symmetric semiconductor nanowires,” Nano Lett. 13(3), 1251–1256 (2013).
[Crossref] [PubMed]

Wang, C.-S.

C.-S. Wang, H.-Y. Lin, J.-M. Lin, and Y.-F. Chen, “Surface-Plasmon-Enhanced Ultraviolet Random Lasing from ZnO Nanowires Assisted by Pt Nanoparticles,” Appl. Phys. Express 5(6), 062003 (2012).
[Crossref]

Wang, D.

Z. Yang, D. Wang, C. Meng, Z. Wu, Y. Wang, Y. Ma, L. Dai, X. Liu, T. Hasan, X. Liu, and Q. Yang, “Broadly defining lasing wavelengths in single bandgap-graded semiconductor nanowires,” Nano Lett. 14(6), 3153–3159 (2014).
[Crossref] [PubMed]

D. Wang, H. W. Seo, C. C. Tin, M. J. Bozack, J. R. Williams, M. Park, and Y. Tzeng, “Lasing in whispering gallery mode in ZnO nanonails,” J. Appl. Phys. 99(9), 093112 (2006).
[Crossref]

Wang, F.

B. Zou, R. Liu, F. Wang, A. Pan, L. Cao, and Z. L. Wang, “Lasing mechanism of ZnO nanowires/nanobelts at room temperature,” J. Phys. Chem. B 110(26), 12865–12873 (2006).
[Crossref] [PubMed]

Wang, H.

Wang, I. S.

C.-M. Yang, I. S. Wang, Y.-T. Lin, C.-H. Huang, T.-F. Lu, C.-E. Lue, D. G. Pijanowska, M.-Y. Hua, and C.-S. Lai, “Low cost and flexible electrodes with NH3 plasma treatments in extended gate field effect transistors for urea detection,” Sens. Actuators B Chem. 187(10), 274–279 (2013).
[Crossref]

Wang, P.

C. Zhang, Y. Lu, Y. Ni, M. Li, L. Mao, C. Liu, D. Zhang, H. Ming, and P. Wang, “Plasmonic lasing of nanocavity embedding in metallic nanoantenna array,” Nano Lett. 15(2), 1382–1387 (2015).
[Crossref] [PubMed]

Wang, S.

D. Zhang, X. Ma, S. Wang, and X. Zhu, “Influence of Ambient Gas on Laser-Induced Breakdown Spectroscopy of Uranium Metal,” Plasma Sci. Technol. 17(11), 971–974 (2015).
[Crossref]

J. Li, C. Xu, H. Nan, M. Jiang, G. Gao, Y. Lin, J. Dai, G. Zhu, Z. Ni, S. Wang, and Y. Li, “Graphene surface plasmon induced optical field confinement and lasing enhancement in ZnO whispering-gallery microcavity,” ACS Appl. Mater. Interfaces 6(13), 10469–10475 (2014).
[Crossref] [PubMed]

Wang, X.

P. Guo, X. Zhuang, J. Xu, Q. Zhang, W. Hu, X. Zhu, X. Wang, Q. Wan, P. He, H. Zhou, and A. Pan, “Low-threshold nanowire laser based on composition-symmetric semiconductor nanowires,” Nano Lett. 13(3), 1251–1256 (2013).
[Crossref] [PubMed]

R. Liu, Z. A. Li, C. Zhang, X. Wang, M. A. Kamran, M. Farle, and B. Zou, “Single-step synthesis of monolithic comb-like CdS nanostructures with tunable waveguide properties,” Nano Lett. 13(6), 2997–3001 (2013).
[Crossref] [PubMed]

Wang, X. X.

G. L. Song, S. Guo, X. X. Wang, Z. S. Li, B. S. Zou, H. M. Fan, and R. B. Liu, “Temperature dependent raman and photoluminescence of an individual Sn-doped CdS branched nanostructure,” New J. Phys. 17(6), 063024 (2015).
[Crossref]

Wang, Y.

Z. Yang, D. Wang, C. Meng, Z. Wu, Y. Wang, Y. Ma, L. Dai, X. Liu, T. Hasan, X. Liu, and Q. Yang, “Broadly defining lasing wavelengths in single bandgap-graded semiconductor nanowires,” Nano Lett. 14(6), 3153–3159 (2014).
[Crossref] [PubMed]

Y.-T. Chen, H. Zhao, J. H. Yum, Y. Wang, F. Xue, F. Zhou, and J. C. Lee, “Improved electrical characteristics of TaN/Al[sub 2]O[sub 3]/In[sub 0.53]Ga[sub 0.47]As metal-oxide-semiconductor field-effect transistors by fluorine incorporation,” Appl. Phys. Lett. 95(1), 013501 (2009).
[Crossref]

Wang, Z. L.

B. Zou, R. Liu, F. Wang, A. Pan, L. Cao, and Z. L. Wang, “Lasing mechanism of ZnO nanowires/nanobelts at room temperature,” J. Phys. Chem. B 110(26), 12865–12873 (2006).
[Crossref] [PubMed]

Wei, F.

X. Liu, Q. Zhang, W. K. Chong, J. N. Yip, X. Wen, Z. Li, F. Wei, G. Yu, Q. Xiong, and T. C. Sum, “Cooperative Enhancement of Second-Harmonic Generation from a Single CdS Nanobelt-Hybrid Plasmonic Structure,” ACS Nano 9(5), 5018–5026 (2015).
[Crossref] [PubMed]

Wen, X.

X. Liu, Q. Zhang, W. K. Chong, J. N. Yip, X. Wen, Z. Li, F. Wei, G. Yu, Q. Xiong, and T. C. Sum, “Cooperative Enhancement of Second-Harmonic Generation from a Single CdS Nanobelt-Hybrid Plasmonic Structure,” ACS Nano 9(5), 5018–5026 (2015).
[Crossref] [PubMed]

Williams, J. R.

D. Wang, H. W. Seo, C. C. Tin, M. J. Bozack, J. R. Williams, M. Park, and Y. Tzeng, “Lasing in whispering gallery mode in ZnO nanonails,” J. Appl. Phys. 99(9), 093112 (2006).
[Crossref]

Wu, Z.

Z. Yang, D. Wang, C. Meng, Z. Wu, Y. Wang, Y. Ma, L. Dai, X. Liu, T. Hasan, X. Liu, and Q. Yang, “Broadly defining lasing wavelengths in single bandgap-graded semiconductor nanowires,” Nano Lett. 14(6), 3153–3159 (2014).
[Crossref] [PubMed]

Xiao, L.

Xiong, Q.

X. Liu, Q. Zhang, W. K. Chong, J. N. Yip, X. Wen, Z. Li, F. Wei, G. Yu, Q. Xiong, and T. C. Sum, “Cooperative Enhancement of Second-Harmonic Generation from a Single CdS Nanobelt-Hybrid Plasmonic Structure,” ACS Nano 9(5), 5018–5026 (2015).
[Crossref] [PubMed]

Xiong, Q. H.

B. Liu, R. Chen, X. L. Xu, D. H. Li, Y. Y. Zhao, Z. X. Shen, Q. H. Xiong, and H. D. Sun, “Exciton-Related Photoluminescence and Lasing in CdS Nanobelts,” J. Phys. Chem. C 115(26), 12826–12830 (2011).
[Crossref]

Xu, C.

J. Li, C. Xu, H. Nan, M. Jiang, G. Gao, Y. Lin, J. Dai, G. Zhu, Z. Ni, S. Wang, and Y. Li, “Graphene surface plasmon induced optical field confinement and lasing enhancement in ZnO whispering-gallery microcavity,” ACS Appl. Mater. Interfaces 6(13), 10469–10475 (2014).
[Crossref] [PubMed]

J. Dai, C. Xu, J. Li, Z. Tian, and Y. Lin, “Self-catalytic growth of CdS nanobelt and its Fabry–Perot lasing action,” Mater. Lett. 124(6), 43–46 (2014).
[Crossref]

G. Zhu, C. Xu, L. Cai, J. Li, Z. Shi, Y. Lin, G. Chen, T. Ding, Z. Tian, and J. Dai, “Lasing behavior modulation for ZnO whispering-gallery microcavities,” ACS Appl. Mater. Interfaces 4(11), 6195–6201 (2012).
[Crossref] [PubMed]

Xu, J.

P. Guo, X. Zhuang, J. Xu, Q. Zhang, W. Hu, X. Zhu, X. Wang, Q. Wan, P. He, H. Zhou, and A. Pan, “Low-threshold nanowire laser based on composition-symmetric semiconductor nanowires,” Nano Lett. 13(3), 1251–1256 (2013).
[Crossref] [PubMed]

Xu, X. L.

B. Liu, R. Chen, X. L. Xu, D. H. Li, Y. Y. Zhao, Z. X. Shen, Q. H. Xiong, and H. D. Sun, “Exciton-Related Photoluminescence and Lasing in CdS Nanobelts,” J. Phys. Chem. C 115(26), 12826–12830 (2011).
[Crossref]

Xue, F.

Y.-T. Chen, H. Zhao, J. H. Yum, Y. Wang, F. Xue, F. Zhou, and J. C. Lee, “Improved electrical characteristics of TaN/Al[sub 2]O[sub 3]/In[sub 0.53]Ga[sub 0.47]As metal-oxide-semiconductor field-effect transistors by fluorine incorporation,” Appl. Phys. Lett. 95(1), 013501 (2009).
[Crossref]

Yang, C.-M.

C.-M. Yang, I. S. Wang, Y.-T. Lin, C.-H. Huang, T.-F. Lu, C.-E. Lue, D. G. Pijanowska, M.-Y. Hua, and C.-S. Lai, “Low cost and flexible electrodes with NH3 plasma treatments in extended gate field effect transistors for urea detection,” Sens. Actuators B Chem. 187(10), 274–279 (2013).
[Crossref]

Yang, H. S.

J. Park, S. Kim, Y. Sim, O. J. Yoon, M. S. Han, H. S. Yang, Y. Y. Kim, Y. M. Jhon, J. Kim, and M. J. Seong, “Simple synthesis of high-quality CdS nanowires using Au nanoparticles as catalyst,” J. Alloys Compd. 659, 38–43 (2016).
[Crossref]

Yang, Q.

Z. Yang, D. Wang, C. Meng, Z. Wu, Y. Wang, Y. Ma, L. Dai, X. Liu, T. Hasan, X. Liu, and Q. Yang, “Broadly defining lasing wavelengths in single bandgap-graded semiconductor nanowires,” Nano Lett. 14(6), 3153–3159 (2014).
[Crossref] [PubMed]

Yang, Z.

Z. Yang, D. Wang, C. Meng, Z. Wu, Y. Wang, Y. Ma, L. Dai, X. Liu, T. Hasan, X. Liu, and Q. Yang, “Broadly defining lasing wavelengths in single bandgap-graded semiconductor nanowires,” Nano Lett. 14(6), 3153–3159 (2014).
[Crossref] [PubMed]

Yip, J. N.

X. Liu, Q. Zhang, W. K. Chong, J. N. Yip, X. Wen, Z. Li, F. Wei, G. Yu, Q. Xiong, and T. C. Sum, “Cooperative Enhancement of Second-Harmonic Generation from a Single CdS Nanobelt-Hybrid Plasmonic Structure,” ACS Nano 9(5), 5018–5026 (2015).
[Crossref] [PubMed]

Yoon, O. J.

J. Park, S. Kim, Y. Sim, O. J. Yoon, M. S. Han, H. S. Yang, Y. Y. Kim, Y. M. Jhon, J. Kim, and M. J. Seong, “Simple synthesis of high-quality CdS nanowires using Au nanoparticles as catalyst,” J. Alloys Compd. 659, 38–43 (2016).
[Crossref]

Yoon, Y. G.

Y. G. Yoon, T. K. Kim, I. C. Hwang, H. S. Lee, B. W. Hwang, J. M. Moon, Y. J. Seo, S. W. Lee, M. H. Jo, and S. H. Lee, “Enhanced device performance of germanium nanowire junctionless (GeNW-JL) MOSFETs by germanide contact formation with Ar plasma treatment,” ACS Appl. Mater. Interfaces 6(5), 3150–3155 (2014).
[Crossref] [PubMed]

Yu, G.

X. Liu, Q. Zhang, W. K. Chong, J. N. Yip, X. Wen, Z. Li, F. Wei, G. Yu, Q. Xiong, and T. C. Sum, “Cooperative Enhancement of Second-Harmonic Generation from a Single CdS Nanobelt-Hybrid Plasmonic Structure,” ACS Nano 9(5), 5018–5026 (2015).
[Crossref] [PubMed]

Yum, J. H.

Y.-T. Chen, H. Zhao, J. H. Yum, Y. Wang, F. Xue, F. Zhou, and J. C. Lee, “Improved electrical characteristics of TaN/Al[sub 2]O[sub 3]/In[sub 0.53]Ga[sub 0.47]As metal-oxide-semiconductor field-effect transistors by fluorine incorporation,” Appl. Phys. Lett. 95(1), 013501 (2009).
[Crossref]

Zakaullah, M.

M. Abrar, G. U. Farwa, S. Naseer, A. Saeed, A. W. Khan, Z. Iqbal, S. T. Hussain, and M. Zakaullah, “Enhancement of the electrical properties of carbon nanotubes with Ar–N2 plasma treatment,” Curr. Appl. Phys. 13(3), 567–575 (2013).
[Crossref]

Zhang, C.

C. Zhang, Y. Lu, Y. Ni, M. Li, L. Mao, C. Liu, D. Zhang, H. Ming, and P. Wang, “Plasmonic lasing of nanocavity embedding in metallic nanoantenna array,” Nano Lett. 15(2), 1382–1387 (2015).
[Crossref] [PubMed]

R. Liu, Z. A. Li, C. Zhang, X. Wang, M. A. Kamran, M. Farle, and B. Zou, “Single-step synthesis of monolithic comb-like CdS nanostructures with tunable waveguide properties,” Nano Lett. 13(6), 2997–3001 (2013).
[Crossref] [PubMed]

Zhang, D.

D. Zhang, X. Ma, S. Wang, and X. Zhu, “Influence of Ambient Gas on Laser-Induced Breakdown Spectroscopy of Uranium Metal,” Plasma Sci. Technol. 17(11), 971–974 (2015).
[Crossref]

C. Zhang, Y. Lu, Y. Ni, M. Li, L. Mao, C. Liu, D. Zhang, H. Ming, and P. Wang, “Plasmonic lasing of nanocavity embedding in metallic nanoantenna array,” Nano Lett. 15(2), 1382–1387 (2015).
[Crossref] [PubMed]

Zhang, J.

Zhang, Q.

Q. Zhang, X. Zhu, Y. Li, J. Liang, T. Chen, P. Fan, H. Zhou, W. Hu, X. Zhuang, and A. Pan, “Nanolaser arrays based on individual waved CdS nanoribbons,” Laser Photonics Rev. 10(3), 458–464 (2016).
[Crossref]

X. Liu, Q. Zhang, W. K. Chong, J. N. Yip, X. Wen, Z. Li, F. Wei, G. Yu, Q. Xiong, and T. C. Sum, “Cooperative Enhancement of Second-Harmonic Generation from a Single CdS Nanobelt-Hybrid Plasmonic Structure,” ACS Nano 9(5), 5018–5026 (2015).
[Crossref] [PubMed]

P. Guo, X. Zhuang, J. Xu, Q. Zhang, W. Hu, X. Zhu, X. Wang, Q. Wan, P. He, H. Zhou, and A. Pan, “Low-threshold nanowire laser based on composition-symmetric semiconductor nanowires,” Nano Lett. 13(3), 1251–1256 (2013).
[Crossref] [PubMed]

Zhang, S.

A. K. Bansal, F. Antolini, S. Zhang, L. Stroea, L. Ortolani, M. Lanzi, E. Serra, S. Allard, U. Scherf, and I. D. W. Samuel, “Highly Luminescent Colloidal CdS Quantum Dots with Efficient Near-Infrared Electroluminescence in Light-Emitting Diodes,” J. Phys. Chem. C 120(3), 1871–1880 (2016).
[Crossref]

Zhao, H.

Y.-T. Chen, H. Zhao, J. H. Yum, Y. Wang, F. Xue, F. Zhou, and J. C. Lee, “Improved electrical characteristics of TaN/Al[sub 2]O[sub 3]/In[sub 0.53]Ga[sub 0.47]As metal-oxide-semiconductor field-effect transistors by fluorine incorporation,” Appl. Phys. Lett. 95(1), 013501 (2009).
[Crossref]

Zhao, Y. Y.

B. Liu, R. Chen, X. L. Xu, D. H. Li, Y. Y. Zhao, Z. X. Shen, Q. H. Xiong, and H. D. Sun, “Exciton-Related Photoluminescence and Lasing in CdS Nanobelts,” J. Phys. Chem. C 115(26), 12826–12830 (2011).
[Crossref]

Zhou, F.

Y.-T. Chen, H. Zhao, J. H. Yum, Y. Wang, F. Xue, F. Zhou, and J. C. Lee, “Improved electrical characteristics of TaN/Al[sub 2]O[sub 3]/In[sub 0.53]Ga[sub 0.47]As metal-oxide-semiconductor field-effect transistors by fluorine incorporation,” Appl. Phys. Lett. 95(1), 013501 (2009).
[Crossref]

Zhou, H.

Q. Zhang, X. Zhu, Y. Li, J. Liang, T. Chen, P. Fan, H. Zhou, W. Hu, X. Zhuang, and A. Pan, “Nanolaser arrays based on individual waved CdS nanoribbons,” Laser Photonics Rev. 10(3), 458–464 (2016).
[Crossref]

P. Guo, X. Zhuang, J. Xu, Q. Zhang, W. Hu, X. Zhu, X. Wang, Q. Wan, P. He, H. Zhou, and A. Pan, “Low-threshold nanowire laser based on composition-symmetric semiconductor nanowires,” Nano Lett. 13(3), 1251–1256 (2013).
[Crossref] [PubMed]

Zhu, G.

J. Li, C. Xu, H. Nan, M. Jiang, G. Gao, Y. Lin, J. Dai, G. Zhu, Z. Ni, S. Wang, and Y. Li, “Graphene surface plasmon induced optical field confinement and lasing enhancement in ZnO whispering-gallery microcavity,” ACS Appl. Mater. Interfaces 6(13), 10469–10475 (2014).
[Crossref] [PubMed]

G. Zhu, C. Xu, L. Cai, J. Li, Z. Shi, Y. Lin, G. Chen, T. Ding, Z. Tian, and J. Dai, “Lasing behavior modulation for ZnO whispering-gallery microcavities,” ACS Appl. Mater. Interfaces 4(11), 6195–6201 (2012).
[Crossref] [PubMed]

Zhu, X.

Q. Zhang, X. Zhu, Y. Li, J. Liang, T. Chen, P. Fan, H. Zhou, W. Hu, X. Zhuang, and A. Pan, “Nanolaser arrays based on individual waved CdS nanoribbons,” Laser Photonics Rev. 10(3), 458–464 (2016).
[Crossref]

D. Zhang, X. Ma, S. Wang, and X. Zhu, “Influence of Ambient Gas on Laser-Induced Breakdown Spectroscopy of Uranium Metal,” Plasma Sci. Technol. 17(11), 971–974 (2015).
[Crossref]

P. Guo, X. Zhuang, J. Xu, Q. Zhang, W. Hu, X. Zhu, X. Wang, Q. Wan, P. He, H. Zhou, and A. Pan, “Low-threshold nanowire laser based on composition-symmetric semiconductor nanowires,” Nano Lett. 13(3), 1251–1256 (2013).
[Crossref] [PubMed]

Zhuang, X.

Q. Zhang, X. Zhu, Y. Li, J. Liang, T. Chen, P. Fan, H. Zhou, W. Hu, X. Zhuang, and A. Pan, “Nanolaser arrays based on individual waved CdS nanoribbons,” Laser Photonics Rev. 10(3), 458–464 (2016).
[Crossref]

P. Guo, X. Zhuang, J. Xu, Q. Zhang, W. Hu, X. Zhu, X. Wang, Q. Wan, P. He, H. Zhou, and A. Pan, “Low-threshold nanowire laser based on composition-symmetric semiconductor nanowires,” Nano Lett. 13(3), 1251–1256 (2013).
[Crossref] [PubMed]

Zhuo, N.

Zou, B.

R. Liu, Z. A. Li, C. Zhang, X. Wang, M. A. Kamran, M. Farle, and B. Zou, “Single-step synthesis of monolithic comb-like CdS nanostructures with tunable waveguide properties,” Nano Lett. 13(6), 2997–3001 (2013).
[Crossref] [PubMed]

B. Zou, R. Liu, F. Wang, A. Pan, L. Cao, and Z. L. Wang, “Lasing mechanism of ZnO nanowires/nanobelts at room temperature,” J. Phys. Chem. B 110(26), 12865–12873 (2006).
[Crossref] [PubMed]

Zou, B. S.

G. L. Song, S. Guo, X. X. Wang, Z. S. Li, B. S. Zou, H. M. Fan, and R. B. Liu, “Temperature dependent raman and photoluminescence of an individual Sn-doped CdS branched nanostructure,” New J. Phys. 17(6), 063024 (2015).
[Crossref]

A. Pan, R. B. Liu, and B. S. Zou, “Phonon-assisted stimulated emission from single CdS nanoribbons at room temperature,” Appl. Phys. Lett. 88(17), 173102 (2006).
[Crossref]

ACS Appl. Mater. Interfaces (5)

J. Li, C. Xu, H. Nan, M. Jiang, G. Gao, Y. Lin, J. Dai, G. Zhu, Z. Ni, S. Wang, and Y. Li, “Graphene surface plasmon induced optical field confinement and lasing enhancement in ZnO whispering-gallery microcavity,” ACS Appl. Mater. Interfaces 6(13), 10469–10475 (2014).
[Crossref] [PubMed]

G. Zhu, C. Xu, L. Cai, J. Li, Z. Shi, Y. Lin, G. Chen, T. Ding, Z. Tian, and J. Dai, “Lasing behavior modulation for ZnO whispering-gallery microcavities,” ACS Appl. Mater. Interfaces 4(11), 6195–6201 (2012).
[Crossref] [PubMed]

Y. G. Yoon, T. K. Kim, I. C. Hwang, H. S. Lee, B. W. Hwang, J. M. Moon, Y. J. Seo, S. W. Lee, M. H. Jo, and S. H. Lee, “Enhanced device performance of germanium nanowire junctionless (GeNW-JL) MOSFETs by germanide contact formation with Ar plasma treatment,” ACS Appl. Mater. Interfaces 6(5), 3150–3155 (2014).
[Crossref] [PubMed]

K. Panda, K. J. Sankaran, B. K. Panigrahi, N. H. Tai, and I. N. Lin, “Direct observation and mechanism for enhanced electron emission in hydrogen plasma-treated diamond nanowire films,” ACS Appl. Mater. Interfaces 6(11), 8531–8541 (2014).
[Crossref] [PubMed]

K. J. Sankaran, S. Kunuku, K. C. Leou, N. H. Tai, and I. N. Lin, “Enhancement of the electron field emission properties of ultrananocrystalline diamond films via hydrogen post-treatment,” ACS Appl. Mater. Interfaces 6(16), 14543–14551 (2014).
[Crossref] [PubMed]

ACS Nano (1)

X. Liu, Q. Zhang, W. K. Chong, J. N. Yip, X. Wen, Z. Li, F. Wei, G. Yu, Q. Xiong, and T. C. Sum, “Cooperative Enhancement of Second-Harmonic Generation from a Single CdS Nanobelt-Hybrid Plasmonic Structure,” ACS Nano 9(5), 5018–5026 (2015).
[Crossref] [PubMed]

Adv. Mater. (1)

O. Hayden, A. B. Greytak, and D. C. Bell, “Core—Shell Nanowire Light-Emitting Diodes,” Adv. Mater. 17(6), 701–704 (2005).
[Crossref]

Appl. Phys. Express (1)

C.-S. Wang, H.-Y. Lin, J.-M. Lin, and Y.-F. Chen, “Surface-Plasmon-Enhanced Ultraviolet Random Lasing from ZnO Nanowires Assisted by Pt Nanoparticles,” Appl. Phys. Express 5(6), 062003 (2012).
[Crossref]

Appl. Phys. Lett. (5)

B. Hua, J. Motohisa, Y. Ding, S. Hara, and T. Fukui, “Characterization of Fabry-Pérot microcavity modes in GaAs nanowires fabricated by selective-area metal organic vapor phase epitaxy,” Appl. Phys. Lett. 91(13), 131112 (2007).
[Crossref]

A. Pan, R. B. Liu, and B. S. Zou, “Phonon-assisted stimulated emission from single CdS nanoribbons at room temperature,” Appl. Phys. Lett. 88(17), 173102 (2006).
[Crossref]

Y. Gu and L. J. Lauhon, “Space-charge-limited current in nanowires depleted by oxygen adsorption,” Appl. Phys. Lett. 89(14), 143102 (2006).
[Crossref]

Y.-T. Chen, H. Zhao, J. H. Yum, Y. Wang, F. Xue, F. Zhou, and J. C. Lee, “Improved electrical characteristics of TaN/Al[sub 2]O[sub 3]/In[sub 0.53]Ga[sub 0.47]As metal-oxide-semiconductor field-effect transistors by fluorine incorporation,” Appl. Phys. Lett. 95(1), 013501 (2009).
[Crossref]

J. S. Reparaz, F. Güell, M. R. Wagner, A. Hoffmann, A. Cornet, and J. R. Morante, “Size-dependent recombination dynamics in ZnO nanowires,” Appl. Phys. Lett. 96(5), 053105 (2010).
[Crossref]

Bull. Korean Chem. Soc. (1)

S. Park, H. Ko, Y. Mun, and C. Lee, “Photoluminescence in MgO-ZnO Nanorods Enhanced by Hydrogen Plasma Treatment,” Bull. Korean Chem. Soc. 34(11), 3367–3371 (2013).
[Crossref]

Curr. Appl. Phys. (1)

M. Abrar, G. U. Farwa, S. Naseer, A. Saeed, A. W. Khan, Z. Iqbal, S. T. Hussain, and M. Zakaullah, “Enhancement of the electrical properties of carbon nanotubes with Ar–N2 plasma treatment,” Curr. Appl. Phys. 13(3), 567–575 (2013).
[Crossref]

Electrochem. Commun. (1)

O. Ozcan, K. Pohl, P. Keil, and G. Grundmeier, “Effect of hydrogen and oxygen plasma treatments on the electrical and electrochemical properties of zinc oxide nanorod films on zinc substrates,” Electrochem. Commun. 13(8), 837–839 (2011).
[Crossref]

J. Alloys Compd. (1)

J. Park, S. Kim, Y. Sim, O. J. Yoon, M. S. Han, H. S. Yang, Y. Y. Kim, Y. M. Jhon, J. Kim, and M. J. Seong, “Simple synthesis of high-quality CdS nanowires using Au nanoparticles as catalyst,” J. Alloys Compd. 659, 38–43 (2016).
[Crossref]

J. Anal. At. Spectrom. (1)

M. Dong, X. Mao, J. J. Gonzalez, J. Lu, and R. E. Russo, “Time-resolved LIBS of atomic and molecular carbon from coal in air, argon and helium,” J. Anal. At. Spectrom. 27(12), 2066 (2012).
[Crossref]

J. Appl. Phys. (3)

T. Shih, E. Mazur, J. P. Richters, J. Gutowski, and T. Voss, “Ultrafast exciton dynamics in ZnO: Excitonic versus electron-hole plasma lasing,” J. Appl. Phys. 109(4), 043504 (2011).
[Crossref]

T. F. J. Bille, “Recombination processes in highly excited CdS,” J. Appl. Phys. 45(9), 3937 (1974).
[Crossref]

D. Wang, H. W. Seo, C. C. Tin, M. J. Bozack, J. R. Williams, M. Park, and Y. Tzeng, “Lasing in whispering gallery mode in ZnO nanonails,” J. Appl. Phys. 99(9), 093112 (2006).
[Crossref]

J. Phys. Chem. B (1)

B. Zou, R. Liu, F. Wang, A. Pan, L. Cao, and Z. L. Wang, “Lasing mechanism of ZnO nanowires/nanobelts at room temperature,” J. Phys. Chem. B 110(26), 12865–12873 (2006).
[Crossref] [PubMed]

J. Phys. Chem. C (2)

A. K. Bansal, F. Antolini, S. Zhang, L. Stroea, L. Ortolani, M. Lanzi, E. Serra, S. Allard, U. Scherf, and I. D. W. Samuel, “Highly Luminescent Colloidal CdS Quantum Dots with Efficient Near-Infrared Electroluminescence in Light-Emitting Diodes,” J. Phys. Chem. C 120(3), 1871–1880 (2016).
[Crossref]

B. Liu, R. Chen, X. L. Xu, D. H. Li, Y. Y. Zhao, Z. X. Shen, Q. H. Xiong, and H. D. Sun, “Exciton-Related Photoluminescence and Lasing in CdS Nanobelts,” J. Phys. Chem. C 115(26), 12826–12830 (2011).
[Crossref]

Laser Photonics Rev. (1)

Q. Zhang, X. Zhu, Y. Li, J. Liang, T. Chen, P. Fan, H. Zhou, W. Hu, X. Zhuang, and A. Pan, “Nanolaser arrays based on individual waved CdS nanoribbons,” Laser Photonics Rev. 10(3), 458–464 (2016).
[Crossref]

Mater. Lett. (2)

J. Dai, C. Xu, J. Li, Z. Tian, and Y. Lin, “Self-catalytic growth of CdS nanobelt and its Fabry–Perot lasing action,” Mater. Lett. 124(6), 43–46 (2014).
[Crossref]

H. W. Ra, R. Khan, J. T. Kim, B. R. Kang, K. H. Bai, and Y. H. Im, “Effects of surface modification of the individual ZnO nanowire with oxygen plasma treatment,” Mater. Lett. 63(28), 2516–2519 (2009).
[Crossref]

Nano Lett. (5)

R. Liu, Z. A. Li, C. Zhang, X. Wang, M. A. Kamran, M. Farle, and B. Zou, “Single-step synthesis of monolithic comb-like CdS nanostructures with tunable waveguide properties,” Nano Lett. 13(6), 2997–3001 (2013).
[Crossref] [PubMed]

Z. Yang, D. Wang, C. Meng, Z. Wu, Y. Wang, Y. Ma, L. Dai, X. Liu, T. Hasan, X. Liu, and Q. Yang, “Broadly defining lasing wavelengths in single bandgap-graded semiconductor nanowires,” Nano Lett. 14(6), 3153–3159 (2014).
[Crossref] [PubMed]

C. Zhang, Y. Lu, Y. Ni, M. Li, L. Mao, C. Liu, D. Zhang, H. Ming, and P. Wang, “Plasmonic lasing of nanocavity embedding in metallic nanoantenna array,” Nano Lett. 15(2), 1382–1387 (2015).
[Crossref] [PubMed]

P. Guo, X. Zhuang, J. Xu, Q. Zhang, W. Hu, X. Zhu, X. Wang, Q. Wan, P. He, H. Zhou, and A. Pan, “Low-threshold nanowire laser based on composition-symmetric semiconductor nanowires,” Nano Lett. 13(3), 1251–1256 (2013).
[Crossref] [PubMed]

C. J. Barrelet, H. S. Ee, S. H. Kwon, and H. G. Park, “Nonlinear mixing in nanowire subwavelength waveguides,” Nano Lett. 11(7), 3022–3025 (2011).
[Crossref] [PubMed]

New J. Phys. (2)

C. P. Dietrich, M. Lange, C. Sturm, R. Schmidt-Grund, and M. Grundmann, “One- and two-dimensional cavity modes in ZnO nanowires,” New J. Phys. 13(10), 103021 (2011).
[Crossref]

G. L. Song, S. Guo, X. X. Wang, Z. S. Li, B. S. Zou, H. M. Fan, and R. B. Liu, “Temperature dependent raman and photoluminescence of an individual Sn-doped CdS branched nanostructure,” New J. Phys. 17(6), 063024 (2015).
[Crossref]

Opt. Commun. (1)

V. S. Muthukumar, J. Reppert, C. S. S. Sandeep, S. S. R. Krishnan, R. Podila, N. Kuthirummal, S. S. S. Sai, K. Venkataramaniah, R. Philip, and A. M. Rao, “Optical limiting properties of CdS nanowires,” Opt. Commun. 283(20), 4104–4107 (2010).
[Crossref]

Opt. Mater. Express (1)

Plasma Sci. Technol. (1)

D. Zhang, X. Ma, S. Wang, and X. Zhu, “Influence of Ambient Gas on Laser-Induced Breakdown Spectroscopy of Uranium Metal,” Plasma Sci. Technol. 17(11), 971–974 (2015).
[Crossref]

Sens. Actuators B Chem. (1)

C.-M. Yang, I. S. Wang, Y.-T. Lin, C.-H. Huang, T.-F. Lu, C.-E. Lue, D. G. Pijanowska, M.-Y. Hua, and C.-S. Lai, “Low cost and flexible electrodes with NH3 plasma treatments in extended gate field effect transistors for urea detection,” Sens. Actuators B Chem. 187(10), 274–279 (2013).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) SEM image of a typical CdS comb-like structure; (b) The elemental mapping of the comb-like microstructure; (c) SEM image of a single CdS nanowire, the inset is the low magnification image (left) and electron diffraction pattern of the nanowire (right); (d) The elemental mapping of the nanowire.
Fig. 2
Fig. 2 (a) The power densities dependent PL spectra of CdS comb-like structure, the inset is the real photoluminescence ICCD image of the comb-like structure, the excitation location was marked by the red circle; (b) The power densities dependent emission intensity and FWHM; (c) The evolution of photoluminescence spectrum of the tin-doped CdS nanowire as the power density increased from 5.23 MW/cm2 to 10.5 MW/cm2, the inset is the power densities dependent Intensity and FWHM. (d) The power densities dependent PL spectra of CdS nanobelt in atmospheric environment and the inset is real photoluminescence ICCD image.
Fig. 3
Fig. 3 (a) The output intensity dependence on power densities for the tin-doped CdS nanowire in air (black dot), Ar (red dot), N2 (blue dot) and He (pink dot) environment, respectively; (b) Diagram of the nanowire in Ar, N2 and He environment; (c) The carrier dynamic behaviour of the nanowire in different gaseous environment; (d) The output intensity dependence on power densities for the nanowire in vacuum and atmosphere condition.
Fig. 4
Fig. 4 (a) The time-resolved spectroscopy of the tin-doped CdS nanowire, the inset shows the PL image of nanowire under different delay time. (b) The time-resolved spectroscopy of CdS comb-like structure and the inset shows the PL image of multi-branched microstructures under different delay time.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δλ= λ 1 λ 2 2nL
Δλ= λ 2 / [ L( nλ dn dλ ) ]

Metrics