Abstract

We study the influence of the input spatial mode on the extraordinary optical transmission (EOT) effect. By placing a metal screen with a 1D array of subwavelength holes inside a terahertz (THz) parallel-plate waveguide (PPWG), we can directly compare the transmission spectra with different input waveguide modes. We observe that the transmitted spectrum depends strongly on the input mode. A conventional description of EOT based on the excitation of surface plasmons is not predictive in all cases. Instead, we utilize a formalism based on impedance matching, which accurately predicts the spectral resonances for both TEM and non-TEM input modes.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
On the extraordinary optical transmission in parallel plate waveguides for non-TEM modes

Miguel Camacho, Rafael R. Boix, Francisco Medina, Alastair P. Hibbins, and J. Roy Sambles
Opt. Express 25(20) 24670-24677 (2017)

Surface-mode model of the extraordinary optical transmission without plasmons

Yunya Xie, Haitao Liu, Hongwei Jia, and Ying Zhong
Opt. Express 23(5) 5749-5762 (2015)

Extraordinary optical transmission through incommensurate metal hole arrays in the terahertz region

Yoji Jimba, Keisuke Takano, Masanori Hangyo, and Hiroshi Miyazaki
J. Opt. Soc. Am. B 30(9) 2476-2482 (2013)

References

  • View by:
  • |
  • |
  • |

  1. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
    [Crossref] [PubMed]
  2. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
    [Crossref]
  3. W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92(10), 107401 (2004).
    [Crossref] [PubMed]
  4. H. Gao, J. M. McMahon, M. H. Lee, J. Henzie, S. K. Gray, G. C. Schatz, and T. W. Odom, “Rayleigh anomaly-surface plasmon polariton resonances in palladium and gold subwavelength hole arrays,” Opt. Express 17(4), 2334–2340 (2009).
    [Crossref] [PubMed]
  5. A. P. Hibbins, M. J. Lockyear, I. R. Hooper, and J. R. Sambles, “Waveguide arrays as plasmonic metamaterials: transmission below cutoff,” Phys. Rev. Lett. 96(7), 073904 (2006).
    [Crossref] [PubMed]
  6. B. Hou, Z. H. Hang, W. Wen, C. T. Chan, and P. Sheng, “Microwave transmission through metallic hole arrays: Surface electric field measurements,” Appl. Phys. Lett. 89(13), 131917 (2006).
    [Crossref]
  7. Y. Pang, A. N. Hone, P. P. M. So, and R. Gordon, “Total optical transmission through a small hole in a metal waveguide screen,” Opt. Express 17(6), 4433–4441 (2009).
    [Crossref] [PubMed]
  8. F. Medina, J. Ruiz-Cruz, F. Mesa, J. M. Rebollar, J. R. Montejo-Garai, and R. Marqués, “Experimental verification of extraordinary transmission without surface plasmons,” Appl. Phys. Lett. 95(7), 071102 (2009).
    [Crossref]
  9. F. Medina, F. Mesa, J. A. Ruíz-Cruz, J. M. Rebollar, and J. R. Montejo-Garai, “Study of extraordinary transmission in a circular waveguide system,” IEEE Trans. Microw. Theory Tech. 58(6), 1532–1542 (2010).
    [Crossref]
  10. R. Mendis and D. Grischkowsky, “Undistorted guided-wave propagation of subpicosecond terahertz pulses,” Opt. Lett. 26(11), 846–848 (2001).
    [Crossref] [PubMed]
  11. R. Mendis and D. M. Mittleman, “Comparison of the lowest-order transverse-electric (TE1) and transverse-magnetic (TEM) modes of the parallel-plate waveguide for terahertz pulse applications,” Opt. Express 17(17), 14839–14850 (2009).
    [Crossref] [PubMed]
  12. R. Mendis and D. M. Mittleman, “An investigation of the lowest-order transverse-electric (TE1) mode of the parallel-plate waveguide for THz pulse propagation,” J. Opt. Soc. Am. B 26(9), A6–A13 (2009).
    [Crossref]
  13. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
    [Crossref]
  14. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
    [Crossref] [PubMed]
  15. L. Martín-Moreno and F. J. García-Vidal, “Minimal model for optical transmission through holey metal films,” J. Phys. Condens. Matter 20(30), 304214 (2008).
    [Crossref]
  16. F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
    [Crossref]
  17. F. Medina, F. Mesa, and R. Marques, “Extraordinary transmission through arrays of electrically small holes from a circuit theory perspective,” IEEE Trans. Microw. Theory Tech. 56(12), 3108–3120 (2008).
    [Crossref]
  18. D. Qu, D. Grischkowsky, and W. Zhang, “Terahertz transmission properties of thin, subwavelength metallic hole arrays,” Opt. Lett. 29(8), 896–898 (2004).
    [Crossref] [PubMed]
  19. H. Cao and A. Nahata, “Resonantly enhanced transmission of terahertz radiation through a periodic array of subwavelength apertures,” Opt. Express 12(6), 1004–1010 (2004).
    [Crossref] [PubMed]
  20. S. Pandey, S. Liu, B. Gupta, and A. Nahata, “Self-referenced measurements of the dielectric properties of metals using terahertz time-domain spectroscopy via the excitation of surface plasmon-polaritons,” Photon. Res. 1(4), 148–153 (2013).
    [Crossref]
  21. R. Gordon, “Bethe’s aperture theory for arrays,” Phys. Rev. A 76(5), 053806 (2007).
    [Crossref]
  22. N. J. Karl, R. W. Mckinney, Y. Monnai, R. Mendis, and D. M. Mittleman, “Frequency-division multiplexing in the terahertz range using a leaky-wave antenna,” Nat. Photonics 9(11), 717–720 (2015).
    [Crossref]
  23. K. S. Reichel, R. Mendis, and D. M. Mittleman, “A broadband terahertz waveguide T-junction variable power splitter,” Sci. Rep. 6, 28925 (2016).
    [Crossref] [PubMed]
  24. M. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using ε-near-zero materials,” Phys. Rev. Lett. 97(15), 157403 (2006).
    [Crossref] [PubMed]
  25. B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100(3), 033903 (2008).
    [Crossref] [PubMed]

2016 (1)

K. S. Reichel, R. Mendis, and D. M. Mittleman, “A broadband terahertz waveguide T-junction variable power splitter,” Sci. Rep. 6, 28925 (2016).
[Crossref] [PubMed]

2015 (1)

N. J. Karl, R. W. Mckinney, Y. Monnai, R. Mendis, and D. M. Mittleman, “Frequency-division multiplexing in the terahertz range using a leaky-wave antenna,” Nat. Photonics 9(11), 717–720 (2015).
[Crossref]

2013 (1)

2010 (2)

F. Medina, F. Mesa, J. A. Ruíz-Cruz, J. M. Rebollar, and J. R. Montejo-Garai, “Study of extraordinary transmission in a circular waveguide system,” IEEE Trans. Microw. Theory Tech. 58(6), 1532–1542 (2010).
[Crossref]

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[Crossref]

2009 (5)

2008 (3)

F. Medina, F. Mesa, and R. Marques, “Extraordinary transmission through arrays of electrically small holes from a circuit theory perspective,” IEEE Trans. Microw. Theory Tech. 56(12), 3108–3120 (2008).
[Crossref]

L. Martín-Moreno and F. J. García-Vidal, “Minimal model for optical transmission through holey metal films,” J. Phys. Condens. Matter 20(30), 304214 (2008).
[Crossref]

B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100(3), 033903 (2008).
[Crossref] [PubMed]

2007 (2)

R. Gordon, “Bethe’s aperture theory for arrays,” Phys. Rev. A 76(5), 053806 (2007).
[Crossref]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref] [PubMed]

2006 (3)

A. P. Hibbins, M. J. Lockyear, I. R. Hooper, and J. R. Sambles, “Waveguide arrays as plasmonic metamaterials: transmission below cutoff,” Phys. Rev. Lett. 96(7), 073904 (2006).
[Crossref] [PubMed]

B. Hou, Z. H. Hang, W. Wen, C. T. Chan, and P. Sheng, “Microwave transmission through metallic hole arrays: Surface electric field measurements,” Appl. Phys. Lett. 89(13), 131917 (2006).
[Crossref]

M. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using ε-near-zero materials,” Phys. Rev. Lett. 97(15), 157403 (2006).
[Crossref] [PubMed]

2004 (4)

D. Qu, D. Grischkowsky, and W. Zhang, “Terahertz transmission properties of thin, subwavelength metallic hole arrays,” Opt. Lett. 29(8), 896–898 (2004).
[Crossref] [PubMed]

H. Cao and A. Nahata, “Resonantly enhanced transmission of terahertz radiation through a periodic array of subwavelength apertures,” Opt. Express 12(6), 1004–1010 (2004).
[Crossref] [PubMed]

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92(10), 107401 (2004).
[Crossref] [PubMed]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

2001 (1)

1998 (2)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[Crossref]

Alù, A.

B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100(3), 033903 (2008).
[Crossref] [PubMed]

Barnes, W. L.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92(10), 107401 (2004).
[Crossref] [PubMed]

Cao, H.

Chan, C. T.

B. Hou, Z. H. Hang, W. Wen, C. T. Chan, and P. Sheng, “Microwave transmission through metallic hole arrays: Surface electric field measurements,” Appl. Phys. Lett. 89(13), 131917 (2006).
[Crossref]

Devaux, E.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92(10), 107401 (2004).
[Crossref] [PubMed]

Dintinger, J.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92(10), 107401 (2004).
[Crossref] [PubMed]

Ebbesen, T. W.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[Crossref]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref] [PubMed]

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92(10), 107401 (2004).
[Crossref] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[Crossref]

Edwards, B.

B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100(3), 033903 (2008).
[Crossref] [PubMed]

Engheta, N.

B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100(3), 033903 (2008).
[Crossref] [PubMed]

M. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using ε-near-zero materials,” Phys. Rev. Lett. 97(15), 157403 (2006).
[Crossref] [PubMed]

Gao, H.

Garcia-Vidal, F. J.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[Crossref]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

García-Vidal, F. J.

L. Martín-Moreno and F. J. García-Vidal, “Minimal model for optical transmission through holey metal films,” J. Phys. Condens. Matter 20(30), 304214 (2008).
[Crossref]

Genet, C.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref] [PubMed]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[Crossref]

Gordon, R.

Gray, S. K.

Grischkowsky, D.

Grupp, D. E.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[Crossref]

Gupta, B.

Hang, Z. H.

B. Hou, Z. H. Hang, W. Wen, C. T. Chan, and P. Sheng, “Microwave transmission through metallic hole arrays: Surface electric field measurements,” Appl. Phys. Lett. 89(13), 131917 (2006).
[Crossref]

Henzie, J.

Hibbins, A. P.

A. P. Hibbins, M. J. Lockyear, I. R. Hooper, and J. R. Sambles, “Waveguide arrays as plasmonic metamaterials: transmission below cutoff,” Phys. Rev. Lett. 96(7), 073904 (2006).
[Crossref] [PubMed]

Hone, A. N.

Hooper, I. R.

A. P. Hibbins, M. J. Lockyear, I. R. Hooper, and J. R. Sambles, “Waveguide arrays as plasmonic metamaterials: transmission below cutoff,” Phys. Rev. Lett. 96(7), 073904 (2006).
[Crossref] [PubMed]

Hou, B.

B. Hou, Z. H. Hang, W. Wen, C. T. Chan, and P. Sheng, “Microwave transmission through metallic hole arrays: Surface electric field measurements,” Appl. Phys. Lett. 89(13), 131917 (2006).
[Crossref]

Karl, N. J.

N. J. Karl, R. W. Mckinney, Y. Monnai, R. Mendis, and D. M. Mittleman, “Frequency-division multiplexing in the terahertz range using a leaky-wave antenna,” Nat. Photonics 9(11), 717–720 (2015).
[Crossref]

Kuipers, L.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[Crossref]

Lee, M. H.

Lezec, H. J.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[Crossref]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Liu, S.

Lockyear, M. J.

A. P. Hibbins, M. J. Lockyear, I. R. Hooper, and J. R. Sambles, “Waveguide arrays as plasmonic metamaterials: transmission below cutoff,” Phys. Rev. Lett. 96(7), 073904 (2006).
[Crossref] [PubMed]

Marques, R.

F. Medina, F. Mesa, and R. Marques, “Extraordinary transmission through arrays of electrically small holes from a circuit theory perspective,” IEEE Trans. Microw. Theory Tech. 56(12), 3108–3120 (2008).
[Crossref]

Marqués, R.

F. Medina, J. Ruiz-Cruz, F. Mesa, J. M. Rebollar, J. R. Montejo-Garai, and R. Marqués, “Experimental verification of extraordinary transmission without surface plasmons,” Appl. Phys. Lett. 95(7), 071102 (2009).
[Crossref]

Martin-Moreno, L.

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[Crossref]

Martín-Moreno, L.

L. Martín-Moreno and F. J. García-Vidal, “Minimal model for optical transmission through holey metal films,” J. Phys. Condens. Matter 20(30), 304214 (2008).
[Crossref]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

Mckinney, R. W.

N. J. Karl, R. W. Mckinney, Y. Monnai, R. Mendis, and D. M. Mittleman, “Frequency-division multiplexing in the terahertz range using a leaky-wave antenna,” Nat. Photonics 9(11), 717–720 (2015).
[Crossref]

McMahon, J. M.

Medina, F.

F. Medina, F. Mesa, J. A. Ruíz-Cruz, J. M. Rebollar, and J. R. Montejo-Garai, “Study of extraordinary transmission in a circular waveguide system,” IEEE Trans. Microw. Theory Tech. 58(6), 1532–1542 (2010).
[Crossref]

F. Medina, J. Ruiz-Cruz, F. Mesa, J. M. Rebollar, J. R. Montejo-Garai, and R. Marqués, “Experimental verification of extraordinary transmission without surface plasmons,” Appl. Phys. Lett. 95(7), 071102 (2009).
[Crossref]

F. Medina, F. Mesa, and R. Marques, “Extraordinary transmission through arrays of electrically small holes from a circuit theory perspective,” IEEE Trans. Microw. Theory Tech. 56(12), 3108–3120 (2008).
[Crossref]

Mendis, R.

Mesa, F.

F. Medina, F. Mesa, J. A. Ruíz-Cruz, J. M. Rebollar, and J. R. Montejo-Garai, “Study of extraordinary transmission in a circular waveguide system,” IEEE Trans. Microw. Theory Tech. 58(6), 1532–1542 (2010).
[Crossref]

F. Medina, J. Ruiz-Cruz, F. Mesa, J. M. Rebollar, J. R. Montejo-Garai, and R. Marqués, “Experimental verification of extraordinary transmission without surface plasmons,” Appl. Phys. Lett. 95(7), 071102 (2009).
[Crossref]

F. Medina, F. Mesa, and R. Marques, “Extraordinary transmission through arrays of electrically small holes from a circuit theory perspective,” IEEE Trans. Microw. Theory Tech. 56(12), 3108–3120 (2008).
[Crossref]

Mittleman, D. M.

K. S. Reichel, R. Mendis, and D. M. Mittleman, “A broadband terahertz waveguide T-junction variable power splitter,” Sci. Rep. 6, 28925 (2016).
[Crossref] [PubMed]

N. J. Karl, R. W. Mckinney, Y. Monnai, R. Mendis, and D. M. Mittleman, “Frequency-division multiplexing in the terahertz range using a leaky-wave antenna,” Nat. Photonics 9(11), 717–720 (2015).
[Crossref]

R. Mendis and D. M. Mittleman, “Comparison of the lowest-order transverse-electric (TE1) and transverse-magnetic (TEM) modes of the parallel-plate waveguide for terahertz pulse applications,” Opt. Express 17(17), 14839–14850 (2009).
[Crossref] [PubMed]

R. Mendis and D. M. Mittleman, “An investigation of the lowest-order transverse-electric (TE1) mode of the parallel-plate waveguide for THz pulse propagation,” J. Opt. Soc. Am. B 26(9), A6–A13 (2009).
[Crossref]

Monnai, Y.

N. J. Karl, R. W. Mckinney, Y. Monnai, R. Mendis, and D. M. Mittleman, “Frequency-division multiplexing in the terahertz range using a leaky-wave antenna,” Nat. Photonics 9(11), 717–720 (2015).
[Crossref]

Montejo-Garai, J. R.

F. Medina, F. Mesa, J. A. Ruíz-Cruz, J. M. Rebollar, and J. R. Montejo-Garai, “Study of extraordinary transmission in a circular waveguide system,” IEEE Trans. Microw. Theory Tech. 58(6), 1532–1542 (2010).
[Crossref]

F. Medina, J. Ruiz-Cruz, F. Mesa, J. M. Rebollar, J. R. Montejo-Garai, and R. Marqués, “Experimental verification of extraordinary transmission without surface plasmons,” Appl. Phys. Lett. 95(7), 071102 (2009).
[Crossref]

Murray, W. A.

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92(10), 107401 (2004).
[Crossref] [PubMed]

Nahata, A.

Odom, T. W.

Pandey, S.

Pang, Y.

Pendry, J. B.

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

Qu, D.

Rebollar, J. M.

F. Medina, F. Mesa, J. A. Ruíz-Cruz, J. M. Rebollar, and J. R. Montejo-Garai, “Study of extraordinary transmission in a circular waveguide system,” IEEE Trans. Microw. Theory Tech. 58(6), 1532–1542 (2010).
[Crossref]

F. Medina, J. Ruiz-Cruz, F. Mesa, J. M. Rebollar, J. R. Montejo-Garai, and R. Marqués, “Experimental verification of extraordinary transmission without surface plasmons,” Appl. Phys. Lett. 95(7), 071102 (2009).
[Crossref]

Reichel, K. S.

K. S. Reichel, R. Mendis, and D. M. Mittleman, “A broadband terahertz waveguide T-junction variable power splitter,” Sci. Rep. 6, 28925 (2016).
[Crossref] [PubMed]

Ruiz-Cruz, J.

F. Medina, J. Ruiz-Cruz, F. Mesa, J. M. Rebollar, J. R. Montejo-Garai, and R. Marqués, “Experimental verification of extraordinary transmission without surface plasmons,” Appl. Phys. Lett. 95(7), 071102 (2009).
[Crossref]

Ruíz-Cruz, J. A.

F. Medina, F. Mesa, J. A. Ruíz-Cruz, J. M. Rebollar, and J. R. Montejo-Garai, “Study of extraordinary transmission in a circular waveguide system,” IEEE Trans. Microw. Theory Tech. 58(6), 1532–1542 (2010).
[Crossref]

Sambles, J. R.

A. P. Hibbins, M. J. Lockyear, I. R. Hooper, and J. R. Sambles, “Waveguide arrays as plasmonic metamaterials: transmission below cutoff,” Phys. Rev. Lett. 96(7), 073904 (2006).
[Crossref] [PubMed]

Schatz, G. C.

Sheng, P.

B. Hou, Z. H. Hang, W. Wen, C. T. Chan, and P. Sheng, “Microwave transmission through metallic hole arrays: Surface electric field measurements,” Appl. Phys. Lett. 89(13), 131917 (2006).
[Crossref]

Silveirinha, M.

B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100(3), 033903 (2008).
[Crossref] [PubMed]

M. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using ε-near-zero materials,” Phys. Rev. Lett. 97(15), 157403 (2006).
[Crossref] [PubMed]

So, P. P. M.

Thio, T.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[Crossref]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Wen, W.

B. Hou, Z. H. Hang, W. Wen, C. T. Chan, and P. Sheng, “Microwave transmission through metallic hole arrays: Surface electric field measurements,” Appl. Phys. Lett. 89(13), 131917 (2006).
[Crossref]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Young, M. E.

B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100(3), 033903 (2008).
[Crossref] [PubMed]

Zhang, W.

Appl. Phys. Lett. (2)

B. Hou, Z. H. Hang, W. Wen, C. T. Chan, and P. Sheng, “Microwave transmission through metallic hole arrays: Surface electric field measurements,” Appl. Phys. Lett. 89(13), 131917 (2006).
[Crossref]

F. Medina, J. Ruiz-Cruz, F. Mesa, J. M. Rebollar, J. R. Montejo-Garai, and R. Marqués, “Experimental verification of extraordinary transmission without surface plasmons,” Appl. Phys. Lett. 95(7), 071102 (2009).
[Crossref]

IEEE Trans. Microw. Theory Tech. (2)

F. Medina, F. Mesa, J. A. Ruíz-Cruz, J. M. Rebollar, and J. R. Montejo-Garai, “Study of extraordinary transmission in a circular waveguide system,” IEEE Trans. Microw. Theory Tech. 58(6), 1532–1542 (2010).
[Crossref]

F. Medina, F. Mesa, and R. Marques, “Extraordinary transmission through arrays of electrically small holes from a circuit theory perspective,” IEEE Trans. Microw. Theory Tech. 56(12), 3108–3120 (2008).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Condens. Matter (1)

L. Martín-Moreno and F. J. García-Vidal, “Minimal model for optical transmission through holey metal films,” J. Phys. Condens. Matter 20(30), 304214 (2008).
[Crossref]

Nat. Photonics (1)

N. J. Karl, R. W. Mckinney, Y. Monnai, R. Mendis, and D. M. Mittleman, “Frequency-division multiplexing in the terahertz range using a leaky-wave antenna,” Nat. Photonics 9(11), 717–720 (2015).
[Crossref]

Nature (2)

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[Crossref] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Photon. Res. (1)

Phys. Rev. A (1)

R. Gordon, “Bethe’s aperture theory for arrays,” Phys. Rev. A 76(5), 053806 (2007).
[Crossref]

Phys. Rev. B (1)

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B 58(11), 6779–6782 (1998).
[Crossref]

Phys. Rev. Lett. (4)

A. P. Hibbins, M. J. Lockyear, I. R. Hooper, and J. R. Sambles, “Waveguide arrays as plasmonic metamaterials: transmission below cutoff,” Phys. Rev. Lett. 96(7), 073904 (2006).
[Crossref] [PubMed]

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, “Surface plasmon polaritons and their role in the enhanced transmission of light through periodic arrays of subwavelength holes in a metal film,” Phys. Rev. Lett. 92(10), 107401 (2004).
[Crossref] [PubMed]

M. Silveirinha and N. Engheta, “Tunneling of electromagnetic energy through subwavelength channels and bends using ε-near-zero materials,” Phys. Rev. Lett. 97(15), 157403 (2006).
[Crossref] [PubMed]

B. Edwards, A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, “Experimental verification of epsilon-near-zero metamaterial coupling and energy squeezing using a microwave waveguide,” Phys. Rev. Lett. 100(3), 033903 (2008).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

F. J. Garcia-Vidal, L. Martin-Moreno, T. W. Ebbesen, and L. Kuipers, “Light passing through subwavelength apertures,” Rev. Mod. Phys. 82(1), 729–787 (2010).
[Crossref]

Sci. Rep. (1)

K. S. Reichel, R. Mendis, and D. M. Mittleman, “A broadband terahertz waveguide T-junction variable power splitter,” Sci. Rep. 6, 28925 (2016).
[Crossref] [PubMed]

Science (1)

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Panel (a) shows a 3D view of the PPWG (WG1 and WG2) with an array of holes in the middle, where the waveguide plates are pictured translucent to see the screen, b is distance between the two plates, a is the distance between two holes, d is the diameter of the holes, and L is the length of the waveguide section. Panel (b) shows a side view of the experimental configuration where the THz wave is coupled into WG1 from the left and the screen with holes of thickness t is sandwiched in the middle between WG1 and WG2.
Fig. 2
Fig. 2 Power transmission at normal incidence for (top) a 2D array of holes in free-space illuminated by vertical polarization (black) or horizontal polarization (gray), (middle) a 1D array of holes inside a PPWG in TEM mode (blue), (bottom) a 1D array of holes inside a PPWG in TE1 mode (red). The dashed purple and oranges lines (overlapped) show prediction of RWA minimum and SPP maximum, respectively. This minimum value agrees well with 2D array in free-space and 1D array in the TEM PPWG. Clearly the resonant frequency is shifted for the 1D array in the TE1 PPWG.
Fig. 3
Fig. 3 Power transmission for a fixed hole separation of (a-c) a = 0.75 mm and (d) a = 1.00 mm for the plate separations of b = 0.75 mm (black, thin line), b = 1.00 mm (red), and b = 1.25 mm (blue, thick line) with TEM mode PPWG excitation. The dashed lines indicate the cutoff of the corresponding TM20 mode.
Fig. 4
Fig. 4 Power transmission for a fixed hole separation of (a-c) a = 0.75 mm and (d) a = 1.00 mm for the plate separations of b = 0.75 mm (black, thin line), b = 1.00 mm (red), and b = 1.25 mm (blue, thick line) with TE1 mode PPWG excitation. The dashed lines indicate the cutoff of the corresponding TM12 mode. For experiment and theory with a = 0.75 mm and b = 1.25 mm, we see many oscillations which can be attributed to the excitation of higher order propagating waveguide modes (i.e. cutoff of TE3 is 350GHz).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

f max,SPP =c ε d + ε m ε d ε m ( m L x ) 2 + ( n L y ) 2 ,
f min,RWA = c ε d ( m L x ) 2 + ( n L y ) 2 .
f min,TEM = f c T M 2p,2q = c 2π ε d ( mπ b ) 2 + ( nπ a ) 2 = c ε d ( p b ) 2 + ( q a ) 2 ,
f min,T E 1 = f c T M 2p+1,2q = c 2π ε d ( mπ b ) 2 + ( nπ a ) 2 = c ε d ( 2p+1 b ) 2 + ( q a ) 2 ,

Metrics