Abstract

We present an approach to locking of optical cavities with piezoelectric actuated mirrors based on a simple and effective mechanical decoupling of the mirror and actuator from the surrounding mount. Using simple elastic materials (e.g. rubber or soft silicone gel pads) as mechanical dampers between the piezo-mirror compound and the surrounding mount, a firm and stable mounting of a relatively large mirror (8mm diameter) can be maintained that is isolated from external mechanical resonances, and is limited only by the internal piezo-mirror resonance of > 330 KHz. Our piezo lock showed positive servo gain up to 208 KHz, and a temporal response to a step interference within < 3 μs.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Simple piezoelectric-actuated mirror with 180 kHz servo bandwidth

Travis C. Briles, Dylan C. Yost, Arman Cingöz, Jun Ye, and Thomas R. Schibli
Opt. Express 18(10) 9739-9746 (2010)

Phase locking of a mode-locked titanium–sapphire laser-based optical frequency comb to a reference laser using a fast piezoelectric actuator

Shuhei Hatanaka, Kazuhiko Sugiyama, Masatoshi Mitaki, Masatoshi Misono, Sergey N. Slyusarev, and Masao Kitano
Appl. Opt. 56(12) 3615-3621 (2017)

High-resolution frequency standard at 1030 nm for Yb:YAG solid-state lasers

Jun Ye, Long-Sheng Ma, and John L. Hall
J. Opt. Soc. Am. B 17(6) 927-931 (2000)

References

  • View by:
  • |
  • |
  • |

  1. C. Salomon, D. Hils, and J. Hall, “Laser stabilization at the millihertz level,” J. Opt. Soc. Am. B 5, 1576–1587 (1988).
    [Crossref]
  2. T. Nazarova, F. Riehle, and U. Sterr, “Vibration-insensitive reference cavity for an ultra-narrow-linewidth laser,” Appl. Phys. B 83, 531–536 (2006).
    [Crossref]
  3. A. Ludlow, X. Huang, M. Notcutt, T. Zanon-Willette, S. Foreman, M. Boyd, S. Blatt, and J. Ye, “Compact, thermal-noise-limited optical cavity for diode laser stabilization at 1 × 10–15,” Opt. Lett. 32, 641–643 (2007).
    [Crossref] [PubMed]
  4. G. L. Duerksen and M. A. Krainak, “Low-cost, single-frequency sources for spectroscopy using conventional fabry-perot diode lasers,” in Advanced Semiconductor Lasers and Their Applications (Optical Society of America, 1999), p. 35.
    [Crossref]
  5. R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
    [Crossref]
  6. C.-H. Shin and M. Ohtsu, “Heterodyne optical phase-locked loop by confocal fabry-periot cavity coupled algaas lasers,” IEEE Photonics Technol. Lett. 2, 297–300 (1990).
    [Crossref]
  7. B. Young, F. Cruz, W. M. Itano, and J. Bergquist, “Visible lasers with subhertz linewidths,” Phys. Rev. Lett. 82, 3799 (1999).
    [Crossref]
  8. I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100, 013902 (2008).
    [Crossref] [PubMed]
  9. A. Foltynowicz, P. Masłowski, A. J. Fleisher, B. J. Bjork, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy in the mid-infrared application to trace detection of hydrogen peroxide,” Appl. Phys. B 110, 163–175 (2013).
    [Crossref]
  10. M. J. Thorpe and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy,” Appl. Phys. B 91, 397–414 (2008).
    [Crossref]
  11. J. S. Neergaard-Nielsen, B. M. Nielsen, C. Hettich, K. Mølmer, and E. S. Polzik, “Generation of a superposition of odd photon number states for quantum information networks,” Phys. Rev. Lett. 97, 083604 (2006).
    [Crossref] [PubMed]
  12. G. Biedermann, X. Wu, L. Deslauriers, S. Roy, C. Mahadeswaraswamy, and M. Kasevich, “Testing gravity with cold-atom interferometers,” Phys. Rev. A 91, 033629 (2015).
    [Crossref]
  13. P. Hamilton, M. Jaffe, J. M. Brown, L. Maisenbacher, B. Estey, and H. Müller, “Atom interferometry in an optical cavity,” Phys. Rev. Lett. 114, 100405 (2015).
    [Crossref] [PubMed]
  14. M. M. Boyd, T. Zelevinsky, A. D. Ludlow, S. M. Foreman, S. Blatt, T. Ido, and J. Ye, “Optical atomic coherence at the 1-second time scale,” Science 314, 1430–1433 (2006).
    [Crossref] [PubMed]
  15. Y. Jiang, A. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L.-S. Ma, and C. W. Oates, “Making optical atomic clocks more stable with 10–16-level laser stabilization,” Nat. Photonics 5, 158–161 (2011).
    [Crossref]
  16. E. O. Potma, C. Evans, X. S. Xie, R. J. Jones, and J. Ye, “Picosecond-pulse amplification with an external passive optical cavity,” Opt. Lett. 28, 1835–1837 (2003).
    [Crossref] [PubMed]
  17. G. Macfarlane, A. Bell, E. Riis, and A. Ferguson, “Optical comb generator as an efficient short-pulse source,” Opt. Lett. 21, 534–536 (1996).
    [Crossref] [PubMed]
  18. T. Spence, C. Harb, B. Paldus, R. Zare, B. Willke, and R. Byer, “A laser-locked cavity ring-down spectrometer employing an analog detection scheme,” Rev. Sci. Instrum. 71, 347–353 (2000).
    [Crossref]
  19. T. C. Briles, D. C. Yost, A. Cingöz, J. Ye, and T. R. Schibli, “Simple piezoelectric-actuated mirror with 180 kHz servo bandwidth,” Opt. Express 18, 9739–9746 (2010).
    [Crossref] [PubMed]
  20. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
    [Crossref] [PubMed]
  21. D. D. Hudson, K. W. Holman, R. J. Jones, S. T. Cundiff, J. Ye, and D. J. Jones, “Mode-locked fiber laser frequency-controlled with an intracavity electro-optic modulator,” Opt. Lett. 30, 2948–2950 (2005).
    [Crossref] [PubMed]
  22. J. Hall and T. Hänsch, “External dye-laser frequency stabilizer,” Opt. Lett. 9, 502–504 (1984).
    [Crossref] [PubMed]
  23. A. Schoof, J. Grünert, S. Ritter, and A. Hemmerich, “Reducing the linewidth of a diode laser below 30 hz by stabilization to a reference cavity with a finesse above 10 5,” Opt. Lett. 26, 1562–1564 (2001).
    [Crossref]
  24. W. Jitschin and G. Meisel, “Fast frequency control of a cw dye jet laser,” Appl. Phys. 19, 181–184 (1979).
    [Crossref]
  25. J. Bechhoefer, “Feedback for physicists: A tutorial essay on control,” Rev. Mod. Phys. 77, 783 (2005).
    [Crossref]

2015 (2)

G. Biedermann, X. Wu, L. Deslauriers, S. Roy, C. Mahadeswaraswamy, and M. Kasevich, “Testing gravity with cold-atom interferometers,” Phys. Rev. A 91, 033629 (2015).
[Crossref]

P. Hamilton, M. Jaffe, J. M. Brown, L. Maisenbacher, B. Estey, and H. Müller, “Atom interferometry in an optical cavity,” Phys. Rev. Lett. 114, 100405 (2015).
[Crossref] [PubMed]

2013 (1)

A. Foltynowicz, P. Masłowski, A. J. Fleisher, B. J. Bjork, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy in the mid-infrared application to trace detection of hydrogen peroxide,” Appl. Phys. B 110, 163–175 (2013).
[Crossref]

2011 (1)

Y. Jiang, A. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L.-S. Ma, and C. W. Oates, “Making optical atomic clocks more stable with 10–16-level laser stabilization,” Nat. Photonics 5, 158–161 (2011).
[Crossref]

2010 (1)

2008 (2)

M. J. Thorpe and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy,” Appl. Phys. B 91, 397–414 (2008).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100, 013902 (2008).
[Crossref] [PubMed]

2007 (1)

2006 (3)

J. S. Neergaard-Nielsen, B. M. Nielsen, C. Hettich, K. Mølmer, and E. S. Polzik, “Generation of a superposition of odd photon number states for quantum information networks,” Phys. Rev. Lett. 97, 083604 (2006).
[Crossref] [PubMed]

M. M. Boyd, T. Zelevinsky, A. D. Ludlow, S. M. Foreman, S. Blatt, T. Ido, and J. Ye, “Optical atomic coherence at the 1-second time scale,” Science 314, 1430–1433 (2006).
[Crossref] [PubMed]

T. Nazarova, F. Riehle, and U. Sterr, “Vibration-insensitive reference cavity for an ultra-narrow-linewidth laser,” Appl. Phys. B 83, 531–536 (2006).
[Crossref]

2005 (2)

2003 (1)

2001 (1)

2000 (2)

T. Spence, C. Harb, B. Paldus, R. Zare, B. Willke, and R. Byer, “A laser-locked cavity ring-down spectrometer employing an analog detection scheme,” Rev. Sci. Instrum. 71, 347–353 (2000).
[Crossref]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref] [PubMed]

1999 (1)

B. Young, F. Cruz, W. M. Itano, and J. Bergquist, “Visible lasers with subhertz linewidths,” Phys. Rev. Lett. 82, 3799 (1999).
[Crossref]

1996 (1)

1990 (1)

C.-H. Shin and M. Ohtsu, “Heterodyne optical phase-locked loop by confocal fabry-periot cavity coupled algaas lasers,” IEEE Photonics Technol. Lett. 2, 297–300 (1990).
[Crossref]

1988 (1)

1984 (1)

1983 (1)

R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

1979 (1)

W. Jitschin and G. Meisel, “Fast frequency control of a cw dye jet laser,” Appl. Phys. 19, 181–184 (1979).
[Crossref]

Bechhoefer, J.

J. Bechhoefer, “Feedback for physicists: A tutorial essay on control,” Rev. Mod. Phys. 77, 783 (2005).
[Crossref]

Bell, A.

Bergquist, J.

B. Young, F. Cruz, W. M. Itano, and J. Bergquist, “Visible lasers with subhertz linewidths,” Phys. Rev. Lett. 82, 3799 (1999).
[Crossref]

Biedermann, G.

G. Biedermann, X. Wu, L. Deslauriers, S. Roy, C. Mahadeswaraswamy, and M. Kasevich, “Testing gravity with cold-atom interferometers,” Phys. Rev. A 91, 033629 (2015).
[Crossref]

Bjork, B. J.

A. Foltynowicz, P. Masłowski, A. J. Fleisher, B. J. Bjork, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy in the mid-infrared application to trace detection of hydrogen peroxide,” Appl. Phys. B 110, 163–175 (2013).
[Crossref]

Blatt, S.

A. Ludlow, X. Huang, M. Notcutt, T. Zanon-Willette, S. Foreman, M. Boyd, S. Blatt, and J. Ye, “Compact, thermal-noise-limited optical cavity for diode laser stabilization at 1 × 10–15,” Opt. Lett. 32, 641–643 (2007).
[Crossref] [PubMed]

M. M. Boyd, T. Zelevinsky, A. D. Ludlow, S. M. Foreman, S. Blatt, T. Ido, and J. Ye, “Optical atomic coherence at the 1-second time scale,” Science 314, 1430–1433 (2006).
[Crossref] [PubMed]

Boyd, M.

Boyd, M. M.

M. M. Boyd, T. Zelevinsky, A. D. Ludlow, S. M. Foreman, S. Blatt, T. Ido, and J. Ye, “Optical atomic coherence at the 1-second time scale,” Science 314, 1430–1433 (2006).
[Crossref] [PubMed]

Briles, T. C.

Brown, J. M.

P. Hamilton, M. Jaffe, J. M. Brown, L. Maisenbacher, B. Estey, and H. Müller, “Atom interferometry in an optical cavity,” Phys. Rev. Lett. 114, 100405 (2015).
[Crossref] [PubMed]

Byer, R.

T. Spence, C. Harb, B. Paldus, R. Zare, B. Willke, and R. Byer, “A laser-locked cavity ring-down spectrometer employing an analog detection scheme,” Rev. Sci. Instrum. 71, 347–353 (2000).
[Crossref]

Cingöz, A.

Coddington, I.

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100, 013902 (2008).
[Crossref] [PubMed]

Cruz, F.

B. Young, F. Cruz, W. M. Itano, and J. Bergquist, “Visible lasers with subhertz linewidths,” Phys. Rev. Lett. 82, 3799 (1999).
[Crossref]

Cundiff, S. T.

D. D. Hudson, K. W. Holman, R. J. Jones, S. T. Cundiff, J. Ye, and D. J. Jones, “Mode-locked fiber laser frequency-controlled with an intracavity electro-optic modulator,” Opt. Lett. 30, 2948–2950 (2005).
[Crossref] [PubMed]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref] [PubMed]

Deslauriers, L.

G. Biedermann, X. Wu, L. Deslauriers, S. Roy, C. Mahadeswaraswamy, and M. Kasevich, “Testing gravity with cold-atom interferometers,” Phys. Rev. A 91, 033629 (2015).
[Crossref]

Diddams, S. A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref] [PubMed]

Drever, R.

R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Duerksen, G. L.

G. L. Duerksen and M. A. Krainak, “Low-cost, single-frequency sources for spectroscopy using conventional fabry-perot diode lasers,” in Advanced Semiconductor Lasers and Their Applications (Optical Society of America, 1999), p. 35.
[Crossref]

Estey, B.

P. Hamilton, M. Jaffe, J. M. Brown, L. Maisenbacher, B. Estey, and H. Müller, “Atom interferometry in an optical cavity,” Phys. Rev. Lett. 114, 100405 (2015).
[Crossref] [PubMed]

Evans, C.

Ferguson, A.

Fleisher, A. J.

A. Foltynowicz, P. Masłowski, A. J. Fleisher, B. J. Bjork, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy in the mid-infrared application to trace detection of hydrogen peroxide,” Appl. Phys. B 110, 163–175 (2013).
[Crossref]

Foltynowicz, A.

A. Foltynowicz, P. Masłowski, A. J. Fleisher, B. J. Bjork, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy in the mid-infrared application to trace detection of hydrogen peroxide,” Appl. Phys. B 110, 163–175 (2013).
[Crossref]

Ford, G.

R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Foreman, S.

Foreman, S. M.

M. M. Boyd, T. Zelevinsky, A. D. Ludlow, S. M. Foreman, S. Blatt, T. Ido, and J. Ye, “Optical atomic coherence at the 1-second time scale,” Science 314, 1430–1433 (2006).
[Crossref] [PubMed]

Fox, R. W.

Y. Jiang, A. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L.-S. Ma, and C. W. Oates, “Making optical atomic clocks more stable with 10–16-level laser stabilization,” Nat. Photonics 5, 158–161 (2011).
[Crossref]

Grünert, J.

Hall, J.

Hall, J. L.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref] [PubMed]

R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Hamilton, P.

P. Hamilton, M. Jaffe, J. M. Brown, L. Maisenbacher, B. Estey, and H. Müller, “Atom interferometry in an optical cavity,” Phys. Rev. Lett. 114, 100405 (2015).
[Crossref] [PubMed]

Hänsch, T.

Harb, C.

T. Spence, C. Harb, B. Paldus, R. Zare, B. Willke, and R. Byer, “A laser-locked cavity ring-down spectrometer employing an analog detection scheme,” Rev. Sci. Instrum. 71, 347–353 (2000).
[Crossref]

Hemmerich, A.

Hettich, C.

J. S. Neergaard-Nielsen, B. M. Nielsen, C. Hettich, K. Mølmer, and E. S. Polzik, “Generation of a superposition of odd photon number states for quantum information networks,” Phys. Rev. Lett. 97, 083604 (2006).
[Crossref] [PubMed]

Hils, D.

Holman, K. W.

Hough, J.

R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Huang, X.

Hudson, D. D.

Ido, T.

M. M. Boyd, T. Zelevinsky, A. D. Ludlow, S. M. Foreman, S. Blatt, T. Ido, and J. Ye, “Optical atomic coherence at the 1-second time scale,” Science 314, 1430–1433 (2006).
[Crossref] [PubMed]

Itano, W. M.

B. Young, F. Cruz, W. M. Itano, and J. Bergquist, “Visible lasers with subhertz linewidths,” Phys. Rev. Lett. 82, 3799 (1999).
[Crossref]

Jaffe, M.

P. Hamilton, M. Jaffe, J. M. Brown, L. Maisenbacher, B. Estey, and H. Müller, “Atom interferometry in an optical cavity,” Phys. Rev. Lett. 114, 100405 (2015).
[Crossref] [PubMed]

Jiang, Y.

Y. Jiang, A. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L.-S. Ma, and C. W. Oates, “Making optical atomic clocks more stable with 10–16-level laser stabilization,” Nat. Photonics 5, 158–161 (2011).
[Crossref]

Jitschin, W.

W. Jitschin and G. Meisel, “Fast frequency control of a cw dye jet laser,” Appl. Phys. 19, 181–184 (1979).
[Crossref]

Jones, D. J.

D. D. Hudson, K. W. Holman, R. J. Jones, S. T. Cundiff, J. Ye, and D. J. Jones, “Mode-locked fiber laser frequency-controlled with an intracavity electro-optic modulator,” Opt. Lett. 30, 2948–2950 (2005).
[Crossref] [PubMed]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref] [PubMed]

Jones, R. J.

Kasevich, M.

G. Biedermann, X. Wu, L. Deslauriers, S. Roy, C. Mahadeswaraswamy, and M. Kasevich, “Testing gravity with cold-atom interferometers,” Phys. Rev. A 91, 033629 (2015).
[Crossref]

Kowalski, F.

R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Krainak, M. A.

G. L. Duerksen and M. A. Krainak, “Low-cost, single-frequency sources for spectroscopy using conventional fabry-perot diode lasers,” in Advanced Semiconductor Lasers and Their Applications (Optical Society of America, 1999), p. 35.
[Crossref]

Lemke, N. D.

Y. Jiang, A. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L.-S. Ma, and C. W. Oates, “Making optical atomic clocks more stable with 10–16-level laser stabilization,” Nat. Photonics 5, 158–161 (2011).
[Crossref]

Ludlow, A.

Y. Jiang, A. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L.-S. Ma, and C. W. Oates, “Making optical atomic clocks more stable with 10–16-level laser stabilization,” Nat. Photonics 5, 158–161 (2011).
[Crossref]

A. Ludlow, X. Huang, M. Notcutt, T. Zanon-Willette, S. Foreman, M. Boyd, S. Blatt, and J. Ye, “Compact, thermal-noise-limited optical cavity for diode laser stabilization at 1 × 10–15,” Opt. Lett. 32, 641–643 (2007).
[Crossref] [PubMed]

Ludlow, A. D.

M. M. Boyd, T. Zelevinsky, A. D. Ludlow, S. M. Foreman, S. Blatt, T. Ido, and J. Ye, “Optical atomic coherence at the 1-second time scale,” Science 314, 1430–1433 (2006).
[Crossref] [PubMed]

Ma, L.-S.

Y. Jiang, A. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L.-S. Ma, and C. W. Oates, “Making optical atomic clocks more stable with 10–16-level laser stabilization,” Nat. Photonics 5, 158–161 (2011).
[Crossref]

Macfarlane, G.

Mahadeswaraswamy, C.

G. Biedermann, X. Wu, L. Deslauriers, S. Roy, C. Mahadeswaraswamy, and M. Kasevich, “Testing gravity with cold-atom interferometers,” Phys. Rev. A 91, 033629 (2015).
[Crossref]

Maisenbacher, L.

P. Hamilton, M. Jaffe, J. M. Brown, L. Maisenbacher, B. Estey, and H. Müller, “Atom interferometry in an optical cavity,” Phys. Rev. Lett. 114, 100405 (2015).
[Crossref] [PubMed]

Maslowski, P.

A. Foltynowicz, P. Masłowski, A. J. Fleisher, B. J. Bjork, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy in the mid-infrared application to trace detection of hydrogen peroxide,” Appl. Phys. B 110, 163–175 (2013).
[Crossref]

Meisel, G.

W. Jitschin and G. Meisel, “Fast frequency control of a cw dye jet laser,” Appl. Phys. 19, 181–184 (1979).
[Crossref]

Mølmer, K.

J. S. Neergaard-Nielsen, B. M. Nielsen, C. Hettich, K. Mølmer, and E. S. Polzik, “Generation of a superposition of odd photon number states for quantum information networks,” Phys. Rev. Lett. 97, 083604 (2006).
[Crossref] [PubMed]

Müller, H.

P. Hamilton, M. Jaffe, J. M. Brown, L. Maisenbacher, B. Estey, and H. Müller, “Atom interferometry in an optical cavity,” Phys. Rev. Lett. 114, 100405 (2015).
[Crossref] [PubMed]

Munley, A.

R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Nazarova, T.

T. Nazarova, F. Riehle, and U. Sterr, “Vibration-insensitive reference cavity for an ultra-narrow-linewidth laser,” Appl. Phys. B 83, 531–536 (2006).
[Crossref]

Neergaard-Nielsen, J. S.

J. S. Neergaard-Nielsen, B. M. Nielsen, C. Hettich, K. Mølmer, and E. S. Polzik, “Generation of a superposition of odd photon number states for quantum information networks,” Phys. Rev. Lett. 97, 083604 (2006).
[Crossref] [PubMed]

Newbury, N. R.

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100, 013902 (2008).
[Crossref] [PubMed]

Nielsen, B. M.

J. S. Neergaard-Nielsen, B. M. Nielsen, C. Hettich, K. Mølmer, and E. S. Polzik, “Generation of a superposition of odd photon number states for quantum information networks,” Phys. Rev. Lett. 97, 083604 (2006).
[Crossref] [PubMed]

Notcutt, M.

Oates, C. W.

Y. Jiang, A. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L.-S. Ma, and C. W. Oates, “Making optical atomic clocks more stable with 10–16-level laser stabilization,” Nat. Photonics 5, 158–161 (2011).
[Crossref]

Ohtsu, M.

C.-H. Shin and M. Ohtsu, “Heterodyne optical phase-locked loop by confocal fabry-periot cavity coupled algaas lasers,” IEEE Photonics Technol. Lett. 2, 297–300 (1990).
[Crossref]

Paldus, B.

T. Spence, C. Harb, B. Paldus, R. Zare, B. Willke, and R. Byer, “A laser-locked cavity ring-down spectrometer employing an analog detection scheme,” Rev. Sci. Instrum. 71, 347–353 (2000).
[Crossref]

Polzik, E. S.

J. S. Neergaard-Nielsen, B. M. Nielsen, C. Hettich, K. Mølmer, and E. S. Polzik, “Generation of a superposition of odd photon number states for quantum information networks,” Phys. Rev. Lett. 97, 083604 (2006).
[Crossref] [PubMed]

Potma, E. O.

Ranka, J. K.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref] [PubMed]

Riehle, F.

T. Nazarova, F. Riehle, and U. Sterr, “Vibration-insensitive reference cavity for an ultra-narrow-linewidth laser,” Appl. Phys. B 83, 531–536 (2006).
[Crossref]

Riis, E.

Ritter, S.

Roy, S.

G. Biedermann, X. Wu, L. Deslauriers, S. Roy, C. Mahadeswaraswamy, and M. Kasevich, “Testing gravity with cold-atom interferometers,” Phys. Rev. A 91, 033629 (2015).
[Crossref]

Salomon, C.

Schibli, T. R.

Schoof, A.

Sherman, J. A.

Y. Jiang, A. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L.-S. Ma, and C. W. Oates, “Making optical atomic clocks more stable with 10–16-level laser stabilization,” Nat. Photonics 5, 158–161 (2011).
[Crossref]

Shin, C.-H.

C.-H. Shin and M. Ohtsu, “Heterodyne optical phase-locked loop by confocal fabry-periot cavity coupled algaas lasers,” IEEE Photonics Technol. Lett. 2, 297–300 (1990).
[Crossref]

Spence, T.

T. Spence, C. Harb, B. Paldus, R. Zare, B. Willke, and R. Byer, “A laser-locked cavity ring-down spectrometer employing an analog detection scheme,” Rev. Sci. Instrum. 71, 347–353 (2000).
[Crossref]

Stentz, A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref] [PubMed]

Sterr, U.

T. Nazarova, F. Riehle, and U. Sterr, “Vibration-insensitive reference cavity for an ultra-narrow-linewidth laser,” Appl. Phys. B 83, 531–536 (2006).
[Crossref]

Swann, W. C.

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100, 013902 (2008).
[Crossref] [PubMed]

Thorpe, M. J.

M. J. Thorpe and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy,” Appl. Phys. B 91, 397–414 (2008).
[Crossref]

Ward, H.

R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

Willke, B.

T. Spence, C. Harb, B. Paldus, R. Zare, B. Willke, and R. Byer, “A laser-locked cavity ring-down spectrometer employing an analog detection scheme,” Rev. Sci. Instrum. 71, 347–353 (2000).
[Crossref]

Windeler, R. S.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref] [PubMed]

Wu, X.

G. Biedermann, X. Wu, L. Deslauriers, S. Roy, C. Mahadeswaraswamy, and M. Kasevich, “Testing gravity with cold-atom interferometers,” Phys. Rev. A 91, 033629 (2015).
[Crossref]

Xie, X. S.

Ye, J.

Yost, D. C.

Young, B.

B. Young, F. Cruz, W. M. Itano, and J. Bergquist, “Visible lasers with subhertz linewidths,” Phys. Rev. Lett. 82, 3799 (1999).
[Crossref]

Zanon-Willette, T.

Zare, R.

T. Spence, C. Harb, B. Paldus, R. Zare, B. Willke, and R. Byer, “A laser-locked cavity ring-down spectrometer employing an analog detection scheme,” Rev. Sci. Instrum. 71, 347–353 (2000).
[Crossref]

Zelevinsky, T.

M. M. Boyd, T. Zelevinsky, A. D. Ludlow, S. M. Foreman, S. Blatt, T. Ido, and J. Ye, “Optical atomic coherence at the 1-second time scale,” Science 314, 1430–1433 (2006).
[Crossref] [PubMed]

Appl. Phys. (1)

W. Jitschin and G. Meisel, “Fast frequency control of a cw dye jet laser,” Appl. Phys. 19, 181–184 (1979).
[Crossref]

Appl. Phys. B (4)

R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[Crossref]

T. Nazarova, F. Riehle, and U. Sterr, “Vibration-insensitive reference cavity for an ultra-narrow-linewidth laser,” Appl. Phys. B 83, 531–536 (2006).
[Crossref]

A. Foltynowicz, P. Masłowski, A. J. Fleisher, B. J. Bjork, and J. Ye, “Cavity-enhanced optical frequency comb spectroscopy in the mid-infrared application to trace detection of hydrogen peroxide,” Appl. Phys. B 110, 163–175 (2013).
[Crossref]

M. J. Thorpe and J. Ye, “Cavity-enhanced direct frequency comb spectroscopy,” Appl. Phys. B 91, 397–414 (2008).
[Crossref]

IEEE Photonics Technol. Lett. (1)

C.-H. Shin and M. Ohtsu, “Heterodyne optical phase-locked loop by confocal fabry-periot cavity coupled algaas lasers,” IEEE Photonics Technol. Lett. 2, 297–300 (1990).
[Crossref]

J. Opt. Soc. Am. B (1)

Nat. Photonics (1)

Y. Jiang, A. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L.-S. Ma, and C. W. Oates, “Making optical atomic clocks more stable with 10–16-level laser stabilization,” Nat. Photonics 5, 158–161 (2011).
[Crossref]

Opt. Express (1)

Opt. Lett. (6)

Phys. Rev. A (1)

G. Biedermann, X. Wu, L. Deslauriers, S. Roy, C. Mahadeswaraswamy, and M. Kasevich, “Testing gravity with cold-atom interferometers,” Phys. Rev. A 91, 033629 (2015).
[Crossref]

Phys. Rev. Lett. (4)

P. Hamilton, M. Jaffe, J. M. Brown, L. Maisenbacher, B. Estey, and H. Müller, “Atom interferometry in an optical cavity,” Phys. Rev. Lett. 114, 100405 (2015).
[Crossref] [PubMed]

J. S. Neergaard-Nielsen, B. M. Nielsen, C. Hettich, K. Mølmer, and E. S. Polzik, “Generation of a superposition of odd photon number states for quantum information networks,” Phys. Rev. Lett. 97, 083604 (2006).
[Crossref] [PubMed]

B. Young, F. Cruz, W. M. Itano, and J. Bergquist, “Visible lasers with subhertz linewidths,” Phys. Rev. Lett. 82, 3799 (1999).
[Crossref]

I. Coddington, W. C. Swann, and N. R. Newbury, “Coherent multiheterodyne spectroscopy using stabilized optical frequency combs,” Phys. Rev. Lett. 100, 013902 (2008).
[Crossref] [PubMed]

Rev. Mod. Phys. (1)

J. Bechhoefer, “Feedback for physicists: A tutorial essay on control,” Rev. Mod. Phys. 77, 783 (2005).
[Crossref]

Rev. Sci. Instrum. (1)

T. Spence, C. Harb, B. Paldus, R. Zare, B. Willke, and R. Byer, “A laser-locked cavity ring-down spectrometer employing an analog detection scheme,” Rev. Sci. Instrum. 71, 347–353 (2000).
[Crossref]

Science (2)

M. M. Boyd, T. Zelevinsky, A. D. Ludlow, S. M. Foreman, S. Blatt, T. Ido, and J. Ye, “Optical atomic coherence at the 1-second time scale,” Science 314, 1430–1433 (2006).
[Crossref] [PubMed]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis,” Science 288, 635–639 (2000).
[Crossref] [PubMed]

Other (1)

G. L. Duerksen and M. A. Krainak, “Low-cost, single-frequency sources for spectroscopy using conventional fabry-perot diode lasers,” in Advanced Semiconductor Lasers and Their Applications (Optical Society of America, 1999), p. 35.
[Crossref]

Supplementary Material (1)

NameDescription
» Visualization 1: MP4 (16081 KB)      Demonstration of PZT mount for locking a cavity for high-power frequency doubling

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 PZT mounting concept. The mirror and PZT are glued together and held by applying pressure from the back and the front of the mount. The PZT is separated from the back of the mount by a soft padding disk, and from the front by a soft ring. Mechanical pressure stabilizes the mirror and improves damping of the high PZT-mirror self resonances.
Fig. 2
Fig. 2 (a) Schematic illustration of the final mounting design. (b) A zoom into the mount. From right to left: The mount (black), front 6.8mm inner diameter, 2mm thick rubber o-ring (yellow), a 6.5mm inner diameter, 2mm thick soft positioning ring (grey, molded from acrylic sealant), an 8mm diameter, 2mm thick mirror (blue), a cubic PZT of 3 × 3 × 2 dimensions, 60nF electrical capacitance and 2.2μm dynamic travel range at 150V (red), a 10.5mm diameter, 3mm thick back soft padding (grey, made of acrylic sealant), extra rubber padding (yellow), a Teflon supporting back (white) and the pressure screw (black).
Fig. 3
Fig. 3 Time and frequency response for a step perturbation, PI corner set to 30KHz and 300KHz. (a) Frequency response with PI at 30KHz. (b) Frequency response with PI at 300KHz. (c) Time response with PI at 30KHz. (d) Time response with PI at 300KHz.
Fig. 4
Fig. 4 Pointing stability of the PZT-mirror as a function of time.
Fig. 5
Fig. 5 Basic scheme of the PZT driver. The input signal is pre-amplified and split into inverting and non inverting amplifiers. The outputs are then feed the two leads of the piezo, producing a differential voltage with an overall gain of ×4 (after preamp).

Metrics