Abstract

A fiber-optic toluene gas sensor based on reduced graphene oxide (rGO) is demonstrated and its sensing property is investigated experimentally and theoretically. The rGO film is deposited on a side polished fiber (SPF), allowing the strong interaction between rGO film and propagating field and making the SPF sensitive to toluene gas. It is found that the sensor has good linearity and reversibility and can work at room temperature with the response and the recovery time of 256 s and the detection limit of 79 ppm. Moreover, a theoretical model for the sensor is established to analyze the sensing mechanism. Theoretical analysis indicates this type of sensor could work in a wide range of toluene gas concentration and shows that a significant rise in its sensitivity can be expected by adjusting the doping level or chemical potential of graphene.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Reduced graphene oxide for fiber-optic humidity sensing

Yi Xiao, Jun Zhang, Xiang Cai, Shaozao Tan, Jianhui Yu, Huihui Lu, Yunhan Luo, Guozhen Liao, Shiping Li, Jieyuan Tang, and Zhe Chen
Opt. Express 22(25) 31555-31567 (2014)

Graphene oxide deposited microfiber knot resonator for gas sensing

Cai-Bin Yu, Yu Wu, Xiao-Lei Liu, Bai-Cheng Yao, Fei Fu, Yuan Gong, Yun-Jiang Rao, and Yuan-Fu Chen
Opt. Mater. Express 6(3) 727-733 (2016)

Enhanced optical sensitivity of molybdenum diselenide (MoSe2) coated side polished fiber for humidity sensing

Tenghui Ouyang, Limin Lin, Kai Xia, Mengjiang Jiang, Yuwei Lang, Heyuan Guan, Jianhui Yu, Dongquan Li, Guanglei Chen, Wenguo Zhu, Yongchun Zhong, Jieyuan Tang, Jiangli Dong, Huihui Lu, Yunhan Luo, Jun Zhang, and Zhe Chen
Opt. Express 25(9) 9823-9833 (2017)

References

  • View by:
  • |
  • |
  • |

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
    [Crossref] [PubMed]
  2. M. D. Stoller, S. Park, Y. Zhu, J. An, and R. S. Ruoff, “Graphene-based ultracapacitors,” Nano Lett. 8(10), 3498–3502 (2008).
    [Crossref] [PubMed]
  3. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8(3), 902–907 (2008).
    [Crossref] [PubMed]
  4. F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, “Detection of individual gas molecules adsorbed on graphene,” Nat. Mater. 6(9), 652–655 (2007).
    [Crossref] [PubMed]
  5. G. H. Lu, L. E. Ocola, and J. H. Chen, “Gas detection using low-temperature reduced graphene oxide sheets,” Appl. Phys. Lett. 94(8), 083111 (2009).
    [Crossref]
  6. J. D. Fowler, M. J. Allen, V. C. Tung, Y. Yang, R. B. Kaner, and B. H. Weiller, “Practical chemical sensors from chemically derived graphene,” ACS Nano 3(2), 301–306 (2009).
    [Crossref] [PubMed]
  7. M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
    [Crossref] [PubMed]
  8. M. Mohsin, D. Neumaier, D. Schall, M. Otto, C. Matheisen, A. L. Giesecke, A. A. Sagade, and H. Kurz, “Experimental verification of electro-refractive phase modulation in graphene,” Sci. Rep. 5, 10967 (2015).
    [Crossref] [PubMed]
  9. Z. B. Liu, M. Feng, W. S. Jiang, W. Xin, P. Wang, Q. W. Sheng, Y. G. Liu, D. N. Wang, W. Y. Zhou, and J. G. Tian, “Broadband all-optical modulation using a graphene-covered-microfiber,” Laser Phys. Lett. 10(6), 065901 (2013).
    [Crossref]
  10. W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
    [Crossref] [PubMed]
  11. H. Zhang, N. Healy, L. Shen, C. C. Huang, D. W. Hewak, and A. C. Peacock, “Enhanced all-optical modulation in a graphene-coated fibre with low insertion loss,” Sci. Rep. 6, 23512 (2016).
    [Crossref] [PubMed]
  12. J. H. Chen, B. C. Zheng, G. H. Shao, S. J. Ge, F. Xu, and Y. Q. Lu, “An all-optical modulator based on a stereo graphene-microfiber structure,” Light Sci. Appl. 4(12), e360 (2015).
    [Crossref]
  13. Q. L. Bao, H. Zhang, B. Wang, Z. H. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
    [Crossref]
  14. J. T. Kim and C. G. Choi, “Graphene-based polymer waveguide polarizer,” Opt. Express 20(4), 3556–3562 (2012).
    [Crossref] [PubMed]
  15. J. L. Kou, J. H. Chen, Y. Chen, F. Xu, and Y. Q. Lu, “Platform for enhanced light-graphene interaction length and miniaturizing fiber stereo devices,” Optica 1(5), 307–310 (2014).
    [Crossref]
  16. C. Y. Guan, S. Q. Li, Y. Z. Shen, T. T. Yuan, J. Yang, and L. B. Yuan, “Graphene-coated surface core fiber polarizer,” J. Lightwave Technol. 33(2), 349–353 (2015).
    [Crossref]
  17. S. K. Mishra, S. N. Tripathi, V. Choudhary, and B. D. Gupta, “SPR based fibre optic ammonia gas sensor utilizing nanocomposite film of PMMA/reduced graphene oxide prepared by in situ polymerization,” Sens. Actuat. B 199, 190–200 (2014).
    [Crossref]
  18. S. K. Mishra, S. N. Tripathi, V. Choudhary, and B. D. Gupta, “Surface plasmon resonance-based fiber optic methane gas sensor utilizing graphene-carbon nanotubes-poly (methylmethacrylate) hybrid nanocomposite,” Plasmonics 10(5), 1147–1157 (2015).
    [Crossref]
  19. B. C. Yao, Y. Wu, A. Q. Zhang, Y. J. Rao, Z. G. Wang, Y. Cheng, Y. Gong, W. L. Zhang, Y. F. Chen, and K. S. Chiang, “Graphene enhanced evanescent field in microfiber multimode interferometer for highly sensitive gas sensing,” Opt. Express 22(23), 28154–28162 (2014).
    [Crossref] [PubMed]
  20. B. C. Yao, Y. Wu, Y. Cheng, A. Zhang, Y. Gong, Y. J. Rao, Z. Wang, and Y. Chen, “All-optical Mach-Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide,” Sens. Actuat. B 194, 142–148 (2014).
    [Crossref]
  21. Y. Wu, B. Yao, A. Zhang, Y. Rao, Z. Wang, Y. Cheng, Y. Gong, W. Zhang, Y. Chen, and K. S. Chiang, “Graphene-coated microfiber Bragg grating for high-sensitivity gas sensing,” Opt. Lett. 39(5), 1235–1237 (2014).
    [Crossref] [PubMed]
  22. Y. Wu, B. C. Yao, Y. Cheng, Y. J. Rao, Y. Gong, W. Zhang, Z. Wang, and Y. Chen, “Hybrid graphene-microfiber waveguide for chemical gas sensing,” IEEE J. Sel. Top. Quantum Electron. 20(1), 4400206 (2014).
  23. L. Sansone, V. Malachovska, P. L. Manna, P. Musto, A. Borriello, G. D. Luca, and M. Giordano, “Nanochemical fabrication of a graphene oxide-based nanohybrid for label-free optical sensing with fiber optics,” Sens. Actuat. B 202, 523–526 (2014).
    [Crossref]
  24. Y. Xiao, J. Zhang, X. Cai, S. Tan, J. Yu, H. Lu, Y. Luo, G. Liao, S. Li, J. Tang, and Z. Chen, “Reduced graphene oxide for fiber-optic humidity sensing,” Opt. Express 22(25), 31555–31567 (2014).
    [Crossref] [PubMed]
  25. R. Gao, D. F. Lu, J. Cheng, Y. Jiang, L. Jiang, and Z. M. Qi, “Humidity sensor based on power leakage at resonance wavelengths of a hollow core fiber coated with reduced graphene oxide,” Sens. Actuat. B 222, 618–624 (2016).
    [Crossref]
  26. Y. Z. Tan, F. Yang, J. Ma, H. L. Ho, and W. Jin, “All-fiber photoacoustic gas sensor with graphene nano-mechanical resonator as the acoustic detector,” Proc. SPIE 3964, 96341K1 (2015).
  27. H. Shan, C. Liu, L. Liu, J. Zhang, H. Li, Z. Liu, X. Zhang, X. Bo, and X. Chi, “Excellent toluene sensing properties of SnO2-Fe2O3 interconnected nanotubes,” ACS Appl. Mater. Interfaces 5(13), 6376–6380 (2013).
    [Crossref] [PubMed]
  28. M. Parmar, C. Balamurugan, and D. W. Lee, “PANI and graphene/PANI nanocomposite films--comparative toluene gas sensing behavior,” Sensors (Basel) 13(12), 16611–16624 (2013).
    [Crossref] [PubMed]
  29. I. Hafaiedh, W. Elleuch, P. Clement, E. Llobet, and A. Abdelghani, “Multi-walled carbon nanotubes for volatile organic compound detection,” Sens. Actuat. B 182, 344–350 (2013).
    [Crossref]
  30. L. I. B. Silva, T. A. P. Rocha-Santos, and A. C. Duarte, “Development of a fluorosiloxane polymer-coated optical fibre sensor for detection of organic volatile compounds,” Sens. Actuators B Chem. 132(1), 280–289 (2008).
    [Crossref]
  31. J. Zhang, X. L. Tang, J. H. Dong, T. Wei, and H. Xiao, “Zeolite thin film-coated long period fiber grating sensor for measuring trace organic vapors,” Sens. Actuat. B 135(2), 420–425 (2009).
    [Crossref]
  32. S. M. Topliss, S. W. James, F. Davis, S. P. J. Higson, and R. P. Tatam, “Optical fibre long period grating based selective vapour sensing of volatile organic compounds,” Sens. Actuators B Chem. 143(2), 629–634 (2010).
    [Crossref]
  33. J. C. Echeverría, P. de Vicente, J. Estella, and J. J. Garrido, “A fiber-optic sensor to detect volatile organic compounds based on a porous silica xerogel film,” Talanta 99, 433–440 (2012).
    [Crossref] [PubMed]
  34. T. Bora, H. Fallah, M. Chaudhari, T. Apiwattanadej, S. W. Harun, W. S. Mohammed, and J. Dutta, “Controlled side coupling of light to cladding mode of ZnO nanorod coated optical fibers and its implications for chemical vapor sensing,” Sens. Actuators B Chem. 202, 543–550 (2014).
    [Crossref]
  35. Z. Chen and C. H. Bai, “Effect of overlaid material on optical transmission of side-polished fiber made by wheel side polishing,” J. Electron. Sci. Technol. China 6(4), 445–448 (2008).
  36. X. Cai, S. Z. Tan, A. G. Xie, M. S. Lin, Y. L. Liu, X. J. Zhang, Z. D. Lin, T. Wu, and W. J. Mai, “Conductive methyl blue-functionalized reduced graphene oxide with excellent stability and solubility in water,” Mater. Res. Bull. 46(12), 2353–2358 (2011).
    [Crossref]
  37. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
    [Crossref] [PubMed]
  38. G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
    [Crossref]
  39. R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
    [Crossref] [PubMed]
  40. O. Leenaerts, B. Partoens, and F. M. Peeters, “Adsorption of H2O, NH3, CO, NO2 and NO on graphene: A first-principles study,” Phys. Rev. B 77(12), 125416 (2008).
    [Crossref]
  41. C. Gómez-Navarro, J. C. Meyer, R. S. Sundaram, A. Chuvilin, S. Kurasch, M. Burghard, K. Kern, and U. Kaiser, “Atomic structure of reduced graphene oxide,” Nano Lett. 10(4), 1144–1148 (2010).
    [Crossref] [PubMed]

2016 (2)

R. Gao, D. F. Lu, J. Cheng, Y. Jiang, L. Jiang, and Z. M. Qi, “Humidity sensor based on power leakage at resonance wavelengths of a hollow core fiber coated with reduced graphene oxide,” Sens. Actuat. B 222, 618–624 (2016).
[Crossref]

H. Zhang, N. Healy, L. Shen, C. C. Huang, D. W. Hewak, and A. C. Peacock, “Enhanced all-optical modulation in a graphene-coated fibre with low insertion loss,” Sci. Rep. 6, 23512 (2016).
[Crossref] [PubMed]

2015 (5)

J. H. Chen, B. C. Zheng, G. H. Shao, S. J. Ge, F. Xu, and Y. Q. Lu, “An all-optical modulator based on a stereo graphene-microfiber structure,” Light Sci. Appl. 4(12), e360 (2015).
[Crossref]

Y. Z. Tan, F. Yang, J. Ma, H. L. Ho, and W. Jin, “All-fiber photoacoustic gas sensor with graphene nano-mechanical resonator as the acoustic detector,” Proc. SPIE 3964, 96341K1 (2015).

M. Mohsin, D. Neumaier, D. Schall, M. Otto, C. Matheisen, A. L. Giesecke, A. A. Sagade, and H. Kurz, “Experimental verification of electro-refractive phase modulation in graphene,” Sci. Rep. 5, 10967 (2015).
[Crossref] [PubMed]

S. K. Mishra, S. N. Tripathi, V. Choudhary, and B. D. Gupta, “Surface plasmon resonance-based fiber optic methane gas sensor utilizing graphene-carbon nanotubes-poly (methylmethacrylate) hybrid nanocomposite,” Plasmonics 10(5), 1147–1157 (2015).
[Crossref]

C. Y. Guan, S. Q. Li, Y. Z. Shen, T. T. Yuan, J. Yang, and L. B. Yuan, “Graphene-coated surface core fiber polarizer,” J. Lightwave Technol. 33(2), 349–353 (2015).
[Crossref]

2014 (10)

S. K. Mishra, S. N. Tripathi, V. Choudhary, and B. D. Gupta, “SPR based fibre optic ammonia gas sensor utilizing nanocomposite film of PMMA/reduced graphene oxide prepared by in situ polymerization,” Sens. Actuat. B 199, 190–200 (2014).
[Crossref]

B. C. Yao, Y. Wu, Y. Cheng, A. Zhang, Y. Gong, Y. J. Rao, Z. Wang, and Y. Chen, “All-optical Mach-Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide,” Sens. Actuat. B 194, 142–148 (2014).
[Crossref]

Y. Wu, B. C. Yao, Y. Cheng, Y. J. Rao, Y. Gong, W. Zhang, Z. Wang, and Y. Chen, “Hybrid graphene-microfiber waveguide for chemical gas sensing,” IEEE J. Sel. Top. Quantum Electron. 20(1), 4400206 (2014).

L. Sansone, V. Malachovska, P. L. Manna, P. Musto, A. Borriello, G. D. Luca, and M. Giordano, “Nanochemical fabrication of a graphene oxide-based nanohybrid for label-free optical sensing with fiber optics,” Sens. Actuat. B 202, 523–526 (2014).
[Crossref]

Y. Wu, B. Yao, A. Zhang, Y. Rao, Z. Wang, Y. Cheng, Y. Gong, W. Zhang, Y. Chen, and K. S. Chiang, “Graphene-coated microfiber Bragg grating for high-sensitivity gas sensing,” Opt. Lett. 39(5), 1235–1237 (2014).
[Crossref] [PubMed]

J. L. Kou, J. H. Chen, Y. Chen, F. Xu, and Y. Q. Lu, “Platform for enhanced light-graphene interaction length and miniaturizing fiber stereo devices,” Optica 1(5), 307–310 (2014).
[Crossref]

B. C. Yao, Y. Wu, A. Q. Zhang, Y. J. Rao, Z. G. Wang, Y. Cheng, Y. Gong, W. L. Zhang, Y. F. Chen, and K. S. Chiang, “Graphene enhanced evanescent field in microfiber multimode interferometer for highly sensitive gas sensing,” Opt. Express 22(23), 28154–28162 (2014).
[Crossref] [PubMed]

Y. Xiao, J. Zhang, X. Cai, S. Tan, J. Yu, H. Lu, Y. Luo, G. Liao, S. Li, J. Tang, and Z. Chen, “Reduced graphene oxide for fiber-optic humidity sensing,” Opt. Express 22(25), 31555–31567 (2014).
[Crossref] [PubMed]

T. Bora, H. Fallah, M. Chaudhari, T. Apiwattanadej, S. W. Harun, W. S. Mohammed, and J. Dutta, “Controlled side coupling of light to cladding mode of ZnO nanorod coated optical fibers and its implications for chemical vapor sensing,” Sens. Actuators B Chem. 202, 543–550 (2014).
[Crossref]

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

2013 (4)

H. Shan, C. Liu, L. Liu, J. Zhang, H. Li, Z. Liu, X. Zhang, X. Bo, and X. Chi, “Excellent toluene sensing properties of SnO2-Fe2O3 interconnected nanotubes,” ACS Appl. Mater. Interfaces 5(13), 6376–6380 (2013).
[Crossref] [PubMed]

M. Parmar, C. Balamurugan, and D. W. Lee, “PANI and graphene/PANI nanocomposite films--comparative toluene gas sensing behavior,” Sensors (Basel) 13(12), 16611–16624 (2013).
[Crossref] [PubMed]

I. Hafaiedh, W. Elleuch, P. Clement, E. Llobet, and A. Abdelghani, “Multi-walled carbon nanotubes for volatile organic compound detection,” Sens. Actuat. B 182, 344–350 (2013).
[Crossref]

Z. B. Liu, M. Feng, W. S. Jiang, W. Xin, P. Wang, Q. W. Sheng, Y. G. Liu, D. N. Wang, W. Y. Zhou, and J. G. Tian, “Broadband all-optical modulation using a graphene-covered-microfiber,” Laser Phys. Lett. 10(6), 065901 (2013).
[Crossref]

2012 (2)

J. C. Echeverría, P. de Vicente, J. Estella, and J. J. Garrido, “A fiber-optic sensor to detect volatile organic compounds based on a porous silica xerogel film,” Talanta 99, 433–440 (2012).
[Crossref] [PubMed]

J. T. Kim and C. G. Choi, “Graphene-based polymer waveguide polarizer,” Opt. Express 20(4), 3556–3562 (2012).
[Crossref] [PubMed]

2011 (3)

X. Cai, S. Z. Tan, A. G. Xie, M. S. Lin, Y. L. Liu, X. J. Zhang, Z. D. Lin, T. Wu, and W. J. Mai, “Conductive methyl blue-functionalized reduced graphene oxide with excellent stability and solubility in water,” Mater. Res. Bull. 46(12), 2353–2358 (2011).
[Crossref]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Q. L. Bao, H. Zhang, B. Wang, Z. H. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

2010 (2)

S. M. Topliss, S. W. James, F. Davis, S. P. J. Higson, and R. P. Tatam, “Optical fibre long period grating based selective vapour sensing of volatile organic compounds,” Sens. Actuators B Chem. 143(2), 629–634 (2010).
[Crossref]

C. Gómez-Navarro, J. C. Meyer, R. S. Sundaram, A. Chuvilin, S. Kurasch, M. Burghard, K. Kern, and U. Kaiser, “Atomic structure of reduced graphene oxide,” Nano Lett. 10(4), 1144–1148 (2010).
[Crossref] [PubMed]

2009 (3)

J. Zhang, X. L. Tang, J. H. Dong, T. Wei, and H. Xiao, “Zeolite thin film-coated long period fiber grating sensor for measuring trace organic vapors,” Sens. Actuat. B 135(2), 420–425 (2009).
[Crossref]

G. H. Lu, L. E. Ocola, and J. H. Chen, “Gas detection using low-temperature reduced graphene oxide sheets,” Appl. Phys. Lett. 94(8), 083111 (2009).
[Crossref]

J. D. Fowler, M. J. Allen, V. C. Tung, Y. Yang, R. B. Kaner, and B. H. Weiller, “Practical chemical sensors from chemically derived graphene,” ACS Nano 3(2), 301–306 (2009).
[Crossref] [PubMed]

2008 (7)

M. D. Stoller, S. Park, Y. Zhu, J. An, and R. S. Ruoff, “Graphene-based ultracapacitors,” Nano Lett. 8(10), 3498–3502 (2008).
[Crossref] [PubMed]

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8(3), 902–907 (2008).
[Crossref] [PubMed]

L. I. B. Silva, T. A. P. Rocha-Santos, and A. C. Duarte, “Development of a fluorosiloxane polymer-coated optical fibre sensor for detection of organic volatile compounds,” Sens. Actuators B Chem. 132(1), 280–289 (2008).
[Crossref]

Z. Chen and C. H. Bai, “Effect of overlaid material on optical transmission of side-polished fiber made by wheel side polishing,” J. Electron. Sci. Technol. China 6(4), 445–448 (2008).

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

O. Leenaerts, B. Partoens, and F. M. Peeters, “Adsorption of H2O, NH3, CO, NO2 and NO on graphene: A first-principles study,” Phys. Rev. B 77(12), 125416 (2008).
[Crossref]

2007 (1)

F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, “Detection of individual gas molecules adsorbed on graphene,” Nat. Mater. 6(9), 652–655 (2007).
[Crossref] [PubMed]

2006 (1)

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

2004 (1)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Abdelghani, A.

I. Hafaiedh, W. Elleuch, P. Clement, E. Llobet, and A. Abdelghani, “Multi-walled carbon nanotubes for volatile organic compound detection,” Sens. Actuat. B 182, 344–350 (2013).
[Crossref]

Allen, M. J.

J. D. Fowler, M. J. Allen, V. C. Tung, Y. Yang, R. B. Kaner, and B. H. Weiller, “Practical chemical sensors from chemically derived graphene,” ACS Nano 3(2), 301–306 (2009).
[Crossref] [PubMed]

An, J.

M. D. Stoller, S. Park, Y. Zhu, J. An, and R. S. Ruoff, “Graphene-based ultracapacitors,” Nano Lett. 8(10), 3498–3502 (2008).
[Crossref] [PubMed]

Apiwattanadej, T.

T. Bora, H. Fallah, M. Chaudhari, T. Apiwattanadej, S. W. Harun, W. S. Mohammed, and J. Dutta, “Controlled side coupling of light to cladding mode of ZnO nanorod coated optical fibers and its implications for chemical vapor sensing,” Sens. Actuators B Chem. 202, 543–550 (2014).
[Crossref]

Bai, C. H.

Z. Chen and C. H. Bai, “Effect of overlaid material on optical transmission of side-polished fiber made by wheel side polishing,” J. Electron. Sci. Technol. China 6(4), 445–448 (2008).

Balamurugan, C.

M. Parmar, C. Balamurugan, and D. W. Lee, “PANI and graphene/PANI nanocomposite films--comparative toluene gas sensing behavior,” Sensors (Basel) 13(12), 16611–16624 (2013).
[Crossref] [PubMed]

Balandin, A. A.

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8(3), 902–907 (2008).
[Crossref] [PubMed]

Bao, J.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Bao, Q. L.

Q. L. Bao, H. Zhang, B. Wang, Z. H. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Bao, W.

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8(3), 902–907 (2008).
[Crossref] [PubMed]

Blake, P.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, “Detection of individual gas molecules adsorbed on graphene,” Nat. Mater. 6(9), 652–655 (2007).
[Crossref] [PubMed]

Bo, X.

H. Shan, C. Liu, L. Liu, J. Zhang, H. Li, Z. Liu, X. Zhang, X. Bo, and X. Chi, “Excellent toluene sensing properties of SnO2-Fe2O3 interconnected nanotubes,” ACS Appl. Mater. Interfaces 5(13), 6376–6380 (2013).
[Crossref] [PubMed]

Booth, T. J.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Bora, T.

T. Bora, H. Fallah, M. Chaudhari, T. Apiwattanadej, S. W. Harun, W. S. Mohammed, and J. Dutta, “Controlled side coupling of light to cladding mode of ZnO nanorod coated optical fibers and its implications for chemical vapor sensing,” Sens. Actuators B Chem. 202, 543–550 (2014).
[Crossref]

Borriello, A.

L. Sansone, V. Malachovska, P. L. Manna, P. Musto, A. Borriello, G. D. Luca, and M. Giordano, “Nanochemical fabrication of a graphene oxide-based nanohybrid for label-free optical sensing with fiber optics,” Sens. Actuat. B 202, 523–526 (2014).
[Crossref]

Burghard, M.

C. Gómez-Navarro, J. C. Meyer, R. S. Sundaram, A. Chuvilin, S. Kurasch, M. Burghard, K. Kern, and U. Kaiser, “Atomic structure of reduced graphene oxide,” Nano Lett. 10(4), 1144–1148 (2010).
[Crossref] [PubMed]

Cai, X.

Y. Xiao, J. Zhang, X. Cai, S. Tan, J. Yu, H. Lu, Y. Luo, G. Liao, S. Li, J. Tang, and Z. Chen, “Reduced graphene oxide for fiber-optic humidity sensing,” Opt. Express 22(25), 31555–31567 (2014).
[Crossref] [PubMed]

X. Cai, S. Z. Tan, A. G. Xie, M. S. Lin, Y. L. Liu, X. J. Zhang, Z. D. Lin, T. Wu, and W. J. Mai, “Conductive methyl blue-functionalized reduced graphene oxide with excellent stability and solubility in water,” Mater. Res. Bull. 46(12), 2353–2358 (2011).
[Crossref]

Calizo, I.

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8(3), 902–907 (2008).
[Crossref] [PubMed]

Casiraghi, C.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Chaudhari, M.

T. Bora, H. Fallah, M. Chaudhari, T. Apiwattanadej, S. W. Harun, W. S. Mohammed, and J. Dutta, “Controlled side coupling of light to cladding mode of ZnO nanorod coated optical fibers and its implications for chemical vapor sensing,” Sens. Actuators B Chem. 202, 543–550 (2014).
[Crossref]

Chen, B.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Chen, J. H.

J. H. Chen, B. C. Zheng, G. H. Shao, S. J. Ge, F. Xu, and Y. Q. Lu, “An all-optical modulator based on a stereo graphene-microfiber structure,” Light Sci. Appl. 4(12), e360 (2015).
[Crossref]

J. L. Kou, J. H. Chen, Y. Chen, F. Xu, and Y. Q. Lu, “Platform for enhanced light-graphene interaction length and miniaturizing fiber stereo devices,” Optica 1(5), 307–310 (2014).
[Crossref]

G. H. Lu, L. E. Ocola, and J. H. Chen, “Gas detection using low-temperature reduced graphene oxide sheets,” Appl. Phys. Lett. 94(8), 083111 (2009).
[Crossref]

Chen, Y.

J. L. Kou, J. H. Chen, Y. Chen, F. Xu, and Y. Q. Lu, “Platform for enhanced light-graphene interaction length and miniaturizing fiber stereo devices,” Optica 1(5), 307–310 (2014).
[Crossref]

Y. Wu, B. Yao, A. Zhang, Y. Rao, Z. Wang, Y. Cheng, Y. Gong, W. Zhang, Y. Chen, and K. S. Chiang, “Graphene-coated microfiber Bragg grating for high-sensitivity gas sensing,” Opt. Lett. 39(5), 1235–1237 (2014).
[Crossref] [PubMed]

Y. Wu, B. C. Yao, Y. Cheng, Y. J. Rao, Y. Gong, W. Zhang, Z. Wang, and Y. Chen, “Hybrid graphene-microfiber waveguide for chemical gas sensing,” IEEE J. Sel. Top. Quantum Electron. 20(1), 4400206 (2014).

B. C. Yao, Y. Wu, Y. Cheng, A. Zhang, Y. Gong, Y. J. Rao, Z. Wang, and Y. Chen, “All-optical Mach-Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide,” Sens. Actuat. B 194, 142–148 (2014).
[Crossref]

Chen, Y. F.

Chen, Z.

Y. Xiao, J. Zhang, X. Cai, S. Tan, J. Yu, H. Lu, Y. Luo, G. Liao, S. Li, J. Tang, and Z. Chen, “Reduced graphene oxide for fiber-optic humidity sensing,” Opt. Express 22(25), 31555–31567 (2014).
[Crossref] [PubMed]

Z. Chen and C. H. Bai, “Effect of overlaid material on optical transmission of side-polished fiber made by wheel side polishing,” J. Electron. Sci. Technol. China 6(4), 445–448 (2008).

Cheng, J.

R. Gao, D. F. Lu, J. Cheng, Y. Jiang, L. Jiang, and Z. M. Qi, “Humidity sensor based on power leakage at resonance wavelengths of a hollow core fiber coated with reduced graphene oxide,” Sens. Actuat. B 222, 618–624 (2016).
[Crossref]

Cheng, Y.

Y. Wu, B. C. Yao, Y. Cheng, Y. J. Rao, Y. Gong, W. Zhang, Z. Wang, and Y. Chen, “Hybrid graphene-microfiber waveguide for chemical gas sensing,” IEEE J. Sel. Top. Quantum Electron. 20(1), 4400206 (2014).

B. C. Yao, Y. Wu, Y. Cheng, A. Zhang, Y. Gong, Y. J. Rao, Z. Wang, and Y. Chen, “All-optical Mach-Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide,” Sens. Actuat. B 194, 142–148 (2014).
[Crossref]

B. C. Yao, Y. Wu, A. Q. Zhang, Y. J. Rao, Z. G. Wang, Y. Cheng, Y. Gong, W. L. Zhang, Y. F. Chen, and K. S. Chiang, “Graphene enhanced evanescent field in microfiber multimode interferometer for highly sensitive gas sensing,” Opt. Express 22(23), 28154–28162 (2014).
[Crossref] [PubMed]

Y. Wu, B. Yao, A. Zhang, Y. Rao, Z. Wang, Y. Cheng, Y. Gong, W. Zhang, Y. Chen, and K. S. Chiang, “Graphene-coated microfiber Bragg grating for high-sensitivity gas sensing,” Opt. Lett. 39(5), 1235–1237 (2014).
[Crossref] [PubMed]

Chi, X.

H. Shan, C. Liu, L. Liu, J. Zhang, H. Li, Z. Liu, X. Zhang, X. Bo, and X. Chi, “Excellent toluene sensing properties of SnO2-Fe2O3 interconnected nanotubes,” ACS Appl. Mater. Interfaces 5(13), 6376–6380 (2013).
[Crossref] [PubMed]

Chiang, K. S.

Choi, C. G.

Choudhary, V.

S. K. Mishra, S. N. Tripathi, V. Choudhary, and B. D. Gupta, “Surface plasmon resonance-based fiber optic methane gas sensor utilizing graphene-carbon nanotubes-poly (methylmethacrylate) hybrid nanocomposite,” Plasmonics 10(5), 1147–1157 (2015).
[Crossref]

S. K. Mishra, S. N. Tripathi, V. Choudhary, and B. D. Gupta, “SPR based fibre optic ammonia gas sensor utilizing nanocomposite film of PMMA/reduced graphene oxide prepared by in situ polymerization,” Sens. Actuat. B 199, 190–200 (2014).
[Crossref]

Chuvilin, A.

C. Gómez-Navarro, J. C. Meyer, R. S. Sundaram, A. Chuvilin, S. Kurasch, M. Burghard, K. Kern, and U. Kaiser, “Atomic structure of reduced graphene oxide,” Nano Lett. 10(4), 1144–1148 (2010).
[Crossref] [PubMed]

Clement, P.

I. Hafaiedh, W. Elleuch, P. Clement, E. Llobet, and A. Abdelghani, “Multi-walled carbon nanotubes for volatile organic compound detection,” Sens. Actuat. B 182, 344–350 (2013).
[Crossref]

Davis, F.

S. M. Topliss, S. W. James, F. Davis, S. P. J. Higson, and R. P. Tatam, “Optical fibre long period grating based selective vapour sensing of volatile organic compounds,” Sens. Actuators B Chem. 143(2), 629–634 (2010).
[Crossref]

de Vicente, P.

J. C. Echeverría, P. de Vicente, J. Estella, and J. J. Garrido, “A fiber-optic sensor to detect volatile organic compounds based on a porous silica xerogel film,” Talanta 99, 433–440 (2012).
[Crossref] [PubMed]

Dong, J. H.

J. Zhang, X. L. Tang, J. H. Dong, T. Wei, and H. Xiao, “Zeolite thin film-coated long period fiber grating sensor for measuring trace organic vapors,” Sens. Actuat. B 135(2), 420–425 (2009).
[Crossref]

Duarte, A. C.

L. I. B. Silva, T. A. P. Rocha-Santos, and A. C. Duarte, “Development of a fluorosiloxane polymer-coated optical fibre sensor for detection of organic volatile compounds,” Sens. Actuators B Chem. 132(1), 280–289 (2008).
[Crossref]

Dubonos, S. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Dutta, J.

T. Bora, H. Fallah, M. Chaudhari, T. Apiwattanadej, S. W. Harun, W. S. Mohammed, and J. Dutta, “Controlled side coupling of light to cladding mode of ZnO nanorod coated optical fibers and its implications for chemical vapor sensing,” Sens. Actuators B Chem. 202, 543–550 (2014).
[Crossref]

Echeverría, J. C.

J. C. Echeverría, P. de Vicente, J. Estella, and J. J. Garrido, “A fiber-optic sensor to detect volatile organic compounds based on a porous silica xerogel film,” Talanta 99, 433–440 (2012).
[Crossref] [PubMed]

Elleuch, W.

I. Hafaiedh, W. Elleuch, P. Clement, E. Llobet, and A. Abdelghani, “Multi-walled carbon nanotubes for volatile organic compound detection,” Sens. Actuat. B 182, 344–350 (2013).
[Crossref]

Estella, J.

J. C. Echeverría, P. de Vicente, J. Estella, and J. J. Garrido, “A fiber-optic sensor to detect volatile organic compounds based on a porous silica xerogel film,” Talanta 99, 433–440 (2012).
[Crossref] [PubMed]

Fallah, H.

T. Bora, H. Fallah, M. Chaudhari, T. Apiwattanadej, S. W. Harun, W. S. Mohammed, and J. Dutta, “Controlled side coupling of light to cladding mode of ZnO nanorod coated optical fibers and its implications for chemical vapor sensing,” Sens. Actuators B Chem. 202, 543–550 (2014).
[Crossref]

Fang, W.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Feng, M.

Z. B. Liu, M. Feng, W. S. Jiang, W. Xin, P. Wang, Q. W. Sheng, Y. G. Liu, D. N. Wang, W. Y. Zhou, and J. G. Tian, “Broadband all-optical modulation using a graphene-covered-microfiber,” Laser Phys. Lett. 10(6), 065901 (2013).
[Crossref]

Ferrari, A. C.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Firsov, A. A.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Fowler, J. D.

J. D. Fowler, M. J. Allen, V. C. Tung, Y. Yang, R. B. Kaner, and B. H. Weiller, “Practical chemical sensors from chemically derived graphene,” ACS Nano 3(2), 301–306 (2009).
[Crossref] [PubMed]

Gao, R.

R. Gao, D. F. Lu, J. Cheng, Y. Jiang, L. Jiang, and Z. M. Qi, “Humidity sensor based on power leakage at resonance wavelengths of a hollow core fiber coated with reduced graphene oxide,” Sens. Actuat. B 222, 618–624 (2016).
[Crossref]

Garrido, J. J.

J. C. Echeverría, P. de Vicente, J. Estella, and J. J. Garrido, “A fiber-optic sensor to detect volatile organic compounds based on a porous silica xerogel film,” Talanta 99, 433–440 (2012).
[Crossref] [PubMed]

Ge, S. J.

J. H. Chen, B. C. Zheng, G. H. Shao, S. J. Ge, F. Xu, and Y. Q. Lu, “An all-optical modulator based on a stereo graphene-microfiber structure,” Light Sci. Appl. 4(12), e360 (2015).
[Crossref]

Geim, A. K.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, “Detection of individual gas molecules adsorbed on graphene,” Nat. Mater. 6(9), 652–655 (2007).
[Crossref] [PubMed]

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Geng, B.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Ghosh, S.

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8(3), 902–907 (2008).
[Crossref] [PubMed]

Giesecke, A. L.

M. Mohsin, D. Neumaier, D. Schall, M. Otto, C. Matheisen, A. L. Giesecke, A. A. Sagade, and H. Kurz, “Experimental verification of electro-refractive phase modulation in graphene,” Sci. Rep. 5, 10967 (2015).
[Crossref] [PubMed]

Giordano, M.

L. Sansone, V. Malachovska, P. L. Manna, P. Musto, A. Borriello, G. D. Luca, and M. Giordano, “Nanochemical fabrication of a graphene oxide-based nanohybrid for label-free optical sensing with fiber optics,” Sens. Actuat. B 202, 523–526 (2014).
[Crossref]

Gómez-Navarro, C.

C. Gómez-Navarro, J. C. Meyer, R. S. Sundaram, A. Chuvilin, S. Kurasch, M. Burghard, K. Kern, and U. Kaiser, “Atomic structure of reduced graphene oxide,” Nano Lett. 10(4), 1144–1148 (2010).
[Crossref] [PubMed]

Gong, Y.

Y. Wu, B. C. Yao, Y. Cheng, Y. J. Rao, Y. Gong, W. Zhang, Z. Wang, and Y. Chen, “Hybrid graphene-microfiber waveguide for chemical gas sensing,” IEEE J. Sel. Top. Quantum Electron. 20(1), 4400206 (2014).

B. C. Yao, Y. Wu, Y. Cheng, A. Zhang, Y. Gong, Y. J. Rao, Z. Wang, and Y. Chen, “All-optical Mach-Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide,” Sens. Actuat. B 194, 142–148 (2014).
[Crossref]

Y. Wu, B. Yao, A. Zhang, Y. Rao, Z. Wang, Y. Cheng, Y. Gong, W. Zhang, Y. Chen, and K. S. Chiang, “Graphene-coated microfiber Bragg grating for high-sensitivity gas sensing,” Opt. Lett. 39(5), 1235–1237 (2014).
[Crossref] [PubMed]

B. C. Yao, Y. Wu, A. Q. Zhang, Y. J. Rao, Z. G. Wang, Y. Cheng, Y. Gong, W. L. Zhang, Y. F. Chen, and K. S. Chiang, “Graphene enhanced evanescent field in microfiber multimode interferometer for highly sensitive gas sensing,” Opt. Express 22(23), 28154–28162 (2014).
[Crossref] [PubMed]

Grigorenko, A. N.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Grigorieva, I. V.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Guan, C. Y.

Gupta, B. D.

S. K. Mishra, S. N. Tripathi, V. Choudhary, and B. D. Gupta, “Surface plasmon resonance-based fiber optic methane gas sensor utilizing graphene-carbon nanotubes-poly (methylmethacrylate) hybrid nanocomposite,” Plasmonics 10(5), 1147–1157 (2015).
[Crossref]

S. K. Mishra, S. N. Tripathi, V. Choudhary, and B. D. Gupta, “SPR based fibre optic ammonia gas sensor utilizing nanocomposite film of PMMA/reduced graphene oxide prepared by in situ polymerization,” Sens. Actuat. B 199, 190–200 (2014).
[Crossref]

Hafaiedh, I.

I. Hafaiedh, W. Elleuch, P. Clement, E. Llobet, and A. Abdelghani, “Multi-walled carbon nanotubes for volatile organic compound detection,” Sens. Actuat. B 182, 344–350 (2013).
[Crossref]

Hanson, G. W.

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

Harun, S. W.

T. Bora, H. Fallah, M. Chaudhari, T. Apiwattanadej, S. W. Harun, W. S. Mohammed, and J. Dutta, “Controlled side coupling of light to cladding mode of ZnO nanorod coated optical fibers and its implications for chemical vapor sensing,” Sens. Actuators B Chem. 202, 543–550 (2014).
[Crossref]

Healy, N.

H. Zhang, N. Healy, L. Shen, C. C. Huang, D. W. Hewak, and A. C. Peacock, “Enhanced all-optical modulation in a graphene-coated fibre with low insertion loss,” Sci. Rep. 6, 23512 (2016).
[Crossref] [PubMed]

Hewak, D. W.

H. Zhang, N. Healy, L. Shen, C. C. Huang, D. W. Hewak, and A. C. Peacock, “Enhanced all-optical modulation in a graphene-coated fibre with low insertion loss,” Sci. Rep. 6, 23512 (2016).
[Crossref] [PubMed]

Higson, S. P. J.

S. M. Topliss, S. W. James, F. Davis, S. P. J. Higson, and R. P. Tatam, “Optical fibre long period grating based selective vapour sensing of volatile organic compounds,” Sens. Actuators B Chem. 143(2), 629–634 (2010).
[Crossref]

Hill, E. W.

F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, “Detection of individual gas molecules adsorbed on graphene,” Nat. Mater. 6(9), 652–655 (2007).
[Crossref] [PubMed]

Ho, H. L.

Y. Z. Tan, F. Yang, J. Ma, H. L. Ho, and W. Jin, “All-fiber photoacoustic gas sensor with graphene nano-mechanical resonator as the acoustic detector,” Proc. SPIE 3964, 96341K1 (2015).

Hu, Z.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Huang, C. C.

H. Zhang, N. Healy, L. Shen, C. C. Huang, D. W. Hewak, and A. C. Peacock, “Enhanced all-optical modulation in a graphene-coated fibre with low insertion loss,” Sci. Rep. 6, 23512 (2016).
[Crossref] [PubMed]

James, S. W.

S. M. Topliss, S. W. James, F. Davis, S. P. J. Higson, and R. P. Tatam, “Optical fibre long period grating based selective vapour sensing of volatile organic compounds,” Sens. Actuators B Chem. 143(2), 629–634 (2010).
[Crossref]

Jiang, D.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Jiang, L.

R. Gao, D. F. Lu, J. Cheng, Y. Jiang, L. Jiang, and Z. M. Qi, “Humidity sensor based on power leakage at resonance wavelengths of a hollow core fiber coated with reduced graphene oxide,” Sens. Actuat. B 222, 618–624 (2016).
[Crossref]

Jiang, W. S.

Z. B. Liu, M. Feng, W. S. Jiang, W. Xin, P. Wang, Q. W. Sheng, Y. G. Liu, D. N. Wang, W. Y. Zhou, and J. G. Tian, “Broadband all-optical modulation using a graphene-covered-microfiber,” Laser Phys. Lett. 10(6), 065901 (2013).
[Crossref]

Jiang, Y.

R. Gao, D. F. Lu, J. Cheng, Y. Jiang, L. Jiang, and Z. M. Qi, “Humidity sensor based on power leakage at resonance wavelengths of a hollow core fiber coated with reduced graphene oxide,” Sens. Actuat. B 222, 618–624 (2016).
[Crossref]

Jin, W.

Y. Z. Tan, F. Yang, J. Ma, H. L. Ho, and W. Jin, “All-fiber photoacoustic gas sensor with graphene nano-mechanical resonator as the acoustic detector,” Proc. SPIE 3964, 96341K1 (2015).

Ju, L.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Kaiser, U.

C. Gómez-Navarro, J. C. Meyer, R. S. Sundaram, A. Chuvilin, S. Kurasch, M. Burghard, K. Kern, and U. Kaiser, “Atomic structure of reduced graphene oxide,” Nano Lett. 10(4), 1144–1148 (2010).
[Crossref] [PubMed]

Kaner, R. B.

J. D. Fowler, M. J. Allen, V. C. Tung, Y. Yang, R. B. Kaner, and B. H. Weiller, “Practical chemical sensors from chemically derived graphene,” ACS Nano 3(2), 301–306 (2009).
[Crossref] [PubMed]

Katsnelson, M. I.

F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, “Detection of individual gas molecules adsorbed on graphene,” Nat. Mater. 6(9), 652–655 (2007).
[Crossref] [PubMed]

Kern, K.

C. Gómez-Navarro, J. C. Meyer, R. S. Sundaram, A. Chuvilin, S. Kurasch, M. Burghard, K. Kern, and U. Kaiser, “Atomic structure of reduced graphene oxide,” Nano Lett. 10(4), 1144–1148 (2010).
[Crossref] [PubMed]

Kim, J. T.

Kou, J. L.

Kurasch, S.

C. Gómez-Navarro, J. C. Meyer, R. S. Sundaram, A. Chuvilin, S. Kurasch, M. Burghard, K. Kern, and U. Kaiser, “Atomic structure of reduced graphene oxide,” Nano Lett. 10(4), 1144–1148 (2010).
[Crossref] [PubMed]

Kurz, H.

M. Mohsin, D. Neumaier, D. Schall, M. Otto, C. Matheisen, A. L. Giesecke, A. A. Sagade, and H. Kurz, “Experimental verification of electro-refractive phase modulation in graphene,” Sci. Rep. 5, 10967 (2015).
[Crossref] [PubMed]

Lau, C. N.

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8(3), 902–907 (2008).
[Crossref] [PubMed]

Lazzeri, M.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Lee, D. W.

M. Parmar, C. Balamurugan, and D. W. Lee, “PANI and graphene/PANI nanocomposite films--comparative toluene gas sensing behavior,” Sensors (Basel) 13(12), 16611–16624 (2013).
[Crossref] [PubMed]

Leenaerts, O.

O. Leenaerts, B. Partoens, and F. M. Peeters, “Adsorption of H2O, NH3, CO, NO2 and NO on graphene: A first-principles study,” Phys. Rev. B 77(12), 125416 (2008).
[Crossref]

Li, H.

H. Shan, C. Liu, L. Liu, J. Zhang, H. Li, Z. Liu, X. Zhang, X. Bo, and X. Chi, “Excellent toluene sensing properties of SnO2-Fe2O3 interconnected nanotubes,” ACS Appl. Mater. Interfaces 5(13), 6376–6380 (2013).
[Crossref] [PubMed]

Li, S.

Li, S. Q.

Li, W.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Li, X.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Liao, G.

Lim, C. H. Y. X.

Q. L. Bao, H. Zhang, B. Wang, Z. H. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Lin, M. S.

X. Cai, S. Z. Tan, A. G. Xie, M. S. Lin, Y. L. Liu, X. J. Zhang, Z. D. Lin, T. Wu, and W. J. Mai, “Conductive methyl blue-functionalized reduced graphene oxide with excellent stability and solubility in water,” Mater. Res. Bull. 46(12), 2353–2358 (2011).
[Crossref]

Lin, Z. D.

X. Cai, S. Z. Tan, A. G. Xie, M. S. Lin, Y. L. Liu, X. J. Zhang, Z. D. Lin, T. Wu, and W. J. Mai, “Conductive methyl blue-functionalized reduced graphene oxide with excellent stability and solubility in water,” Mater. Res. Bull. 46(12), 2353–2358 (2011).
[Crossref]

Liu, C.

H. Shan, C. Liu, L. Liu, J. Zhang, H. Li, Z. Liu, X. Zhang, X. Bo, and X. Chi, “Excellent toluene sensing properties of SnO2-Fe2O3 interconnected nanotubes,” ACS Appl. Mater. Interfaces 5(13), 6376–6380 (2013).
[Crossref] [PubMed]

Liu, L.

H. Shan, C. Liu, L. Liu, J. Zhang, H. Li, Z. Liu, X. Zhang, X. Bo, and X. Chi, “Excellent toluene sensing properties of SnO2-Fe2O3 interconnected nanotubes,” ACS Appl. Mater. Interfaces 5(13), 6376–6380 (2013).
[Crossref] [PubMed]

Liu, M.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Liu, W.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Liu, Y. G.

Z. B. Liu, M. Feng, W. S. Jiang, W. Xin, P. Wang, Q. W. Sheng, Y. G. Liu, D. N. Wang, W. Y. Zhou, and J. G. Tian, “Broadband all-optical modulation using a graphene-covered-microfiber,” Laser Phys. Lett. 10(6), 065901 (2013).
[Crossref]

Liu, Y. L.

X. Cai, S. Z. Tan, A. G. Xie, M. S. Lin, Y. L. Liu, X. J. Zhang, Z. D. Lin, T. Wu, and W. J. Mai, “Conductive methyl blue-functionalized reduced graphene oxide with excellent stability and solubility in water,” Mater. Res. Bull. 46(12), 2353–2358 (2011).
[Crossref]

Liu, Z.

H. Shan, C. Liu, L. Liu, J. Zhang, H. Li, Z. Liu, X. Zhang, X. Bo, and X. Chi, “Excellent toluene sensing properties of SnO2-Fe2O3 interconnected nanotubes,” ACS Appl. Mater. Interfaces 5(13), 6376–6380 (2013).
[Crossref] [PubMed]

Liu, Z. B.

Z. B. Liu, M. Feng, W. S. Jiang, W. Xin, P. Wang, Q. W. Sheng, Y. G. Liu, D. N. Wang, W. Y. Zhou, and J. G. Tian, “Broadband all-optical modulation using a graphene-covered-microfiber,” Laser Phys. Lett. 10(6), 065901 (2013).
[Crossref]

Llobet, E.

I. Hafaiedh, W. Elleuch, P. Clement, E. Llobet, and A. Abdelghani, “Multi-walled carbon nanotubes for volatile organic compound detection,” Sens. Actuat. B 182, 344–350 (2013).
[Crossref]

Loh, K. P.

Q. L. Bao, H. Zhang, B. Wang, Z. H. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Lu, D. F.

R. Gao, D. F. Lu, J. Cheng, Y. Jiang, L. Jiang, and Z. M. Qi, “Humidity sensor based on power leakage at resonance wavelengths of a hollow core fiber coated with reduced graphene oxide,” Sens. Actuat. B 222, 618–624 (2016).
[Crossref]

Lu, G. H.

G. H. Lu, L. E. Ocola, and J. H. Chen, “Gas detection using low-temperature reduced graphene oxide sheets,” Appl. Phys. Lett. 94(8), 083111 (2009).
[Crossref]

Lu, H.

Lu, Y. Q.

J. H. Chen, B. C. Zheng, G. H. Shao, S. J. Ge, F. Xu, and Y. Q. Lu, “An all-optical modulator based on a stereo graphene-microfiber structure,” Light Sci. Appl. 4(12), e360 (2015).
[Crossref]

J. L. Kou, J. H. Chen, Y. Chen, F. Xu, and Y. Q. Lu, “Platform for enhanced light-graphene interaction length and miniaturizing fiber stereo devices,” Optica 1(5), 307–310 (2014).
[Crossref]

Luca, G. D.

L. Sansone, V. Malachovska, P. L. Manna, P. Musto, A. Borriello, G. D. Luca, and M. Giordano, “Nanochemical fabrication of a graphene oxide-based nanohybrid for label-free optical sensing with fiber optics,” Sens. Actuat. B 202, 523–526 (2014).
[Crossref]

Luo, Y.

Ma, J.

Y. Z. Tan, F. Yang, J. Ma, H. L. Ho, and W. Jin, “All-fiber photoacoustic gas sensor with graphene nano-mechanical resonator as the acoustic detector,” Proc. SPIE 3964, 96341K1 (2015).

Mai, W. J.

X. Cai, S. Z. Tan, A. G. Xie, M. S. Lin, Y. L. Liu, X. J. Zhang, Z. D. Lin, T. Wu, and W. J. Mai, “Conductive methyl blue-functionalized reduced graphene oxide with excellent stability and solubility in water,” Mater. Res. Bull. 46(12), 2353–2358 (2011).
[Crossref]

Malachovska, V.

L. Sansone, V. Malachovska, P. L. Manna, P. Musto, A. Borriello, G. D. Luca, and M. Giordano, “Nanochemical fabrication of a graphene oxide-based nanohybrid for label-free optical sensing with fiber optics,” Sens. Actuat. B 202, 523–526 (2014).
[Crossref]

Manna, P. L.

L. Sansone, V. Malachovska, P. L. Manna, P. Musto, A. Borriello, G. D. Luca, and M. Giordano, “Nanochemical fabrication of a graphene oxide-based nanohybrid for label-free optical sensing with fiber optics,” Sens. Actuat. B 202, 523–526 (2014).
[Crossref]

Matheisen, C.

M. Mohsin, D. Neumaier, D. Schall, M. Otto, C. Matheisen, A. L. Giesecke, A. A. Sagade, and H. Kurz, “Experimental verification of electro-refractive phase modulation in graphene,” Sci. Rep. 5, 10967 (2015).
[Crossref] [PubMed]

Mauri, F.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Meng, C.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Meyer, J. C.

C. Gómez-Navarro, J. C. Meyer, R. S. Sundaram, A. Chuvilin, S. Kurasch, M. Burghard, K. Kern, and U. Kaiser, “Atomic structure of reduced graphene oxide,” Nano Lett. 10(4), 1144–1148 (2010).
[Crossref] [PubMed]

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Miao, F.

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8(3), 902–907 (2008).
[Crossref] [PubMed]

Mishra, S. K.

S. K. Mishra, S. N. Tripathi, V. Choudhary, and B. D. Gupta, “Surface plasmon resonance-based fiber optic methane gas sensor utilizing graphene-carbon nanotubes-poly (methylmethacrylate) hybrid nanocomposite,” Plasmonics 10(5), 1147–1157 (2015).
[Crossref]

S. K. Mishra, S. N. Tripathi, V. Choudhary, and B. D. Gupta, “SPR based fibre optic ammonia gas sensor utilizing nanocomposite film of PMMA/reduced graphene oxide prepared by in situ polymerization,” Sens. Actuat. B 199, 190–200 (2014).
[Crossref]

Mohammed, W. S.

T. Bora, H. Fallah, M. Chaudhari, T. Apiwattanadej, S. W. Harun, W. S. Mohammed, and J. Dutta, “Controlled side coupling of light to cladding mode of ZnO nanorod coated optical fibers and its implications for chemical vapor sensing,” Sens. Actuators B Chem. 202, 543–550 (2014).
[Crossref]

Mohsin, M.

M. Mohsin, D. Neumaier, D. Schall, M. Otto, C. Matheisen, A. L. Giesecke, A. A. Sagade, and H. Kurz, “Experimental verification of electro-refractive phase modulation in graphene,” Sci. Rep. 5, 10967 (2015).
[Crossref] [PubMed]

Morozov, S. V.

F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, “Detection of individual gas molecules adsorbed on graphene,” Nat. Mater. 6(9), 652–655 (2007).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Musto, P.

L. Sansone, V. Malachovska, P. L. Manna, P. Musto, A. Borriello, G. D. Luca, and M. Giordano, “Nanochemical fabrication of a graphene oxide-based nanohybrid for label-free optical sensing with fiber optics,” Sens. Actuat. B 202, 523–526 (2014).
[Crossref]

Nair, R. R.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Neumaier, D.

M. Mohsin, D. Neumaier, D. Schall, M. Otto, C. Matheisen, A. L. Giesecke, A. A. Sagade, and H. Kurz, “Experimental verification of electro-refractive phase modulation in graphene,” Sci. Rep. 5, 10967 (2015).
[Crossref] [PubMed]

Ni, Z. H.

Q. L. Bao, H. Zhang, B. Wang, Z. H. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Novoselov, K. S.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, “Detection of individual gas molecules adsorbed on graphene,” Nat. Mater. 6(9), 652–655 (2007).
[Crossref] [PubMed]

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Ocola, L. E.

G. H. Lu, L. E. Ocola, and J. H. Chen, “Gas detection using low-temperature reduced graphene oxide sheets,” Appl. Phys. Lett. 94(8), 083111 (2009).
[Crossref]

Otto, M.

M. Mohsin, D. Neumaier, D. Schall, M. Otto, C. Matheisen, A. L. Giesecke, A. A. Sagade, and H. Kurz, “Experimental verification of electro-refractive phase modulation in graphene,” Sci. Rep. 5, 10967 (2015).
[Crossref] [PubMed]

Park, S.

M. D. Stoller, S. Park, Y. Zhu, J. An, and R. S. Ruoff, “Graphene-based ultracapacitors,” Nano Lett. 8(10), 3498–3502 (2008).
[Crossref] [PubMed]

Parmar, M.

M. Parmar, C. Balamurugan, and D. W. Lee, “PANI and graphene/PANI nanocomposite films--comparative toluene gas sensing behavior,” Sensors (Basel) 13(12), 16611–16624 (2013).
[Crossref] [PubMed]

Partoens, B.

O. Leenaerts, B. Partoens, and F. M. Peeters, “Adsorption of H2O, NH3, CO, NO2 and NO on graphene: A first-principles study,” Phys. Rev. B 77(12), 125416 (2008).
[Crossref]

Peacock, A. C.

H. Zhang, N. Healy, L. Shen, C. C. Huang, D. W. Hewak, and A. C. Peacock, “Enhanced all-optical modulation in a graphene-coated fibre with low insertion loss,” Sci. Rep. 6, 23512 (2016).
[Crossref] [PubMed]

Peeters, F. M.

O. Leenaerts, B. Partoens, and F. M. Peeters, “Adsorption of H2O, NH3, CO, NO2 and NO on graphene: A first-principles study,” Phys. Rev. B 77(12), 125416 (2008).
[Crossref]

Peres, N. M. R.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Piscanec, S.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Qi, Z. M.

R. Gao, D. F. Lu, J. Cheng, Y. Jiang, L. Jiang, and Z. M. Qi, “Humidity sensor based on power leakage at resonance wavelengths of a hollow core fiber coated with reduced graphene oxide,” Sens. Actuat. B 222, 618–624 (2016).
[Crossref]

Rao, Y.

Rao, Y. J.

B. C. Yao, Y. Wu, A. Q. Zhang, Y. J. Rao, Z. G. Wang, Y. Cheng, Y. Gong, W. L. Zhang, Y. F. Chen, and K. S. Chiang, “Graphene enhanced evanescent field in microfiber multimode interferometer for highly sensitive gas sensing,” Opt. Express 22(23), 28154–28162 (2014).
[Crossref] [PubMed]

B. C. Yao, Y. Wu, Y. Cheng, A. Zhang, Y. Gong, Y. J. Rao, Z. Wang, and Y. Chen, “All-optical Mach-Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide,” Sens. Actuat. B 194, 142–148 (2014).
[Crossref]

Y. Wu, B. C. Yao, Y. Cheng, Y. J. Rao, Y. Gong, W. Zhang, Z. Wang, and Y. Chen, “Hybrid graphene-microfiber waveguide for chemical gas sensing,” IEEE J. Sel. Top. Quantum Electron. 20(1), 4400206 (2014).

Rocha-Santos, T. A. P.

L. I. B. Silva, T. A. P. Rocha-Santos, and A. C. Duarte, “Development of a fluorosiloxane polymer-coated optical fibre sensor for detection of organic volatile compounds,” Sens. Actuators B Chem. 132(1), 280–289 (2008).
[Crossref]

Roth, S.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Ruoff, R. S.

M. D. Stoller, S. Park, Y. Zhu, J. An, and R. S. Ruoff, “Graphene-based ultracapacitors,” Nano Lett. 8(10), 3498–3502 (2008).
[Crossref] [PubMed]

Sagade, A. A.

M. Mohsin, D. Neumaier, D. Schall, M. Otto, C. Matheisen, A. L. Giesecke, A. A. Sagade, and H. Kurz, “Experimental verification of electro-refractive phase modulation in graphene,” Sci. Rep. 5, 10967 (2015).
[Crossref] [PubMed]

Sansone, L.

L. Sansone, V. Malachovska, P. L. Manna, P. Musto, A. Borriello, G. D. Luca, and M. Giordano, “Nanochemical fabrication of a graphene oxide-based nanohybrid for label-free optical sensing with fiber optics,” Sens. Actuat. B 202, 523–526 (2014).
[Crossref]

Scardaci, V.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Schall, D.

M. Mohsin, D. Neumaier, D. Schall, M. Otto, C. Matheisen, A. L. Giesecke, A. A. Sagade, and H. Kurz, “Experimental verification of electro-refractive phase modulation in graphene,” Sci. Rep. 5, 10967 (2015).
[Crossref] [PubMed]

Schedin, F.

F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, “Detection of individual gas molecules adsorbed on graphene,” Nat. Mater. 6(9), 652–655 (2007).
[Crossref] [PubMed]

Shan, H.

H. Shan, C. Liu, L. Liu, J. Zhang, H. Li, Z. Liu, X. Zhang, X. Bo, and X. Chi, “Excellent toluene sensing properties of SnO2-Fe2O3 interconnected nanotubes,” ACS Appl. Mater. Interfaces 5(13), 6376–6380 (2013).
[Crossref] [PubMed]

Shao, G. H.

J. H. Chen, B. C. Zheng, G. H. Shao, S. J. Ge, F. Xu, and Y. Q. Lu, “An all-optical modulator based on a stereo graphene-microfiber structure,” Light Sci. Appl. 4(12), e360 (2015).
[Crossref]

Shen, L.

H. Zhang, N. Healy, L. Shen, C. C. Huang, D. W. Hewak, and A. C. Peacock, “Enhanced all-optical modulation in a graphene-coated fibre with low insertion loss,” Sci. Rep. 6, 23512 (2016).
[Crossref] [PubMed]

Shen, Y. R.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Shen, Y. Z.

Sheng, Q. W.

Z. B. Liu, M. Feng, W. S. Jiang, W. Xin, P. Wang, Q. W. Sheng, Y. G. Liu, D. N. Wang, W. Y. Zhou, and J. G. Tian, “Broadband all-optical modulation using a graphene-covered-microfiber,” Laser Phys. Lett. 10(6), 065901 (2013).
[Crossref]

Silva, L. I. B.

L. I. B. Silva, T. A. P. Rocha-Santos, and A. C. Duarte, “Development of a fluorosiloxane polymer-coated optical fibre sensor for detection of organic volatile compounds,” Sens. Actuators B Chem. 132(1), 280–289 (2008).
[Crossref]

Stauber, T.

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Stoller, M. D.

M. D. Stoller, S. Park, Y. Zhu, J. An, and R. S. Ruoff, “Graphene-based ultracapacitors,” Nano Lett. 8(10), 3498–3502 (2008).
[Crossref] [PubMed]

Sundaram, R. S.

C. Gómez-Navarro, J. C. Meyer, R. S. Sundaram, A. Chuvilin, S. Kurasch, M. Burghard, K. Kern, and U. Kaiser, “Atomic structure of reduced graphene oxide,” Nano Lett. 10(4), 1144–1148 (2010).
[Crossref] [PubMed]

Tan, S.

Tan, S. Z.

X. Cai, S. Z. Tan, A. G. Xie, M. S. Lin, Y. L. Liu, X. J. Zhang, Z. D. Lin, T. Wu, and W. J. Mai, “Conductive methyl blue-functionalized reduced graphene oxide with excellent stability and solubility in water,” Mater. Res. Bull. 46(12), 2353–2358 (2011).
[Crossref]

Tan, Y. Z.

Y. Z. Tan, F. Yang, J. Ma, H. L. Ho, and W. Jin, “All-fiber photoacoustic gas sensor with graphene nano-mechanical resonator as the acoustic detector,” Proc. SPIE 3964, 96341K1 (2015).

Tang, D. Y.

Q. L. Bao, H. Zhang, B. Wang, Z. H. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Tang, J.

Tang, X. L.

J. Zhang, X. L. Tang, J. H. Dong, T. Wei, and H. Xiao, “Zeolite thin film-coated long period fiber grating sensor for measuring trace organic vapors,” Sens. Actuat. B 135(2), 420–425 (2009).
[Crossref]

Tatam, R. P.

S. M. Topliss, S. W. James, F. Davis, S. P. J. Higson, and R. P. Tatam, “Optical fibre long period grating based selective vapour sensing of volatile organic compounds,” Sens. Actuators B Chem. 143(2), 629–634 (2010).
[Crossref]

Teweldebrhan, D.

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8(3), 902–907 (2008).
[Crossref] [PubMed]

Tian, J. G.

Z. B. Liu, M. Feng, W. S. Jiang, W. Xin, P. Wang, Q. W. Sheng, Y. G. Liu, D. N. Wang, W. Y. Zhou, and J. G. Tian, “Broadband all-optical modulation using a graphene-covered-microfiber,” Laser Phys. Lett. 10(6), 065901 (2013).
[Crossref]

Tong, L.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Topliss, S. M.

S. M. Topliss, S. W. James, F. Davis, S. P. J. Higson, and R. P. Tatam, “Optical fibre long period grating based selective vapour sensing of volatile organic compounds,” Sens. Actuators B Chem. 143(2), 629–634 (2010).
[Crossref]

Tripathi, S. N.

S. K. Mishra, S. N. Tripathi, V. Choudhary, and B. D. Gupta, “Surface plasmon resonance-based fiber optic methane gas sensor utilizing graphene-carbon nanotubes-poly (methylmethacrylate) hybrid nanocomposite,” Plasmonics 10(5), 1147–1157 (2015).
[Crossref]

S. K. Mishra, S. N. Tripathi, V. Choudhary, and B. D. Gupta, “SPR based fibre optic ammonia gas sensor utilizing nanocomposite film of PMMA/reduced graphene oxide prepared by in situ polymerization,” Sens. Actuat. B 199, 190–200 (2014).
[Crossref]

Tung, V. C.

J. D. Fowler, M. J. Allen, V. C. Tung, Y. Yang, R. B. Kaner, and B. H. Weiller, “Practical chemical sensors from chemically derived graphene,” ACS Nano 3(2), 301–306 (2009).
[Crossref] [PubMed]

Ulin-Avila, E.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Wang, B.

Q. L. Bao, H. Zhang, B. Wang, Z. H. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Wang, D. N.

Z. B. Liu, M. Feng, W. S. Jiang, W. Xin, P. Wang, Q. W. Sheng, Y. G. Liu, D. N. Wang, W. Y. Zhou, and J. G. Tian, “Broadband all-optical modulation using a graphene-covered-microfiber,” Laser Phys. Lett. 10(6), 065901 (2013).
[Crossref]

Wang, F.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Wang, H.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Wang, P.

Z. B. Liu, M. Feng, W. S. Jiang, W. Xin, P. Wang, Q. W. Sheng, Y. G. Liu, D. N. Wang, W. Y. Zhou, and J. G. Tian, “Broadband all-optical modulation using a graphene-covered-microfiber,” Laser Phys. Lett. 10(6), 065901 (2013).
[Crossref]

Wang, Y.

Q. L. Bao, H. Zhang, B. Wang, Z. H. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Wang, Z.

Y. Wu, B. C. Yao, Y. Cheng, Y. J. Rao, Y. Gong, W. Zhang, Z. Wang, and Y. Chen, “Hybrid graphene-microfiber waveguide for chemical gas sensing,” IEEE J. Sel. Top. Quantum Electron. 20(1), 4400206 (2014).

B. C. Yao, Y. Wu, Y. Cheng, A. Zhang, Y. Gong, Y. J. Rao, Z. Wang, and Y. Chen, “All-optical Mach-Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide,” Sens. Actuat. B 194, 142–148 (2014).
[Crossref]

Y. Wu, B. Yao, A. Zhang, Y. Rao, Z. Wang, Y. Cheng, Y. Gong, W. Zhang, Y. Chen, and K. S. Chiang, “Graphene-coated microfiber Bragg grating for high-sensitivity gas sensing,” Opt. Lett. 39(5), 1235–1237 (2014).
[Crossref] [PubMed]

Wang, Z. G.

Wei, T.

J. Zhang, X. L. Tang, J. H. Dong, T. Wei, and H. Xiao, “Zeolite thin film-coated long period fiber grating sensor for measuring trace organic vapors,” Sens. Actuat. B 135(2), 420–425 (2009).
[Crossref]

Weiller, B. H.

J. D. Fowler, M. J. Allen, V. C. Tung, Y. Yang, R. B. Kaner, and B. H. Weiller, “Practical chemical sensors from chemically derived graphene,” ACS Nano 3(2), 301–306 (2009).
[Crossref] [PubMed]

Wu, T.

X. Cai, S. Z. Tan, A. G. Xie, M. S. Lin, Y. L. Liu, X. J. Zhang, Z. D. Lin, T. Wu, and W. J. Mai, “Conductive methyl blue-functionalized reduced graphene oxide with excellent stability and solubility in water,” Mater. Res. Bull. 46(12), 2353–2358 (2011).
[Crossref]

Wu, Y.

Y. Wu, B. C. Yao, Y. Cheng, Y. J. Rao, Y. Gong, W. Zhang, Z. Wang, and Y. Chen, “Hybrid graphene-microfiber waveguide for chemical gas sensing,” IEEE J. Sel. Top. Quantum Electron. 20(1), 4400206 (2014).

B. C. Yao, Y. Wu, Y. Cheng, A. Zhang, Y. Gong, Y. J. Rao, Z. Wang, and Y. Chen, “All-optical Mach-Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide,” Sens. Actuat. B 194, 142–148 (2014).
[Crossref]

B. C. Yao, Y. Wu, A. Q. Zhang, Y. J. Rao, Z. G. Wang, Y. Cheng, Y. Gong, W. L. Zhang, Y. F. Chen, and K. S. Chiang, “Graphene enhanced evanescent field in microfiber multimode interferometer for highly sensitive gas sensing,” Opt. Express 22(23), 28154–28162 (2014).
[Crossref] [PubMed]

Y. Wu, B. Yao, A. Zhang, Y. Rao, Z. Wang, Y. Cheng, Y. Gong, W. Zhang, Y. Chen, and K. S. Chiang, “Graphene-coated microfiber Bragg grating for high-sensitivity gas sensing,” Opt. Lett. 39(5), 1235–1237 (2014).
[Crossref] [PubMed]

Xiao, H.

J. Zhang, X. L. Tang, J. H. Dong, T. Wei, and H. Xiao, “Zeolite thin film-coated long period fiber grating sensor for measuring trace organic vapors,” Sens. Actuat. B 135(2), 420–425 (2009).
[Crossref]

Xiao, Y.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Y. Xiao, J. Zhang, X. Cai, S. Tan, J. Yu, H. Lu, Y. Luo, G. Liao, S. Li, J. Tang, and Z. Chen, “Reduced graphene oxide for fiber-optic humidity sensing,” Opt. Express 22(25), 31555–31567 (2014).
[Crossref] [PubMed]

Xie, A. G.

X. Cai, S. Z. Tan, A. G. Xie, M. S. Lin, Y. L. Liu, X. J. Zhang, Z. D. Lin, T. Wu, and W. J. Mai, “Conductive methyl blue-functionalized reduced graphene oxide with excellent stability and solubility in water,” Mater. Res. Bull. 46(12), 2353–2358 (2011).
[Crossref]

Xin, W.

Z. B. Liu, M. Feng, W. S. Jiang, W. Xin, P. Wang, Q. W. Sheng, Y. G. Liu, D. N. Wang, W. Y. Zhou, and J. G. Tian, “Broadband all-optical modulation using a graphene-covered-microfiber,” Laser Phys. Lett. 10(6), 065901 (2013).
[Crossref]

Xu, F.

J. H. Chen, B. C. Zheng, G. H. Shao, S. J. Ge, F. Xu, and Y. Q. Lu, “An all-optical modulator based on a stereo graphene-microfiber structure,” Light Sci. Appl. 4(12), e360 (2015).
[Crossref]

J. L. Kou, J. H. Chen, Y. Chen, F. Xu, and Y. Q. Lu, “Platform for enhanced light-graphene interaction length and miniaturizing fiber stereo devices,” Optica 1(5), 307–310 (2014).
[Crossref]

Xu, Y.

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

Yang, F.

Y. Z. Tan, F. Yang, J. Ma, H. L. Ho, and W. Jin, “All-fiber photoacoustic gas sensor with graphene nano-mechanical resonator as the acoustic detector,” Proc. SPIE 3964, 96341K1 (2015).

Yang, J.

Yang, Y.

J. D. Fowler, M. J. Allen, V. C. Tung, Y. Yang, R. B. Kaner, and B. H. Weiller, “Practical chemical sensors from chemically derived graphene,” ACS Nano 3(2), 301–306 (2009).
[Crossref] [PubMed]

Yao, B.

Yao, B. C.

B. C. Yao, Y. Wu, A. Q. Zhang, Y. J. Rao, Z. G. Wang, Y. Cheng, Y. Gong, W. L. Zhang, Y. F. Chen, and K. S. Chiang, “Graphene enhanced evanescent field in microfiber multimode interferometer for highly sensitive gas sensing,” Opt. Express 22(23), 28154–28162 (2014).
[Crossref] [PubMed]

Y. Wu, B. C. Yao, Y. Cheng, Y. J. Rao, Y. Gong, W. Zhang, Z. Wang, and Y. Chen, “Hybrid graphene-microfiber waveguide for chemical gas sensing,” IEEE J. Sel. Top. Quantum Electron. 20(1), 4400206 (2014).

B. C. Yao, Y. Wu, Y. Cheng, A. Zhang, Y. Gong, Y. J. Rao, Z. Wang, and Y. Chen, “All-optical Mach-Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide,” Sens. Actuat. B 194, 142–148 (2014).
[Crossref]

Yin, X.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Yu, J.

Yuan, L. B.

Yuan, T. T.

Zentgraf, T.

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Zhang, A.

Y. Wu, B. Yao, A. Zhang, Y. Rao, Z. Wang, Y. Cheng, Y. Gong, W. Zhang, Y. Chen, and K. S. Chiang, “Graphene-coated microfiber Bragg grating for high-sensitivity gas sensing,” Opt. Lett. 39(5), 1235–1237 (2014).
[Crossref] [PubMed]

B. C. Yao, Y. Wu, Y. Cheng, A. Zhang, Y. Gong, Y. J. Rao, Z. Wang, and Y. Chen, “All-optical Mach-Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide,” Sens. Actuat. B 194, 142–148 (2014).
[Crossref]

Zhang, A. Q.

Zhang, H.

H. Zhang, N. Healy, L. Shen, C. C. Huang, D. W. Hewak, and A. C. Peacock, “Enhanced all-optical modulation in a graphene-coated fibre with low insertion loss,” Sci. Rep. 6, 23512 (2016).
[Crossref] [PubMed]

Q. L. Bao, H. Zhang, B. Wang, Z. H. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Zhang, J.

Y. Xiao, J. Zhang, X. Cai, S. Tan, J. Yu, H. Lu, Y. Luo, G. Liao, S. Li, J. Tang, and Z. Chen, “Reduced graphene oxide for fiber-optic humidity sensing,” Opt. Express 22(25), 31555–31567 (2014).
[Crossref] [PubMed]

H. Shan, C. Liu, L. Liu, J. Zhang, H. Li, Z. Liu, X. Zhang, X. Bo, and X. Chi, “Excellent toluene sensing properties of SnO2-Fe2O3 interconnected nanotubes,” ACS Appl. Mater. Interfaces 5(13), 6376–6380 (2013).
[Crossref] [PubMed]

J. Zhang, X. L. Tang, J. H. Dong, T. Wei, and H. Xiao, “Zeolite thin film-coated long period fiber grating sensor for measuring trace organic vapors,” Sens. Actuat. B 135(2), 420–425 (2009).
[Crossref]

Zhang, W.

Y. Wu, B. Yao, A. Zhang, Y. Rao, Z. Wang, Y. Cheng, Y. Gong, W. Zhang, Y. Chen, and K. S. Chiang, “Graphene-coated microfiber Bragg grating for high-sensitivity gas sensing,” Opt. Lett. 39(5), 1235–1237 (2014).
[Crossref] [PubMed]

Y. Wu, B. C. Yao, Y. Cheng, Y. J. Rao, Y. Gong, W. Zhang, Z. Wang, and Y. Chen, “Hybrid graphene-microfiber waveguide for chemical gas sensing,” IEEE J. Sel. Top. Quantum Electron. 20(1), 4400206 (2014).

Zhang, W. L.

Zhang, X.

H. Shan, C. Liu, L. Liu, J. Zhang, H. Li, Z. Liu, X. Zhang, X. Bo, and X. Chi, “Excellent toluene sensing properties of SnO2-Fe2O3 interconnected nanotubes,” ACS Appl. Mater. Interfaces 5(13), 6376–6380 (2013).
[Crossref] [PubMed]

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Zhang, X. J.

X. Cai, S. Z. Tan, A. G. Xie, M. S. Lin, Y. L. Liu, X. J. Zhang, Z. D. Lin, T. Wu, and W. J. Mai, “Conductive methyl blue-functionalized reduced graphene oxide with excellent stability and solubility in water,” Mater. Res. Bull. 46(12), 2353–2358 (2011).
[Crossref]

Zhang, Y.

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

Zheng, B. C.

J. H. Chen, B. C. Zheng, G. H. Shao, S. J. Ge, F. Xu, and Y. Q. Lu, “An all-optical modulator based on a stereo graphene-microfiber structure,” Light Sci. Appl. 4(12), e360 (2015).
[Crossref]

Zhou, W. Y.

Z. B. Liu, M. Feng, W. S. Jiang, W. Xin, P. Wang, Q. W. Sheng, Y. G. Liu, D. N. Wang, W. Y. Zhou, and J. G. Tian, “Broadband all-optical modulation using a graphene-covered-microfiber,” Laser Phys. Lett. 10(6), 065901 (2013).
[Crossref]

Zhu, Y.

M. D. Stoller, S. Park, Y. Zhu, J. An, and R. S. Ruoff, “Graphene-based ultracapacitors,” Nano Lett. 8(10), 3498–3502 (2008).
[Crossref] [PubMed]

ACS Appl. Mater. Interfaces (1)

H. Shan, C. Liu, L. Liu, J. Zhang, H. Li, Z. Liu, X. Zhang, X. Bo, and X. Chi, “Excellent toluene sensing properties of SnO2-Fe2O3 interconnected nanotubes,” ACS Appl. Mater. Interfaces 5(13), 6376–6380 (2013).
[Crossref] [PubMed]

ACS Nano (1)

J. D. Fowler, M. J. Allen, V. C. Tung, Y. Yang, R. B. Kaner, and B. H. Weiller, “Practical chemical sensors from chemically derived graphene,” ACS Nano 3(2), 301–306 (2009).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

G. H. Lu, L. E. Ocola, and J. H. Chen, “Gas detection using low-temperature reduced graphene oxide sheets,” Appl. Phys. Lett. 94(8), 083111 (2009).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

Y. Wu, B. C. Yao, Y. Cheng, Y. J. Rao, Y. Gong, W. Zhang, Z. Wang, and Y. Chen, “Hybrid graphene-microfiber waveguide for chemical gas sensing,” IEEE J. Sel. Top. Quantum Electron. 20(1), 4400206 (2014).

J. Appl. Phys. (1)

G. W. Hanson, “Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene,” J. Appl. Phys. 103(6), 064302 (2008).
[Crossref]

J. Electron. Sci. Technol. China (1)

Z. Chen and C. H. Bai, “Effect of overlaid material on optical transmission of side-polished fiber made by wheel side polishing,” J. Electron. Sci. Technol. China 6(4), 445–448 (2008).

J. Lightwave Technol. (1)

Laser Phys. Lett. (1)

Z. B. Liu, M. Feng, W. S. Jiang, W. Xin, P. Wang, Q. W. Sheng, Y. G. Liu, D. N. Wang, W. Y. Zhou, and J. G. Tian, “Broadband all-optical modulation using a graphene-covered-microfiber,” Laser Phys. Lett. 10(6), 065901 (2013).
[Crossref]

Light Sci. Appl. (1)

J. H. Chen, B. C. Zheng, G. H. Shao, S. J. Ge, F. Xu, and Y. Q. Lu, “An all-optical modulator based on a stereo graphene-microfiber structure,” Light Sci. Appl. 4(12), e360 (2015).
[Crossref]

Mater. Res. Bull. (1)

X. Cai, S. Z. Tan, A. G. Xie, M. S. Lin, Y. L. Liu, X. J. Zhang, Z. D. Lin, T. Wu, and W. J. Mai, “Conductive methyl blue-functionalized reduced graphene oxide with excellent stability and solubility in water,” Mater. Res. Bull. 46(12), 2353–2358 (2011).
[Crossref]

Nano Lett. (4)

W. Li, B. Chen, C. Meng, W. Fang, Y. Xiao, X. Li, Z. Hu, Y. Xu, L. Tong, H. Wang, W. Liu, J. Bao, and Y. R. Shen, “Ultrafast all-optical graphene modulator,” Nano Lett. 14(2), 955–959 (2014).
[Crossref] [PubMed]

M. D. Stoller, S. Park, Y. Zhu, J. An, and R. S. Ruoff, “Graphene-based ultracapacitors,” Nano Lett. 8(10), 3498–3502 (2008).
[Crossref] [PubMed]

A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett. 8(3), 902–907 (2008).
[Crossref] [PubMed]

C. Gómez-Navarro, J. C. Meyer, R. S. Sundaram, A. Chuvilin, S. Kurasch, M. Burghard, K. Kern, and U. Kaiser, “Atomic structure of reduced graphene oxide,” Nano Lett. 10(4), 1144–1148 (2010).
[Crossref] [PubMed]

Nat. Mater. (1)

F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S. Novoselov, “Detection of individual gas molecules adsorbed on graphene,” Nat. Mater. 6(9), 652–655 (2007).
[Crossref] [PubMed]

Nat. Photonics (1)

Q. L. Bao, H. Zhang, B. Wang, Z. H. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nat. Photonics 5(7), 411–415 (2011).
[Crossref]

Nature (1)

M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474(7349), 64–67 (2011).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Optica (1)

Phys. Rev. B (1)

O. Leenaerts, B. Partoens, and F. M. Peeters, “Adsorption of H2O, NH3, CO, NO2 and NO on graphene: A first-principles study,” Phys. Rev. B 77(12), 125416 (2008).
[Crossref]

Phys. Rev. Lett. (1)

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97(18), 187401 (2006).
[Crossref] [PubMed]

Plasmonics (1)

S. K. Mishra, S. N. Tripathi, V. Choudhary, and B. D. Gupta, “Surface plasmon resonance-based fiber optic methane gas sensor utilizing graphene-carbon nanotubes-poly (methylmethacrylate) hybrid nanocomposite,” Plasmonics 10(5), 1147–1157 (2015).
[Crossref]

Proc. SPIE (1)

Y. Z. Tan, F. Yang, J. Ma, H. L. Ho, and W. Jin, “All-fiber photoacoustic gas sensor with graphene nano-mechanical resonator as the acoustic detector,” Proc. SPIE 3964, 96341K1 (2015).

Sci. Rep. (2)

M. Mohsin, D. Neumaier, D. Schall, M. Otto, C. Matheisen, A. L. Giesecke, A. A. Sagade, and H. Kurz, “Experimental verification of electro-refractive phase modulation in graphene,” Sci. Rep. 5, 10967 (2015).
[Crossref] [PubMed]

H. Zhang, N. Healy, L. Shen, C. C. Huang, D. W. Hewak, and A. C. Peacock, “Enhanced all-optical modulation in a graphene-coated fibre with low insertion loss,” Sci. Rep. 6, 23512 (2016).
[Crossref] [PubMed]

Science (2)

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science 306(5696), 666–669 (2004).
[Crossref] [PubMed]

R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, “Fine structure constant defines visual transparency of graphene,” Science 320(5881), 1308 (2008).
[Crossref] [PubMed]

Sens. Actuat. B (6)

B. C. Yao, Y. Wu, Y. Cheng, A. Zhang, Y. Gong, Y. J. Rao, Z. Wang, and Y. Chen, “All-optical Mach-Zehnder interferometric NH3 gas sensor based on graphene/microfiber hybrid waveguide,” Sens. Actuat. B 194, 142–148 (2014).
[Crossref]

S. K. Mishra, S. N. Tripathi, V. Choudhary, and B. D. Gupta, “SPR based fibre optic ammonia gas sensor utilizing nanocomposite film of PMMA/reduced graphene oxide prepared by in situ polymerization,” Sens. Actuat. B 199, 190–200 (2014).
[Crossref]

I. Hafaiedh, W. Elleuch, P. Clement, E. Llobet, and A. Abdelghani, “Multi-walled carbon nanotubes for volatile organic compound detection,” Sens. Actuat. B 182, 344–350 (2013).
[Crossref]

J. Zhang, X. L. Tang, J. H. Dong, T. Wei, and H. Xiao, “Zeolite thin film-coated long period fiber grating sensor for measuring trace organic vapors,” Sens. Actuat. B 135(2), 420–425 (2009).
[Crossref]

L. Sansone, V. Malachovska, P. L. Manna, P. Musto, A. Borriello, G. D. Luca, and M. Giordano, “Nanochemical fabrication of a graphene oxide-based nanohybrid for label-free optical sensing with fiber optics,” Sens. Actuat. B 202, 523–526 (2014).
[Crossref]

R. Gao, D. F. Lu, J. Cheng, Y. Jiang, L. Jiang, and Z. M. Qi, “Humidity sensor based on power leakage at resonance wavelengths of a hollow core fiber coated with reduced graphene oxide,” Sens. Actuat. B 222, 618–624 (2016).
[Crossref]

Sens. Actuators B Chem. (3)

S. M. Topliss, S. W. James, F. Davis, S. P. J. Higson, and R. P. Tatam, “Optical fibre long period grating based selective vapour sensing of volatile organic compounds,” Sens. Actuators B Chem. 143(2), 629–634 (2010).
[Crossref]

L. I. B. Silva, T. A. P. Rocha-Santos, and A. C. Duarte, “Development of a fluorosiloxane polymer-coated optical fibre sensor for detection of organic volatile compounds,” Sens. Actuators B Chem. 132(1), 280–289 (2008).
[Crossref]

T. Bora, H. Fallah, M. Chaudhari, T. Apiwattanadej, S. W. Harun, W. S. Mohammed, and J. Dutta, “Controlled side coupling of light to cladding mode of ZnO nanorod coated optical fibers and its implications for chemical vapor sensing,” Sens. Actuators B Chem. 202, 543–550 (2014).
[Crossref]

Sensors (Basel) (1)

M. Parmar, C. Balamurugan, and D. W. Lee, “PANI and graphene/PANI nanocomposite films--comparative toluene gas sensing behavior,” Sensors (Basel) 13(12), 16611–16624 (2013).
[Crossref] [PubMed]

Talanta (1)

J. C. Echeverría, P. de Vicente, J. Estella, and J. J. Garrido, “A fiber-optic sensor to detect volatile organic compounds based on a porous silica xerogel film,” Talanta 99, 433–440 (2012).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Sketch maps of GCSPF and (b) its cross section; (c) SEM photograph of rGO film-coated fiber polished surface with a small section of rGO film on the right side detached; (d) zoom-in of the SEM photograph of the cross section of GCSPF.
Fig. 2
Fig. 2 (a) Raman spectrum and (b) XRD pattern of rGO on the SPF.
Fig. 3
Fig. 3 Experimental set-up.
Fig. 4
Fig. 4 (a) Relative output optical power of GCSPF (α) as well as the relative humidity in the chamber (β) as a function of time when dry air (DA) and toluene (T) with concentration of 40, 79, 119, 157, 196 ppm were fed into the chamber alternately; (b) a long time output optical power record of SMF during the experiment period.
Fig. 5
Fig. 5 Optical power variation of GCSPF as a function of the concentration of toluene.
Fig. 6
Fig. 6 Relative optical power of GCSPF as a function of time when dry air and toluene with concentration of 196 ppm were fed into the chamber alternately.
Fig. 7
Fig. 7 Under the conditions of T = 298K, ω/2π = 1.94 × 1014Hz, Γ = 1012Hz, the calculated relationship between: (a) μc and ns; (b) σ and μc; (c) Re(neff) and μc; (d) Im(neff) and μc; (e) relative optical power of GCSPF and μc; numerically calculated fundamental TM mode (f) and fundamental TE mode (g) of GCSPF.
Fig. 8
Fig. 8 The calculated relationship between μc and water vapor concentration CW under the condition of T = 298K, ω/2π = 1.94 × 1014Hz, Γ = 1012Hz, with the air pressure of 101.325 KPa in chamber.
Fig. 9
Fig. 9 Solid lines represent calculated theoretical relationship between relative power of GCSPF (graphene layer number N = 15, 10, 8 respectively) and |μc| under the condition of T = 298K, ω/2π = 1.94 × 1014Hz, Γ = 1012Hz, the black rectangular markers represent relationship between the experimental relative power and induced |μc| of graphene, the red circle markers represent relationship between calculated relative power and induced |μc| of highly-doping graphene.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

n s = 2 π 2 v F 2 0 ε [ f d ( ε ) f d ( ε + 2 μ c ) ] d ε
σ ( ω , μ c , Γ , T ) = j e 2 ( ω + j 2 Γ ) π 2 [ 1 ( ω + j 2 Γ ) 2 0 ε ( f d ( ε ) ε f d ( ε ) ε ) d ε 0 f d ( ε ) f d ( ε ) ( ω + j 2 Γ ) 2 4 ( ε / ) 2 d ε ]
n g = ( ε g ) 1 / 2 = ( 1 + j σ ε 0 ω t g ) 1 / 2
p o w e r = 10 lg P o u t P i n 10 lg { 1 2 [ | exp ( j k 0 n e f f T M L ) | 2 + | exp ( j k 0 n e f f T E L ) | 2 ] }

Metrics