Abstract

Depth sensitive Raman spectroscopy has been shown effective in the detection of depth dependent Raman spectra in layered tissues. However, the current techniques for depth sensitive Raman measurements based on fiber-optic probes suffer from poor depth resolution and significant variation in probe-sample contact. In contrast, those lens based techniques either require the change in objective-sample distance or suffer from slow spectral acquisition. We report a snapshot depth-sensitive Raman technique based on an axicon lens and a ring-to-line fiber assembly to simultaneously acquire Raman signals emitted from five different depths in the non-contact manner without moving any component. A numerical tool was developed to simulate ray tracing and optimize the snapshot depth sensitive setup to achieve the tradeoff between signal collection efficiency and depth resolution for Raman measurements in the skin. Moreover, the snapshot system was demonstrated to be able to acquire depth sensitive Raman spectra from not only transparent and turbid skin phantoms but also from ex vivo pork tissues and in vivo human thumbnails when the excitation laser power was limited to the maximum permissible exposure for human skin. The results suggest the great potential of snapshot depth sensitive Raman spectroscopy in the characterization of the skin and other layered tissues in the clinical setting or other similar applications such as quality monitoring of tablets and capsules in pharmaceutical industry requiring the rapid measurement of depth dependent Raman spectra.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Influence of tissue absorption and scattering on the depth dependent sensitivity of Raman fiber probes investigated by Monte Carlo simulations

Carina Reble, Ingo Gersonde, Chad A. Lieber, and Jürgen Helfmann
Biomed. Opt. Express 2(3) 520-533 (2011)

Co-localized confocal Raman spectroscopy and optical coherence tomography (CRS-OCT) for depth-resolved analyte detection in tissue

Jason R. Maher, Oranat Chuchuen, Marcus H. Henderson, Sanghoon Kim, Matthew T. Rinehart, Angela D. M. Kashuba, Adam Wax, and David F. Katz
Biomed. Opt. Express 6(6) 2022-2035 (2015)

Characterisation of signal enhancements achieved when utilizing a photon diode in deep Raman spectroscopy of tissue

Martha Z. Vardaki, Pavel Matousek, and Nicholas Stone
Biomed. Opt. Express 7(6) 2130-2141 (2016)

References

  • View by:
  • |
  • |
  • |

  1. D. A. Long, “Raman spectroscopy,” New York, 1–12 (1977).
  2. N. Colthup, Introduction to infrared and Raman spectroscopy (Elsevier, 2012), chap. 13.
  3. K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev. 99(10), 2957–2976 (1999).
    [Crossref] [PubMed]
  4. E. B. Hanlon, R. Manoharan, T. W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45(2), R1–R59 (2000).
    [Crossref] [PubMed]
  5. D. Naumann, “FT-infrared and FT-Raman spectroscopy in biomedical research,” Appl. Spectrosc. Rev. 36(2–3), 239–298 (2001).
    [Crossref]
  6. D. I. Ellis and R. Goodacre, “Metabolic fingerprinting in disease diagnosis: biomedical applications of infrared and Raman spectroscopy,” Analyst (Lond.) 131(8), 875–885 (2006).
    [Crossref] [PubMed]
  7. C. Krafft and V. Sergo, “Biomedical applications of Raman and infrared spectroscopy to diagnose tissues,” Spectrosc. J. 20(5–6), 195–218 (2006).
    [Crossref]
  8. L. Franzen and M. Windbergs, “Applications of Raman spectroscopy in skin research--From skin physiology and diagnosis up to risk assessment and dermal drug delivery,” Adv. Drug Deliv. Rev. 89, 91–104 (2015).
    [Crossref] [PubMed]
  9. N. J. Everall, “Modeling and measuring the effect of refraction on the depth resolution of confocal Raman microscopy,” Appl. Spectrosc. 54(6), 773–782 (2000).
    [Crossref]
  10. N. Stone, C. Kendall, J. Smith, P. Crow, and H. Barr, “Raman spectroscopy for identification of epithelial cancers,” Faraday Discuss. 126, 141–157 (2004).
    [Crossref] [PubMed]
  11. A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer by using Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(35), 12371–12376 (2005).
    [Crossref] [PubMed]
  12. N. Stone, R. Baker, K. Rogers, A. W. Parker, and P. Matousek, “Subsurface probing of calcifications with spatially offset Raman spectroscopy (SORS): future possibilities for the diagnosis of breast cancer,” Analyst (Lond.) 132(9), 899–905 (2007).
    [Crossref] [PubMed]
  13. P. Matousek, I. P. Clark, E. R. C. Draper, M. D. Morris, A. E. Goodship, N. Everall, M. Towrie, W. F. Finney, and A. W. Parker, “Subsurface probing in diffusely scattering media using spatially offset Raman spectroscopy,” Appl. Spectrosc. 59(4), 393–400 (2005).
    [Crossref] [PubMed]
  14. P. Matousek, E. R. C. Draper, A. E. Goodship, I. P. Clark, K. L. Ronayne, and A. W. Parker, “Noninvasive Raman spectroscopy of human tissue in vivo,” Appl. Spectrosc. 60(7), 758–763 (2006).
    [Crossref] [PubMed]
  15. M. D. Keller, S. K. Majumder, and A. Mahadevan-Jansen, “Spatially offset Raman spectroscopy of layered soft tissues,” Opt. Lett. 34(7), 926–928 (2009).
    [Crossref] [PubMed]
  16. J. M. Yuen, N. C. Shah, J. T. Walsh, M. R. Glucksberg, and R. P. Van Duyne, “Transcutaneous glucose sensing by surface-enhanced spatially offset Raman spectroscopy in a rat model,” Anal. Chem. 82(20), 8382–8385 (2010).
    [Crossref] [PubMed]
  17. C. Eliasson, N. A. Macleod, and P. Matousek, “Noninvasive detection of concealed liquid explosives using Raman spectroscopy,” Anal. Chem. 79(21), 8185–8189 (2007).
    [Crossref] [PubMed]
  18. C. Zhu, Q. Liu, and N. Ramanujam, “Effect of fiber optic probe geometry on depth-resolved fluorescence measurements from epithelial tissues: a Monte Carlo simulation,” J. Biomed. Opt. 8(2), 237–247 (2003).
    [Crossref] [PubMed]
  19. Q. Liu and N. Ramanujam, “Sequential estimation of optical properties of a two-layered epithelial tissue model from depth-resolved ultraviolet-visible diffuse reflectance spectra,” Appl. Opt. 45(19), 4776–4790 (2006).
    [Crossref] [PubMed]
  20. Y. H. Ong and Q. Liu, “Axicon lens-based cone shell configuration for depth-sensitive fluorescence measurements in turbid media,” Opt. Lett. 38(15), 2647–2649 (2013).
    [Crossref] [PubMed]
  21. Y. H. Ong, C. Zhu, and Q. Liu, “Phantom validation of Monte Carlo modeling for noncontact depth sensitive fluorescence measurements in an epithelial tissue model,” J. Biomed. Opt. 19(8), 085006 (2014).
    [Crossref] [PubMed]
  22. K. M. Khan, S. K. Majumder, and P. K. Gupta, “Cone-shell Raman spectroscopy (CSRS) for depth-sensitive measurements in layered tissue,” J. Biophotonics 8(11-12), 889–896 (2015).
    [Crossref] [PubMed]
  23. Y. H. Ong and Q. Liu, “Fast depth-sensitive fluorescence measurements in turbid media using cone shell configuration,” J. Biomed. Opt. 18(11), 110503 (2013).
    [Crossref] [PubMed]
  24. E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt. 11(6), 064026 (2006).
    [Crossref] [PubMed]
  25. A. C. Williams, H. G. M. Edwards, and B. W. Barry, “Raman-Spectra of Human Keratotic Biopolymers - Skin, Callus, Hair and Nail,” J. Raman Spectrosc. 25(1), 95–98 (1994).
    [Crossref]
  26. P. J. Caspers, G. W. Lucassen, R. Wolthuis, H. A. Bruining, and G. J. Puppels, “In vitro and in vivo Raman spectroscopy of human skin,” Biospectroscopy 4(5Suppl), S31–S39 (1998).
    [Crossref] [PubMed]
  27. P. J. Caspers, G. W. Lucassen, and G. J. Puppels, “Combined in vivo confocal Raman spectroscopy and confocal microscopy of human skin,” Biophys. J. 85(1), 572–580 (2003).
    [Crossref] [PubMed]
  28. A. Downes and A. Elfick, “Raman Spectroscopy and Related Techniques in Biomedicine,” Sensors (Basel) 10(3), 1871–1889 (2010).
    [Crossref] [PubMed]
  29. V. Sikirzhytski, K. Virkler, and I. K. Lednev, “Discriminant Analysis of Raman Spectra for Body Fluid Identification for Forensic Purposes,” Sensors (Basel) 10(4), 2869–2884 (2010).
    [Crossref] [PubMed]
  30. S. Tfaili, C. Gobinet, G. Josse, J. F. Angiboust, M. Manfait, and O. Piot, “Confocal Raman microspectroscopy for skin characterization: a comparative study between human skin and pig skin,” Analyst (Lond.) 137(16), 3673–3682 (2012).
    [Crossref] [PubMed]
  31. S. Kumar, T. Verma, R. Mukherjee, F. Ariese, K. Somasundaram, and S. Umapathy, “Raman and infra-red microspectroscopy: towards quantitative evaluation for clinical research by ratiometric analysis,” Chem. Soc. Rev. 45(7), 1879–1900 (2016).
    [Crossref] [PubMed]
  32. L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011).
    [Crossref] [PubMed]
  33. X. Yu, X. Liu, S. Chen, Y. Luo, X. Wang, and L. Liu, “High-resolution extended source optical coherence tomography,” Opt. Express 23(20), 26399–26413 (2015).
    [Crossref] [PubMed]
  34. M. Ohmi, Y. Ohnishi, K. Yoden, and M. Haruna, “In vitro simultaneous measurement of refractive index and thickness of biological tissue by the low coherence interferometry,” IEEE Trans. Biomed. Eng. 47(9), 1266–1270 (2000).
    [Crossref] [PubMed]
  35. I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4(5), 320–322 (2010).
  36. A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
    [Crossref]
  37. M. Egawa and H. Tagami, “Comparison of the depth profiles of water and water-binding substances in the stratum corneum determined in vivo by Raman spectroscopy between the cheek and volar forearm skin: effects of age, seasonal changes and artificial forced hydration,” Br. J. Dermatol. 158(2), 251–260 (2008).
    [Crossref] [PubMed]
  38. R. L. Frost, P. Williams, and W. Martens, “Raman spectroscopy of the minerals boleite, cumengeite, diaboleite and phosgenite-implications for the analysis of cosmetics of antiquity,” Mineral. Mag. 61(1), 103–111 (2003).
    [Crossref]

2016 (1)

S. Kumar, T. Verma, R. Mukherjee, F. Ariese, K. Somasundaram, and S. Umapathy, “Raman and infra-red microspectroscopy: towards quantitative evaluation for clinical research by ratiometric analysis,” Chem. Soc. Rev. 45(7), 1879–1900 (2016).
[Crossref] [PubMed]

2015 (3)

L. Franzen and M. Windbergs, “Applications of Raman spectroscopy in skin research--From skin physiology and diagnosis up to risk assessment and dermal drug delivery,” Adv. Drug Deliv. Rev. 89, 91–104 (2015).
[Crossref] [PubMed]

K. M. Khan, S. K. Majumder, and P. K. Gupta, “Cone-shell Raman spectroscopy (CSRS) for depth-sensitive measurements in layered tissue,” J. Biophotonics 8(11-12), 889–896 (2015).
[Crossref] [PubMed]

X. Yu, X. Liu, S. Chen, Y. Luo, X. Wang, and L. Liu, “High-resolution extended source optical coherence tomography,” Opt. Express 23(20), 26399–26413 (2015).
[Crossref] [PubMed]

2014 (1)

Y. H. Ong, C. Zhu, and Q. Liu, “Phantom validation of Monte Carlo modeling for noncontact depth sensitive fluorescence measurements in an epithelial tissue model,” J. Biomed. Opt. 19(8), 085006 (2014).
[Crossref] [PubMed]

2013 (2)

Y. H. Ong and Q. Liu, “Fast depth-sensitive fluorescence measurements in turbid media using cone shell configuration,” J. Biomed. Opt. 18(11), 110503 (2013).
[Crossref] [PubMed]

Y. H. Ong and Q. Liu, “Axicon lens-based cone shell configuration for depth-sensitive fluorescence measurements in turbid media,” Opt. Lett. 38(15), 2647–2649 (2013).
[Crossref] [PubMed]

2012 (2)

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
[Crossref]

S. Tfaili, C. Gobinet, G. Josse, J. F. Angiboust, M. Manfait, and O. Piot, “Confocal Raman microspectroscopy for skin characterization: a comparative study between human skin and pig skin,” Analyst (Lond.) 137(16), 3673–3682 (2012).
[Crossref] [PubMed]

2011 (1)

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011).
[Crossref] [PubMed]

2010 (4)

J. M. Yuen, N. C. Shah, J. T. Walsh, M. R. Glucksberg, and R. P. Van Duyne, “Transcutaneous glucose sensing by surface-enhanced spatially offset Raman spectroscopy in a rat model,” Anal. Chem. 82(20), 8382–8385 (2010).
[Crossref] [PubMed]

I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4(5), 320–322 (2010).

A. Downes and A. Elfick, “Raman Spectroscopy and Related Techniques in Biomedicine,” Sensors (Basel) 10(3), 1871–1889 (2010).
[Crossref] [PubMed]

V. Sikirzhytski, K. Virkler, and I. K. Lednev, “Discriminant Analysis of Raman Spectra for Body Fluid Identification for Forensic Purposes,” Sensors (Basel) 10(4), 2869–2884 (2010).
[Crossref] [PubMed]

2009 (1)

2008 (1)

M. Egawa and H. Tagami, “Comparison of the depth profiles of water and water-binding substances in the stratum corneum determined in vivo by Raman spectroscopy between the cheek and volar forearm skin: effects of age, seasonal changes and artificial forced hydration,” Br. J. Dermatol. 158(2), 251–260 (2008).
[Crossref] [PubMed]

2007 (2)

C. Eliasson, N. A. Macleod, and P. Matousek, “Noninvasive detection of concealed liquid explosives using Raman spectroscopy,” Anal. Chem. 79(21), 8185–8189 (2007).
[Crossref] [PubMed]

N. Stone, R. Baker, K. Rogers, A. W. Parker, and P. Matousek, “Subsurface probing of calcifications with spatially offset Raman spectroscopy (SORS): future possibilities for the diagnosis of breast cancer,” Analyst (Lond.) 132(9), 899–905 (2007).
[Crossref] [PubMed]

2006 (5)

E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt. 11(6), 064026 (2006).
[Crossref] [PubMed]

D. I. Ellis and R. Goodacre, “Metabolic fingerprinting in disease diagnosis: biomedical applications of infrared and Raman spectroscopy,” Analyst (Lond.) 131(8), 875–885 (2006).
[Crossref] [PubMed]

C. Krafft and V. Sergo, “Biomedical applications of Raman and infrared spectroscopy to diagnose tissues,” Spectrosc. J. 20(5–6), 195–218 (2006).
[Crossref]

Q. Liu and N. Ramanujam, “Sequential estimation of optical properties of a two-layered epithelial tissue model from depth-resolved ultraviolet-visible diffuse reflectance spectra,” Appl. Opt. 45(19), 4776–4790 (2006).
[Crossref] [PubMed]

P. Matousek, E. R. C. Draper, A. E. Goodship, I. P. Clark, K. L. Ronayne, and A. W. Parker, “Noninvasive Raman spectroscopy of human tissue in vivo,” Appl. Spectrosc. 60(7), 758–763 (2006).
[Crossref] [PubMed]

2005 (2)

P. Matousek, I. P. Clark, E. R. C. Draper, M. D. Morris, A. E. Goodship, N. Everall, M. Towrie, W. F. Finney, and A. W. Parker, “Subsurface probing in diffusely scattering media using spatially offset Raman spectroscopy,” Appl. Spectrosc. 59(4), 393–400 (2005).
[Crossref] [PubMed]

A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer by using Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(35), 12371–12376 (2005).
[Crossref] [PubMed]

2004 (1)

N. Stone, C. Kendall, J. Smith, P. Crow, and H. Barr, “Raman spectroscopy for identification of epithelial cancers,” Faraday Discuss. 126, 141–157 (2004).
[Crossref] [PubMed]

2003 (3)

P. J. Caspers, G. W. Lucassen, and G. J. Puppels, “Combined in vivo confocal Raman spectroscopy and confocal microscopy of human skin,” Biophys. J. 85(1), 572–580 (2003).
[Crossref] [PubMed]

R. L. Frost, P. Williams, and W. Martens, “Raman spectroscopy of the minerals boleite, cumengeite, diaboleite and phosgenite-implications for the analysis of cosmetics of antiquity,” Mineral. Mag. 61(1), 103–111 (2003).
[Crossref]

C. Zhu, Q. Liu, and N. Ramanujam, “Effect of fiber optic probe geometry on depth-resolved fluorescence measurements from epithelial tissues: a Monte Carlo simulation,” J. Biomed. Opt. 8(2), 237–247 (2003).
[Crossref] [PubMed]

2001 (1)

D. Naumann, “FT-infrared and FT-Raman spectroscopy in biomedical research,” Appl. Spectrosc. Rev. 36(2–3), 239–298 (2001).
[Crossref]

2000 (3)

E. B. Hanlon, R. Manoharan, T. W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45(2), R1–R59 (2000).
[Crossref] [PubMed]

M. Ohmi, Y. Ohnishi, K. Yoden, and M. Haruna, “In vitro simultaneous measurement of refractive index and thickness of biological tissue by the low coherence interferometry,” IEEE Trans. Biomed. Eng. 47(9), 1266–1270 (2000).
[Crossref] [PubMed]

N. J. Everall, “Modeling and measuring the effect of refraction on the depth resolution of confocal Raman microscopy,” Appl. Spectrosc. 54(6), 773–782 (2000).
[Crossref]

1999 (1)

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev. 99(10), 2957–2976 (1999).
[Crossref] [PubMed]

1998 (1)

P. J. Caspers, G. W. Lucassen, R. Wolthuis, H. A. Bruining, and G. J. Puppels, “In vitro and in vivo Raman spectroscopy of human skin,” Biospectroscopy 4(5Suppl), S31–S39 (1998).
[Crossref] [PubMed]

1994 (1)

A. C. Williams, H. G. M. Edwards, and B. W. Barry, “Raman-Spectra of Human Keratotic Biopolymers - Skin, Callus, Hair and Nail,” J. Raman Spectrosc. 25(1), 95–98 (1994).
[Crossref]

Angiboust, J. F.

S. Tfaili, C. Gobinet, G. Josse, J. F. Angiboust, M. Manfait, and O. Piot, “Confocal Raman microspectroscopy for skin characterization: a comparative study between human skin and pig skin,” Analyst (Lond.) 137(16), 3673–3682 (2012).
[Crossref] [PubMed]

Ariese, F.

S. Kumar, T. Verma, R. Mukherjee, F. Ariese, K. Somasundaram, and S. Umapathy, “Raman and infra-red microspectroscopy: towards quantitative evaluation for clinical research by ratiometric analysis,” Chem. Soc. Rev. 45(7), 1879–1900 (2016).
[Crossref] [PubMed]

Baker, R.

N. Stone, R. Baker, K. Rogers, A. W. Parker, and P. Matousek, “Subsurface probing of calcifications with spatially offset Raman spectroscopy (SORS): future possibilities for the diagnosis of breast cancer,” Analyst (Lond.) 132(9), 899–905 (2007).
[Crossref] [PubMed]

Barr, H.

N. Stone, C. Kendall, J. Smith, P. Crow, and H. Barr, “Raman spectroscopy for identification of epithelial cancers,” Faraday Discuss. 126, 141–157 (2004).
[Crossref] [PubMed]

Barry, B. W.

A. C. Williams, H. G. M. Edwards, and B. W. Barry, “Raman-Spectra of Human Keratotic Biopolymers - Skin, Callus, Hair and Nail,” J. Raman Spectrosc. 25(1), 95–98 (1994).
[Crossref]

Bouma, B. E.

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011).
[Crossref] [PubMed]

Bruining, H. A.

P. J. Caspers, G. W. Lucassen, R. Wolthuis, H. A. Bruining, and G. J. Puppels, “In vitro and in vivo Raman spectroscopy of human skin,” Biospectroscopy 4(5Suppl), S31–S39 (1998).
[Crossref] [PubMed]

Caspers, P. J.

P. J. Caspers, G. W. Lucassen, and G. J. Puppels, “Combined in vivo confocal Raman spectroscopy and confocal microscopy of human skin,” Biophys. J. 85(1), 572–580 (2003).
[Crossref] [PubMed]

P. J. Caspers, G. W. Lucassen, R. Wolthuis, H. A. Bruining, and G. J. Puppels, “In vitro and in vivo Raman spectroscopy of human skin,” Biospectroscopy 4(5Suppl), S31–S39 (1998).
[Crossref] [PubMed]

Chen, S.

Clark, I. P.

Crow, P.

N. Stone, C. Kendall, J. Smith, P. Crow, and H. Barr, “Raman spectroscopy for identification of epithelial cancers,” Faraday Discuss. 126, 141–157 (2004).
[Crossref] [PubMed]

Crowe, J.

A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer by using Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(35), 12371–12376 (2005).
[Crossref] [PubMed]

Dasari, R. R.

A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer by using Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(35), 12371–12376 (2005).
[Crossref] [PubMed]

E. B. Hanlon, R. Manoharan, T. W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45(2), R1–R59 (2000).
[Crossref] [PubMed]

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev. 99(10), 2957–2976 (1999).
[Crossref] [PubMed]

Downes, A.

A. Downes and A. Elfick, “Raman Spectroscopy and Related Techniques in Biomedicine,” Sensors (Basel) 10(3), 1871–1889 (2010).
[Crossref] [PubMed]

Draper, E. R. C.

Edwards, H. G. M.

A. C. Williams, H. G. M. Edwards, and B. W. Barry, “Raman-Spectra of Human Keratotic Biopolymers - Skin, Callus, Hair and Nail,” J. Raman Spectrosc. 25(1), 95–98 (1994).
[Crossref]

Egawa, M.

M. Egawa and H. Tagami, “Comparison of the depth profiles of water and water-binding substances in the stratum corneum determined in vivo by Raman spectroscopy between the cheek and volar forearm skin: effects of age, seasonal changes and artificial forced hydration,” Br. J. Dermatol. 158(2), 251–260 (2008).
[Crossref] [PubMed]

Elfick, A.

A. Downes and A. Elfick, “Raman Spectroscopy and Related Techniques in Biomedicine,” Sensors (Basel) 10(3), 1871–1889 (2010).
[Crossref] [PubMed]

Eliasson, C.

C. Eliasson, N. A. Macleod, and P. Matousek, “Noninvasive detection of concealed liquid explosives using Raman spectroscopy,” Anal. Chem. 79(21), 8185–8189 (2007).
[Crossref] [PubMed]

Ellis, D. I.

D. I. Ellis and R. Goodacre, “Metabolic fingerprinting in disease diagnosis: biomedical applications of infrared and Raman spectroscopy,” Analyst (Lond.) 131(8), 875–885 (2006).
[Crossref] [PubMed]

Everall, N.

Everall, N. J.

Feld, M. S.

A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer by using Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(35), 12371–12376 (2005).
[Crossref] [PubMed]

E. B. Hanlon, R. Manoharan, T. W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45(2), R1–R59 (2000).
[Crossref] [PubMed]

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev. 99(10), 2957–2976 (1999).
[Crossref] [PubMed]

Fink, M.

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
[Crossref]

Finney, W. F.

Fitzmaurice, M.

A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer by using Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(35), 12371–12376 (2005).
[Crossref] [PubMed]

E. B. Hanlon, R. Manoharan, T. W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45(2), R1–R59 (2000).
[Crossref] [PubMed]

Franzen, L.

L. Franzen and M. Windbergs, “Applications of Raman spectroscopy in skin research--From skin physiology and diagnosis up to risk assessment and dermal drug delivery,” Adv. Drug Deliv. Rev. 89, 91–104 (2015).
[Crossref] [PubMed]

Frost, R. L.

R. L. Frost, P. Williams, and W. Martens, “Raman spectroscopy of the minerals boleite, cumengeite, diaboleite and phosgenite-implications for the analysis of cosmetics of antiquity,” Mineral. Mag. 61(1), 103–111 (2003).
[Crossref]

Gardecki, J. A.

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011).
[Crossref] [PubMed]

Glucksberg, M. R.

J. M. Yuen, N. C. Shah, J. T. Walsh, M. R. Glucksberg, and R. P. Van Duyne, “Transcutaneous glucose sensing by surface-enhanced spatially offset Raman spectroscopy in a rat model,” Anal. Chem. 82(20), 8382–8385 (2010).
[Crossref] [PubMed]

Gobinet, C.

S. Tfaili, C. Gobinet, G. Josse, J. F. Angiboust, M. Manfait, and O. Piot, “Confocal Raman microspectroscopy for skin characterization: a comparative study between human skin and pig skin,” Analyst (Lond.) 137(16), 3673–3682 (2012).
[Crossref] [PubMed]

Goodacre, R.

D. I. Ellis and R. Goodacre, “Metabolic fingerprinting in disease diagnosis: biomedical applications of infrared and Raman spectroscopy,” Analyst (Lond.) 131(8), 875–885 (2006).
[Crossref] [PubMed]

Goodship, A. E.

Gupta, P. K.

K. M. Khan, S. K. Majumder, and P. K. Gupta, “Cone-shell Raman spectroscopy (CSRS) for depth-sensitive measurements in layered tissue,” J. Biophotonics 8(11-12), 889–896 (2015).
[Crossref] [PubMed]

Haka, A. S.

A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer by using Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(35), 12371–12376 (2005).
[Crossref] [PubMed]

Hanlon, E. B.

E. B. Hanlon, R. Manoharan, T. W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45(2), R1–R59 (2000).
[Crossref] [PubMed]

Haruna, M.

M. Ohmi, Y. Ohnishi, K. Yoden, and M. Haruna, “In vitro simultaneous measurement of refractive index and thickness of biological tissue by the low coherence interferometry,” IEEE Trans. Biomed. Eng. 47(9), 1266–1270 (2000).
[Crossref] [PubMed]

Itzkan, I.

E. B. Hanlon, R. Manoharan, T. W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45(2), R1–R59 (2000).
[Crossref] [PubMed]

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev. 99(10), 2957–2976 (1999).
[Crossref] [PubMed]

Jiang, B.

E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt. 11(6), 064026 (2006).
[Crossref] [PubMed]

Josse, G.

S. Tfaili, C. Gobinet, G. Josse, J. F. Angiboust, M. Manfait, and O. Piot, “Confocal Raman microspectroscopy for skin characterization: a comparative study between human skin and pig skin,” Analyst (Lond.) 137(16), 3673–3682 (2012).
[Crossref] [PubMed]

Keller, M. D.

Kendall, C.

N. Stone, C. Kendall, J. Smith, P. Crow, and H. Barr, “Raman spectroscopy for identification of epithelial cancers,” Faraday Discuss. 126, 141–157 (2004).
[Crossref] [PubMed]

Khan, K. M.

K. M. Khan, S. K. Majumder, and P. K. Gupta, “Cone-shell Raman spectroscopy (CSRS) for depth-sensitive measurements in layered tissue,” J. Biophotonics 8(11-12), 889–896 (2015).
[Crossref] [PubMed]

Kneipp, H.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev. 99(10), 2957–2976 (1999).
[Crossref] [PubMed]

Kneipp, K.

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev. 99(10), 2957–2976 (1999).
[Crossref] [PubMed]

Koo, T. W.

E. B. Hanlon, R. Manoharan, T. W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45(2), R1–R59 (2000).
[Crossref] [PubMed]

Krafft, C.

C. Krafft and V. Sergo, “Biomedical applications of Raman and infrared spectroscopy to diagnose tissues,” Spectrosc. J. 20(5–6), 195–218 (2006).
[Crossref]

Kramer, J. R.

E. B. Hanlon, R. Manoharan, T. W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45(2), R1–R59 (2000).
[Crossref] [PubMed]

Kumar, S.

S. Kumar, T. Verma, R. Mukherjee, F. Ariese, K. Somasundaram, and S. Umapathy, “Raman and infra-red microspectroscopy: towards quantitative evaluation for clinical research by ratiometric analysis,” Chem. Soc. Rev. 45(7), 1879–1900 (2016).
[Crossref] [PubMed]

Lagendijk, A.

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
[Crossref]

I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4(5), 320–322 (2010).

Lednev, I. K.

V. Sikirzhytski, K. Virkler, and I. K. Lednev, “Discriminant Analysis of Raman Spectra for Body Fluid Identification for Forensic Purposes,” Sensors (Basel) 10(4), 2869–2884 (2010).
[Crossref] [PubMed]

Lerosey, G.

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
[Crossref]

Liu, L.

X. Yu, X. Liu, S. Chen, Y. Luo, X. Wang, and L. Liu, “High-resolution extended source optical coherence tomography,” Opt. Express 23(20), 26399–26413 (2015).
[Crossref] [PubMed]

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011).
[Crossref] [PubMed]

Liu, Q.

Y. H. Ong, C. Zhu, and Q. Liu, “Phantom validation of Monte Carlo modeling for noncontact depth sensitive fluorescence measurements in an epithelial tissue model,” J. Biomed. Opt. 19(8), 085006 (2014).
[Crossref] [PubMed]

Y. H. Ong and Q. Liu, “Fast depth-sensitive fluorescence measurements in turbid media using cone shell configuration,” J. Biomed. Opt. 18(11), 110503 (2013).
[Crossref] [PubMed]

Y. H. Ong and Q. Liu, “Axicon lens-based cone shell configuration for depth-sensitive fluorescence measurements in turbid media,” Opt. Lett. 38(15), 2647–2649 (2013).
[Crossref] [PubMed]

Q. Liu and N. Ramanujam, “Sequential estimation of optical properties of a two-layered epithelial tissue model from depth-resolved ultraviolet-visible diffuse reflectance spectra,” Appl. Opt. 45(19), 4776–4790 (2006).
[Crossref] [PubMed]

C. Zhu, Q. Liu, and N. Ramanujam, “Effect of fiber optic probe geometry on depth-resolved fluorescence measurements from epithelial tissues: a Monte Carlo simulation,” J. Biomed. Opt. 8(2), 237–247 (2003).
[Crossref] [PubMed]

Liu, X.

Lucassen, G. W.

P. J. Caspers, G. W. Lucassen, and G. J. Puppels, “Combined in vivo confocal Raman spectroscopy and confocal microscopy of human skin,” Biophys. J. 85(1), 572–580 (2003).
[Crossref] [PubMed]

P. J. Caspers, G. W. Lucassen, R. Wolthuis, H. A. Bruining, and G. J. Puppels, “In vitro and in vivo Raman spectroscopy of human skin,” Biospectroscopy 4(5Suppl), S31–S39 (1998).
[Crossref] [PubMed]

Luo, Y.

Macleod, N. A.

C. Eliasson, N. A. Macleod, and P. Matousek, “Noninvasive detection of concealed liquid explosives using Raman spectroscopy,” Anal. Chem. 79(21), 8185–8189 (2007).
[Crossref] [PubMed]

Mahadevan-Jansen, A.

Majumder, S. K.

K. M. Khan, S. K. Majumder, and P. K. Gupta, “Cone-shell Raman spectroscopy (CSRS) for depth-sensitive measurements in layered tissue,” J. Biophotonics 8(11-12), 889–896 (2015).
[Crossref] [PubMed]

M. D. Keller, S. K. Majumder, and A. Mahadevan-Jansen, “Spatially offset Raman spectroscopy of layered soft tissues,” Opt. Lett. 34(7), 926–928 (2009).
[Crossref] [PubMed]

Manfait, M.

S. Tfaili, C. Gobinet, G. Josse, J. F. Angiboust, M. Manfait, and O. Piot, “Confocal Raman microspectroscopy for skin characterization: a comparative study between human skin and pig skin,” Analyst (Lond.) 137(16), 3673–3682 (2012).
[Crossref] [PubMed]

Manoharan, R.

E. B. Hanlon, R. Manoharan, T. W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45(2), R1–R59 (2000).
[Crossref] [PubMed]

Martens, W.

R. L. Frost, P. Williams, and W. Martens, “Raman spectroscopy of the minerals boleite, cumengeite, diaboleite and phosgenite-implications for the analysis of cosmetics of antiquity,” Mineral. Mag. 61(1), 103–111 (2003).
[Crossref]

Matousek, P.

C. Eliasson, N. A. Macleod, and P. Matousek, “Noninvasive detection of concealed liquid explosives using Raman spectroscopy,” Anal. Chem. 79(21), 8185–8189 (2007).
[Crossref] [PubMed]

N. Stone, R. Baker, K. Rogers, A. W. Parker, and P. Matousek, “Subsurface probing of calcifications with spatially offset Raman spectroscopy (SORS): future possibilities for the diagnosis of breast cancer,” Analyst (Lond.) 132(9), 899–905 (2007).
[Crossref] [PubMed]

P. Matousek, E. R. C. Draper, A. E. Goodship, I. P. Clark, K. L. Ronayne, and A. W. Parker, “Noninvasive Raman spectroscopy of human tissue in vivo,” Appl. Spectrosc. 60(7), 758–763 (2006).
[Crossref] [PubMed]

P. Matousek, I. P. Clark, E. R. C. Draper, M. D. Morris, A. E. Goodship, N. Everall, M. Towrie, W. F. Finney, and A. W. Parker, “Subsurface probing in diffusely scattering media using spatially offset Raman spectroscopy,” Appl. Spectrosc. 59(4), 393–400 (2005).
[Crossref] [PubMed]

Morris, M. D.

Mosk, A. P.

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
[Crossref]

I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4(5), 320–322 (2010).

Motz, J. T.

E. B. Hanlon, R. Manoharan, T. W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45(2), R1–R59 (2000).
[Crossref] [PubMed]

Mukherjee, R.

S. Kumar, T. Verma, R. Mukherjee, F. Ariese, K. Somasundaram, and S. Umapathy, “Raman and infra-red microspectroscopy: towards quantitative evaluation for clinical research by ratiometric analysis,” Chem. Soc. Rev. 45(7), 1879–1900 (2016).
[Crossref] [PubMed]

Nadkarni, S. K.

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011).
[Crossref] [PubMed]

Naumann, D.

D. Naumann, “FT-infrared and FT-Raman spectroscopy in biomedical research,” Appl. Spectrosc. Rev. 36(2–3), 239–298 (2001).
[Crossref]

Novak, J.

E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt. 11(6), 064026 (2006).
[Crossref] [PubMed]

Ohmi, M.

M. Ohmi, Y. Ohnishi, K. Yoden, and M. Haruna, “In vitro simultaneous measurement of refractive index and thickness of biological tissue by the low coherence interferometry,” IEEE Trans. Biomed. Eng. 47(9), 1266–1270 (2000).
[Crossref] [PubMed]

Ohnishi, Y.

M. Ohmi, Y. Ohnishi, K. Yoden, and M. Haruna, “In vitro simultaneous measurement of refractive index and thickness of biological tissue by the low coherence interferometry,” IEEE Trans. Biomed. Eng. 47(9), 1266–1270 (2000).
[Crossref] [PubMed]

Ong, Y. H.

Y. H. Ong, C. Zhu, and Q. Liu, “Phantom validation of Monte Carlo modeling for noncontact depth sensitive fluorescence measurements in an epithelial tissue model,” J. Biomed. Opt. 19(8), 085006 (2014).
[Crossref] [PubMed]

Y. H. Ong and Q. Liu, “Fast depth-sensitive fluorescence measurements in turbid media using cone shell configuration,” J. Biomed. Opt. 18(11), 110503 (2013).
[Crossref] [PubMed]

Y. H. Ong and Q. Liu, “Axicon lens-based cone shell configuration for depth-sensitive fluorescence measurements in turbid media,” Opt. Lett. 38(15), 2647–2649 (2013).
[Crossref] [PubMed]

Parker, A. W.

Piot, O.

S. Tfaili, C. Gobinet, G. Josse, J. F. Angiboust, M. Manfait, and O. Piot, “Confocal Raman microspectroscopy for skin characterization: a comparative study between human skin and pig skin,” Analyst (Lond.) 137(16), 3673–3682 (2012).
[Crossref] [PubMed]

Puppels, G. J.

P. J. Caspers, G. W. Lucassen, and G. J. Puppels, “Combined in vivo confocal Raman spectroscopy and confocal microscopy of human skin,” Biophys. J. 85(1), 572–580 (2003).
[Crossref] [PubMed]

P. J. Caspers, G. W. Lucassen, R. Wolthuis, H. A. Bruining, and G. J. Puppels, “In vitro and in vivo Raman spectroscopy of human skin,” Biospectroscopy 4(5Suppl), S31–S39 (1998).
[Crossref] [PubMed]

Ramanujam, N.

Q. Liu and N. Ramanujam, “Sequential estimation of optical properties of a two-layered epithelial tissue model from depth-resolved ultraviolet-visible diffuse reflectance spectra,” Appl. Opt. 45(19), 4776–4790 (2006).
[Crossref] [PubMed]

C. Zhu, Q. Liu, and N. Ramanujam, “Effect of fiber optic probe geometry on depth-resolved fluorescence measurements from epithelial tissues: a Monte Carlo simulation,” J. Biomed. Opt. 8(2), 237–247 (2003).
[Crossref] [PubMed]

Rogers, K.

N. Stone, R. Baker, K. Rogers, A. W. Parker, and P. Matousek, “Subsurface probing of calcifications with spatially offset Raman spectroscopy (SORS): future possibilities for the diagnosis of breast cancer,” Analyst (Lond.) 132(9), 899–905 (2007).
[Crossref] [PubMed]

Ronayne, K. L.

Salomatina, E.

E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt. 11(6), 064026 (2006).
[Crossref] [PubMed]

Sergo, V.

C. Krafft and V. Sergo, “Biomedical applications of Raman and infrared spectroscopy to diagnose tissues,” Spectrosc. J. 20(5–6), 195–218 (2006).
[Crossref]

Shafer, K. E.

E. B. Hanlon, R. Manoharan, T. W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45(2), R1–R59 (2000).
[Crossref] [PubMed]

Shafer-Peltier, K. E.

A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer by using Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(35), 12371–12376 (2005).
[Crossref] [PubMed]

Shah, N. C.

J. M. Yuen, N. C. Shah, J. T. Walsh, M. R. Glucksberg, and R. P. Van Duyne, “Transcutaneous glucose sensing by surface-enhanced spatially offset Raman spectroscopy in a rat model,” Anal. Chem. 82(20), 8382–8385 (2010).
[Crossref] [PubMed]

Sikirzhytski, V.

V. Sikirzhytski, K. Virkler, and I. K. Lednev, “Discriminant Analysis of Raman Spectra for Body Fluid Identification for Forensic Purposes,” Sensors (Basel) 10(4), 2869–2884 (2010).
[Crossref] [PubMed]

Smith, J.

N. Stone, C. Kendall, J. Smith, P. Crow, and H. Barr, “Raman spectroscopy for identification of epithelial cancers,” Faraday Discuss. 126, 141–157 (2004).
[Crossref] [PubMed]

Somasundaram, K.

S. Kumar, T. Verma, R. Mukherjee, F. Ariese, K. Somasundaram, and S. Umapathy, “Raman and infra-red microspectroscopy: towards quantitative evaluation for clinical research by ratiometric analysis,” Chem. Soc. Rev. 45(7), 1879–1900 (2016).
[Crossref] [PubMed]

Stone, N.

N. Stone, R. Baker, K. Rogers, A. W. Parker, and P. Matousek, “Subsurface probing of calcifications with spatially offset Raman spectroscopy (SORS): future possibilities for the diagnosis of breast cancer,” Analyst (Lond.) 132(9), 899–905 (2007).
[Crossref] [PubMed]

N. Stone, C. Kendall, J. Smith, P. Crow, and H. Barr, “Raman spectroscopy for identification of epithelial cancers,” Faraday Discuss. 126, 141–157 (2004).
[Crossref] [PubMed]

Tagami, H.

M. Egawa and H. Tagami, “Comparison of the depth profiles of water and water-binding substances in the stratum corneum determined in vivo by Raman spectroscopy between the cheek and volar forearm skin: effects of age, seasonal changes and artificial forced hydration,” Br. J. Dermatol. 158(2), 251–260 (2008).
[Crossref] [PubMed]

Tearney, G. J.

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011).
[Crossref] [PubMed]

Tfaili, S.

S. Tfaili, C. Gobinet, G. Josse, J. F. Angiboust, M. Manfait, and O. Piot, “Confocal Raman microspectroscopy for skin characterization: a comparative study between human skin and pig skin,” Analyst (Lond.) 137(16), 3673–3682 (2012).
[Crossref] [PubMed]

Toussaint, J. D.

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011).
[Crossref] [PubMed]

Towrie, M.

Umapathy, S.

S. Kumar, T. Verma, R. Mukherjee, F. Ariese, K. Somasundaram, and S. Umapathy, “Raman and infra-red microspectroscopy: towards quantitative evaluation for clinical research by ratiometric analysis,” Chem. Soc. Rev. 45(7), 1879–1900 (2016).
[Crossref] [PubMed]

Van Duyne, R. P.

J. M. Yuen, N. C. Shah, J. T. Walsh, M. R. Glucksberg, and R. P. Van Duyne, “Transcutaneous glucose sensing by surface-enhanced spatially offset Raman spectroscopy in a rat model,” Anal. Chem. 82(20), 8382–8385 (2010).
[Crossref] [PubMed]

Vellekoop, I. M.

I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4(5), 320–322 (2010).

Verma, T.

S. Kumar, T. Verma, R. Mukherjee, F. Ariese, K. Somasundaram, and S. Umapathy, “Raman and infra-red microspectroscopy: towards quantitative evaluation for clinical research by ratiometric analysis,” Chem. Soc. Rev. 45(7), 1879–1900 (2016).
[Crossref] [PubMed]

Virkler, K.

V. Sikirzhytski, K. Virkler, and I. K. Lednev, “Discriminant Analysis of Raman Spectra for Body Fluid Identification for Forensic Purposes,” Sensors (Basel) 10(4), 2869–2884 (2010).
[Crossref] [PubMed]

Walsh, J. T.

J. M. Yuen, N. C. Shah, J. T. Walsh, M. R. Glucksberg, and R. P. Van Duyne, “Transcutaneous glucose sensing by surface-enhanced spatially offset Raman spectroscopy in a rat model,” Anal. Chem. 82(20), 8382–8385 (2010).
[Crossref] [PubMed]

Wang, X.

Williams, A. C.

A. C. Williams, H. G. M. Edwards, and B. W. Barry, “Raman-Spectra of Human Keratotic Biopolymers - Skin, Callus, Hair and Nail,” J. Raman Spectrosc. 25(1), 95–98 (1994).
[Crossref]

Williams, P.

R. L. Frost, P. Williams, and W. Martens, “Raman spectroscopy of the minerals boleite, cumengeite, diaboleite and phosgenite-implications for the analysis of cosmetics of antiquity,” Mineral. Mag. 61(1), 103–111 (2003).
[Crossref]

Windbergs, M.

L. Franzen and M. Windbergs, “Applications of Raman spectroscopy in skin research--From skin physiology and diagnosis up to risk assessment and dermal drug delivery,” Adv. Drug Deliv. Rev. 89, 91–104 (2015).
[Crossref] [PubMed]

Wolthuis, R.

P. J. Caspers, G. W. Lucassen, R. Wolthuis, H. A. Bruining, and G. J. Puppels, “In vitro and in vivo Raman spectroscopy of human skin,” Biospectroscopy 4(5Suppl), S31–S39 (1998).
[Crossref] [PubMed]

Yagi, Y.

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011).
[Crossref] [PubMed]

Yaroslavsky, A. N.

E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt. 11(6), 064026 (2006).
[Crossref] [PubMed]

Yoden, K.

M. Ohmi, Y. Ohnishi, K. Yoden, and M. Haruna, “In vitro simultaneous measurement of refractive index and thickness of biological tissue by the low coherence interferometry,” IEEE Trans. Biomed. Eng. 47(9), 1266–1270 (2000).
[Crossref] [PubMed]

Yu, X.

Yuen, J. M.

J. M. Yuen, N. C. Shah, J. T. Walsh, M. R. Glucksberg, and R. P. Van Duyne, “Transcutaneous glucose sensing by surface-enhanced spatially offset Raman spectroscopy in a rat model,” Anal. Chem. 82(20), 8382–8385 (2010).
[Crossref] [PubMed]

Zhu, C.

Y. H. Ong, C. Zhu, and Q. Liu, “Phantom validation of Monte Carlo modeling for noncontact depth sensitive fluorescence measurements in an epithelial tissue model,” J. Biomed. Opt. 19(8), 085006 (2014).
[Crossref] [PubMed]

C. Zhu, Q. Liu, and N. Ramanujam, “Effect of fiber optic probe geometry on depth-resolved fluorescence measurements from epithelial tissues: a Monte Carlo simulation,” J. Biomed. Opt. 8(2), 237–247 (2003).
[Crossref] [PubMed]

Adv. Drug Deliv. Rev. (1)

L. Franzen and M. Windbergs, “Applications of Raman spectroscopy in skin research--From skin physiology and diagnosis up to risk assessment and dermal drug delivery,” Adv. Drug Deliv. Rev. 89, 91–104 (2015).
[Crossref] [PubMed]

Anal. Chem. (2)

J. M. Yuen, N. C. Shah, J. T. Walsh, M. R. Glucksberg, and R. P. Van Duyne, “Transcutaneous glucose sensing by surface-enhanced spatially offset Raman spectroscopy in a rat model,” Anal. Chem. 82(20), 8382–8385 (2010).
[Crossref] [PubMed]

C. Eliasson, N. A. Macleod, and P. Matousek, “Noninvasive detection of concealed liquid explosives using Raman spectroscopy,” Anal. Chem. 79(21), 8185–8189 (2007).
[Crossref] [PubMed]

Analyst (Lond.) (3)

N. Stone, R. Baker, K. Rogers, A. W. Parker, and P. Matousek, “Subsurface probing of calcifications with spatially offset Raman spectroscopy (SORS): future possibilities for the diagnosis of breast cancer,” Analyst (Lond.) 132(9), 899–905 (2007).
[Crossref] [PubMed]

D. I. Ellis and R. Goodacre, “Metabolic fingerprinting in disease diagnosis: biomedical applications of infrared and Raman spectroscopy,” Analyst (Lond.) 131(8), 875–885 (2006).
[Crossref] [PubMed]

S. Tfaili, C. Gobinet, G. Josse, J. F. Angiboust, M. Manfait, and O. Piot, “Confocal Raman microspectroscopy for skin characterization: a comparative study between human skin and pig skin,” Analyst (Lond.) 137(16), 3673–3682 (2012).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Spectrosc. (3)

Appl. Spectrosc. Rev. (1)

D. Naumann, “FT-infrared and FT-Raman spectroscopy in biomedical research,” Appl. Spectrosc. Rev. 36(2–3), 239–298 (2001).
[Crossref]

Biophys. J. (1)

P. J. Caspers, G. W. Lucassen, and G. J. Puppels, “Combined in vivo confocal Raman spectroscopy and confocal microscopy of human skin,” Biophys. J. 85(1), 572–580 (2003).
[Crossref] [PubMed]

Biospectroscopy (1)

P. J. Caspers, G. W. Lucassen, R. Wolthuis, H. A. Bruining, and G. J. Puppels, “In vitro and in vivo Raman spectroscopy of human skin,” Biospectroscopy 4(5Suppl), S31–S39 (1998).
[Crossref] [PubMed]

Br. J. Dermatol. (1)

M. Egawa and H. Tagami, “Comparison of the depth profiles of water and water-binding substances in the stratum corneum determined in vivo by Raman spectroscopy between the cheek and volar forearm skin: effects of age, seasonal changes and artificial forced hydration,” Br. J. Dermatol. 158(2), 251–260 (2008).
[Crossref] [PubMed]

Chem. Rev. (1)

K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari, and M. S. Feld, “Ultrasensitive chemical analysis by Raman spectroscopy,” Chem. Rev. 99(10), 2957–2976 (1999).
[Crossref] [PubMed]

Chem. Soc. Rev. (1)

S. Kumar, T. Verma, R. Mukherjee, F. Ariese, K. Somasundaram, and S. Umapathy, “Raman and infra-red microspectroscopy: towards quantitative evaluation for clinical research by ratiometric analysis,” Chem. Soc. Rev. 45(7), 1879–1900 (2016).
[Crossref] [PubMed]

Faraday Discuss. (1)

N. Stone, C. Kendall, J. Smith, P. Crow, and H. Barr, “Raman spectroscopy for identification of epithelial cancers,” Faraday Discuss. 126, 141–157 (2004).
[Crossref] [PubMed]

IEEE Trans. Biomed. Eng. (1)

M. Ohmi, Y. Ohnishi, K. Yoden, and M. Haruna, “In vitro simultaneous measurement of refractive index and thickness of biological tissue by the low coherence interferometry,” IEEE Trans. Biomed. Eng. 47(9), 1266–1270 (2000).
[Crossref] [PubMed]

J. Biomed. Opt. (4)

Y. H. Ong and Q. Liu, “Fast depth-sensitive fluorescence measurements in turbid media using cone shell configuration,” J. Biomed. Opt. 18(11), 110503 (2013).
[Crossref] [PubMed]

E. Salomatina, B. Jiang, J. Novak, and A. N. Yaroslavsky, “Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range,” J. Biomed. Opt. 11(6), 064026 (2006).
[Crossref] [PubMed]

C. Zhu, Q. Liu, and N. Ramanujam, “Effect of fiber optic probe geometry on depth-resolved fluorescence measurements from epithelial tissues: a Monte Carlo simulation,” J. Biomed. Opt. 8(2), 237–247 (2003).
[Crossref] [PubMed]

Y. H. Ong, C. Zhu, and Q. Liu, “Phantom validation of Monte Carlo modeling for noncontact depth sensitive fluorescence measurements in an epithelial tissue model,” J. Biomed. Opt. 19(8), 085006 (2014).
[Crossref] [PubMed]

J. Biophotonics (1)

K. M. Khan, S. K. Majumder, and P. K. Gupta, “Cone-shell Raman spectroscopy (CSRS) for depth-sensitive measurements in layered tissue,” J. Biophotonics 8(11-12), 889–896 (2015).
[Crossref] [PubMed]

J. Raman Spectrosc. (1)

A. C. Williams, H. G. M. Edwards, and B. W. Barry, “Raman-Spectra of Human Keratotic Biopolymers - Skin, Callus, Hair and Nail,” J. Raman Spectrosc. 25(1), 95–98 (1994).
[Crossref]

Mineral. Mag. (1)

R. L. Frost, P. Williams, and W. Martens, “Raman spectroscopy of the minerals boleite, cumengeite, diaboleite and phosgenite-implications for the analysis of cosmetics of antiquity,” Mineral. Mag. 61(1), 103–111 (2003).
[Crossref]

Nat. Med. (1)

L. Liu, J. A. Gardecki, S. K. Nadkarni, J. D. Toussaint, Y. Yagi, B. E. Bouma, and G. J. Tearney, “Imaging the subcellular structure of human coronary atherosclerosis using micro-optical coherence tomography,” Nat. Med. 17(8), 1010–1014 (2011).
[Crossref] [PubMed]

Nat. Photonics (2)

I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4(5), 320–322 (2010).

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012).
[Crossref]

Opt. Express (1)

Opt. Lett. (2)

Phys. Med. Biol. (1)

E. B. Hanlon, R. Manoharan, T. W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45(2), R1–R59 (2000).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

A. S. Haka, K. E. Shafer-Peltier, M. Fitzmaurice, J. Crowe, R. R. Dasari, and M. S. Feld, “Diagnosing breast cancer by using Raman spectroscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(35), 12371–12376 (2005).
[Crossref] [PubMed]

Sensors (Basel) (2)

A. Downes and A. Elfick, “Raman Spectroscopy and Related Techniques in Biomedicine,” Sensors (Basel) 10(3), 1871–1889 (2010).
[Crossref] [PubMed]

V. Sikirzhytski, K. Virkler, and I. K. Lednev, “Discriminant Analysis of Raman Spectra for Body Fluid Identification for Forensic Purposes,” Sensors (Basel) 10(4), 2869–2884 (2010).
[Crossref] [PubMed]

Spectrosc. J. (1)

C. Krafft and V. Sergo, “Biomedical applications of Raman and infrared spectroscopy to diagnose tissues,” Spectrosc. J. 20(5–6), 195–218 (2006).
[Crossref]

Other (2)

D. A. Long, “Raman spectroscopy,” New York, 1–12 (1977).

N. Colthup, Introduction to infrared and Raman spectroscopy (Elsevier, 2012), chap. 13.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic of the snapshot depth sensitive Raman measurements system. AX: axicon; DE: distal end of the fiber assembly; DM: dichroic mirror; LLF: laser line filter; LPF: long pass filter; L1: collimation lens; L2: objective lens; PE: Proximal end of the fiber assembly. Note that ray focusing as illustrated in this figure works precisely only up to a depth equivalent to a few transport mean free path lengths.
Fig. 2
Fig. 2 Ray tracing of two points along the focal line imaged by an axicon and a convex lens. Note that only light rays that can reach the convex lens are traced for clarity. Light rays on the left half of the hemisphere out of the two points are omitted for clarity. Light rays propagate from the top to the bottom.
Fig. 3
Fig. 3 Depth calibration results of fiber rings for signal collection. (a) Measured fluorescence intensity (at 850 nm) of each fiber ring as a function of sample depth; (b) Normalized fluorescence intensity (at 850 nm) of each fiber ring as a function of sample depth.
Fig. 4
Fig. 4 Raman measurements from two-layered transparent phantoms where the top layer contained urea and the bottom layer with a constant thickness of 3 mm contained potassium formate. (a) Raman spectra measured from all fiber rings when the top layer thickness of the phantom was 0.5 mm. (b) Intensity ratio of potassium formate peak to urea peak when the top layer thicknesses of phantoms were 0.5 and 1 mm, respectively.
Fig. 5
Fig. 5 Raman measurements from two-layered turbid phantoms where the top layer contained urea and the bottom layer with a constant thickness of 3 mm contained potassium formate. (a) Raman spectra measured from all fiber rings when the top layer thickness of the phantom was 0.5 mm. (b) Intensity ratio of potassium formate peak to urea peak when the top layer thicknesses of phantoms were 0.5 and 1 mm, respectively.
Fig. 6
Fig. 6 Raman measurements from a pork sample with 1 × MPE. (a) White light photo of an untreated pork sample measured with a ruler on the side. The space between every two adjacent white ticks is 1 mm. (b) Raman spectra of individual layers measured by a commercial micro-Raman system from the side of the pork sample with 3 minutes exposure time. (c) Depth sensitive Raman spectra of the same pork sample measured by the proposed snapshot system with 2 minutes exposure time.
Fig. 7
Fig. 7 Raman measurements from an adult Asian male’s thumbnail and the skin next to it in vivo, and the cross-sectional image of the thumbnail region. (a) Raman spectra measured by a commercial micro-Raman system from the nail plate in the thumbnail and the dermis of the skin right next to it, respectively, with 3 minutes exposure time and 2 × MPE. (b) Depth sensitive Raman spectra detected from the top surface of the thumbnail by the proposed snapshot system with 1.5 minutes exposure time and 1 × MPE. (c) Ratio of the Raman peak intensity at 1344 cm−1 to that at 1453 cm−1 as a function of ring number. The error bar indicates the standard deviation of the ratio in each ring. (d) Cross-sectional image of the measured nail plate and the dermis below it acquired by an optical coherence tomography (OCT) system with a lateral scanning length of 6.5 mm, where the dotted line indicates the interface between the nail plate and the dermis.

Tables (1)

Tables Icon

Table 1 Distances of the fiber rings from the center of the dead fiber in the fiber assembly.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

β=α/2 cos 1 ( ncos( α/2 ) ),
L= D 2 ( cot( β )cot( α/2 ) ),

Metrics