Abstract

We report a 65 MHz-bandwidth triangular-shaped optical parametric oscillator (OPO) for squeezed vacuum generation at 860 nm. The triangle structure of our OPO enables the round-trip length to reach 45 mm as a ring cavity, which provides a counter circulating optical path available for introducing a probe beam or generating another squeezed vacuum. Hence our OPO is suitable for the applications in high-speed quantum information processing where two or more squeezed vacua form a complicated interferometer, like continuous-variable quantum teleportation. With a homemade, broadband and low-loss homodyne detector, a direct measurement shows 8.4 dB of squeezing at 3 MHz and also 2.4 dB of squeezing at 100 MHz.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Squeezed vacuum from a monolithic optical parametric oscillator

G. Breitenbach, T. Müller, S. F. Pereira, J.-Ph. Poizat, S. Schiller, and J. Mlynek
J. Opt. Soc. Am. B 12(11) 2304-2309 (1995)

References

  • View by:
  • |
  • |
  • |

  1. D. F. Walls, “Squeezed states of light,” Nature 306, 141–146 (1983).
    [Crossref]
  2. H. J. Kimble, Y. Levin, A. B. Matsko, K. S. Thorne, and S. P. Vyatchanin, “Conversion of conventional gravitational-wave interferometers into quantum nondemolition interferometers by modifying their input and/or output optics,” Phys. Rev. D 65, 022002 (2001).
    [Crossref]
  3. K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. McKenzie, R. Ward, S. Vass, A. J. Weinstein, and N. Mavalvala, “A quantum-enhanced prototype gravitational-wave detector,” Nat. Phys. 4, 472–476 (2008).
    [Crossref]
  4. H. Vahlbruch, A. Khalaidovski, N. Lastzka, C. Gräf, K. Danzmann, and R. Schnabel, “The GEO 600 squeezed light source,” Class. Quantum Grav. 27, 084027 (2010).
    [Crossref]
  5. M. I. Kolobov and P. Kumar, “Sub-shot-noise microscopy: imaging of faint phase objects with squeezed light,” Opt. Lett. 18, 849–851 (1993).
    [Crossref] [PubMed]
  6. B. Lu, S. Bi, F. Feng, M. Kang, and F. Qin, “Experimental study on the imaging of the squeezed-state light with a virtual object,” Opt. Eng. 51, 119001 (2012).
    [Crossref]
  7. A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, and P. Grangier, “Generating Optical Schrödinger Kittens for Quantum Information Processing,” Science 312, 83–86 (2006).
    [Crossref] [PubMed]
  8. J. S. Neergaard-Nielsen, B. M. Nielsen, C. Hettich, K. Mølmer, and E. S. Polzik, “Generation of a Superposition of Odd Photon Number States for Quantum Information Networks,” Phys. Rev. Lett. 97, 083604 (2006).
    [Crossref] [PubMed]
  9. K. Wakui, H. Takahashi, A. Furusawa, and M. Sasaki, “Photon subtracted squeezed states generated with periodically poled KTiOPO4,” Opt. Express 15, 3568–3574 (2007).
    [Crossref] [PubMed]
  10. A. Furusawa, J. L. Sørensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional Quantum Teleportation,” Science 282, 706–709 (1998).
    [Crossref] [PubMed]
  11. N. Lee, H. Benichi, Y. Takeno, S. Takeda, J. Webb, E. Huntington, and A. Furusawa, “Teleportation of Nonclassical Wave Packets of Light,” Science 332, 330–333 (2011).
    [Crossref] [PubMed]
  12. S. Yokoyama, R. Ukai, S. C. Armstrong, C. Sornphiphatphong, T. Kaji, S. Suzuki, J. I. Yoshikawa, H. Yonezawa, N. C. Menicucci, and Akira Furusawa, “Ultra-large-scale continuous-variable cluster states multiplexed in the time domain,” Nat. Photonics 7, 982–986 (2013).
    [Crossref]
  13. J. Yoshikawa, S. Yokoyama, T. Kaji, C. Sornphiphatphong, Y. Shiozawa, K. Makino, and A. Furusawa, “Invited Article: Generation of one-million-mode continuous-variable cluster state by unlimited time-domain multiplexing,” APL Photonics 1, 060801 (2016).
    [Crossref]
  14. S. Takeda, T. Mizuta, M. Fuwa, J. Yoshikawa, H. Yonezawa, and A. Furusawa, “Generation and eight-port homodyne characterization of time-bin qubits for continuous-variable quantum information processing,” Phys. Rev. A 87, 043803 (2013).
    [Crossref]
  15. R. Raussendorf and H. J. Briegel, “A One-Way Quantum Computer,” Phys. Rev. Lett. 86, 5188 (2001).
    [Crossref] [PubMed]
  16. M. Gu, C. Weedbrook, N. C. Menicucci, T. C. Ralph, and P. van Loock, “Quantum computing with continuous-variable clusters,” Phys. Rev. A 79, 062318 (2009).
    [Crossref]
  17. N. Takei, N. Lee, D. Moriyama, J. S. Neergaard-Nielsen, and A. Furusawa, “Time-gated Einstein-Podolsky-Rosen correlation,” Phys. Rev. A 74, 060101 (2006).
    [Crossref]
  18. R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley, “Observation of Squeezed States Generated by Four-Wave Mixing in an Optical Cavity,” Phys. Rev. Lett. 55, 2409 (1985).
    [Crossref] [PubMed]
  19. L. Wu, H. J. Kimble, J. L. Hall, and H. Wu, “Generation of Squeezed States by Parametric Down Conversion,” Phys. Rev. Lett. 57, 2520 (1986).
    [Crossref] [PubMed]
  20. B. Yurke, “Use of cavities in squeezed-state generation,” Phys. Rev. A 29, 408 (1984).
    [Crossref]
  21. M. J. Collett and C. W. Gardiner, “Squeezing of intracavity and traveling-wave light fields produced in parametric amplification,” Phys. Rev. A 30, 1386 (1984).
    [Crossref]
  22. M. E. Anderson, M. Beck, M. G. Raymer, and J. D. Bierlein, “Quadrature squeezing with ultrashort pulses in nonlinear-optical waveguides,” Opt. Lett. 20, 620–622 (1995).
    [Crossref] [PubMed]
  23. D. K. Serkland, M. M. Fejer, R. L. Byer, and Y. Yamamoto, “Squeezing in a quasi-phase-matched LiNbO3 waveguide,” Opt. Lett. 20, 1649–1651 (1995).
    [Crossref] [PubMed]
  24. Y. Eto, A. Koshio, A. Ohshiro, J. Sakurai, K. Horie, T. Hirano, and M. Sasaki, “Efficient homodyne measurement of picosecond squeezed pulses with pulse shaping technique,” Opt. Lett. 36, 4653–4655 (2011).
    [Crossref] [PubMed]
  25. R. M. Shelby, M. D. Levenson, S. H. Perlmutter, R. G. DeVoe, and D. F. Walls, “Broad-Band Parametric Deamplification of Quantum Noise in an Optical Fiber,” Phys. Rev. Lett. 57, 691 (1986).
    [Crossref] [PubMed]
  26. K. Bergman and H. A. Haus, “Squeezing in fibers with optical pulses,” Opt. Lett. 16, 663–665 (1991).
    [Crossref] [PubMed]
  27. H. Vahlbruch, M. Mehmet, K. Danzmann, and R. Schnabel, “Detection of 15 dB Squeezed States of Light and their Application for the Absolute Calibration of Photoelectric Quantum Efficiency,” Phys. Rev. Lett. 117, 110801 (2016).
    [Crossref]
  28. G. Breitenbach, T. Müller, S. F. Pereira, J.-Ph. Poizat, S. Schiller, and J. Mlynek, “Squeezed vacuum from a monolithic optical parametric oscillator,” J. Opt. Soc. Am. B 12, 2304–2309 (1995).
    [Crossref]
  29. S. Ast, M. Mehmet, and R. Schnabel, “High-bandwidth squeezed light at 1550 nm from a compact monolithic PPKTP cavity,” Opt. Express 21, 13572–13579 (2013).
    [Crossref] [PubMed]
  30. D. Lee and N. C. Wong, “Tunable optical frequency division using a phase-locked optical parametric oscillator,” Opt. Lett. 17, 13–15 (1992).
    [Crossref] [PubMed]
  31. J. Laurat, T. Coudreau, G. Keller, N. Treps, and C. Fabre, “Compact source of Einstein-Podolsky-Rosen entanglement and squeezing at very low noise frequencies,” Phys. Rev. A 70, 042315 (2004).
    [Crossref]
  32. Y. Zhou, X. Jia, F. Li, C. Xie, and K. Peng, “Experimental generation of 8.4 dB entangled state with an optical cavity involving a wedged type-II nonlinear crystal,” Opt. Express 23, 4952–4959 (2015).
    [Crossref] [PubMed]
  33. K. Huang, H. Le Jeannic, J. Ruaudel, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, E Wu, H. Zeng, Y.-C. Jeong, R. Filip, O. Morin, and J. Laurat, “Optical Synthesis of Large-Amplitude Squeezed Coherent-State Superpositions with Minimal Resources,” Phys. Rev. Lett. 115, 023602 (2015).
    [Crossref] [PubMed]
  34. Y. Takeno, M. Yukawa, H. Yonezawa, and A. Furusawa, “Observation of −9 dB quadrature squeezing with improvement of phase stability in homodyne measuremnt,” Opt. Express 15, 4321–4327 (2007).
    [Crossref] [PubMed]
  35. R. Kumar, E. Barrios, A. MacRae, E. Cairns, E. H. Huntington, and A. I. Lvovsky, “Versatile wideband balanced detector for quantum optical homodyne tomography,” Opt. Commun. 285, 5259–5267 (2012).
    [Crossref]
  36. J. Appel, D. Hoffman, E. Figueroa, and A. I. Lvovsky, “Electronic noise in optical homodyne tomography,” Phys. Rev. A 75, 035802 (2007).
    [Crossref]
  37. D. A. Shaddock, M. B. Gray, and D. E. McClelland, “Frequency locking a laser to an optical cavity by use of spatial mode interference,” Opt. Lett. 24, 1499–1501 (1999).
    [Crossref]
  38. P. K. Lam, T. C. Ralph, B. C. Buchler, D. E. McClelland, H. A Bachor, and J. Gao, “Optimization and transfer of vacuum squeezing from an optical parametric oscillator,” J. Opt. B 1, 469–474 (1999).
    [Crossref]
  39. W. Yang, Y. Wang, Y. Zheng, and H. Lu, “Comparative study of the frequency-doubling performance on ring and linear cavity at short wavelength region,” Opt. Express 23, 19624–19633 (2015).
    [Crossref] [PubMed]

2016 (2)

J. Yoshikawa, S. Yokoyama, T. Kaji, C. Sornphiphatphong, Y. Shiozawa, K. Makino, and A. Furusawa, “Invited Article: Generation of one-million-mode continuous-variable cluster state by unlimited time-domain multiplexing,” APL Photonics 1, 060801 (2016).
[Crossref]

H. Vahlbruch, M. Mehmet, K. Danzmann, and R. Schnabel, “Detection of 15 dB Squeezed States of Light and their Application for the Absolute Calibration of Photoelectric Quantum Efficiency,” Phys. Rev. Lett. 117, 110801 (2016).
[Crossref]

2015 (3)

2013 (3)

S. Ast, M. Mehmet, and R. Schnabel, “High-bandwidth squeezed light at 1550 nm from a compact monolithic PPKTP cavity,” Opt. Express 21, 13572–13579 (2013).
[Crossref] [PubMed]

S. Takeda, T. Mizuta, M. Fuwa, J. Yoshikawa, H. Yonezawa, and A. Furusawa, “Generation and eight-port homodyne characterization of time-bin qubits for continuous-variable quantum information processing,” Phys. Rev. A 87, 043803 (2013).
[Crossref]

S. Yokoyama, R. Ukai, S. C. Armstrong, C. Sornphiphatphong, T. Kaji, S. Suzuki, J. I. Yoshikawa, H. Yonezawa, N. C. Menicucci, and Akira Furusawa, “Ultra-large-scale continuous-variable cluster states multiplexed in the time domain,” Nat. Photonics 7, 982–986 (2013).
[Crossref]

2012 (2)

B. Lu, S. Bi, F. Feng, M. Kang, and F. Qin, “Experimental study on the imaging of the squeezed-state light with a virtual object,” Opt. Eng. 51, 119001 (2012).
[Crossref]

R. Kumar, E. Barrios, A. MacRae, E. Cairns, E. H. Huntington, and A. I. Lvovsky, “Versatile wideband balanced detector for quantum optical homodyne tomography,” Opt. Commun. 285, 5259–5267 (2012).
[Crossref]

2011 (2)

Y. Eto, A. Koshio, A. Ohshiro, J. Sakurai, K. Horie, T. Hirano, and M. Sasaki, “Efficient homodyne measurement of picosecond squeezed pulses with pulse shaping technique,” Opt. Lett. 36, 4653–4655 (2011).
[Crossref] [PubMed]

N. Lee, H. Benichi, Y. Takeno, S. Takeda, J. Webb, E. Huntington, and A. Furusawa, “Teleportation of Nonclassical Wave Packets of Light,” Science 332, 330–333 (2011).
[Crossref] [PubMed]

2010 (1)

H. Vahlbruch, A. Khalaidovski, N. Lastzka, C. Gräf, K. Danzmann, and R. Schnabel, “The GEO 600 squeezed light source,” Class. Quantum Grav. 27, 084027 (2010).
[Crossref]

2009 (1)

M. Gu, C. Weedbrook, N. C. Menicucci, T. C. Ralph, and P. van Loock, “Quantum computing with continuous-variable clusters,” Phys. Rev. A 79, 062318 (2009).
[Crossref]

2008 (1)

K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. McKenzie, R. Ward, S. Vass, A. J. Weinstein, and N. Mavalvala, “A quantum-enhanced prototype gravitational-wave detector,” Nat. Phys. 4, 472–476 (2008).
[Crossref]

2007 (3)

2006 (3)

A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, and P. Grangier, “Generating Optical Schrödinger Kittens for Quantum Information Processing,” Science 312, 83–86 (2006).
[Crossref] [PubMed]

J. S. Neergaard-Nielsen, B. M. Nielsen, C. Hettich, K. Mølmer, and E. S. Polzik, “Generation of a Superposition of Odd Photon Number States for Quantum Information Networks,” Phys. Rev. Lett. 97, 083604 (2006).
[Crossref] [PubMed]

N. Takei, N. Lee, D. Moriyama, J. S. Neergaard-Nielsen, and A. Furusawa, “Time-gated Einstein-Podolsky-Rosen correlation,” Phys. Rev. A 74, 060101 (2006).
[Crossref]

2004 (1)

J. Laurat, T. Coudreau, G. Keller, N. Treps, and C. Fabre, “Compact source of Einstein-Podolsky-Rosen entanglement and squeezing at very low noise frequencies,” Phys. Rev. A 70, 042315 (2004).
[Crossref]

2001 (2)

R. Raussendorf and H. J. Briegel, “A One-Way Quantum Computer,” Phys. Rev. Lett. 86, 5188 (2001).
[Crossref] [PubMed]

H. J. Kimble, Y. Levin, A. B. Matsko, K. S. Thorne, and S. P. Vyatchanin, “Conversion of conventional gravitational-wave interferometers into quantum nondemolition interferometers by modifying their input and/or output optics,” Phys. Rev. D 65, 022002 (2001).
[Crossref]

1999 (2)

P. K. Lam, T. C. Ralph, B. C. Buchler, D. E. McClelland, H. A Bachor, and J. Gao, “Optimization and transfer of vacuum squeezing from an optical parametric oscillator,” J. Opt. B 1, 469–474 (1999).
[Crossref]

D. A. Shaddock, M. B. Gray, and D. E. McClelland, “Frequency locking a laser to an optical cavity by use of spatial mode interference,” Opt. Lett. 24, 1499–1501 (1999).
[Crossref]

1998 (1)

A. Furusawa, J. L. Sørensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional Quantum Teleportation,” Science 282, 706–709 (1998).
[Crossref] [PubMed]

1995 (3)

1993 (1)

1992 (1)

1991 (1)

1986 (2)

R. M. Shelby, M. D. Levenson, S. H. Perlmutter, R. G. DeVoe, and D. F. Walls, “Broad-Band Parametric Deamplification of Quantum Noise in an Optical Fiber,” Phys. Rev. Lett. 57, 691 (1986).
[Crossref] [PubMed]

L. Wu, H. J. Kimble, J. L. Hall, and H. Wu, “Generation of Squeezed States by Parametric Down Conversion,” Phys. Rev. Lett. 57, 2520 (1986).
[Crossref] [PubMed]

1985 (1)

R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley, “Observation of Squeezed States Generated by Four-Wave Mixing in an Optical Cavity,” Phys. Rev. Lett. 55, 2409 (1985).
[Crossref] [PubMed]

1984 (2)

B. Yurke, “Use of cavities in squeezed-state generation,” Phys. Rev. A 29, 408 (1984).
[Crossref]

M. J. Collett and C. W. Gardiner, “Squeezing of intracavity and traveling-wave light fields produced in parametric amplification,” Phys. Rev. A 30, 1386 (1984).
[Crossref]

1983 (1)

D. F. Walls, “Squeezed states of light,” Nature 306, 141–146 (1983).
[Crossref]

Adhikari, R.

K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. McKenzie, R. Ward, S. Vass, A. J. Weinstein, and N. Mavalvala, “A quantum-enhanced prototype gravitational-wave detector,” Nat. Phys. 4, 472–476 (2008).
[Crossref]

Anderson, M. E.

Appel, J.

J. Appel, D. Hoffman, E. Figueroa, and A. I. Lvovsky, “Electronic noise in optical homodyne tomography,” Phys. Rev. A 75, 035802 (2007).
[Crossref]

Armstrong, S. C.

S. Yokoyama, R. Ukai, S. C. Armstrong, C. Sornphiphatphong, T. Kaji, S. Suzuki, J. I. Yoshikawa, H. Yonezawa, N. C. Menicucci, and Akira Furusawa, “Ultra-large-scale continuous-variable cluster states multiplexed in the time domain,” Nat. Photonics 7, 982–986 (2013).
[Crossref]

Ast, S.

Bachor, H. A

P. K. Lam, T. C. Ralph, B. C. Buchler, D. E. McClelland, H. A Bachor, and J. Gao, “Optimization and transfer of vacuum squeezing from an optical parametric oscillator,” J. Opt. B 1, 469–474 (1999).
[Crossref]

Barrios, E.

R. Kumar, E. Barrios, A. MacRae, E. Cairns, E. H. Huntington, and A. I. Lvovsky, “Versatile wideband balanced detector for quantum optical homodyne tomography,” Opt. Commun. 285, 5259–5267 (2012).
[Crossref]

Beck, M.

Benichi, H.

N. Lee, H. Benichi, Y. Takeno, S. Takeda, J. Webb, E. Huntington, and A. Furusawa, “Teleportation of Nonclassical Wave Packets of Light,” Science 332, 330–333 (2011).
[Crossref] [PubMed]

Bergman, K.

Bi, S.

B. Lu, S. Bi, F. Feng, M. Kang, and F. Qin, “Experimental study on the imaging of the squeezed-state light with a virtual object,” Opt. Eng. 51, 119001 (2012).
[Crossref]

Bierlein, J. D.

Braunstein, S. L.

A. Furusawa, J. L. Sørensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional Quantum Teleportation,” Science 282, 706–709 (1998).
[Crossref] [PubMed]

Breitenbach, G.

Briegel, H. J.

R. Raussendorf and H. J. Briegel, “A One-Way Quantum Computer,” Phys. Rev. Lett. 86, 5188 (2001).
[Crossref] [PubMed]

Buchler, B. C.

P. K. Lam, T. C. Ralph, B. C. Buchler, D. E. McClelland, H. A Bachor, and J. Gao, “Optimization and transfer of vacuum squeezing from an optical parametric oscillator,” J. Opt. B 1, 469–474 (1999).
[Crossref]

Byer, R. L.

Cairns, E.

R. Kumar, E. Barrios, A. MacRae, E. Cairns, E. H. Huntington, and A. I. Lvovsky, “Versatile wideband balanced detector for quantum optical homodyne tomography,” Opt. Commun. 285, 5259–5267 (2012).
[Crossref]

Collett, M. J.

M. J. Collett and C. W. Gardiner, “Squeezing of intracavity and traveling-wave light fields produced in parametric amplification,” Phys. Rev. A 30, 1386 (1984).
[Crossref]

Coudreau, T.

J. Laurat, T. Coudreau, G. Keller, N. Treps, and C. Fabre, “Compact source of Einstein-Podolsky-Rosen entanglement and squeezing at very low noise frequencies,” Phys. Rev. A 70, 042315 (2004).
[Crossref]

Danzmann, K.

H. Vahlbruch, M. Mehmet, K. Danzmann, and R. Schnabel, “Detection of 15 dB Squeezed States of Light and their Application for the Absolute Calibration of Photoelectric Quantum Efficiency,” Phys. Rev. Lett. 117, 110801 (2016).
[Crossref]

H. Vahlbruch, A. Khalaidovski, N. Lastzka, C. Gräf, K. Danzmann, and R. Schnabel, “The GEO 600 squeezed light source,” Class. Quantum Grav. 27, 084027 (2010).
[Crossref]

DeVoe, R. G.

R. M. Shelby, M. D. Levenson, S. H. Perlmutter, R. G. DeVoe, and D. F. Walls, “Broad-Band Parametric Deamplification of Quantum Noise in an Optical Fiber,” Phys. Rev. Lett. 57, 691 (1986).
[Crossref] [PubMed]

Eto, Y.

Fabre, C.

J. Laurat, T. Coudreau, G. Keller, N. Treps, and C. Fabre, “Compact source of Einstein-Podolsky-Rosen entanglement and squeezing at very low noise frequencies,” Phys. Rev. A 70, 042315 (2004).
[Crossref]

Fejer, M. M.

Feng, F.

B. Lu, S. Bi, F. Feng, M. Kang, and F. Qin, “Experimental study on the imaging of the squeezed-state light with a virtual object,” Opt. Eng. 51, 119001 (2012).
[Crossref]

Figueroa, E.

J. Appel, D. Hoffman, E. Figueroa, and A. I. Lvovsky, “Electronic noise in optical homodyne tomography,” Phys. Rev. A 75, 035802 (2007).
[Crossref]

Filip, R.

K. Huang, H. Le Jeannic, J. Ruaudel, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, E Wu, H. Zeng, Y.-C. Jeong, R. Filip, O. Morin, and J. Laurat, “Optical Synthesis of Large-Amplitude Squeezed Coherent-State Superpositions with Minimal Resources,” Phys. Rev. Lett. 115, 023602 (2015).
[Crossref] [PubMed]

Fuchs, C. A.

A. Furusawa, J. L. Sørensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional Quantum Teleportation,” Science 282, 706–709 (1998).
[Crossref] [PubMed]

Furusawa, A.

J. Yoshikawa, S. Yokoyama, T. Kaji, C. Sornphiphatphong, Y. Shiozawa, K. Makino, and A. Furusawa, “Invited Article: Generation of one-million-mode continuous-variable cluster state by unlimited time-domain multiplexing,” APL Photonics 1, 060801 (2016).
[Crossref]

S. Takeda, T. Mizuta, M. Fuwa, J. Yoshikawa, H. Yonezawa, and A. Furusawa, “Generation and eight-port homodyne characterization of time-bin qubits for continuous-variable quantum information processing,” Phys. Rev. A 87, 043803 (2013).
[Crossref]

N. Lee, H. Benichi, Y. Takeno, S. Takeda, J. Webb, E. Huntington, and A. Furusawa, “Teleportation of Nonclassical Wave Packets of Light,” Science 332, 330–333 (2011).
[Crossref] [PubMed]

Y. Takeno, M. Yukawa, H. Yonezawa, and A. Furusawa, “Observation of −9 dB quadrature squeezing with improvement of phase stability in homodyne measuremnt,” Opt. Express 15, 4321–4327 (2007).
[Crossref] [PubMed]

K. Wakui, H. Takahashi, A. Furusawa, and M. Sasaki, “Photon subtracted squeezed states generated with periodically poled KTiOPO4,” Opt. Express 15, 3568–3574 (2007).
[Crossref] [PubMed]

N. Takei, N. Lee, D. Moriyama, J. S. Neergaard-Nielsen, and A. Furusawa, “Time-gated Einstein-Podolsky-Rosen correlation,” Phys. Rev. A 74, 060101 (2006).
[Crossref]

A. Furusawa, J. L. Sørensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional Quantum Teleportation,” Science 282, 706–709 (1998).
[Crossref] [PubMed]

Furusawa, Akira

S. Yokoyama, R. Ukai, S. C. Armstrong, C. Sornphiphatphong, T. Kaji, S. Suzuki, J. I. Yoshikawa, H. Yonezawa, N. C. Menicucci, and Akira Furusawa, “Ultra-large-scale continuous-variable cluster states multiplexed in the time domain,” Nat. Photonics 7, 982–986 (2013).
[Crossref]

Fuwa, M.

S. Takeda, T. Mizuta, M. Fuwa, J. Yoshikawa, H. Yonezawa, and A. Furusawa, “Generation and eight-port homodyne characterization of time-bin qubits for continuous-variable quantum information processing,” Phys. Rev. A 87, 043803 (2013).
[Crossref]

Gao, J.

P. K. Lam, T. C. Ralph, B. C. Buchler, D. E. McClelland, H. A Bachor, and J. Gao, “Optimization and transfer of vacuum squeezing from an optical parametric oscillator,” J. Opt. B 1, 469–474 (1999).
[Crossref]

Gardiner, C. W.

M. J. Collett and C. W. Gardiner, “Squeezing of intracavity and traveling-wave light fields produced in parametric amplification,” Phys. Rev. A 30, 1386 (1984).
[Crossref]

Goda, K.

K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. McKenzie, R. Ward, S. Vass, A. J. Weinstein, and N. Mavalvala, “A quantum-enhanced prototype gravitational-wave detector,” Nat. Phys. 4, 472–476 (2008).
[Crossref]

Gräf, C.

H. Vahlbruch, A. Khalaidovski, N. Lastzka, C. Gräf, K. Danzmann, and R. Schnabel, “The GEO 600 squeezed light source,” Class. Quantum Grav. 27, 084027 (2010).
[Crossref]

Grangier, P.

A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, and P. Grangier, “Generating Optical Schrödinger Kittens for Quantum Information Processing,” Science 312, 83–86 (2006).
[Crossref] [PubMed]

Gray, M. B.

Gu, M.

M. Gu, C. Weedbrook, N. C. Menicucci, T. C. Ralph, and P. van Loock, “Quantum computing with continuous-variable clusters,” Phys. Rev. A 79, 062318 (2009).
[Crossref]

Hall, J. L.

L. Wu, H. J. Kimble, J. L. Hall, and H. Wu, “Generation of Squeezed States by Parametric Down Conversion,” Phys. Rev. Lett. 57, 2520 (1986).
[Crossref] [PubMed]

Haus, H. A.

Hettich, C.

J. S. Neergaard-Nielsen, B. M. Nielsen, C. Hettich, K. Mølmer, and E. S. Polzik, “Generation of a Superposition of Odd Photon Number States for Quantum Information Networks,” Phys. Rev. Lett. 97, 083604 (2006).
[Crossref] [PubMed]

Hirano, T.

Hoffman, D.

J. Appel, D. Hoffman, E. Figueroa, and A. I. Lvovsky, “Electronic noise in optical homodyne tomography,” Phys. Rev. A 75, 035802 (2007).
[Crossref]

Hollberg, L. W.

R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley, “Observation of Squeezed States Generated by Four-Wave Mixing in an Optical Cavity,” Phys. Rev. Lett. 55, 2409 (1985).
[Crossref] [PubMed]

Horie, K.

Huang, K.

K. Huang, H. Le Jeannic, J. Ruaudel, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, E Wu, H. Zeng, Y.-C. Jeong, R. Filip, O. Morin, and J. Laurat, “Optical Synthesis of Large-Amplitude Squeezed Coherent-State Superpositions with Minimal Resources,” Phys. Rev. Lett. 115, 023602 (2015).
[Crossref] [PubMed]

Huntington, E.

N. Lee, H. Benichi, Y. Takeno, S. Takeda, J. Webb, E. Huntington, and A. Furusawa, “Teleportation of Nonclassical Wave Packets of Light,” Science 332, 330–333 (2011).
[Crossref] [PubMed]

Huntington, E. H.

R. Kumar, E. Barrios, A. MacRae, E. Cairns, E. H. Huntington, and A. I. Lvovsky, “Versatile wideband balanced detector for quantum optical homodyne tomography,” Opt. Commun. 285, 5259–5267 (2012).
[Crossref]

Jeong, Y.-C.

K. Huang, H. Le Jeannic, J. Ruaudel, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, E Wu, H. Zeng, Y.-C. Jeong, R. Filip, O. Morin, and J. Laurat, “Optical Synthesis of Large-Amplitude Squeezed Coherent-State Superpositions with Minimal Resources,” Phys. Rev. Lett. 115, 023602 (2015).
[Crossref] [PubMed]

Jia, X.

Kaji, T.

J. Yoshikawa, S. Yokoyama, T. Kaji, C. Sornphiphatphong, Y. Shiozawa, K. Makino, and A. Furusawa, “Invited Article: Generation of one-million-mode continuous-variable cluster state by unlimited time-domain multiplexing,” APL Photonics 1, 060801 (2016).
[Crossref]

S. Yokoyama, R. Ukai, S. C. Armstrong, C. Sornphiphatphong, T. Kaji, S. Suzuki, J. I. Yoshikawa, H. Yonezawa, N. C. Menicucci, and Akira Furusawa, “Ultra-large-scale continuous-variable cluster states multiplexed in the time domain,” Nat. Photonics 7, 982–986 (2013).
[Crossref]

Kang, M.

B. Lu, S. Bi, F. Feng, M. Kang, and F. Qin, “Experimental study on the imaging of the squeezed-state light with a virtual object,” Opt. Eng. 51, 119001 (2012).
[Crossref]

Keller, G.

J. Laurat, T. Coudreau, G. Keller, N. Treps, and C. Fabre, “Compact source of Einstein-Podolsky-Rosen entanglement and squeezing at very low noise frequencies,” Phys. Rev. A 70, 042315 (2004).
[Crossref]

Khalaidovski, A.

H. Vahlbruch, A. Khalaidovski, N. Lastzka, C. Gräf, K. Danzmann, and R. Schnabel, “The GEO 600 squeezed light source,” Class. Quantum Grav. 27, 084027 (2010).
[Crossref]

Kimble, H. J.

H. J. Kimble, Y. Levin, A. B. Matsko, K. S. Thorne, and S. P. Vyatchanin, “Conversion of conventional gravitational-wave interferometers into quantum nondemolition interferometers by modifying their input and/or output optics,” Phys. Rev. D 65, 022002 (2001).
[Crossref]

A. Furusawa, J. L. Sørensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional Quantum Teleportation,” Science 282, 706–709 (1998).
[Crossref] [PubMed]

L. Wu, H. J. Kimble, J. L. Hall, and H. Wu, “Generation of Squeezed States by Parametric Down Conversion,” Phys. Rev. Lett. 57, 2520 (1986).
[Crossref] [PubMed]

Kolobov, M. I.

Koshio, A.

Kumar, P.

Kumar, R.

R. Kumar, E. Barrios, A. MacRae, E. Cairns, E. H. Huntington, and A. I. Lvovsky, “Versatile wideband balanced detector for quantum optical homodyne tomography,” Opt. Commun. 285, 5259–5267 (2012).
[Crossref]

Lam, P. K.

P. K. Lam, T. C. Ralph, B. C. Buchler, D. E. McClelland, H. A Bachor, and J. Gao, “Optimization and transfer of vacuum squeezing from an optical parametric oscillator,” J. Opt. B 1, 469–474 (1999).
[Crossref]

Lastzka, N.

H. Vahlbruch, A. Khalaidovski, N. Lastzka, C. Gräf, K. Danzmann, and R. Schnabel, “The GEO 600 squeezed light source,” Class. Quantum Grav. 27, 084027 (2010).
[Crossref]

Laurat, J.

K. Huang, H. Le Jeannic, J. Ruaudel, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, E Wu, H. Zeng, Y.-C. Jeong, R. Filip, O. Morin, and J. Laurat, “Optical Synthesis of Large-Amplitude Squeezed Coherent-State Superpositions with Minimal Resources,” Phys. Rev. Lett. 115, 023602 (2015).
[Crossref] [PubMed]

A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, and P. Grangier, “Generating Optical Schrödinger Kittens for Quantum Information Processing,” Science 312, 83–86 (2006).
[Crossref] [PubMed]

J. Laurat, T. Coudreau, G. Keller, N. Treps, and C. Fabre, “Compact source of Einstein-Podolsky-Rosen entanglement and squeezing at very low noise frequencies,” Phys. Rev. A 70, 042315 (2004).
[Crossref]

Le Jeannic, H.

K. Huang, H. Le Jeannic, J. Ruaudel, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, E Wu, H. Zeng, Y.-C. Jeong, R. Filip, O. Morin, and J. Laurat, “Optical Synthesis of Large-Amplitude Squeezed Coherent-State Superpositions with Minimal Resources,” Phys. Rev. Lett. 115, 023602 (2015).
[Crossref] [PubMed]

Lee, D.

Lee, N.

N. Lee, H. Benichi, Y. Takeno, S. Takeda, J. Webb, E. Huntington, and A. Furusawa, “Teleportation of Nonclassical Wave Packets of Light,” Science 332, 330–333 (2011).
[Crossref] [PubMed]

N. Takei, N. Lee, D. Moriyama, J. S. Neergaard-Nielsen, and A. Furusawa, “Time-gated Einstein-Podolsky-Rosen correlation,” Phys. Rev. A 74, 060101 (2006).
[Crossref]

Levenson, M. D.

R. M. Shelby, M. D. Levenson, S. H. Perlmutter, R. G. DeVoe, and D. F. Walls, “Broad-Band Parametric Deamplification of Quantum Noise in an Optical Fiber,” Phys. Rev. Lett. 57, 691 (1986).
[Crossref] [PubMed]

Levin, Y.

H. J. Kimble, Y. Levin, A. B. Matsko, K. S. Thorne, and S. P. Vyatchanin, “Conversion of conventional gravitational-wave interferometers into quantum nondemolition interferometers by modifying their input and/or output optics,” Phys. Rev. D 65, 022002 (2001).
[Crossref]

Li, F.

Lu, B.

B. Lu, S. Bi, F. Feng, M. Kang, and F. Qin, “Experimental study on the imaging of the squeezed-state light with a virtual object,” Opt. Eng. 51, 119001 (2012).
[Crossref]

Lu, H.

Lvovsky, A. I.

R. Kumar, E. Barrios, A. MacRae, E. Cairns, E. H. Huntington, and A. I. Lvovsky, “Versatile wideband balanced detector for quantum optical homodyne tomography,” Opt. Commun. 285, 5259–5267 (2012).
[Crossref]

J. Appel, D. Hoffman, E. Figueroa, and A. I. Lvovsky, “Electronic noise in optical homodyne tomography,” Phys. Rev. A 75, 035802 (2007).
[Crossref]

MacRae, A.

R. Kumar, E. Barrios, A. MacRae, E. Cairns, E. H. Huntington, and A. I. Lvovsky, “Versatile wideband balanced detector for quantum optical homodyne tomography,” Opt. Commun. 285, 5259–5267 (2012).
[Crossref]

Makino, K.

J. Yoshikawa, S. Yokoyama, T. Kaji, C. Sornphiphatphong, Y. Shiozawa, K. Makino, and A. Furusawa, “Invited Article: Generation of one-million-mode continuous-variable cluster state by unlimited time-domain multiplexing,” APL Photonics 1, 060801 (2016).
[Crossref]

Marsili, F.

K. Huang, H. Le Jeannic, J. Ruaudel, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, E Wu, H. Zeng, Y.-C. Jeong, R. Filip, O. Morin, and J. Laurat, “Optical Synthesis of Large-Amplitude Squeezed Coherent-State Superpositions with Minimal Resources,” Phys. Rev. Lett. 115, 023602 (2015).
[Crossref] [PubMed]

Matsko, A. B.

H. J. Kimble, Y. Levin, A. B. Matsko, K. S. Thorne, and S. P. Vyatchanin, “Conversion of conventional gravitational-wave interferometers into quantum nondemolition interferometers by modifying their input and/or output optics,” Phys. Rev. D 65, 022002 (2001).
[Crossref]

Mavalvala, N.

K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. McKenzie, R. Ward, S. Vass, A. J. Weinstein, and N. Mavalvala, “A quantum-enhanced prototype gravitational-wave detector,” Nat. Phys. 4, 472–476 (2008).
[Crossref]

McClelland, D. E.

P. K. Lam, T. C. Ralph, B. C. Buchler, D. E. McClelland, H. A Bachor, and J. Gao, “Optimization and transfer of vacuum squeezing from an optical parametric oscillator,” J. Opt. B 1, 469–474 (1999).
[Crossref]

D. A. Shaddock, M. B. Gray, and D. E. McClelland, “Frequency locking a laser to an optical cavity by use of spatial mode interference,” Opt. Lett. 24, 1499–1501 (1999).
[Crossref]

McKenzie, K.

K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. McKenzie, R. Ward, S. Vass, A. J. Weinstein, and N. Mavalvala, “A quantum-enhanced prototype gravitational-wave detector,” Nat. Phys. 4, 472–476 (2008).
[Crossref]

Mehmet, M.

H. Vahlbruch, M. Mehmet, K. Danzmann, and R. Schnabel, “Detection of 15 dB Squeezed States of Light and their Application for the Absolute Calibration of Photoelectric Quantum Efficiency,” Phys. Rev. Lett. 117, 110801 (2016).
[Crossref]

S. Ast, M. Mehmet, and R. Schnabel, “High-bandwidth squeezed light at 1550 nm from a compact monolithic PPKTP cavity,” Opt. Express 21, 13572–13579 (2013).
[Crossref] [PubMed]

Menicucci, N. C.

S. Yokoyama, R. Ukai, S. C. Armstrong, C. Sornphiphatphong, T. Kaji, S. Suzuki, J. I. Yoshikawa, H. Yonezawa, N. C. Menicucci, and Akira Furusawa, “Ultra-large-scale continuous-variable cluster states multiplexed in the time domain,” Nat. Photonics 7, 982–986 (2013).
[Crossref]

M. Gu, C. Weedbrook, N. C. Menicucci, T. C. Ralph, and P. van Loock, “Quantum computing with continuous-variable clusters,” Phys. Rev. A 79, 062318 (2009).
[Crossref]

Mertz, J. C.

R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley, “Observation of Squeezed States Generated by Four-Wave Mixing in an Optical Cavity,” Phys. Rev. Lett. 55, 2409 (1985).
[Crossref] [PubMed]

Mikhailov, E. E.

K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. McKenzie, R. Ward, S. Vass, A. J. Weinstein, and N. Mavalvala, “A quantum-enhanced prototype gravitational-wave detector,” Nat. Phys. 4, 472–476 (2008).
[Crossref]

Miyakawa, O.

K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. McKenzie, R. Ward, S. Vass, A. J. Weinstein, and N. Mavalvala, “A quantum-enhanced prototype gravitational-wave detector,” Nat. Phys. 4, 472–476 (2008).
[Crossref]

Mizuta, T.

S. Takeda, T. Mizuta, M. Fuwa, J. Yoshikawa, H. Yonezawa, and A. Furusawa, “Generation and eight-port homodyne characterization of time-bin qubits for continuous-variable quantum information processing,” Phys. Rev. A 87, 043803 (2013).
[Crossref]

Mlynek, J.

Mølmer, K.

J. S. Neergaard-Nielsen, B. M. Nielsen, C. Hettich, K. Mølmer, and E. S. Polzik, “Generation of a Superposition of Odd Photon Number States for Quantum Information Networks,” Phys. Rev. Lett. 97, 083604 (2006).
[Crossref] [PubMed]

Morin, O.

K. Huang, H. Le Jeannic, J. Ruaudel, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, E Wu, H. Zeng, Y.-C. Jeong, R. Filip, O. Morin, and J. Laurat, “Optical Synthesis of Large-Amplitude Squeezed Coherent-State Superpositions with Minimal Resources,” Phys. Rev. Lett. 115, 023602 (2015).
[Crossref] [PubMed]

Moriyama, D.

N. Takei, N. Lee, D. Moriyama, J. S. Neergaard-Nielsen, and A. Furusawa, “Time-gated Einstein-Podolsky-Rosen correlation,” Phys. Rev. A 74, 060101 (2006).
[Crossref]

Müller, T.

Nam, S. W.

K. Huang, H. Le Jeannic, J. Ruaudel, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, E Wu, H. Zeng, Y.-C. Jeong, R. Filip, O. Morin, and J. Laurat, “Optical Synthesis of Large-Amplitude Squeezed Coherent-State Superpositions with Minimal Resources,” Phys. Rev. Lett. 115, 023602 (2015).
[Crossref] [PubMed]

Neergaard-Nielsen, J. S.

J. S. Neergaard-Nielsen, B. M. Nielsen, C. Hettich, K. Mølmer, and E. S. Polzik, “Generation of a Superposition of Odd Photon Number States for Quantum Information Networks,” Phys. Rev. Lett. 97, 083604 (2006).
[Crossref] [PubMed]

N. Takei, N. Lee, D. Moriyama, J. S. Neergaard-Nielsen, and A. Furusawa, “Time-gated Einstein-Podolsky-Rosen correlation,” Phys. Rev. A 74, 060101 (2006).
[Crossref]

Nielsen, B. M.

J. S. Neergaard-Nielsen, B. M. Nielsen, C. Hettich, K. Mølmer, and E. S. Polzik, “Generation of a Superposition of Odd Photon Number States for Quantum Information Networks,” Phys. Rev. Lett. 97, 083604 (2006).
[Crossref] [PubMed]

Ohshiro, A.

Ourjoumtsev, A.

A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, and P. Grangier, “Generating Optical Schrödinger Kittens for Quantum Information Processing,” Science 312, 83–86 (2006).
[Crossref] [PubMed]

Peng, K.

Pereira, S. F.

Perlmutter, S. H.

R. M. Shelby, M. D. Levenson, S. H. Perlmutter, R. G. DeVoe, and D. F. Walls, “Broad-Band Parametric Deamplification of Quantum Noise in an Optical Fiber,” Phys. Rev. Lett. 57, 691 (1986).
[Crossref] [PubMed]

Poizat, J.-Ph.

Polzik, E. S.

J. S. Neergaard-Nielsen, B. M. Nielsen, C. Hettich, K. Mølmer, and E. S. Polzik, “Generation of a Superposition of Odd Photon Number States for Quantum Information Networks,” Phys. Rev. Lett. 97, 083604 (2006).
[Crossref] [PubMed]

A. Furusawa, J. L. Sørensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional Quantum Teleportation,” Science 282, 706–709 (1998).
[Crossref] [PubMed]

Qin, F.

B. Lu, S. Bi, F. Feng, M. Kang, and F. Qin, “Experimental study on the imaging of the squeezed-state light with a virtual object,” Opt. Eng. 51, 119001 (2012).
[Crossref]

Ralph, T. C.

M. Gu, C. Weedbrook, N. C. Menicucci, T. C. Ralph, and P. van Loock, “Quantum computing with continuous-variable clusters,” Phys. Rev. A 79, 062318 (2009).
[Crossref]

P. K. Lam, T. C. Ralph, B. C. Buchler, D. E. McClelland, H. A Bachor, and J. Gao, “Optimization and transfer of vacuum squeezing from an optical parametric oscillator,” J. Opt. B 1, 469–474 (1999).
[Crossref]

Raussendorf, R.

R. Raussendorf and H. J. Briegel, “A One-Way Quantum Computer,” Phys. Rev. Lett. 86, 5188 (2001).
[Crossref] [PubMed]

Raymer, M. G.

Ruaudel, J.

K. Huang, H. Le Jeannic, J. Ruaudel, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, E Wu, H. Zeng, Y.-C. Jeong, R. Filip, O. Morin, and J. Laurat, “Optical Synthesis of Large-Amplitude Squeezed Coherent-State Superpositions with Minimal Resources,” Phys. Rev. Lett. 115, 023602 (2015).
[Crossref] [PubMed]

Sakurai, J.

Saraf, S.

K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. McKenzie, R. Ward, S. Vass, A. J. Weinstein, and N. Mavalvala, “A quantum-enhanced prototype gravitational-wave detector,” Nat. Phys. 4, 472–476 (2008).
[Crossref]

Sasaki, M.

Schiller, S.

Schnabel, R.

H. Vahlbruch, M. Mehmet, K. Danzmann, and R. Schnabel, “Detection of 15 dB Squeezed States of Light and their Application for the Absolute Calibration of Photoelectric Quantum Efficiency,” Phys. Rev. Lett. 117, 110801 (2016).
[Crossref]

S. Ast, M. Mehmet, and R. Schnabel, “High-bandwidth squeezed light at 1550 nm from a compact monolithic PPKTP cavity,” Opt. Express 21, 13572–13579 (2013).
[Crossref] [PubMed]

H. Vahlbruch, A. Khalaidovski, N. Lastzka, C. Gräf, K. Danzmann, and R. Schnabel, “The GEO 600 squeezed light source,” Class. Quantum Grav. 27, 084027 (2010).
[Crossref]

Serkland, D. K.

Shaddock, D. A.

Shaw, M. D.

K. Huang, H. Le Jeannic, J. Ruaudel, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, E Wu, H. Zeng, Y.-C. Jeong, R. Filip, O. Morin, and J. Laurat, “Optical Synthesis of Large-Amplitude Squeezed Coherent-State Superpositions with Minimal Resources,” Phys. Rev. Lett. 115, 023602 (2015).
[Crossref] [PubMed]

Shelby, R. M.

R. M. Shelby, M. D. Levenson, S. H. Perlmutter, R. G. DeVoe, and D. F. Walls, “Broad-Band Parametric Deamplification of Quantum Noise in an Optical Fiber,” Phys. Rev. Lett. 57, 691 (1986).
[Crossref] [PubMed]

Shiozawa, Y.

J. Yoshikawa, S. Yokoyama, T. Kaji, C. Sornphiphatphong, Y. Shiozawa, K. Makino, and A. Furusawa, “Invited Article: Generation of one-million-mode continuous-variable cluster state by unlimited time-domain multiplexing,” APL Photonics 1, 060801 (2016).
[Crossref]

Slusher, R. E.

R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley, “Observation of Squeezed States Generated by Four-Wave Mixing in an Optical Cavity,” Phys. Rev. Lett. 55, 2409 (1985).
[Crossref] [PubMed]

Sørensen, J. L.

A. Furusawa, J. L. Sørensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional Quantum Teleportation,” Science 282, 706–709 (1998).
[Crossref] [PubMed]

Sornphiphatphong, C.

J. Yoshikawa, S. Yokoyama, T. Kaji, C. Sornphiphatphong, Y. Shiozawa, K. Makino, and A. Furusawa, “Invited Article: Generation of one-million-mode continuous-variable cluster state by unlimited time-domain multiplexing,” APL Photonics 1, 060801 (2016).
[Crossref]

S. Yokoyama, R. Ukai, S. C. Armstrong, C. Sornphiphatphong, T. Kaji, S. Suzuki, J. I. Yoshikawa, H. Yonezawa, N. C. Menicucci, and Akira Furusawa, “Ultra-large-scale continuous-variable cluster states multiplexed in the time domain,” Nat. Photonics 7, 982–986 (2013).
[Crossref]

Suzuki, S.

S. Yokoyama, R. Ukai, S. C. Armstrong, C. Sornphiphatphong, T. Kaji, S. Suzuki, J. I. Yoshikawa, H. Yonezawa, N. C. Menicucci, and Akira Furusawa, “Ultra-large-scale continuous-variable cluster states multiplexed in the time domain,” Nat. Photonics 7, 982–986 (2013).
[Crossref]

Takahashi, H.

Takeda, S.

S. Takeda, T. Mizuta, M. Fuwa, J. Yoshikawa, H. Yonezawa, and A. Furusawa, “Generation and eight-port homodyne characterization of time-bin qubits for continuous-variable quantum information processing,” Phys. Rev. A 87, 043803 (2013).
[Crossref]

N. Lee, H. Benichi, Y. Takeno, S. Takeda, J. Webb, E. Huntington, and A. Furusawa, “Teleportation of Nonclassical Wave Packets of Light,” Science 332, 330–333 (2011).
[Crossref] [PubMed]

Takei, N.

N. Takei, N. Lee, D. Moriyama, J. S. Neergaard-Nielsen, and A. Furusawa, “Time-gated Einstein-Podolsky-Rosen correlation,” Phys. Rev. A 74, 060101 (2006).
[Crossref]

Takeno, Y.

N. Lee, H. Benichi, Y. Takeno, S. Takeda, J. Webb, E. Huntington, and A. Furusawa, “Teleportation of Nonclassical Wave Packets of Light,” Science 332, 330–333 (2011).
[Crossref] [PubMed]

Y. Takeno, M. Yukawa, H. Yonezawa, and A. Furusawa, “Observation of −9 dB quadrature squeezing with improvement of phase stability in homodyne measuremnt,” Opt. Express 15, 4321–4327 (2007).
[Crossref] [PubMed]

Thorne, K. S.

H. J. Kimble, Y. Levin, A. B. Matsko, K. S. Thorne, and S. P. Vyatchanin, “Conversion of conventional gravitational-wave interferometers into quantum nondemolition interferometers by modifying their input and/or output optics,” Phys. Rev. D 65, 022002 (2001).
[Crossref]

Treps, N.

J. Laurat, T. Coudreau, G. Keller, N. Treps, and C. Fabre, “Compact source of Einstein-Podolsky-Rosen entanglement and squeezing at very low noise frequencies,” Phys. Rev. A 70, 042315 (2004).
[Crossref]

Tualle-Brouri, R.

A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, and P. Grangier, “Generating Optical Schrödinger Kittens for Quantum Information Processing,” Science 312, 83–86 (2006).
[Crossref] [PubMed]

Ukai, R.

S. Yokoyama, R. Ukai, S. C. Armstrong, C. Sornphiphatphong, T. Kaji, S. Suzuki, J. I. Yoshikawa, H. Yonezawa, N. C. Menicucci, and Akira Furusawa, “Ultra-large-scale continuous-variable cluster states multiplexed in the time domain,” Nat. Photonics 7, 982–986 (2013).
[Crossref]

Vahlbruch, H.

H. Vahlbruch, M. Mehmet, K. Danzmann, and R. Schnabel, “Detection of 15 dB Squeezed States of Light and their Application for the Absolute Calibration of Photoelectric Quantum Efficiency,” Phys. Rev. Lett. 117, 110801 (2016).
[Crossref]

H. Vahlbruch, A. Khalaidovski, N. Lastzka, C. Gräf, K. Danzmann, and R. Schnabel, “The GEO 600 squeezed light source,” Class. Quantum Grav. 27, 084027 (2010).
[Crossref]

Valley, J. F.

R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley, “Observation of Squeezed States Generated by Four-Wave Mixing in an Optical Cavity,” Phys. Rev. Lett. 55, 2409 (1985).
[Crossref] [PubMed]

van Loock, P.

M. Gu, C. Weedbrook, N. C. Menicucci, T. C. Ralph, and P. van Loock, “Quantum computing with continuous-variable clusters,” Phys. Rev. A 79, 062318 (2009).
[Crossref]

Vass, S.

K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. McKenzie, R. Ward, S. Vass, A. J. Weinstein, and N. Mavalvala, “A quantum-enhanced prototype gravitational-wave detector,” Nat. Phys. 4, 472–476 (2008).
[Crossref]

Verma, V. B.

K. Huang, H. Le Jeannic, J. Ruaudel, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, E Wu, H. Zeng, Y.-C. Jeong, R. Filip, O. Morin, and J. Laurat, “Optical Synthesis of Large-Amplitude Squeezed Coherent-State Superpositions with Minimal Resources,” Phys. Rev. Lett. 115, 023602 (2015).
[Crossref] [PubMed]

Vyatchanin, S. P.

H. J. Kimble, Y. Levin, A. B. Matsko, K. S. Thorne, and S. P. Vyatchanin, “Conversion of conventional gravitational-wave interferometers into quantum nondemolition interferometers by modifying their input and/or output optics,” Phys. Rev. D 65, 022002 (2001).
[Crossref]

Wakui, K.

Walls, D. F.

R. M. Shelby, M. D. Levenson, S. H. Perlmutter, R. G. DeVoe, and D. F. Walls, “Broad-Band Parametric Deamplification of Quantum Noise in an Optical Fiber,” Phys. Rev. Lett. 57, 691 (1986).
[Crossref] [PubMed]

D. F. Walls, “Squeezed states of light,” Nature 306, 141–146 (1983).
[Crossref]

Wang, Y.

Ward, R.

K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. McKenzie, R. Ward, S. Vass, A. J. Weinstein, and N. Mavalvala, “A quantum-enhanced prototype gravitational-wave detector,” Nat. Phys. 4, 472–476 (2008).
[Crossref]

Webb, J.

N. Lee, H. Benichi, Y. Takeno, S. Takeda, J. Webb, E. Huntington, and A. Furusawa, “Teleportation of Nonclassical Wave Packets of Light,” Science 332, 330–333 (2011).
[Crossref] [PubMed]

Weedbrook, C.

M. Gu, C. Weedbrook, N. C. Menicucci, T. C. Ralph, and P. van Loock, “Quantum computing with continuous-variable clusters,” Phys. Rev. A 79, 062318 (2009).
[Crossref]

Weinstein, A. J.

K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. McKenzie, R. Ward, S. Vass, A. J. Weinstein, and N. Mavalvala, “A quantum-enhanced prototype gravitational-wave detector,” Nat. Phys. 4, 472–476 (2008).
[Crossref]

Wong, N. C.

Wu, E

K. Huang, H. Le Jeannic, J. Ruaudel, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, E Wu, H. Zeng, Y.-C. Jeong, R. Filip, O. Morin, and J. Laurat, “Optical Synthesis of Large-Amplitude Squeezed Coherent-State Superpositions with Minimal Resources,” Phys. Rev. Lett. 115, 023602 (2015).
[Crossref] [PubMed]

Wu, H.

L. Wu, H. J. Kimble, J. L. Hall, and H. Wu, “Generation of Squeezed States by Parametric Down Conversion,” Phys. Rev. Lett. 57, 2520 (1986).
[Crossref] [PubMed]

Wu, L.

L. Wu, H. J. Kimble, J. L. Hall, and H. Wu, “Generation of Squeezed States by Parametric Down Conversion,” Phys. Rev. Lett. 57, 2520 (1986).
[Crossref] [PubMed]

Xie, C.

Yamamoto, Y.

Yang, W.

Yokoyama, S.

J. Yoshikawa, S. Yokoyama, T. Kaji, C. Sornphiphatphong, Y. Shiozawa, K. Makino, and A. Furusawa, “Invited Article: Generation of one-million-mode continuous-variable cluster state by unlimited time-domain multiplexing,” APL Photonics 1, 060801 (2016).
[Crossref]

S. Yokoyama, R. Ukai, S. C. Armstrong, C. Sornphiphatphong, T. Kaji, S. Suzuki, J. I. Yoshikawa, H. Yonezawa, N. C. Menicucci, and Akira Furusawa, “Ultra-large-scale continuous-variable cluster states multiplexed in the time domain,” Nat. Photonics 7, 982–986 (2013).
[Crossref]

Yonezawa, H.

S. Yokoyama, R. Ukai, S. C. Armstrong, C. Sornphiphatphong, T. Kaji, S. Suzuki, J. I. Yoshikawa, H. Yonezawa, N. C. Menicucci, and Akira Furusawa, “Ultra-large-scale continuous-variable cluster states multiplexed in the time domain,” Nat. Photonics 7, 982–986 (2013).
[Crossref]

S. Takeda, T. Mizuta, M. Fuwa, J. Yoshikawa, H. Yonezawa, and A. Furusawa, “Generation and eight-port homodyne characterization of time-bin qubits for continuous-variable quantum information processing,” Phys. Rev. A 87, 043803 (2013).
[Crossref]

Y. Takeno, M. Yukawa, H. Yonezawa, and A. Furusawa, “Observation of −9 dB quadrature squeezing with improvement of phase stability in homodyne measuremnt,” Opt. Express 15, 4321–4327 (2007).
[Crossref] [PubMed]

Yoshikawa, J.

J. Yoshikawa, S. Yokoyama, T. Kaji, C. Sornphiphatphong, Y. Shiozawa, K. Makino, and A. Furusawa, “Invited Article: Generation of one-million-mode continuous-variable cluster state by unlimited time-domain multiplexing,” APL Photonics 1, 060801 (2016).
[Crossref]

S. Takeda, T. Mizuta, M. Fuwa, J. Yoshikawa, H. Yonezawa, and A. Furusawa, “Generation and eight-port homodyne characterization of time-bin qubits for continuous-variable quantum information processing,” Phys. Rev. A 87, 043803 (2013).
[Crossref]

Yoshikawa, J. I.

S. Yokoyama, R. Ukai, S. C. Armstrong, C. Sornphiphatphong, T. Kaji, S. Suzuki, J. I. Yoshikawa, H. Yonezawa, N. C. Menicucci, and Akira Furusawa, “Ultra-large-scale continuous-variable cluster states multiplexed in the time domain,” Nat. Photonics 7, 982–986 (2013).
[Crossref]

Yukawa, M.

Yurke, B.

R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley, “Observation of Squeezed States Generated by Four-Wave Mixing in an Optical Cavity,” Phys. Rev. Lett. 55, 2409 (1985).
[Crossref] [PubMed]

B. Yurke, “Use of cavities in squeezed-state generation,” Phys. Rev. A 29, 408 (1984).
[Crossref]

Zeng, H.

K. Huang, H. Le Jeannic, J. Ruaudel, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, E Wu, H. Zeng, Y.-C. Jeong, R. Filip, O. Morin, and J. Laurat, “Optical Synthesis of Large-Amplitude Squeezed Coherent-State Superpositions with Minimal Resources,” Phys. Rev. Lett. 115, 023602 (2015).
[Crossref] [PubMed]

Zheng, Y.

Zhou, Y.

APL Photonics (1)

J. Yoshikawa, S. Yokoyama, T. Kaji, C. Sornphiphatphong, Y. Shiozawa, K. Makino, and A. Furusawa, “Invited Article: Generation of one-million-mode continuous-variable cluster state by unlimited time-domain multiplexing,” APL Photonics 1, 060801 (2016).
[Crossref]

Class. Quantum Grav. (1)

H. Vahlbruch, A. Khalaidovski, N. Lastzka, C. Gräf, K. Danzmann, and R. Schnabel, “The GEO 600 squeezed light source,” Class. Quantum Grav. 27, 084027 (2010).
[Crossref]

J. Opt. B (1)

P. K. Lam, T. C. Ralph, B. C. Buchler, D. E. McClelland, H. A Bachor, and J. Gao, “Optimization and transfer of vacuum squeezing from an optical parametric oscillator,” J. Opt. B 1, 469–474 (1999).
[Crossref]

J. Opt. Soc. Am. B (1)

Nat. Photonics (1)

S. Yokoyama, R. Ukai, S. C. Armstrong, C. Sornphiphatphong, T. Kaji, S. Suzuki, J. I. Yoshikawa, H. Yonezawa, N. C. Menicucci, and Akira Furusawa, “Ultra-large-scale continuous-variable cluster states multiplexed in the time domain,” Nat. Photonics 7, 982–986 (2013).
[Crossref]

Nat. Phys. (1)

K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. McKenzie, R. Ward, S. Vass, A. J. Weinstein, and N. Mavalvala, “A quantum-enhanced prototype gravitational-wave detector,” Nat. Phys. 4, 472–476 (2008).
[Crossref]

Nature (1)

D. F. Walls, “Squeezed states of light,” Nature 306, 141–146 (1983).
[Crossref]

Opt. Commun. (1)

R. Kumar, E. Barrios, A. MacRae, E. Cairns, E. H. Huntington, and A. I. Lvovsky, “Versatile wideband balanced detector for quantum optical homodyne tomography,” Opt. Commun. 285, 5259–5267 (2012).
[Crossref]

Opt. Eng. (1)

B. Lu, S. Bi, F. Feng, M. Kang, and F. Qin, “Experimental study on the imaging of the squeezed-state light with a virtual object,” Opt. Eng. 51, 119001 (2012).
[Crossref]

Opt. Express (5)

Opt. Lett. (7)

Phys. Rev. A (7)

S. Takeda, T. Mizuta, M. Fuwa, J. Yoshikawa, H. Yonezawa, and A. Furusawa, “Generation and eight-port homodyne characterization of time-bin qubits for continuous-variable quantum information processing,” Phys. Rev. A 87, 043803 (2013).
[Crossref]

M. Gu, C. Weedbrook, N. C. Menicucci, T. C. Ralph, and P. van Loock, “Quantum computing with continuous-variable clusters,” Phys. Rev. A 79, 062318 (2009).
[Crossref]

N. Takei, N. Lee, D. Moriyama, J. S. Neergaard-Nielsen, and A. Furusawa, “Time-gated Einstein-Podolsky-Rosen correlation,” Phys. Rev. A 74, 060101 (2006).
[Crossref]

B. Yurke, “Use of cavities in squeezed-state generation,” Phys. Rev. A 29, 408 (1984).
[Crossref]

M. J. Collett and C. W. Gardiner, “Squeezing of intracavity and traveling-wave light fields produced in parametric amplification,” Phys. Rev. A 30, 1386 (1984).
[Crossref]

J. Laurat, T. Coudreau, G. Keller, N. Treps, and C. Fabre, “Compact source of Einstein-Podolsky-Rosen entanglement and squeezing at very low noise frequencies,” Phys. Rev. A 70, 042315 (2004).
[Crossref]

J. Appel, D. Hoffman, E. Figueroa, and A. I. Lvovsky, “Electronic noise in optical homodyne tomography,” Phys. Rev. A 75, 035802 (2007).
[Crossref]

Phys. Rev. D (1)

H. J. Kimble, Y. Levin, A. B. Matsko, K. S. Thorne, and S. P. Vyatchanin, “Conversion of conventional gravitational-wave interferometers into quantum nondemolition interferometers by modifying their input and/or output optics,” Phys. Rev. D 65, 022002 (2001).
[Crossref]

Phys. Rev. Lett. (7)

J. S. Neergaard-Nielsen, B. M. Nielsen, C. Hettich, K. Mølmer, and E. S. Polzik, “Generation of a Superposition of Odd Photon Number States for Quantum Information Networks,” Phys. Rev. Lett. 97, 083604 (2006).
[Crossref] [PubMed]

R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley, “Observation of Squeezed States Generated by Four-Wave Mixing in an Optical Cavity,” Phys. Rev. Lett. 55, 2409 (1985).
[Crossref] [PubMed]

L. Wu, H. J. Kimble, J. L. Hall, and H. Wu, “Generation of Squeezed States by Parametric Down Conversion,” Phys. Rev. Lett. 57, 2520 (1986).
[Crossref] [PubMed]

R. Raussendorf and H. J. Briegel, “A One-Way Quantum Computer,” Phys. Rev. Lett. 86, 5188 (2001).
[Crossref] [PubMed]

K. Huang, H. Le Jeannic, J. Ruaudel, V. B. Verma, M. D. Shaw, F. Marsili, S. W. Nam, E Wu, H. Zeng, Y.-C. Jeong, R. Filip, O. Morin, and J. Laurat, “Optical Synthesis of Large-Amplitude Squeezed Coherent-State Superpositions with Minimal Resources,” Phys. Rev. Lett. 115, 023602 (2015).
[Crossref] [PubMed]

H. Vahlbruch, M. Mehmet, K. Danzmann, and R. Schnabel, “Detection of 15 dB Squeezed States of Light and their Application for the Absolute Calibration of Photoelectric Quantum Efficiency,” Phys. Rev. Lett. 117, 110801 (2016).
[Crossref]

R. M. Shelby, M. D. Levenson, S. H. Perlmutter, R. G. DeVoe, and D. F. Walls, “Broad-Band Parametric Deamplification of Quantum Noise in an Optical Fiber,” Phys. Rev. Lett. 57, 691 (1986).
[Crossref] [PubMed]

Science (3)

A. Furusawa, J. L. Sørensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional Quantum Teleportation,” Science 282, 706–709 (1998).
[Crossref] [PubMed]

N. Lee, H. Benichi, Y. Takeno, S. Takeda, J. Webb, E. Huntington, and A. Furusawa, “Teleportation of Nonclassical Wave Packets of Light,” Science 332, 330–333 (2011).
[Crossref] [PubMed]

A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, and P. Grangier, “Generating Optical Schrödinger Kittens for Quantum Information Processing,” Science 312, 83–86 (2006).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Design of our OPO. Red lines are optical path, blue boxes are mirrors and green box is a piezo actuator. The PPKTP crystal is depicted as a orange box at the long edge of triangle. d = 22 mm is the distance between spherical mirrors. (b) Schematic picture.
Fig. 2
Fig. 2 Beam waist size in the PPKTP crystal of the resonant mode of the OPO. (i) Horizontal. (ii) Vertical. d is the distance between two spherical mirrors as shown in Fig. 1. The gray line represents the actual value of d = 22 mm.
Fig. 3
Fig. 3 Schematic of the experimental setup. Red lines are the 860 nm CW laser beams, and blue lines are the 430 nm frequency-doubled beams. Only important optical elements such as beam splitters and mode-matching lenses are shown. Black lines denote electrical channels for measurement and control.
Fig. 4
Fig. 4 Equivalent optical loss of the electronical noise in the homodyne measurement. The local oscillator power is set at 18 mW.
Fig. 5
Fig. 5 Quantum noise spectrum from the balanced homodyne measurement. (i) Anti-squeezing noise. (ii) Vacuum noise. (iii) Squeezing noise. (iv) Electronic noise (no LO light). This is a raw data from the spectrum analyzer, without any noise compensation. These data are taken with the resolution bandwidth of 300 kHz, the video bandwidth of 300 kHz, and averaged over 600 sweeps. The LO power is set at 18 mW. DC–300 kHz component is cut off by a high-pass filter to eliminate the reference beam modulation, so the low frequency component below 1MHz is not reliable.
Fig. 6
Fig. 6 Normalized quantum noise spectrum for each pump powers. (a) Pump power is set at (a) 50 mW, (b) 100 mW, (c) 225 mW. Red lines are theoretical prediction from Eq. (1), (2), taking the detection losses and the phase fluctuation into account. Acquisition conditions are the same as Fig. 5.
Fig. 7
Fig. 7 Pump amplitude dependence of the anti-squeezing and the squeezing level. (i) Anti-squeezing level. (ii) Shot noise level. (iii) Squeezing level. Dots denote the measured value at 3 MHz. Dashed lines are theoretical prediction. The acquisition condition is as follows: resolution bandwidth is 30 kHz, video bandwidth is 30 kHz, and average number is 24,000.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

R ± ( f ) = 1 ± η ρ 4 ξ ( 1 + ξ ) 2 + ( f / f HWHM ) 2
R ± ( f ) ~ R ± ( f ) cos 2 θ ¯ + R ( f ) sin 2 θ ¯

Metrics