Abstract

We propose and realize a simple normalized detection scheme for cold atom interferometry. The detection of population in final atomic states is normalized to the blow-away fluorescence during initial state preparation. In this way, the detection system and procedure are both simplified. The reduced sensitivity to amplitude noise in atom interference signal is experimentally verified. Both amplitude noise in atom source and short term phase noise of interference fringes are suppressed by more than a factor of 10 with normalized detection.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Optical detection of cold atoms without spontaneous emission

V. Savalli, G. Zs. K. Horvath, P. D. Featonby, L. Cognet, N. Westbrook, C. I. Westbrook, and A. Aspect
Opt. Lett. 24(22) 1552-1554 (1999)

Multiaxis atom interferometry with a single-diode laser and a pyramidal magneto-optical trap

Xuejian Wu, Fei Zi, Jordan Dudley, Ryan J. Bilotta, Philip Canoza, and Holger Müller
Optica 4(12) 1545-1551 (2017)

Using a pair of rectangular coils in the MOT for the production of cold atom clouds with large optical density

Yen-Wei Lin, Hung-Chih Chou, Prashant P. Dwivedi, Ying-Cheng Chen, and Ite A. Yu
Opt. Express 16(6) 3753-3761 (2008)

References

  • View by:
  • |
  • |
  • |

  1. M. A. Kasevich and S. Chu, “Atomic interferometry using stimulated Raman transitions,” Phys. Rev. Lett. 67(2), 181–184 (1991).
    [Crossref] [PubMed]
  2. M. A. Kasevich and S. Chu, “Measurement of the gravitational acceleration of an atom with a light-pulse atom interferometer,” Appl. Phys. B 54(5), 321–332 (1992).
    [Crossref]
  3. A. Peters, K. Y. Chung, and S. Chu, “Measurement of gravitational acceleration by dropping atoms,” Nature 400(6747), 849–852 (1999).
    [Crossref]
  4. S. M. Dickerson, J. M. Hogan, A. Sugarbaker, D. M. S. Johnson, and M. A. Kasevich, “Multiaxis inertial sensing with long-time point source atom interferometry,” Phys. Rev. Lett. 111(8), 083001 (2013).
    [Crossref] [PubMed]
  5. L. Zhou, Z. Y. Xiong, W. Yang, B. Tang, W. C. Peng, Y. B. Wang, P. Xu, J. Wang, and M. S. Zhan, “Measurement of local gravity via a cold atom interferometer,” Chin. Phys. Lett. 28(1), 013701 (2011).
    [Crossref]
  6. Z. K. Hu, B. L. Sun, X. C. Duan, M. K. Zhou, L. L. Chen, S. Zhan, Q. Z. Zhang, and J. Luo, “Demonstration of an ultrahigh-sensitivity atom-interferometry absolute gravimeter,” Phys. Rev. A 88(4), 043610 (2013).
    [Crossref]
  7. M. J. Snadden, J. M. McGuirk, P. Bouyer, K. G. Haritos, and M. A. Kasevich, “Measurement of the Earth’s gravity gradient with an atom interferometer-based gravity gradiometer,” Phys. Rev. Lett. 81(5), 971 (1998).
    [Crossref]
  8. J. M. McGuirk, G. T. Foster, J. B. Fixler, M. J. Snadden, and M. A. Kasevich, “Sensitive absolute-gravity gradiometry using atom interferometry,” Phys. Rev. A 65(3), 033608 (2002).
    [Crossref]
  9. F. Sorrentino, A. Bertoldi, Q. Bodart, L. Cacciapuoti, M. de Angelis, Y.-H. Lien, M. Prevedelli, G. Rosi, and G. M. Tino, “Simultaneous measurement of gravity acceleration and gravity gradient with an atom interferometer,” App. Phys. Lett. 101(11), 114106 (2012).
    [Crossref]
  10. G. W. Biedermann, X. Wu, L. Deslauriers, S. Roy, C. Mahadeswaraswamy, and M. A. Kasevich, “Testing gravity with cold-atom interferometers,” Phys. Rev. A 91(3), 033629 (2015).
    [Crossref]
  11. T. L. Gustavson, P. Bouyer, and M. A. Kasevich, “Precision rotation measurements with an atom interferometer gyroscope,” Phys. Rev. Lett. 78(11), 2046 (1997).
    [Crossref]
  12. J. K. Stockton, K. Takase, and M. A. Kasevich, “Absolute geodetic rotation measurement using atom interferometry,” Phys. Rev. Lett. 107(13), 133001(2011).
    [Crossref] [PubMed]
  13. A. V. Rakholia, H. J. McGuinness, and G. W. Biedermann, “Dual-axis high-date-rate atom interferometer via cold ensemble exchange,” Phys. Rev. Appl. 2(5), 054012 (2014).
    [Crossref]
  14. J. B. Fixler, G. T. Foster, J. M. McGuirk, and M. A. Kasevich, “Atom interferometer measurement of the Newtonian constant of gravity,” Science 315(5808), 74–77 (2007).
    [Crossref] [PubMed]
  15. G. Rosi, F. Sorrentino, L. Cacciapuoti, M. Prevedelli, and G. M. Tino, “Precision measurement of the Newtonian gravitational constant using cold atoms,” Nature 510(7507), 518–523 (2014).
    [Crossref] [PubMed]
  16. D. S. Weiss, B. C. Young, and S. Chu, “Precision measurement of the photon recoil of an atom using atomic interferometry,” Phys. Rev. Lett. 70(18), 2706–2709 (1993).
    [Crossref] [PubMed]
  17. A. Wicht, J. M. Hensley, E. Sarajlic, and S. Chu, “A preliminary measurement of the fine structure constant based on atom interferometry,” Phys. Scr. T 102, 82–88 (2002).
    [Crossref]
  18. H. Müller, S. W. Chiow, Q. Long, C. Vo, and S. Chu, “A new photon recoil experiment: towards a determination of the fine structure constant,” Appl. Phys. B 84(4), 633–642 (2006).
    [Crossref]
  19. A. Bonnin, N. Zahzam, Y. Bidel, and A. Bresson, “Simultaneous dual-species matter-wave accelerometer,” Phys. Rev. A 88(4), 043615 (2013).
    [Crossref]
  20. L. Zhou, S. T. Long, B. Tang, X. Chen, F. Gao, W. C. Peng, W. T. Duan, J. Q. Zhong, Z. Y. Xiong, J. Wang, Y. Z. Zhang, and M. S. Zhan, “Test of equivalence principle at 10−8 level by a dual-species double-diffraction Raman atom interferometer,” Phys. Rev. Lett. 115(1), 013004 (2015).
    [Crossref] [PubMed]
  21. S. Y. Lan, P. C. Kuan, B. Estey, D. English, M. B. Justin, A. H. Michael, and H. Müller, “A clock directly linking time to a particle’s mass,” Science 339(6119), 554–557 (2013).
    [Crossref] [PubMed]
  22. S. Dimopoulos, P. W. Graham, J. M. Hogan, M. A. Kasevich, and S. Rajendran, “Gravitational wave detection with atom interferometry,” Phys. Lett. B 678(1), 37–40 (2009).
    [Crossref]
  23. J. M. Hogan, D. M. S. Johnson, S. Dickerson, T. Kovachy, A. Sugarbaker, S. W. Chiow, P. W. Graham, M. A. Kasevich, B. Saif, S. Rajendran, P. Bouyer, B. D. Seery, L. Feinberg, and R. Keski-Kuha, “An atomic gravitational wave interferometric sensor in low Earth orbit(AGIS-LEO),” Gen. Relativ. Gravit. 43(7), 1953–2009 (2011).
    [Crossref]
  24. D. F. Gao, P. Ju, B. C. Zhang, and M. S. Zhan, “Gravitational-wave detection with matter-wave interferometers based on standing light waves,” Gen. Relativ. Gravit. 43(7), 2027–2036 (2011).
    [Crossref]
  25. E. Rocco, R. N. Palmer, T. Valenzuela, V. Boyer, A. Freise, and K. Bongs, “Fluorescence detection at the atom shot noise limit for atom interferometry,” New J. Phys. 16, 093046 (2014).
    [Crossref]
  26. G. W. Biedermann, X. Wu, L. Deslauriers, K. Takase, and M. A. Kasevich, “Low-noise simultaneous fluorescence detection of two atomic states,” Opt. Lett. 34(3), 347–349 (2009).
    [Crossref] [PubMed]
  27. G. W. Biedermann, “Gravity tests, differential accelerometry and interleaved clocks with cold atom interferometers,” PhD. thesis, Stanford University, (2007).
  28. D. A. Steck, “Rubidium 85 D Line Data,” http://steck.us/alkalidata (2013).

2015 (2)

G. W. Biedermann, X. Wu, L. Deslauriers, S. Roy, C. Mahadeswaraswamy, and M. A. Kasevich, “Testing gravity with cold-atom interferometers,” Phys. Rev. A 91(3), 033629 (2015).
[Crossref]

L. Zhou, S. T. Long, B. Tang, X. Chen, F. Gao, W. C. Peng, W. T. Duan, J. Q. Zhong, Z. Y. Xiong, J. Wang, Y. Z. Zhang, and M. S. Zhan, “Test of equivalence principle at 10−8 level by a dual-species double-diffraction Raman atom interferometer,” Phys. Rev. Lett. 115(1), 013004 (2015).
[Crossref] [PubMed]

2014 (3)

E. Rocco, R. N. Palmer, T. Valenzuela, V. Boyer, A. Freise, and K. Bongs, “Fluorescence detection at the atom shot noise limit for atom interferometry,” New J. Phys. 16, 093046 (2014).
[Crossref]

A. V. Rakholia, H. J. McGuinness, and G. W. Biedermann, “Dual-axis high-date-rate atom interferometer via cold ensemble exchange,” Phys. Rev. Appl. 2(5), 054012 (2014).
[Crossref]

G. Rosi, F. Sorrentino, L. Cacciapuoti, M. Prevedelli, and G. M. Tino, “Precision measurement of the Newtonian gravitational constant using cold atoms,” Nature 510(7507), 518–523 (2014).
[Crossref] [PubMed]

2013 (4)

S. M. Dickerson, J. M. Hogan, A. Sugarbaker, D. M. S. Johnson, and M. A. Kasevich, “Multiaxis inertial sensing with long-time point source atom interferometry,” Phys. Rev. Lett. 111(8), 083001 (2013).
[Crossref] [PubMed]

Z. K. Hu, B. L. Sun, X. C. Duan, M. K. Zhou, L. L. Chen, S. Zhan, Q. Z. Zhang, and J. Luo, “Demonstration of an ultrahigh-sensitivity atom-interferometry absolute gravimeter,” Phys. Rev. A 88(4), 043610 (2013).
[Crossref]

S. Y. Lan, P. C. Kuan, B. Estey, D. English, M. B. Justin, A. H. Michael, and H. Müller, “A clock directly linking time to a particle’s mass,” Science 339(6119), 554–557 (2013).
[Crossref] [PubMed]

A. Bonnin, N. Zahzam, Y. Bidel, and A. Bresson, “Simultaneous dual-species matter-wave accelerometer,” Phys. Rev. A 88(4), 043615 (2013).
[Crossref]

2012 (1)

F. Sorrentino, A. Bertoldi, Q. Bodart, L. Cacciapuoti, M. de Angelis, Y.-H. Lien, M. Prevedelli, G. Rosi, and G. M. Tino, “Simultaneous measurement of gravity acceleration and gravity gradient with an atom interferometer,” App. Phys. Lett. 101(11), 114106 (2012).
[Crossref]

2011 (4)

J. K. Stockton, K. Takase, and M. A. Kasevich, “Absolute geodetic rotation measurement using atom interferometry,” Phys. Rev. Lett. 107(13), 133001(2011).
[Crossref] [PubMed]

L. Zhou, Z. Y. Xiong, W. Yang, B. Tang, W. C. Peng, Y. B. Wang, P. Xu, J. Wang, and M. S. Zhan, “Measurement of local gravity via a cold atom interferometer,” Chin. Phys. Lett. 28(1), 013701 (2011).
[Crossref]

J. M. Hogan, D. M. S. Johnson, S. Dickerson, T. Kovachy, A. Sugarbaker, S. W. Chiow, P. W. Graham, M. A. Kasevich, B. Saif, S. Rajendran, P. Bouyer, B. D. Seery, L. Feinberg, and R. Keski-Kuha, “An atomic gravitational wave interferometric sensor in low Earth orbit(AGIS-LEO),” Gen. Relativ. Gravit. 43(7), 1953–2009 (2011).
[Crossref]

D. F. Gao, P. Ju, B. C. Zhang, and M. S. Zhan, “Gravitational-wave detection with matter-wave interferometers based on standing light waves,” Gen. Relativ. Gravit. 43(7), 2027–2036 (2011).
[Crossref]

2009 (2)

G. W. Biedermann, X. Wu, L. Deslauriers, K. Takase, and M. A. Kasevich, “Low-noise simultaneous fluorescence detection of two atomic states,” Opt. Lett. 34(3), 347–349 (2009).
[Crossref] [PubMed]

S. Dimopoulos, P. W. Graham, J. M. Hogan, M. A. Kasevich, and S. Rajendran, “Gravitational wave detection with atom interferometry,” Phys. Lett. B 678(1), 37–40 (2009).
[Crossref]

2007 (1)

J. B. Fixler, G. T. Foster, J. M. McGuirk, and M. A. Kasevich, “Atom interferometer measurement of the Newtonian constant of gravity,” Science 315(5808), 74–77 (2007).
[Crossref] [PubMed]

2006 (1)

H. Müller, S. W. Chiow, Q. Long, C. Vo, and S. Chu, “A new photon recoil experiment: towards a determination of the fine structure constant,” Appl. Phys. B 84(4), 633–642 (2006).
[Crossref]

2002 (2)

A. Wicht, J. M. Hensley, E. Sarajlic, and S. Chu, “A preliminary measurement of the fine structure constant based on atom interferometry,” Phys. Scr. T 102, 82–88 (2002).
[Crossref]

J. M. McGuirk, G. T. Foster, J. B. Fixler, M. J. Snadden, and M. A. Kasevich, “Sensitive absolute-gravity gradiometry using atom interferometry,” Phys. Rev. A 65(3), 033608 (2002).
[Crossref]

1999 (1)

A. Peters, K. Y. Chung, and S. Chu, “Measurement of gravitational acceleration by dropping atoms,” Nature 400(6747), 849–852 (1999).
[Crossref]

1998 (1)

M. J. Snadden, J. M. McGuirk, P. Bouyer, K. G. Haritos, and M. A. Kasevich, “Measurement of the Earth’s gravity gradient with an atom interferometer-based gravity gradiometer,” Phys. Rev. Lett. 81(5), 971 (1998).
[Crossref]

1997 (1)

T. L. Gustavson, P. Bouyer, and M. A. Kasevich, “Precision rotation measurements with an atom interferometer gyroscope,” Phys. Rev. Lett. 78(11), 2046 (1997).
[Crossref]

1993 (1)

D. S. Weiss, B. C. Young, and S. Chu, “Precision measurement of the photon recoil of an atom using atomic interferometry,” Phys. Rev. Lett. 70(18), 2706–2709 (1993).
[Crossref] [PubMed]

1992 (1)

M. A. Kasevich and S. Chu, “Measurement of the gravitational acceleration of an atom with a light-pulse atom interferometer,” Appl. Phys. B 54(5), 321–332 (1992).
[Crossref]

1991 (1)

M. A. Kasevich and S. Chu, “Atomic interferometry using stimulated Raman transitions,” Phys. Rev. Lett. 67(2), 181–184 (1991).
[Crossref] [PubMed]

Bertoldi, A.

F. Sorrentino, A. Bertoldi, Q. Bodart, L. Cacciapuoti, M. de Angelis, Y.-H. Lien, M. Prevedelli, G. Rosi, and G. M. Tino, “Simultaneous measurement of gravity acceleration and gravity gradient with an atom interferometer,” App. Phys. Lett. 101(11), 114106 (2012).
[Crossref]

Bidel, Y.

A. Bonnin, N. Zahzam, Y. Bidel, and A. Bresson, “Simultaneous dual-species matter-wave accelerometer,” Phys. Rev. A 88(4), 043615 (2013).
[Crossref]

Biedermann, G. W.

G. W. Biedermann, X. Wu, L. Deslauriers, S. Roy, C. Mahadeswaraswamy, and M. A. Kasevich, “Testing gravity with cold-atom interferometers,” Phys. Rev. A 91(3), 033629 (2015).
[Crossref]

A. V. Rakholia, H. J. McGuinness, and G. W. Biedermann, “Dual-axis high-date-rate atom interferometer via cold ensemble exchange,” Phys. Rev. Appl. 2(5), 054012 (2014).
[Crossref]

G. W. Biedermann, X. Wu, L. Deslauriers, K. Takase, and M. A. Kasevich, “Low-noise simultaneous fluorescence detection of two atomic states,” Opt. Lett. 34(3), 347–349 (2009).
[Crossref] [PubMed]

G. W. Biedermann, “Gravity tests, differential accelerometry and interleaved clocks with cold atom interferometers,” PhD. thesis, Stanford University, (2007).

Bodart, Q.

F. Sorrentino, A. Bertoldi, Q. Bodart, L. Cacciapuoti, M. de Angelis, Y.-H. Lien, M. Prevedelli, G. Rosi, and G. M. Tino, “Simultaneous measurement of gravity acceleration and gravity gradient with an atom interferometer,” App. Phys. Lett. 101(11), 114106 (2012).
[Crossref]

Bongs, K.

E. Rocco, R. N. Palmer, T. Valenzuela, V. Boyer, A. Freise, and K. Bongs, “Fluorescence detection at the atom shot noise limit for atom interferometry,” New J. Phys. 16, 093046 (2014).
[Crossref]

Bonnin, A.

A. Bonnin, N. Zahzam, Y. Bidel, and A. Bresson, “Simultaneous dual-species matter-wave accelerometer,” Phys. Rev. A 88(4), 043615 (2013).
[Crossref]

Bouyer, P.

J. M. Hogan, D. M. S. Johnson, S. Dickerson, T. Kovachy, A. Sugarbaker, S. W. Chiow, P. W. Graham, M. A. Kasevich, B. Saif, S. Rajendran, P. Bouyer, B. D. Seery, L. Feinberg, and R. Keski-Kuha, “An atomic gravitational wave interferometric sensor in low Earth orbit(AGIS-LEO),” Gen. Relativ. Gravit. 43(7), 1953–2009 (2011).
[Crossref]

M. J. Snadden, J. M. McGuirk, P. Bouyer, K. G. Haritos, and M. A. Kasevich, “Measurement of the Earth’s gravity gradient with an atom interferometer-based gravity gradiometer,” Phys. Rev. Lett. 81(5), 971 (1998).
[Crossref]

T. L. Gustavson, P. Bouyer, and M. A. Kasevich, “Precision rotation measurements with an atom interferometer gyroscope,” Phys. Rev. Lett. 78(11), 2046 (1997).
[Crossref]

Boyer, V.

E. Rocco, R. N. Palmer, T. Valenzuela, V. Boyer, A. Freise, and K. Bongs, “Fluorescence detection at the atom shot noise limit for atom interferometry,” New J. Phys. 16, 093046 (2014).
[Crossref]

Bresson, A.

A. Bonnin, N. Zahzam, Y. Bidel, and A. Bresson, “Simultaneous dual-species matter-wave accelerometer,” Phys. Rev. A 88(4), 043615 (2013).
[Crossref]

Cacciapuoti, L.

G. Rosi, F. Sorrentino, L. Cacciapuoti, M. Prevedelli, and G. M. Tino, “Precision measurement of the Newtonian gravitational constant using cold atoms,” Nature 510(7507), 518–523 (2014).
[Crossref] [PubMed]

F. Sorrentino, A. Bertoldi, Q. Bodart, L. Cacciapuoti, M. de Angelis, Y.-H. Lien, M. Prevedelli, G. Rosi, and G. M. Tino, “Simultaneous measurement of gravity acceleration and gravity gradient with an atom interferometer,” App. Phys. Lett. 101(11), 114106 (2012).
[Crossref]

Chen, L. L.

Z. K. Hu, B. L. Sun, X. C. Duan, M. K. Zhou, L. L. Chen, S. Zhan, Q. Z. Zhang, and J. Luo, “Demonstration of an ultrahigh-sensitivity atom-interferometry absolute gravimeter,” Phys. Rev. A 88(4), 043610 (2013).
[Crossref]

Chen, X.

L. Zhou, S. T. Long, B. Tang, X. Chen, F. Gao, W. C. Peng, W. T. Duan, J. Q. Zhong, Z. Y. Xiong, J. Wang, Y. Z. Zhang, and M. S. Zhan, “Test of equivalence principle at 10−8 level by a dual-species double-diffraction Raman atom interferometer,” Phys. Rev. Lett. 115(1), 013004 (2015).
[Crossref] [PubMed]

Chiow, S. W.

J. M. Hogan, D. M. S. Johnson, S. Dickerson, T. Kovachy, A. Sugarbaker, S. W. Chiow, P. W. Graham, M. A. Kasevich, B. Saif, S. Rajendran, P. Bouyer, B. D. Seery, L. Feinberg, and R. Keski-Kuha, “An atomic gravitational wave interferometric sensor in low Earth orbit(AGIS-LEO),” Gen. Relativ. Gravit. 43(7), 1953–2009 (2011).
[Crossref]

H. Müller, S. W. Chiow, Q. Long, C. Vo, and S. Chu, “A new photon recoil experiment: towards a determination of the fine structure constant,” Appl. Phys. B 84(4), 633–642 (2006).
[Crossref]

Chu, S.

H. Müller, S. W. Chiow, Q. Long, C. Vo, and S. Chu, “A new photon recoil experiment: towards a determination of the fine structure constant,” Appl. Phys. B 84(4), 633–642 (2006).
[Crossref]

A. Wicht, J. M. Hensley, E. Sarajlic, and S. Chu, “A preliminary measurement of the fine structure constant based on atom interferometry,” Phys. Scr. T 102, 82–88 (2002).
[Crossref]

A. Peters, K. Y. Chung, and S. Chu, “Measurement of gravitational acceleration by dropping atoms,” Nature 400(6747), 849–852 (1999).
[Crossref]

D. S. Weiss, B. C. Young, and S. Chu, “Precision measurement of the photon recoil of an atom using atomic interferometry,” Phys. Rev. Lett. 70(18), 2706–2709 (1993).
[Crossref] [PubMed]

M. A. Kasevich and S. Chu, “Measurement of the gravitational acceleration of an atom with a light-pulse atom interferometer,” Appl. Phys. B 54(5), 321–332 (1992).
[Crossref]

M. A. Kasevich and S. Chu, “Atomic interferometry using stimulated Raman transitions,” Phys. Rev. Lett. 67(2), 181–184 (1991).
[Crossref] [PubMed]

Chung, K. Y.

A. Peters, K. Y. Chung, and S. Chu, “Measurement of gravitational acceleration by dropping atoms,” Nature 400(6747), 849–852 (1999).
[Crossref]

de Angelis, M.

F. Sorrentino, A. Bertoldi, Q. Bodart, L. Cacciapuoti, M. de Angelis, Y.-H. Lien, M. Prevedelli, G. Rosi, and G. M. Tino, “Simultaneous measurement of gravity acceleration and gravity gradient with an atom interferometer,” App. Phys. Lett. 101(11), 114106 (2012).
[Crossref]

Deslauriers, L.

G. W. Biedermann, X. Wu, L. Deslauriers, S. Roy, C. Mahadeswaraswamy, and M. A. Kasevich, “Testing gravity with cold-atom interferometers,” Phys. Rev. A 91(3), 033629 (2015).
[Crossref]

G. W. Biedermann, X. Wu, L. Deslauriers, K. Takase, and M. A. Kasevich, “Low-noise simultaneous fluorescence detection of two atomic states,” Opt. Lett. 34(3), 347–349 (2009).
[Crossref] [PubMed]

Dickerson, S.

J. M. Hogan, D. M. S. Johnson, S. Dickerson, T. Kovachy, A. Sugarbaker, S. W. Chiow, P. W. Graham, M. A. Kasevich, B. Saif, S. Rajendran, P. Bouyer, B. D. Seery, L. Feinberg, and R. Keski-Kuha, “An atomic gravitational wave interferometric sensor in low Earth orbit(AGIS-LEO),” Gen. Relativ. Gravit. 43(7), 1953–2009 (2011).
[Crossref]

Dickerson, S. M.

S. M. Dickerson, J. M. Hogan, A. Sugarbaker, D. M. S. Johnson, and M. A. Kasevich, “Multiaxis inertial sensing with long-time point source atom interferometry,” Phys. Rev. Lett. 111(8), 083001 (2013).
[Crossref] [PubMed]

Dimopoulos, S.

S. Dimopoulos, P. W. Graham, J. M. Hogan, M. A. Kasevich, and S. Rajendran, “Gravitational wave detection with atom interferometry,” Phys. Lett. B 678(1), 37–40 (2009).
[Crossref]

Duan, W. T.

L. Zhou, S. T. Long, B. Tang, X. Chen, F. Gao, W. C. Peng, W. T. Duan, J. Q. Zhong, Z. Y. Xiong, J. Wang, Y. Z. Zhang, and M. S. Zhan, “Test of equivalence principle at 10−8 level by a dual-species double-diffraction Raman atom interferometer,” Phys. Rev. Lett. 115(1), 013004 (2015).
[Crossref] [PubMed]

Duan, X. C.

Z. K. Hu, B. L. Sun, X. C. Duan, M. K. Zhou, L. L. Chen, S. Zhan, Q. Z. Zhang, and J. Luo, “Demonstration of an ultrahigh-sensitivity atom-interferometry absolute gravimeter,” Phys. Rev. A 88(4), 043610 (2013).
[Crossref]

English, D.

S. Y. Lan, P. C. Kuan, B. Estey, D. English, M. B. Justin, A. H. Michael, and H. Müller, “A clock directly linking time to a particle’s mass,” Science 339(6119), 554–557 (2013).
[Crossref] [PubMed]

Estey, B.

S. Y. Lan, P. C. Kuan, B. Estey, D. English, M. B. Justin, A. H. Michael, and H. Müller, “A clock directly linking time to a particle’s mass,” Science 339(6119), 554–557 (2013).
[Crossref] [PubMed]

Feinberg, L.

J. M. Hogan, D. M. S. Johnson, S. Dickerson, T. Kovachy, A. Sugarbaker, S. W. Chiow, P. W. Graham, M. A. Kasevich, B. Saif, S. Rajendran, P. Bouyer, B. D. Seery, L. Feinberg, and R. Keski-Kuha, “An atomic gravitational wave interferometric sensor in low Earth orbit(AGIS-LEO),” Gen. Relativ. Gravit. 43(7), 1953–2009 (2011).
[Crossref]

Fixler, J. B.

J. B. Fixler, G. T. Foster, J. M. McGuirk, and M. A. Kasevich, “Atom interferometer measurement of the Newtonian constant of gravity,” Science 315(5808), 74–77 (2007).
[Crossref] [PubMed]

J. M. McGuirk, G. T. Foster, J. B. Fixler, M. J. Snadden, and M. A. Kasevich, “Sensitive absolute-gravity gradiometry using atom interferometry,” Phys. Rev. A 65(3), 033608 (2002).
[Crossref]

Foster, G. T.

J. B. Fixler, G. T. Foster, J. M. McGuirk, and M. A. Kasevich, “Atom interferometer measurement of the Newtonian constant of gravity,” Science 315(5808), 74–77 (2007).
[Crossref] [PubMed]

J. M. McGuirk, G. T. Foster, J. B. Fixler, M. J. Snadden, and M. A. Kasevich, “Sensitive absolute-gravity gradiometry using atom interferometry,” Phys. Rev. A 65(3), 033608 (2002).
[Crossref]

Freise, A.

E. Rocco, R. N. Palmer, T. Valenzuela, V. Boyer, A. Freise, and K. Bongs, “Fluorescence detection at the atom shot noise limit for atom interferometry,” New J. Phys. 16, 093046 (2014).
[Crossref]

Gao, D. F.

D. F. Gao, P. Ju, B. C. Zhang, and M. S. Zhan, “Gravitational-wave detection with matter-wave interferometers based on standing light waves,” Gen. Relativ. Gravit. 43(7), 2027–2036 (2011).
[Crossref]

Gao, F.

L. Zhou, S. T. Long, B. Tang, X. Chen, F. Gao, W. C. Peng, W. T. Duan, J. Q. Zhong, Z. Y. Xiong, J. Wang, Y. Z. Zhang, and M. S. Zhan, “Test of equivalence principle at 10−8 level by a dual-species double-diffraction Raman atom interferometer,” Phys. Rev. Lett. 115(1), 013004 (2015).
[Crossref] [PubMed]

Graham, P. W.

J. M. Hogan, D. M. S. Johnson, S. Dickerson, T. Kovachy, A. Sugarbaker, S. W. Chiow, P. W. Graham, M. A. Kasevich, B. Saif, S. Rajendran, P. Bouyer, B. D. Seery, L. Feinberg, and R. Keski-Kuha, “An atomic gravitational wave interferometric sensor in low Earth orbit(AGIS-LEO),” Gen. Relativ. Gravit. 43(7), 1953–2009 (2011).
[Crossref]

S. Dimopoulos, P. W. Graham, J. M. Hogan, M. A. Kasevich, and S. Rajendran, “Gravitational wave detection with atom interferometry,” Phys. Lett. B 678(1), 37–40 (2009).
[Crossref]

Gustavson, T. L.

T. L. Gustavson, P. Bouyer, and M. A. Kasevich, “Precision rotation measurements with an atom interferometer gyroscope,” Phys. Rev. Lett. 78(11), 2046 (1997).
[Crossref]

Haritos, K. G.

M. J. Snadden, J. M. McGuirk, P. Bouyer, K. G. Haritos, and M. A. Kasevich, “Measurement of the Earth’s gravity gradient with an atom interferometer-based gravity gradiometer,” Phys. Rev. Lett. 81(5), 971 (1998).
[Crossref]

Hensley, J. M.

A. Wicht, J. M. Hensley, E. Sarajlic, and S. Chu, “A preliminary measurement of the fine structure constant based on atom interferometry,” Phys. Scr. T 102, 82–88 (2002).
[Crossref]

Hogan, J. M.

S. M. Dickerson, J. M. Hogan, A. Sugarbaker, D. M. S. Johnson, and M. A. Kasevich, “Multiaxis inertial sensing with long-time point source atom interferometry,” Phys. Rev. Lett. 111(8), 083001 (2013).
[Crossref] [PubMed]

J. M. Hogan, D. M. S. Johnson, S. Dickerson, T. Kovachy, A. Sugarbaker, S. W. Chiow, P. W. Graham, M. A. Kasevich, B. Saif, S. Rajendran, P. Bouyer, B. D. Seery, L. Feinberg, and R. Keski-Kuha, “An atomic gravitational wave interferometric sensor in low Earth orbit(AGIS-LEO),” Gen. Relativ. Gravit. 43(7), 1953–2009 (2011).
[Crossref]

S. Dimopoulos, P. W. Graham, J. M. Hogan, M. A. Kasevich, and S. Rajendran, “Gravitational wave detection with atom interferometry,” Phys. Lett. B 678(1), 37–40 (2009).
[Crossref]

Hu, Z. K.

Z. K. Hu, B. L. Sun, X. C. Duan, M. K. Zhou, L. L. Chen, S. Zhan, Q. Z. Zhang, and J. Luo, “Demonstration of an ultrahigh-sensitivity atom-interferometry absolute gravimeter,” Phys. Rev. A 88(4), 043610 (2013).
[Crossref]

Johnson, D. M. S.

S. M. Dickerson, J. M. Hogan, A. Sugarbaker, D. M. S. Johnson, and M. A. Kasevich, “Multiaxis inertial sensing with long-time point source atom interferometry,” Phys. Rev. Lett. 111(8), 083001 (2013).
[Crossref] [PubMed]

J. M. Hogan, D. M. S. Johnson, S. Dickerson, T. Kovachy, A. Sugarbaker, S. W. Chiow, P. W. Graham, M. A. Kasevich, B. Saif, S. Rajendran, P. Bouyer, B. D. Seery, L. Feinberg, and R. Keski-Kuha, “An atomic gravitational wave interferometric sensor in low Earth orbit(AGIS-LEO),” Gen. Relativ. Gravit. 43(7), 1953–2009 (2011).
[Crossref]

Ju, P.

D. F. Gao, P. Ju, B. C. Zhang, and M. S. Zhan, “Gravitational-wave detection with matter-wave interferometers based on standing light waves,” Gen. Relativ. Gravit. 43(7), 2027–2036 (2011).
[Crossref]

Justin, M. B.

S. Y. Lan, P. C. Kuan, B. Estey, D. English, M. B. Justin, A. H. Michael, and H. Müller, “A clock directly linking time to a particle’s mass,” Science 339(6119), 554–557 (2013).
[Crossref] [PubMed]

Kasevich, M. A.

G. W. Biedermann, X. Wu, L. Deslauriers, S. Roy, C. Mahadeswaraswamy, and M. A. Kasevich, “Testing gravity with cold-atom interferometers,” Phys. Rev. A 91(3), 033629 (2015).
[Crossref]

S. M. Dickerson, J. M. Hogan, A. Sugarbaker, D. M. S. Johnson, and M. A. Kasevich, “Multiaxis inertial sensing with long-time point source atom interferometry,” Phys. Rev. Lett. 111(8), 083001 (2013).
[Crossref] [PubMed]

J. K. Stockton, K. Takase, and M. A. Kasevich, “Absolute geodetic rotation measurement using atom interferometry,” Phys. Rev. Lett. 107(13), 133001(2011).
[Crossref] [PubMed]

J. M. Hogan, D. M. S. Johnson, S. Dickerson, T. Kovachy, A. Sugarbaker, S. W. Chiow, P. W. Graham, M. A. Kasevich, B. Saif, S. Rajendran, P. Bouyer, B. D. Seery, L. Feinberg, and R. Keski-Kuha, “An atomic gravitational wave interferometric sensor in low Earth orbit(AGIS-LEO),” Gen. Relativ. Gravit. 43(7), 1953–2009 (2011).
[Crossref]

S. Dimopoulos, P. W. Graham, J. M. Hogan, M. A. Kasevich, and S. Rajendran, “Gravitational wave detection with atom interferometry,” Phys. Lett. B 678(1), 37–40 (2009).
[Crossref]

G. W. Biedermann, X. Wu, L. Deslauriers, K. Takase, and M. A. Kasevich, “Low-noise simultaneous fluorescence detection of two atomic states,” Opt. Lett. 34(3), 347–349 (2009).
[Crossref] [PubMed]

J. B. Fixler, G. T. Foster, J. M. McGuirk, and M. A. Kasevich, “Atom interferometer measurement of the Newtonian constant of gravity,” Science 315(5808), 74–77 (2007).
[Crossref] [PubMed]

J. M. McGuirk, G. T. Foster, J. B. Fixler, M. J. Snadden, and M. A. Kasevich, “Sensitive absolute-gravity gradiometry using atom interferometry,” Phys. Rev. A 65(3), 033608 (2002).
[Crossref]

M. J. Snadden, J. M. McGuirk, P. Bouyer, K. G. Haritos, and M. A. Kasevich, “Measurement of the Earth’s gravity gradient with an atom interferometer-based gravity gradiometer,” Phys. Rev. Lett. 81(5), 971 (1998).
[Crossref]

T. L. Gustavson, P. Bouyer, and M. A. Kasevich, “Precision rotation measurements with an atom interferometer gyroscope,” Phys. Rev. Lett. 78(11), 2046 (1997).
[Crossref]

M. A. Kasevich and S. Chu, “Measurement of the gravitational acceleration of an atom with a light-pulse atom interferometer,” Appl. Phys. B 54(5), 321–332 (1992).
[Crossref]

M. A. Kasevich and S. Chu, “Atomic interferometry using stimulated Raman transitions,” Phys. Rev. Lett. 67(2), 181–184 (1991).
[Crossref] [PubMed]

Keski-Kuha, R.

J. M. Hogan, D. M. S. Johnson, S. Dickerson, T. Kovachy, A. Sugarbaker, S. W. Chiow, P. W. Graham, M. A. Kasevich, B. Saif, S. Rajendran, P. Bouyer, B. D. Seery, L. Feinberg, and R. Keski-Kuha, “An atomic gravitational wave interferometric sensor in low Earth orbit(AGIS-LEO),” Gen. Relativ. Gravit. 43(7), 1953–2009 (2011).
[Crossref]

Kovachy, T.

J. M. Hogan, D. M. S. Johnson, S. Dickerson, T. Kovachy, A. Sugarbaker, S. W. Chiow, P. W. Graham, M. A. Kasevich, B. Saif, S. Rajendran, P. Bouyer, B. D. Seery, L. Feinberg, and R. Keski-Kuha, “An atomic gravitational wave interferometric sensor in low Earth orbit(AGIS-LEO),” Gen. Relativ. Gravit. 43(7), 1953–2009 (2011).
[Crossref]

Kuan, P. C.

S. Y. Lan, P. C. Kuan, B. Estey, D. English, M. B. Justin, A. H. Michael, and H. Müller, “A clock directly linking time to a particle’s mass,” Science 339(6119), 554–557 (2013).
[Crossref] [PubMed]

Lan, S. Y.

S. Y. Lan, P. C. Kuan, B. Estey, D. English, M. B. Justin, A. H. Michael, and H. Müller, “A clock directly linking time to a particle’s mass,” Science 339(6119), 554–557 (2013).
[Crossref] [PubMed]

Lien, Y.-H.

F. Sorrentino, A. Bertoldi, Q. Bodart, L. Cacciapuoti, M. de Angelis, Y.-H. Lien, M. Prevedelli, G. Rosi, and G. M. Tino, “Simultaneous measurement of gravity acceleration and gravity gradient with an atom interferometer,” App. Phys. Lett. 101(11), 114106 (2012).
[Crossref]

Long, Q.

H. Müller, S. W. Chiow, Q. Long, C. Vo, and S. Chu, “A new photon recoil experiment: towards a determination of the fine structure constant,” Appl. Phys. B 84(4), 633–642 (2006).
[Crossref]

Long, S. T.

L. Zhou, S. T. Long, B. Tang, X. Chen, F. Gao, W. C. Peng, W. T. Duan, J. Q. Zhong, Z. Y. Xiong, J. Wang, Y. Z. Zhang, and M. S. Zhan, “Test of equivalence principle at 10−8 level by a dual-species double-diffraction Raman atom interferometer,” Phys. Rev. Lett. 115(1), 013004 (2015).
[Crossref] [PubMed]

Luo, J.

Z. K. Hu, B. L. Sun, X. C. Duan, M. K. Zhou, L. L. Chen, S. Zhan, Q. Z. Zhang, and J. Luo, “Demonstration of an ultrahigh-sensitivity atom-interferometry absolute gravimeter,” Phys. Rev. A 88(4), 043610 (2013).
[Crossref]

Mahadeswaraswamy, C.

G. W. Biedermann, X. Wu, L. Deslauriers, S. Roy, C. Mahadeswaraswamy, and M. A. Kasevich, “Testing gravity with cold-atom interferometers,” Phys. Rev. A 91(3), 033629 (2015).
[Crossref]

McGuinness, H. J.

A. V. Rakholia, H. J. McGuinness, and G. W. Biedermann, “Dual-axis high-date-rate atom interferometer via cold ensemble exchange,” Phys. Rev. Appl. 2(5), 054012 (2014).
[Crossref]

McGuirk, J. M.

J. B. Fixler, G. T. Foster, J. M. McGuirk, and M. A. Kasevich, “Atom interferometer measurement of the Newtonian constant of gravity,” Science 315(5808), 74–77 (2007).
[Crossref] [PubMed]

J. M. McGuirk, G. T. Foster, J. B. Fixler, M. J. Snadden, and M. A. Kasevich, “Sensitive absolute-gravity gradiometry using atom interferometry,” Phys. Rev. A 65(3), 033608 (2002).
[Crossref]

M. J. Snadden, J. M. McGuirk, P. Bouyer, K. G. Haritos, and M. A. Kasevich, “Measurement of the Earth’s gravity gradient with an atom interferometer-based gravity gradiometer,” Phys. Rev. Lett. 81(5), 971 (1998).
[Crossref]

Michael, A. H.

S. Y. Lan, P. C. Kuan, B. Estey, D. English, M. B. Justin, A. H. Michael, and H. Müller, “A clock directly linking time to a particle’s mass,” Science 339(6119), 554–557 (2013).
[Crossref] [PubMed]

Müller, H.

S. Y. Lan, P. C. Kuan, B. Estey, D. English, M. B. Justin, A. H. Michael, and H. Müller, “A clock directly linking time to a particle’s mass,” Science 339(6119), 554–557 (2013).
[Crossref] [PubMed]

H. Müller, S. W. Chiow, Q. Long, C. Vo, and S. Chu, “A new photon recoil experiment: towards a determination of the fine structure constant,” Appl. Phys. B 84(4), 633–642 (2006).
[Crossref]

Palmer, R. N.

E. Rocco, R. N. Palmer, T. Valenzuela, V. Boyer, A. Freise, and K. Bongs, “Fluorescence detection at the atom shot noise limit for atom interferometry,” New J. Phys. 16, 093046 (2014).
[Crossref]

Peng, W. C.

L. Zhou, S. T. Long, B. Tang, X. Chen, F. Gao, W. C. Peng, W. T. Duan, J. Q. Zhong, Z. Y. Xiong, J. Wang, Y. Z. Zhang, and M. S. Zhan, “Test of equivalence principle at 10−8 level by a dual-species double-diffraction Raman atom interferometer,” Phys. Rev. Lett. 115(1), 013004 (2015).
[Crossref] [PubMed]

L. Zhou, Z. Y. Xiong, W. Yang, B. Tang, W. C. Peng, Y. B. Wang, P. Xu, J. Wang, and M. S. Zhan, “Measurement of local gravity via a cold atom interferometer,” Chin. Phys. Lett. 28(1), 013701 (2011).
[Crossref]

Peters, A.

A. Peters, K. Y. Chung, and S. Chu, “Measurement of gravitational acceleration by dropping atoms,” Nature 400(6747), 849–852 (1999).
[Crossref]

Prevedelli, M.

G. Rosi, F. Sorrentino, L. Cacciapuoti, M. Prevedelli, and G. M. Tino, “Precision measurement of the Newtonian gravitational constant using cold atoms,” Nature 510(7507), 518–523 (2014).
[Crossref] [PubMed]

F. Sorrentino, A. Bertoldi, Q. Bodart, L. Cacciapuoti, M. de Angelis, Y.-H. Lien, M. Prevedelli, G. Rosi, and G. M. Tino, “Simultaneous measurement of gravity acceleration and gravity gradient with an atom interferometer,” App. Phys. Lett. 101(11), 114106 (2012).
[Crossref]

Rajendran, S.

J. M. Hogan, D. M. S. Johnson, S. Dickerson, T. Kovachy, A. Sugarbaker, S. W. Chiow, P. W. Graham, M. A. Kasevich, B. Saif, S. Rajendran, P. Bouyer, B. D. Seery, L. Feinberg, and R. Keski-Kuha, “An atomic gravitational wave interferometric sensor in low Earth orbit(AGIS-LEO),” Gen. Relativ. Gravit. 43(7), 1953–2009 (2011).
[Crossref]

S. Dimopoulos, P. W. Graham, J. M. Hogan, M. A. Kasevich, and S. Rajendran, “Gravitational wave detection with atom interferometry,” Phys. Lett. B 678(1), 37–40 (2009).
[Crossref]

Rakholia, A. V.

A. V. Rakholia, H. J. McGuinness, and G. W. Biedermann, “Dual-axis high-date-rate atom interferometer via cold ensemble exchange,” Phys. Rev. Appl. 2(5), 054012 (2014).
[Crossref]

Rocco, E.

E. Rocco, R. N. Palmer, T. Valenzuela, V. Boyer, A. Freise, and K. Bongs, “Fluorescence detection at the atom shot noise limit for atom interferometry,” New J. Phys. 16, 093046 (2014).
[Crossref]

Rosi, G.

G. Rosi, F. Sorrentino, L. Cacciapuoti, M. Prevedelli, and G. M. Tino, “Precision measurement of the Newtonian gravitational constant using cold atoms,” Nature 510(7507), 518–523 (2014).
[Crossref] [PubMed]

F. Sorrentino, A. Bertoldi, Q. Bodart, L. Cacciapuoti, M. de Angelis, Y.-H. Lien, M. Prevedelli, G. Rosi, and G. M. Tino, “Simultaneous measurement of gravity acceleration and gravity gradient with an atom interferometer,” App. Phys. Lett. 101(11), 114106 (2012).
[Crossref]

Roy, S.

G. W. Biedermann, X. Wu, L. Deslauriers, S. Roy, C. Mahadeswaraswamy, and M. A. Kasevich, “Testing gravity with cold-atom interferometers,” Phys. Rev. A 91(3), 033629 (2015).
[Crossref]

Saif, B.

J. M. Hogan, D. M. S. Johnson, S. Dickerson, T. Kovachy, A. Sugarbaker, S. W. Chiow, P. W. Graham, M. A. Kasevich, B. Saif, S. Rajendran, P. Bouyer, B. D. Seery, L. Feinberg, and R. Keski-Kuha, “An atomic gravitational wave interferometric sensor in low Earth orbit(AGIS-LEO),” Gen. Relativ. Gravit. 43(7), 1953–2009 (2011).
[Crossref]

Sarajlic, E.

A. Wicht, J. M. Hensley, E. Sarajlic, and S. Chu, “A preliminary measurement of the fine structure constant based on atom interferometry,” Phys. Scr. T 102, 82–88 (2002).
[Crossref]

Seery, B. D.

J. M. Hogan, D. M. S. Johnson, S. Dickerson, T. Kovachy, A. Sugarbaker, S. W. Chiow, P. W. Graham, M. A. Kasevich, B. Saif, S. Rajendran, P. Bouyer, B. D. Seery, L. Feinberg, and R. Keski-Kuha, “An atomic gravitational wave interferometric sensor in low Earth orbit(AGIS-LEO),” Gen. Relativ. Gravit. 43(7), 1953–2009 (2011).
[Crossref]

Snadden, M. J.

J. M. McGuirk, G. T. Foster, J. B. Fixler, M. J. Snadden, and M. A. Kasevich, “Sensitive absolute-gravity gradiometry using atom interferometry,” Phys. Rev. A 65(3), 033608 (2002).
[Crossref]

M. J. Snadden, J. M. McGuirk, P. Bouyer, K. G. Haritos, and M. A. Kasevich, “Measurement of the Earth’s gravity gradient with an atom interferometer-based gravity gradiometer,” Phys. Rev. Lett. 81(5), 971 (1998).
[Crossref]

Sorrentino, F.

G. Rosi, F. Sorrentino, L. Cacciapuoti, M. Prevedelli, and G. M. Tino, “Precision measurement of the Newtonian gravitational constant using cold atoms,” Nature 510(7507), 518–523 (2014).
[Crossref] [PubMed]

F. Sorrentino, A. Bertoldi, Q. Bodart, L. Cacciapuoti, M. de Angelis, Y.-H. Lien, M. Prevedelli, G. Rosi, and G. M. Tino, “Simultaneous measurement of gravity acceleration and gravity gradient with an atom interferometer,” App. Phys. Lett. 101(11), 114106 (2012).
[Crossref]

Stockton, J. K.

J. K. Stockton, K. Takase, and M. A. Kasevich, “Absolute geodetic rotation measurement using atom interferometry,” Phys. Rev. Lett. 107(13), 133001(2011).
[Crossref] [PubMed]

Sugarbaker, A.

S. M. Dickerson, J. M. Hogan, A. Sugarbaker, D. M. S. Johnson, and M. A. Kasevich, “Multiaxis inertial sensing with long-time point source atom interferometry,” Phys. Rev. Lett. 111(8), 083001 (2013).
[Crossref] [PubMed]

J. M. Hogan, D. M. S. Johnson, S. Dickerson, T. Kovachy, A. Sugarbaker, S. W. Chiow, P. W. Graham, M. A. Kasevich, B. Saif, S. Rajendran, P. Bouyer, B. D. Seery, L. Feinberg, and R. Keski-Kuha, “An atomic gravitational wave interferometric sensor in low Earth orbit(AGIS-LEO),” Gen. Relativ. Gravit. 43(7), 1953–2009 (2011).
[Crossref]

Sun, B. L.

Z. K. Hu, B. L. Sun, X. C. Duan, M. K. Zhou, L. L. Chen, S. Zhan, Q. Z. Zhang, and J. Luo, “Demonstration of an ultrahigh-sensitivity atom-interferometry absolute gravimeter,” Phys. Rev. A 88(4), 043610 (2013).
[Crossref]

Takase, K.

J. K. Stockton, K. Takase, and M. A. Kasevich, “Absolute geodetic rotation measurement using atom interferometry,” Phys. Rev. Lett. 107(13), 133001(2011).
[Crossref] [PubMed]

G. W. Biedermann, X. Wu, L. Deslauriers, K. Takase, and M. A. Kasevich, “Low-noise simultaneous fluorescence detection of two atomic states,” Opt. Lett. 34(3), 347–349 (2009).
[Crossref] [PubMed]

Tang, B.

L. Zhou, S. T. Long, B. Tang, X. Chen, F. Gao, W. C. Peng, W. T. Duan, J. Q. Zhong, Z. Y. Xiong, J. Wang, Y. Z. Zhang, and M. S. Zhan, “Test of equivalence principle at 10−8 level by a dual-species double-diffraction Raman atom interferometer,” Phys. Rev. Lett. 115(1), 013004 (2015).
[Crossref] [PubMed]

L. Zhou, Z. Y. Xiong, W. Yang, B. Tang, W. C. Peng, Y. B. Wang, P. Xu, J. Wang, and M. S. Zhan, “Measurement of local gravity via a cold atom interferometer,” Chin. Phys. Lett. 28(1), 013701 (2011).
[Crossref]

Tino, G. M.

G. Rosi, F. Sorrentino, L. Cacciapuoti, M. Prevedelli, and G. M. Tino, “Precision measurement of the Newtonian gravitational constant using cold atoms,” Nature 510(7507), 518–523 (2014).
[Crossref] [PubMed]

F. Sorrentino, A. Bertoldi, Q. Bodart, L. Cacciapuoti, M. de Angelis, Y.-H. Lien, M. Prevedelli, G. Rosi, and G. M. Tino, “Simultaneous measurement of gravity acceleration and gravity gradient with an atom interferometer,” App. Phys. Lett. 101(11), 114106 (2012).
[Crossref]

Valenzuela, T.

E. Rocco, R. N. Palmer, T. Valenzuela, V. Boyer, A. Freise, and K. Bongs, “Fluorescence detection at the atom shot noise limit for atom interferometry,” New J. Phys. 16, 093046 (2014).
[Crossref]

Vo, C.

H. Müller, S. W. Chiow, Q. Long, C. Vo, and S. Chu, “A new photon recoil experiment: towards a determination of the fine structure constant,” Appl. Phys. B 84(4), 633–642 (2006).
[Crossref]

Wang, J.

L. Zhou, S. T. Long, B. Tang, X. Chen, F. Gao, W. C. Peng, W. T. Duan, J. Q. Zhong, Z. Y. Xiong, J. Wang, Y. Z. Zhang, and M. S. Zhan, “Test of equivalence principle at 10−8 level by a dual-species double-diffraction Raman atom interferometer,” Phys. Rev. Lett. 115(1), 013004 (2015).
[Crossref] [PubMed]

L. Zhou, Z. Y. Xiong, W. Yang, B. Tang, W. C. Peng, Y. B. Wang, P. Xu, J. Wang, and M. S. Zhan, “Measurement of local gravity via a cold atom interferometer,” Chin. Phys. Lett. 28(1), 013701 (2011).
[Crossref]

Wang, Y. B.

L. Zhou, Z. Y. Xiong, W. Yang, B. Tang, W. C. Peng, Y. B. Wang, P. Xu, J. Wang, and M. S. Zhan, “Measurement of local gravity via a cold atom interferometer,” Chin. Phys. Lett. 28(1), 013701 (2011).
[Crossref]

Weiss, D. S.

D. S. Weiss, B. C. Young, and S. Chu, “Precision measurement of the photon recoil of an atom using atomic interferometry,” Phys. Rev. Lett. 70(18), 2706–2709 (1993).
[Crossref] [PubMed]

Wicht, A.

A. Wicht, J. M. Hensley, E. Sarajlic, and S. Chu, “A preliminary measurement of the fine structure constant based on atom interferometry,” Phys. Scr. T 102, 82–88 (2002).
[Crossref]

Wu, X.

G. W. Biedermann, X. Wu, L. Deslauriers, S. Roy, C. Mahadeswaraswamy, and M. A. Kasevich, “Testing gravity with cold-atom interferometers,” Phys. Rev. A 91(3), 033629 (2015).
[Crossref]

G. W. Biedermann, X. Wu, L. Deslauriers, K. Takase, and M. A. Kasevich, “Low-noise simultaneous fluorescence detection of two atomic states,” Opt. Lett. 34(3), 347–349 (2009).
[Crossref] [PubMed]

Xiong, Z. Y.

L. Zhou, S. T. Long, B. Tang, X. Chen, F. Gao, W. C. Peng, W. T. Duan, J. Q. Zhong, Z. Y. Xiong, J. Wang, Y. Z. Zhang, and M. S. Zhan, “Test of equivalence principle at 10−8 level by a dual-species double-diffraction Raman atom interferometer,” Phys. Rev. Lett. 115(1), 013004 (2015).
[Crossref] [PubMed]

L. Zhou, Z. Y. Xiong, W. Yang, B. Tang, W. C. Peng, Y. B. Wang, P. Xu, J. Wang, and M. S. Zhan, “Measurement of local gravity via a cold atom interferometer,” Chin. Phys. Lett. 28(1), 013701 (2011).
[Crossref]

Xu, P.

L. Zhou, Z. Y. Xiong, W. Yang, B. Tang, W. C. Peng, Y. B. Wang, P. Xu, J. Wang, and M. S. Zhan, “Measurement of local gravity via a cold atom interferometer,” Chin. Phys. Lett. 28(1), 013701 (2011).
[Crossref]

Yang, W.

L. Zhou, Z. Y. Xiong, W. Yang, B. Tang, W. C. Peng, Y. B. Wang, P. Xu, J. Wang, and M. S. Zhan, “Measurement of local gravity via a cold atom interferometer,” Chin. Phys. Lett. 28(1), 013701 (2011).
[Crossref]

Young, B. C.

D. S. Weiss, B. C. Young, and S. Chu, “Precision measurement of the photon recoil of an atom using atomic interferometry,” Phys. Rev. Lett. 70(18), 2706–2709 (1993).
[Crossref] [PubMed]

Zahzam, N.

A. Bonnin, N. Zahzam, Y. Bidel, and A. Bresson, “Simultaneous dual-species matter-wave accelerometer,” Phys. Rev. A 88(4), 043615 (2013).
[Crossref]

Zhan, M. S.

L. Zhou, S. T. Long, B. Tang, X. Chen, F. Gao, W. C. Peng, W. T. Duan, J. Q. Zhong, Z. Y. Xiong, J. Wang, Y. Z. Zhang, and M. S. Zhan, “Test of equivalence principle at 10−8 level by a dual-species double-diffraction Raman atom interferometer,” Phys. Rev. Lett. 115(1), 013004 (2015).
[Crossref] [PubMed]

D. F. Gao, P. Ju, B. C. Zhang, and M. S. Zhan, “Gravitational-wave detection with matter-wave interferometers based on standing light waves,” Gen. Relativ. Gravit. 43(7), 2027–2036 (2011).
[Crossref]

L. Zhou, Z. Y. Xiong, W. Yang, B. Tang, W. C. Peng, Y. B. Wang, P. Xu, J. Wang, and M. S. Zhan, “Measurement of local gravity via a cold atom interferometer,” Chin. Phys. Lett. 28(1), 013701 (2011).
[Crossref]

Zhan, S.

Z. K. Hu, B. L. Sun, X. C. Duan, M. K. Zhou, L. L. Chen, S. Zhan, Q. Z. Zhang, and J. Luo, “Demonstration of an ultrahigh-sensitivity atom-interferometry absolute gravimeter,” Phys. Rev. A 88(4), 043610 (2013).
[Crossref]

Zhang, B. C.

D. F. Gao, P. Ju, B. C. Zhang, and M. S. Zhan, “Gravitational-wave detection with matter-wave interferometers based on standing light waves,” Gen. Relativ. Gravit. 43(7), 2027–2036 (2011).
[Crossref]

Zhang, Q. Z.

Z. K. Hu, B. L. Sun, X. C. Duan, M. K. Zhou, L. L. Chen, S. Zhan, Q. Z. Zhang, and J. Luo, “Demonstration of an ultrahigh-sensitivity atom-interferometry absolute gravimeter,” Phys. Rev. A 88(4), 043610 (2013).
[Crossref]

Zhang, Y. Z.

L. Zhou, S. T. Long, B. Tang, X. Chen, F. Gao, W. C. Peng, W. T. Duan, J. Q. Zhong, Z. Y. Xiong, J. Wang, Y. Z. Zhang, and M. S. Zhan, “Test of equivalence principle at 10−8 level by a dual-species double-diffraction Raman atom interferometer,” Phys. Rev. Lett. 115(1), 013004 (2015).
[Crossref] [PubMed]

Zhong, J. Q.

L. Zhou, S. T. Long, B. Tang, X. Chen, F. Gao, W. C. Peng, W. T. Duan, J. Q. Zhong, Z. Y. Xiong, J. Wang, Y. Z. Zhang, and M. S. Zhan, “Test of equivalence principle at 10−8 level by a dual-species double-diffraction Raman atom interferometer,” Phys. Rev. Lett. 115(1), 013004 (2015).
[Crossref] [PubMed]

Zhou, L.

L. Zhou, S. T. Long, B. Tang, X. Chen, F. Gao, W. C. Peng, W. T. Duan, J. Q. Zhong, Z. Y. Xiong, J. Wang, Y. Z. Zhang, and M. S. Zhan, “Test of equivalence principle at 10−8 level by a dual-species double-diffraction Raman atom interferometer,” Phys. Rev. Lett. 115(1), 013004 (2015).
[Crossref] [PubMed]

L. Zhou, Z. Y. Xiong, W. Yang, B. Tang, W. C. Peng, Y. B. Wang, P. Xu, J. Wang, and M. S. Zhan, “Measurement of local gravity via a cold atom interferometer,” Chin. Phys. Lett. 28(1), 013701 (2011).
[Crossref]

Zhou, M. K.

Z. K. Hu, B. L. Sun, X. C. Duan, M. K. Zhou, L. L. Chen, S. Zhan, Q. Z. Zhang, and J. Luo, “Demonstration of an ultrahigh-sensitivity atom-interferometry absolute gravimeter,” Phys. Rev. A 88(4), 043610 (2013).
[Crossref]

App. Phys. Lett. (1)

F. Sorrentino, A. Bertoldi, Q. Bodart, L. Cacciapuoti, M. de Angelis, Y.-H. Lien, M. Prevedelli, G. Rosi, and G. M. Tino, “Simultaneous measurement of gravity acceleration and gravity gradient with an atom interferometer,” App. Phys. Lett. 101(11), 114106 (2012).
[Crossref]

Appl. Phys. B (2)

M. A. Kasevich and S. Chu, “Measurement of the gravitational acceleration of an atom with a light-pulse atom interferometer,” Appl. Phys. B 54(5), 321–332 (1992).
[Crossref]

H. Müller, S. W. Chiow, Q. Long, C. Vo, and S. Chu, “A new photon recoil experiment: towards a determination of the fine structure constant,” Appl. Phys. B 84(4), 633–642 (2006).
[Crossref]

Chin. Phys. Lett. (1)

L. Zhou, Z. Y. Xiong, W. Yang, B. Tang, W. C. Peng, Y. B. Wang, P. Xu, J. Wang, and M. S. Zhan, “Measurement of local gravity via a cold atom interferometer,” Chin. Phys. Lett. 28(1), 013701 (2011).
[Crossref]

Gen. Relativ. Gravit. (2)

J. M. Hogan, D. M. S. Johnson, S. Dickerson, T. Kovachy, A. Sugarbaker, S. W. Chiow, P. W. Graham, M. A. Kasevich, B. Saif, S. Rajendran, P. Bouyer, B. D. Seery, L. Feinberg, and R. Keski-Kuha, “An atomic gravitational wave interferometric sensor in low Earth orbit(AGIS-LEO),” Gen. Relativ. Gravit. 43(7), 1953–2009 (2011).
[Crossref]

D. F. Gao, P. Ju, B. C. Zhang, and M. S. Zhan, “Gravitational-wave detection with matter-wave interferometers based on standing light waves,” Gen. Relativ. Gravit. 43(7), 2027–2036 (2011).
[Crossref]

Nature (2)

G. Rosi, F. Sorrentino, L. Cacciapuoti, M. Prevedelli, and G. M. Tino, “Precision measurement of the Newtonian gravitational constant using cold atoms,” Nature 510(7507), 518–523 (2014).
[Crossref] [PubMed]

A. Peters, K. Y. Chung, and S. Chu, “Measurement of gravitational acceleration by dropping atoms,” Nature 400(6747), 849–852 (1999).
[Crossref]

New J. Phys. (1)

E. Rocco, R. N. Palmer, T. Valenzuela, V. Boyer, A. Freise, and K. Bongs, “Fluorescence detection at the atom shot noise limit for atom interferometry,” New J. Phys. 16, 093046 (2014).
[Crossref]

Opt. Lett. (1)

Phys. Lett. B (1)

S. Dimopoulos, P. W. Graham, J. M. Hogan, M. A. Kasevich, and S. Rajendran, “Gravitational wave detection with atom interferometry,” Phys. Lett. B 678(1), 37–40 (2009).
[Crossref]

Phys. Rev. A (4)

Z. K. Hu, B. L. Sun, X. C. Duan, M. K. Zhou, L. L. Chen, S. Zhan, Q. Z. Zhang, and J. Luo, “Demonstration of an ultrahigh-sensitivity atom-interferometry absolute gravimeter,” Phys. Rev. A 88(4), 043610 (2013).
[Crossref]

G. W. Biedermann, X. Wu, L. Deslauriers, S. Roy, C. Mahadeswaraswamy, and M. A. Kasevich, “Testing gravity with cold-atom interferometers,” Phys. Rev. A 91(3), 033629 (2015).
[Crossref]

A. Bonnin, N. Zahzam, Y. Bidel, and A. Bresson, “Simultaneous dual-species matter-wave accelerometer,” Phys. Rev. A 88(4), 043615 (2013).
[Crossref]

J. M. McGuirk, G. T. Foster, J. B. Fixler, M. J. Snadden, and M. A. Kasevich, “Sensitive absolute-gravity gradiometry using atom interferometry,” Phys. Rev. A 65(3), 033608 (2002).
[Crossref]

Phys. Rev. Appl. (1)

A. V. Rakholia, H. J. McGuinness, and G. W. Biedermann, “Dual-axis high-date-rate atom interferometer via cold ensemble exchange,” Phys. Rev. Appl. 2(5), 054012 (2014).
[Crossref]

Phys. Rev. Lett. (7)

M. A. Kasevich and S. Chu, “Atomic interferometry using stimulated Raman transitions,” Phys. Rev. Lett. 67(2), 181–184 (1991).
[Crossref] [PubMed]

L. Zhou, S. T. Long, B. Tang, X. Chen, F. Gao, W. C. Peng, W. T. Duan, J. Q. Zhong, Z. Y. Xiong, J. Wang, Y. Z. Zhang, and M. S. Zhan, “Test of equivalence principle at 10−8 level by a dual-species double-diffraction Raman atom interferometer,” Phys. Rev. Lett. 115(1), 013004 (2015).
[Crossref] [PubMed]

T. L. Gustavson, P. Bouyer, and M. A. Kasevich, “Precision rotation measurements with an atom interferometer gyroscope,” Phys. Rev. Lett. 78(11), 2046 (1997).
[Crossref]

J. K. Stockton, K. Takase, and M. A. Kasevich, “Absolute geodetic rotation measurement using atom interferometry,” Phys. Rev. Lett. 107(13), 133001(2011).
[Crossref] [PubMed]

M. J. Snadden, J. M. McGuirk, P. Bouyer, K. G. Haritos, and M. A. Kasevich, “Measurement of the Earth’s gravity gradient with an atom interferometer-based gravity gradiometer,” Phys. Rev. Lett. 81(5), 971 (1998).
[Crossref]

S. M. Dickerson, J. M. Hogan, A. Sugarbaker, D. M. S. Johnson, and M. A. Kasevich, “Multiaxis inertial sensing with long-time point source atom interferometry,” Phys. Rev. Lett. 111(8), 083001 (2013).
[Crossref] [PubMed]

D. S. Weiss, B. C. Young, and S. Chu, “Precision measurement of the photon recoil of an atom using atomic interferometry,” Phys. Rev. Lett. 70(18), 2706–2709 (1993).
[Crossref] [PubMed]

Phys. Scr. T (1)

A. Wicht, J. M. Hensley, E. Sarajlic, and S. Chu, “A preliminary measurement of the fine structure constant based on atom interferometry,” Phys. Scr. T 102, 82–88 (2002).
[Crossref]

Science (2)

S. Y. Lan, P. C. Kuan, B. Estey, D. English, M. B. Justin, A. H. Michael, and H. Müller, “A clock directly linking time to a particle’s mass,” Science 339(6119), 554–557 (2013).
[Crossref] [PubMed]

J. B. Fixler, G. T. Foster, J. M. McGuirk, and M. A. Kasevich, “Atom interferometer measurement of the Newtonian constant of gravity,” Science 315(5808), 74–77 (2007).
[Crossref] [PubMed]

Other (2)

G. W. Biedermann, “Gravity tests, differential accelerometry and interleaved clocks with cold atom interferometers,” PhD. thesis, Stanford University, (2007).

D. A. Steck, “Rubidium 85 D Line Data,” http://steck.us/alkalidata (2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 A schematic diagram of the involved states and transitions in the normalized-detection processes. |1〉 and |2〉 are the lower hyperfine states, |3〉 and |4〉 are the upper hyperfine states. For 85Rb D2 transition hyperfine structure |1〉 and |2〉 correspond to the states |52 S1/2, F = 3〉 and |52 S1/2, F = 2〉, |3〉 and |4〉 correspond to the states |5 P3/2, F′ = 3〉 and |52 P3/2, F ′= 4〉, respectively.
Fig. 2
Fig. 2 Schematic diagrams of experiments. (a) Experimental setup. Three pairs of cooling beams for 3D-MOT are in the [0,0,1] configuration, and the repumping beams are overlapped with the horizontal cooling beams. (b) A schematic diagram of interference process. (c) Experimental time sequence for normalized detection. t1=120 μs and t2=12 μs are the time periods of the microwave π-pulse and Raman π/2-pulse.
Fig. 3
Fig. 3 The normalized detection of atom initial state. The blue squares are the original signal and the red dots are the normalized signal.
Fig. 4
Fig. 4 Doppler-insensitive interference fringes without (a) and with (b) normalized detection.
Fig. 5
Fig. 5 The Allan deviation of fringe phases with imitated amplitude noise by random modulation. The blue squares are original signals with pushing beam power randomly modulated within a range of 80 μW(42 μW∼122 μW), the blue triangles are original signals with pushing beam power randomly modulated within a range of 15 μW(42μW~ 57 μW). The red squares are normalized signals with a modulated range of 80 μW, the red triangles are normalized signals with a modulated range of 15 μW, and the black circles are signals without modulation.

Tables (2)

Tables Icon

Table 1 List of main noise sources of normalized detection

Tables Icon

Table 2 The measured intensity noise of microwave in different cases

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

N = I F = 3 I b l o w
R = Γ 2 s 1 + s + 4 x 2

Metrics