Abstract

In this work, a novel beam scanner design based on non-moving parts is introduced which will eliminate the phase and inaccuracy problems of the mechanical scanners while providing two times imaging speed improvement for optical coherence tomography systems. The design is comprised of electro-optically activated switches that are placed on the sample arm. For the example considered here, lateral resolution of 20 µm, and lateral scanning range of 1 mm are aimed at which resulted in a scanner size of 1 mm × 9 mm. Due to its compact size, proposed design can also be implemented in forward-looking endoscopic probes.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Design of a high-speed multiple-reference optical coherence tomography system

B. Imran Akca
Opt. Express 24(23) 26709-26714 (2016)

Multimodal photoacoustic and optical coherence tomography scanner using an all optical detection scheme for 3D morphological skin imaging

Edward Z. Zhang, Boris Povazay, Jan Laufer, Aneesh Alex, Bernd Hofer, Barbara Pedley, Carl Glittenberg, Bradley Treeby, Ben Cox, Paul Beard, and Wolfgang Drexler
Biomed. Opt. Express 2(8) 2202-2215 (2011)

Design of a compact and ultrahigh-resolution Fourier-transform spectrometer

B. Imran Akca
Opt. Express 25(2) 1487-1494 (2017)

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [Crossref] [PubMed]
  2. L. An, P. Li, T. T. Shen, and R. Wang, “High speed spectral domain optical coherence tomography for retinal imaging at 500,000 A‑lines per second,” Biomed. Opt. Express 2(10), 2770–2783 (2011).
    [Crossref] [PubMed]
  3. T. Schmoll and R. A. Leitgeb, “Heart-beat-phase-coherent Doppler optical coherence tomography for measuring pulsatile ocular blood flow,” J. Biophotonics 6(3), 275–282 (2013).
    [Crossref] [PubMed]
  4. B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express 18(19), 20029–20048 (2010).
    [Crossref] [PubMed]
  5. S. Zotter, M. Pircher, T. Torzicky, M. Bonesi, E. Götzinger, R. A. Leitgeb, and C. K. Hitzenberger, “Visualization of microvasculature by dual-beam phase-resolved Doppler optical coherence tomography,” Opt. Express 19(2), 1217–1227 (2011).
    [Crossref] [PubMed]
  6. H. Y. Lee, H. Sudkamp, T. Marvdashti, and A. K. Ellerbee, “Interleaved optical coherence tomography,” Opt. Express 21(22), 26542–26556 (2013).
    [Crossref] [PubMed]
  7. G. J. Tearney, R. H. Webb, and B. E. Bouma, “Spectrally encoded confocal microscopy,” Opt. Lett. 23(15), 1152–1154 (1998).
    [Crossref] [PubMed]
  8. C. Boudoux, S. Yun, W. Oh, W. White, N. Iftimia, M. Shishkov, B. Bouma, and G. Tearney, “Rapid wavelength-swept spectrally encoded confocal microscopy,” Opt. Express 13(20), 8214–8221 (2005).
    [Crossref] [PubMed]
  9. E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
    [Crossref]
  10. P. DeNicola, S. Sugliani, G. B. Montanari, A. Menin, P. Vergani, A. Meroni, M. Astolfi, M. Borsetto, G. Consonni, R. Longone, A. Nubile, M. Chiarini, M. Bianconi, and G. G. Bentini, “Fabrication of smooth ridge optical waveguides in by ion implantation-assisted wet etching,” J. Lightwave Technol. 31(9), 1482–1487 (2013).
    [Crossref]
  11. O. D. Herrera, K.-J. Kim, R. Voorakaranam, R. Himmelhuber, S. Wang, V. Demir, Q. Zhan, L. Li, R. A. Norwood, R. L. Nelson, J. Luo, A. K.-Y. Jen, and N. Peyghambarian, “Silica/electro-optic polymer optical modulator with integrated antenna for microwave receiving,” J. Lightwave Technol. 32(20), 3861–3867 (2014).
    [Crossref]
  12. B. E. Little and T. Murphy, “Design rules for maximally flat wavelength-insensitive optical power dividers using Mach-Zehnder structures,” IEEE Photonics Technol. Lett. 9(12), 1607–1609 (1997).
    [Crossref]
  13. B. I. Akca, C. R. Doerr, G. Sengo, K. Wörhoff, M. Pollnau, and R. M. de Ridder, “Broad-spectral-range synchronized flat-top arrayed-waveguide grating applied in a 225-channel cascaded spectrometer,” Opt. Express 20(16), 18313–18318 (2012).
    [Crossref] [PubMed]
  14. I. B. Akca, A. Dana, A. Aydinli, M. Rossetti, L. Li, A. Fiore, and N. Dagli, “Electro-optic and electro-absorption characterization of InAs quantum dot waveguides,” Opt. Express 16(5), 3439–3444 (2008).
    [Crossref] [PubMed]
  15. S. Kling, I. B. Akca, E. W. Chang, G. Scarcelli, N. Bekesi, S. H. Yun, and S. Marcos, “Numerical model of optical coherence tomographic vibrography imaging to estimate corneal biomechanical properties,” J. R. Soc. Interface 11(101), 20140920 (2014).
    [Crossref] [PubMed]
  16. B. I. Akca, E. W. Chang, S. Kling, A. Ramier, G. Scarcelli, S. Marcos, and S. H. Yun, “Observation of sound-induced corneal vibrational modes by optical coherence tomography,” Biomed. Opt. Express 6(9), 3313–3319 (2015).
    [Crossref] [PubMed]

2015 (1)

2014 (2)

S. Kling, I. B. Akca, E. W. Chang, G. Scarcelli, N. Bekesi, S. H. Yun, and S. Marcos, “Numerical model of optical coherence tomographic vibrography imaging to estimate corneal biomechanical properties,” J. R. Soc. Interface 11(101), 20140920 (2014).
[Crossref] [PubMed]

O. D. Herrera, K.-J. Kim, R. Voorakaranam, R. Himmelhuber, S. Wang, V. Demir, Q. Zhan, L. Li, R. A. Norwood, R. L. Nelson, J. Luo, A. K.-Y. Jen, and N. Peyghambarian, “Silica/electro-optic polymer optical modulator with integrated antenna for microwave receiving,” J. Lightwave Technol. 32(20), 3861–3867 (2014).
[Crossref]

2013 (3)

2012 (1)

2011 (2)

2010 (1)

2008 (1)

2005 (1)

2000 (1)

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

1998 (1)

1997 (1)

B. E. Little and T. Murphy, “Design rules for maximally flat wavelength-insensitive optical power dividers using Mach-Zehnder structures,” IEEE Photonics Technol. Lett. 9(12), 1607–1609 (1997).
[Crossref]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Akca, B. I.

Akca, I. B.

S. Kling, I. B. Akca, E. W. Chang, G. Scarcelli, N. Bekesi, S. H. Yun, and S. Marcos, “Numerical model of optical coherence tomographic vibrography imaging to estimate corneal biomechanical properties,” J. R. Soc. Interface 11(101), 20140920 (2014).
[Crossref] [PubMed]

I. B. Akca, A. Dana, A. Aydinli, M. Rossetti, L. Li, A. Fiore, and N. Dagli, “Electro-optic and electro-absorption characterization of InAs quantum dot waveguides,” Opt. Express 16(5), 3439–3444 (2008).
[Crossref] [PubMed]

An, L.

Astolfi, M.

Attanasio, D. V.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Aydinli, A.

Barry, S.

Baumann, B.

Bekesi, N.

S. Kling, I. B. Akca, E. W. Chang, G. Scarcelli, N. Bekesi, S. H. Yun, and S. Marcos, “Numerical model of optical coherence tomographic vibrography imaging to estimate corneal biomechanical properties,” J. R. Soc. Interface 11(101), 20140920 (2014).
[Crossref] [PubMed]

Bentini, G. G.

Bianconi, M.

Bonesi, M.

Borsetto, M.

Bossi, D. E.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Boudoux, C.

Bouma, B.

Bouma, B. E.

Cable, A. E.

Chang, E. W.

B. I. Akca, E. W. Chang, S. Kling, A. Ramier, G. Scarcelli, S. Marcos, and S. H. Yun, “Observation of sound-induced corneal vibrational modes by optical coherence tomography,” Biomed. Opt. Express 6(9), 3313–3319 (2015).
[Crossref] [PubMed]

S. Kling, I. B. Akca, E. W. Chang, G. Scarcelli, N. Bekesi, S. H. Yun, and S. Marcos, “Numerical model of optical coherence tomographic vibrography imaging to estimate corneal biomechanical properties,” J. R. Soc. Interface 11(101), 20140920 (2014).
[Crossref] [PubMed]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Chiarini, M.

Consonni, G.

Dagli, N.

Dana, A.

de Ridder, R. M.

Demir, V.

DeNicola, P.

Doerr, C. R.

Duker, J. S.

Ellerbee, A. K.

Fiore, A.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Fritz, D. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Fujimoto, J. G.

B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express 18(19), 20029–20048 (2010).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Götzinger, E.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Hallemeier, P. F.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Herrera, O. D.

Himmelhuber, R.

Hitzenberger, C. K.

Huang, D.

B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express 18(19), 20029–20048 (2010).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Iftimia, N.

Jen, A. K.-Y.

Kim, K.-J.

Kissa, K. M.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Kling, S.

B. I. Akca, E. W. Chang, S. Kling, A. Ramier, G. Scarcelli, S. Marcos, and S. H. Yun, “Observation of sound-induced corneal vibrational modes by optical coherence tomography,” Biomed. Opt. Express 6(9), 3313–3319 (2015).
[Crossref] [PubMed]

S. Kling, I. B. Akca, E. W. Chang, G. Scarcelli, N. Bekesi, S. H. Yun, and S. Marcos, “Numerical model of optical coherence tomographic vibrography imaging to estimate corneal biomechanical properties,” J. R. Soc. Interface 11(101), 20140920 (2014).
[Crossref] [PubMed]

Lafaw, D. A.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Lee, H. Y.

Leitgeb, R. A.

Li, L.

Li, P.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Little, B. E.

B. E. Little and T. Murphy, “Design rules for maximally flat wavelength-insensitive optical power dividers using Mach-Zehnder structures,” IEEE Photonics Technol. Lett. 9(12), 1607–1609 (1997).
[Crossref]

Longone, R.

Luo, J.

Maack, D.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Marcos, S.

B. I. Akca, E. W. Chang, S. Kling, A. Ramier, G. Scarcelli, S. Marcos, and S. H. Yun, “Observation of sound-induced corneal vibrational modes by optical coherence tomography,” Biomed. Opt. Express 6(9), 3313–3319 (2015).
[Crossref] [PubMed]

S. Kling, I. B. Akca, E. W. Chang, G. Scarcelli, N. Bekesi, S. H. Yun, and S. Marcos, “Numerical model of optical coherence tomographic vibrography imaging to estimate corneal biomechanical properties,” J. R. Soc. Interface 11(101), 20140920 (2014).
[Crossref] [PubMed]

Marvdashti, T.

McBrien, G. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Menin, A.

Meroni, A.

Montanari, G. B.

Murphy, E. J.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Murphy, T.

B. E. Little and T. Murphy, “Design rules for maximally flat wavelength-insensitive optical power dividers using Mach-Zehnder structures,” IEEE Photonics Technol. Lett. 9(12), 1607–1609 (1997).
[Crossref]

Nelson, R. L.

Norwood, R. A.

Nubile, A.

Oh, W.

Peyghambarian, N.

Pircher, M.

Pollnau, M.

Potsaid, B.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Ramier, A.

Rossetti, M.

Scarcelli, G.

B. I. Akca, E. W. Chang, S. Kling, A. Ramier, G. Scarcelli, S. Marcos, and S. H. Yun, “Observation of sound-induced corneal vibrational modes by optical coherence tomography,” Biomed. Opt. Express 6(9), 3313–3319 (2015).
[Crossref] [PubMed]

S. Kling, I. B. Akca, E. W. Chang, G. Scarcelli, N. Bekesi, S. H. Yun, and S. Marcos, “Numerical model of optical coherence tomographic vibrography imaging to estimate corneal biomechanical properties,” J. R. Soc. Interface 11(101), 20140920 (2014).
[Crossref] [PubMed]

Schmoll, T.

T. Schmoll and R. A. Leitgeb, “Heart-beat-phase-coherent Doppler optical coherence tomography for measuring pulsatile ocular blood flow,” J. Biophotonics 6(3), 275–282 (2013).
[Crossref] [PubMed]

Schuman, J. S.

B. Potsaid, B. Baumann, D. Huang, S. Barry, A. E. Cable, J. S. Schuman, J. S. Duker, and J. G. Fujimoto, “Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second,” Opt. Express 18(19), 20029–20048 (2010).
[Crossref] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Sengo, G.

Shen, T. T.

Shishkov, M.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Sudkamp, H.

Sugliani, S.

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Tearney, G.

Tearney, G. J.

Torzicky, T.

Vergani, P.

Voorakaranam, R.

Wang, R.

Wang, S.

Webb, R. H.

White, W.

Wooten, E. L.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Wörhoff, K.

Yi-Yan, A.

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

Yun, S.

Yun, S. H.

B. I. Akca, E. W. Chang, S. Kling, A. Ramier, G. Scarcelli, S. Marcos, and S. H. Yun, “Observation of sound-induced corneal vibrational modes by optical coherence tomography,” Biomed. Opt. Express 6(9), 3313–3319 (2015).
[Crossref] [PubMed]

S. Kling, I. B. Akca, E. W. Chang, G. Scarcelli, N. Bekesi, S. H. Yun, and S. Marcos, “Numerical model of optical coherence tomographic vibrography imaging to estimate corneal biomechanical properties,” J. R. Soc. Interface 11(101), 20140920 (2014).
[Crossref] [PubMed]

Zhan, Q.

Zotter, S.

Biomed. Opt. Express (2)

IEEE J. Sel. Top. Quantum Electron. (1)

E. L. Wooten, K. M. Kissa, A. Yi-Yan, E. J. Murphy, D. A. Lafaw, P. F. Hallemeier, D. Maack, D. V. Attanasio, D. J. Fritz, G. J. McBrien, and D. E. Bossi, “A review of lithium niobate modulators for fiber-optic communications systems,” IEEE J. Sel. Top. Quantum Electron. 6(1), 69–82 (2000).
[Crossref]

IEEE Photonics Technol. Lett. (1)

B. E. Little and T. Murphy, “Design rules for maximally flat wavelength-insensitive optical power dividers using Mach-Zehnder structures,” IEEE Photonics Technol. Lett. 9(12), 1607–1609 (1997).
[Crossref]

J. Biophotonics (1)

T. Schmoll and R. A. Leitgeb, “Heart-beat-phase-coherent Doppler optical coherence tomography for measuring pulsatile ocular blood flow,” J. Biophotonics 6(3), 275–282 (2013).
[Crossref] [PubMed]

J. Lightwave Technol. (2)

J. R. Soc. Interface (1)

S. Kling, I. B. Akca, E. W. Chang, G. Scarcelli, N. Bekesi, S. H. Yun, and S. Marcos, “Numerical model of optical coherence tomographic vibrography imaging to estimate corneal biomechanical properties,” J. R. Soc. Interface 11(101), 20140920 (2014).
[Crossref] [PubMed]

Opt. Express (6)

Opt. Lett. (1)

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Three-dimensional view of the waveguide stack with relevant design parameters b) Beam propagation method simulation of the optical mode. The blue outline shows the cross-sectional profile of the waveguide geometry.
Fig. 2
Fig. 2 a) The schematic of the wavelength-insensitive electro-optic switch. An electrode is placed on top of the right arm of the coupler which is drawn in gray. b) Beam propagation method simulation of the switch; (Left) No phase difference between coupler arms, the input light will stay in the same arm (bar state). (Right) For a π phase difference between coupler arms, the input light will cross-couple to the other arm (cross state). L, D, Δx are the lengths of the straight sections of the directional couplers, and the delay section, and the separation between coupler arms, respectively.
Fig. 3
Fig. 3 a) Schematic of the OCT system with the proposed non-moving beam scanner design. Light coming from the input waveguide is divided into two; half towards on-chip reference arm, half towards the sample arm where several electro-optic switches are placed. The end of each sample arm is divided into two branches with a constant length difference, i.e. ΔL, between each for simultaneous imaging. b) Schematic of the electro-optic switch. c) Schematic of the two-mode interference based beam splitter/combiner. The splitting ratio is 50/50. d) Due to ΔL, signals from two different physical locations on the sample will be detected at two different depth locations which are separated by 2ΔL.
Fig. 4
Fig. 4 Simulation results of the electro-optic switch a) Refractive index difference between coupler arms versus power on the same arm (I2). For Δn = 2 × 10−3, 99% of the input light is cross-coupled to the other arm. b) The coupler is wavelength independent for a wavelength range of 100 nm, and its wavelength independency does not change after the voltage is turned on.
Fig. 5
Fig. 5 a) Schematic of the TMI-based beam splitter (b) and combiner (c). The loss of the splitter and combiner was simulated to be 0.18 dB. d) The splitting ratio remains constant over 200 nm bandwidth range.

Tables (1)

Tables Icon

Table 1 Effect of the Technological Tolerances on Electro-optic Switch Performance

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δn( V )=  1 2 n e 3 r 33 V t Γ

Metrics