Abstract

Spatial light modulator (SLM) is widely used in imaging applications for modulating light intensity and phase delay. In this paper, we report a novel device concept termed angular light modulator (ALM). Different from the SLM, the reported ALM employs a tunable blind structure to modulate the angular components of the incoming light waves. For spatial-domain light modulation, the ALM can be directly placed in front of an image sensor for selecting different angular light components. In this case, we can sweep the slat angle of the blind structure and capture multiple images corresponding to different perspectives. These images can then be back-projected for 3D tomographic refocusing. By using a fixed slat angle, we can also convert the incident-angle information into intensity variations for wavefront sensing or introduce a translational shift to the defocused object for high-speed autofocusing. For Fourier-domain light modulation, the ALM can be placed at the pupil plane of an optical system for reinforcing the light propagating trajectories. We show that a pupil-plane-modulated system is able to achieve a better resolution for out-of-focus objects while maintaining the same resolution for in-focus objects. The reported ALM can be fabricated on the chip level and controlled by an external magnetic field. It may provide new insights for developing novel imaging and vision devices.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Quantitative phase imaging and complex field reconstruction by pupil modulation differential phase contrast

Hangwen Lu, Jaebum Chung, Xiaoze Ou, and Changhuei Yang
Opt. Express 24(22) 25345-25361 (2016)

LCD-based digital eyeglass for modulating spatial-angular information

Zichao Bian, Jun Liao, Kaikai Guo, Xin Heng, and Guoan Zheng
Opt. Express 23(9) 11813-11818 (2015)

Flexible depth-of-field imaging system using a spatial light modulator

Deokhwa Hong, Kangmin Park, Hyungsuck Cho, and Minyoung Kim
Appl. Opt. 46(36) 8591-8599 (2007)

References

  • View by:
  • |
  • |
  • |

  1. L. Gao, J. Liang, C. Li, and L. V. Wang, “Single-shot compressed ultrafast photography at one hundred billion frames per second,” Nature 516(7529), 74–77 (2014).
    [Crossref] [PubMed]
  2. Q. S. Hanley, P. J. Verveer, M. J. Gemkow, D. Arndt-Jovin, and T. M. Jovin, “An optical sectioning programmable array microscope implemented with a digital micromirror device,” J. Microsc. 196(3), 317–331 (1999).
    [Crossref] [PubMed]
  3. V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM Microscopy: scanless two-photon imaging and photostimulation using spatial light modulators,” Front. Neural Circuits 2, 5 (2008).
    [Crossref] [PubMed]
  4. C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photonics Rev. 5(1), 81–101 (2011).
    [Crossref]
  5. M. J. Booth, “Adaptive optical microscopy: the ongoing quest for a perfect image,” Light Sci. Appl. 3(4), e165 (2014).
    [Crossref]
  6. N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods 7(2), 141–147 (2010).
    [Crossref] [PubMed]
  7. I. M. Vellekoop, “Feedback-based wavefront shaping,” Opt. Express 23(9), 12189–12206 (2015).
    [Crossref] [PubMed]
  8. K. Guo, Z. Bian, S. Dong, P. Nanda, Y. M. Wang, and G. Zheng, “Microscopy illumination engineering using a low-cost liquid crystal display,” Biomed. Opt. Express 6(2), 574–579 (2015).
    [Crossref] [PubMed]
  9. G. Zheng, C. Kolner, and C. Yang, “Microscopy refocusing and dark-field imaging by using a simple LED array,” Opt. Lett. 36(20), 3987–3989 (2011).
    [Crossref] [PubMed]
  10. K. Guo, J. Liao, Z. Bian, X. Heng, and G. Zheng, “InstantScope: a low-cost whole slide imaging system with instant focal plane detection,” Biomed. Opt. Express 6(9), 3210–3216 (2015).
    [Crossref] [PubMed]
  11. J. Liao, L. Bian, Z. Bian, Z. Zhang, C. Patel, K. Hoshino, Y. C. Eldar, and G. Zheng, “Single-frame rapid autofocusing for brightfield and fluorescence whole slide imaging,” Biomed. Opt. Express 7(11), 4763–4768 (2016).
    [Crossref]
  12. K. Noda, K. Hoshino, K. Matsumoto, and I. Shimoyama, “A shear stress sensor for tactile sensing with the piezoresistive cantilever standing in elastic material,” Sens. Actuators A Phys. 127(2), 295–301 (2006).
    [Crossref]

2016 (1)

2015 (3)

2014 (2)

M. J. Booth, “Adaptive optical microscopy: the ongoing quest for a perfect image,” Light Sci. Appl. 3(4), e165 (2014).
[Crossref]

L. Gao, J. Liang, C. Li, and L. V. Wang, “Single-shot compressed ultrafast photography at one hundred billion frames per second,” Nature 516(7529), 74–77 (2014).
[Crossref] [PubMed]

2011 (2)

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photonics Rev. 5(1), 81–101 (2011).
[Crossref]

G. Zheng, C. Kolner, and C. Yang, “Microscopy refocusing and dark-field imaging by using a simple LED array,” Opt. Lett. 36(20), 3987–3989 (2011).
[Crossref] [PubMed]

2010 (1)

N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods 7(2), 141–147 (2010).
[Crossref] [PubMed]

2008 (1)

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM Microscopy: scanless two-photon imaging and photostimulation using spatial light modulators,” Front. Neural Circuits 2, 5 (2008).
[Crossref] [PubMed]

2006 (1)

K. Noda, K. Hoshino, K. Matsumoto, and I. Shimoyama, “A shear stress sensor for tactile sensing with the piezoresistive cantilever standing in elastic material,” Sens. Actuators A Phys. 127(2), 295–301 (2006).
[Crossref]

1999 (1)

Q. S. Hanley, P. J. Verveer, M. J. Gemkow, D. Arndt-Jovin, and T. M. Jovin, “An optical sectioning programmable array microscope implemented with a digital micromirror device,” J. Microsc. 196(3), 317–331 (1999).
[Crossref] [PubMed]

Araya, R.

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM Microscopy: scanless two-photon imaging and photostimulation using spatial light modulators,” Front. Neural Circuits 2, 5 (2008).
[Crossref] [PubMed]

Arndt-Jovin, D.

Q. S. Hanley, P. J. Verveer, M. J. Gemkow, D. Arndt-Jovin, and T. M. Jovin, “An optical sectioning programmable array microscope implemented with a digital micromirror device,” J. Microsc. 196(3), 317–331 (1999).
[Crossref] [PubMed]

Bernet, S.

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photonics Rev. 5(1), 81–101 (2011).
[Crossref]

Betzig, E.

N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods 7(2), 141–147 (2010).
[Crossref] [PubMed]

Bian, L.

Bian, Z.

Booth, M. J.

M. J. Booth, “Adaptive optical microscopy: the ongoing quest for a perfect image,” Light Sci. Appl. 3(4), e165 (2014).
[Crossref]

Dong, S.

Eldar, Y. C.

Gao, L.

L. Gao, J. Liang, C. Li, and L. V. Wang, “Single-shot compressed ultrafast photography at one hundred billion frames per second,” Nature 516(7529), 74–77 (2014).
[Crossref] [PubMed]

Gemkow, M. J.

Q. S. Hanley, P. J. Verveer, M. J. Gemkow, D. Arndt-Jovin, and T. M. Jovin, “An optical sectioning programmable array microscope implemented with a digital micromirror device,” J. Microsc. 196(3), 317–331 (1999).
[Crossref] [PubMed]

Guo, K.

Hanley, Q. S.

Q. S. Hanley, P. J. Verveer, M. J. Gemkow, D. Arndt-Jovin, and T. M. Jovin, “An optical sectioning programmable array microscope implemented with a digital micromirror device,” J. Microsc. 196(3), 317–331 (1999).
[Crossref] [PubMed]

Heng, X.

Hoshino, K.

J. Liao, L. Bian, Z. Bian, Z. Zhang, C. Patel, K. Hoshino, Y. C. Eldar, and G. Zheng, “Single-frame rapid autofocusing for brightfield and fluorescence whole slide imaging,” Biomed. Opt. Express 7(11), 4763–4768 (2016).
[Crossref]

K. Noda, K. Hoshino, K. Matsumoto, and I. Shimoyama, “A shear stress sensor for tactile sensing with the piezoresistive cantilever standing in elastic material,” Sens. Actuators A Phys. 127(2), 295–301 (2006).
[Crossref]

Jesacher, A.

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photonics Rev. 5(1), 81–101 (2011).
[Crossref]

Ji, N.

N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods 7(2), 141–147 (2010).
[Crossref] [PubMed]

Jovin, T. M.

Q. S. Hanley, P. J. Verveer, M. J. Gemkow, D. Arndt-Jovin, and T. M. Jovin, “An optical sectioning programmable array microscope implemented with a digital micromirror device,” J. Microsc. 196(3), 317–331 (1999).
[Crossref] [PubMed]

Kolner, C.

Li, C.

L. Gao, J. Liang, C. Li, and L. V. Wang, “Single-shot compressed ultrafast photography at one hundred billion frames per second,” Nature 516(7529), 74–77 (2014).
[Crossref] [PubMed]

Liang, J.

L. Gao, J. Liang, C. Li, and L. V. Wang, “Single-shot compressed ultrafast photography at one hundred billion frames per second,” Nature 516(7529), 74–77 (2014).
[Crossref] [PubMed]

Liao, J.

Matsumoto, K.

K. Noda, K. Hoshino, K. Matsumoto, and I. Shimoyama, “A shear stress sensor for tactile sensing with the piezoresistive cantilever standing in elastic material,” Sens. Actuators A Phys. 127(2), 295–301 (2006).
[Crossref]

Maurer, C.

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photonics Rev. 5(1), 81–101 (2011).
[Crossref]

Milkie, D. E.

N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods 7(2), 141–147 (2010).
[Crossref] [PubMed]

Nanda, P.

Nikolenko, V.

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM Microscopy: scanless two-photon imaging and photostimulation using spatial light modulators,” Front. Neural Circuits 2, 5 (2008).
[Crossref] [PubMed]

Noda, K.

K. Noda, K. Hoshino, K. Matsumoto, and I. Shimoyama, “A shear stress sensor for tactile sensing with the piezoresistive cantilever standing in elastic material,” Sens. Actuators A Phys. 127(2), 295–301 (2006).
[Crossref]

Patel, C.

Peterka, D. S.

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM Microscopy: scanless two-photon imaging and photostimulation using spatial light modulators,” Front. Neural Circuits 2, 5 (2008).
[Crossref] [PubMed]

Ritsch-Marte, M.

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photonics Rev. 5(1), 81–101 (2011).
[Crossref]

Shimoyama, I.

K. Noda, K. Hoshino, K. Matsumoto, and I. Shimoyama, “A shear stress sensor for tactile sensing with the piezoresistive cantilever standing in elastic material,” Sens. Actuators A Phys. 127(2), 295–301 (2006).
[Crossref]

Vellekoop, I. M.

Verveer, P. J.

Q. S. Hanley, P. J. Verveer, M. J. Gemkow, D. Arndt-Jovin, and T. M. Jovin, “An optical sectioning programmable array microscope implemented with a digital micromirror device,” J. Microsc. 196(3), 317–331 (1999).
[Crossref] [PubMed]

Wang, L. V.

L. Gao, J. Liang, C. Li, and L. V. Wang, “Single-shot compressed ultrafast photography at one hundred billion frames per second,” Nature 516(7529), 74–77 (2014).
[Crossref] [PubMed]

Wang, Y. M.

Watson, B. O.

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM Microscopy: scanless two-photon imaging and photostimulation using spatial light modulators,” Front. Neural Circuits 2, 5 (2008).
[Crossref] [PubMed]

Woodruff, A.

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM Microscopy: scanless two-photon imaging and photostimulation using spatial light modulators,” Front. Neural Circuits 2, 5 (2008).
[Crossref] [PubMed]

Yang, C.

Yuste, R.

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM Microscopy: scanless two-photon imaging and photostimulation using spatial light modulators,” Front. Neural Circuits 2, 5 (2008).
[Crossref] [PubMed]

Zhang, Z.

Zheng, G.

Biomed. Opt. Express (3)

Front. Neural Circuits (1)

V. Nikolenko, B. O. Watson, R. Araya, A. Woodruff, D. S. Peterka, and R. Yuste, “SLM Microscopy: scanless two-photon imaging and photostimulation using spatial light modulators,” Front. Neural Circuits 2, 5 (2008).
[Crossref] [PubMed]

J. Microsc. (1)

Q. S. Hanley, P. J. Verveer, M. J. Gemkow, D. Arndt-Jovin, and T. M. Jovin, “An optical sectioning programmable array microscope implemented with a digital micromirror device,” J. Microsc. 196(3), 317–331 (1999).
[Crossref] [PubMed]

Laser Photonics Rev. (1)

C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photonics Rev. 5(1), 81–101 (2011).
[Crossref]

Light Sci. Appl. (1)

M. J. Booth, “Adaptive optical microscopy: the ongoing quest for a perfect image,” Light Sci. Appl. 3(4), e165 (2014).
[Crossref]

Nat. Methods (1)

N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods 7(2), 141–147 (2010).
[Crossref] [PubMed]

Nature (1)

L. Gao, J. Liang, C. Li, and L. V. Wang, “Single-shot compressed ultrafast photography at one hundred billion frames per second,” Nature 516(7529), 74–77 (2014).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Sens. Actuators A Phys. (1)

K. Noda, K. Hoshino, K. Matsumoto, and I. Shimoyama, “A shear stress sensor for tactile sensing with the piezoresistive cantilever standing in elastic material,” Sens. Actuators A Phys. 127(2), 295–301 (2006).
[Crossref]

Supplementary Material (3)

NameDescription
» Visualization 1: MP4 (1445 KB)      Visualization 1
» Visualization 2: MP4 (11036 KB)      Visualization 2
» Visualization 3: MP4 (2756 KB)      Visualization 3

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 The regular spatial light modulator (SLM) and the proposed angular light modulator (ALM). (a) The regular SLM modulates the intensity and/or phase delay of the income light beam. (b) The proposed ALM modulates the angular information of the incoming light beam. (c1) The spatial-domain light modulation using ALM, where the tunable blind structure is directly placed on top of an image sensor. (c2) The Fourier-domain light modulation using ALM, where the tunable blind structure is placed at the pupil plane of the optical system.
Fig. 2
Fig. 2 The design and testing of the macroscale ALM prototype. (a) (Visualization 1) The mechanical design of the movable frame. (b) A standard photolithography process was used to produce patterned brass slats. We oxidized the brass slats using the BrassBlack solution in the Petri dish. After this process, the oxidized slat became a good light-absorbing material in the tunable blind structure. (c) (Visualization 2) By tuning the slat angle of the device, we can capture images with different view angles for 3D tomographic reconstruction. (d) The transmitted intensity signal was measured as a function of the rotation angle of the entire setup. We achieved angular selectivity and tunability by using the ALM prototype.
Fig. 3
Fig. 3 Spatial-domain light modulation using the ALM prototype (Visualization 3). (a)-(b) Photographic imaging and 3D refocusing of a scene. An f/1.8 lens was used in this system. (c)-(d) 3D refocusing of micro-objects. Two f/1.8 lenses were used to form a 4f system.
Fig. 4
Fig. 4 Recovering the defocus distance using the ALM. The slats of the ALM were adjusted to a fixed angle to achieve angular selectivity. This arrangement introduces a translation shift as the object moves away from the in-focus position. (a) The captured images with different defocus distances. (b) The relationship between the defocus distances and the translational shifts.
Fig. 5
Fig. 5 Fourier-domain light modulation using the ALM prototype. (a)-(b) The experimental setup, where we placed the ALM at the Fourier plane of a 4f system. (c) The images captured without using the ALM. (d) The images captured with the ALM. We maintain the same resolution performance for the in-focus object and achieve a better resolution performance for out-of-focus objects. (e) We can adjust the width or the density of the slats to adjust the cutoff angle at different heights. As such, we can design the relationship between the effective aperture size and the defocus distance.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

h · z / ( f · ( z + f ) ) < θ 0

Metrics