Abstract

We realized a polarization-independent split-ratio-tunable optical beam splitter supporting two input and output ports through a stable interferometer. By adjusting the angle of a half-wave plate in the interferometer, we can tune the beam splitter reflectivities for both input ports from 0 to 1, regardless of the input light polarization. High-fidelity polarization-preserving transmission from input to output ports was verified by complete quantum process tomography. Nearly optimal interference effects at the beam splitter with various split ratios were observed by two-photon Hong-Ou-Mandel interference for different input polarization states. Such a beam splitter could find a variety of applications in classical and quantum optical technologies.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Experimental realization of a resource-saving polarization-independent orbital-angular-momentum-preserving tunable beam splitter

Ya-Ping Li, Fang-Xiang Wang, Wei Chen, Guo-Wei Zhang, Zhen-Qiang Yin, De-Yong He, Shuang Wang, Guang-Can Guo, and Zheng-Fu Han
Opt. Lett. 44(4) 755-758 (2019)

A high-speed tunable beam splitter for feed-forward photonic quantum information processing

Xiao-song Ma, Stefan Zotter, Nuray Tetik, Angie Qarry, Thomas Jennewein, and Anton Zeilinger
Opt. Express 19(23) 22723-22730 (2011)

Complete three photon Hong-Ou-Mandel interference at a three port device

Simon Mährlein, Joachim von Zanthier, and Girish S. Agarwal
Opt. Express 23(12) 15833-15847 (2015)

References

  • View by:
  • |
  • |
  • |

  1. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).
    [Crossref]
  2. A. Zeilinger, G. Weihs, T. Jennewein, and M. Aspelmeyer, “Happy centenary, photon,” Nature 433, 230–238 (2005).
    [Crossref] [PubMed]
  3. Z.-Y. Jeff Ou, Multi-Photon Quantum Interference (Springer, 2007).
  4. M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, “Experimental realization of any discrete unitary operator,” Phys. Rev. Lett. 73, 58–61 (1994).
    [Crossref] [PubMed]
  5. E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
    [Crossref] [PubMed]
  6. P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
    [Crossref]
  7. N. Gisin and R. Thew, “Quantum communication,” Nat. Photonics 1, 165–171 (2007).
    [Crossref]
  8. V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced measurements: beating the standard quantum limit,” Science 306, 1330–1336 (2004).
    [Crossref] [PubMed]
  9. V. Giovannetti, S. Lloyd, and L. Maccone, “Advances in quantum metrology,” Nat. Photonics 5, 222–229 (2011).
    [Crossref]
  10. A. Aspuru-Guzik and P. Walther, “Photonic quantum simulators,” Nat. Phys. 8, 285–291 (2012).
    [Crossref]
  11. J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009).
    [Crossref]
  12. J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter, A. Zeilinger, and M. Żukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777–838 (2012).
    [Crossref]
  13. For example, see Thorlabs standard products: https://www.thorlabs.com/navigation.cfm?guide_id=18 .
  14. X.-S. Ma, B. Dakic, W. Naylor, A. Zeilinger, and P. Walther, “Quantum simulation of the wavefunction to probe frustrated Heisenberg spin systems,” Nat. Phys. 7, 399–405 (2011).
    [Crossref]
  15. A. Orieux, J. Boutari, M. Barbieri, M. Paternostro, and P. Mataloni, “Experimental linear-optics simulation of multipartite non-locality in the ground state of a quantum Ising ring,” Sci. Rep. 4, 7184 (2014).
    [Crossref] [PubMed]
  16. X. Zou, J. Shu, and G. Guo, “Simple scheme for generating four-photon polarization-entangled decoherence-free states using spontaneous parametric down-conversions,” Phys. Rev. A 73, 054301 (2006).
    [Crossref]
  17. Y.-X. Gong, X.-B. Zou, X.-L. Niu, J. Li, Y.-F. Huang, and G.-C. Guo, “Generation of arbitrary four-photon polarization-entangled decoherence-free states,” Phys. Rev. A 77, 042317 (2008).
    [Crossref]
  18. N. Spagnolo, C. Vitelli, S. Giacomini, F. Sciarrino, and F. De Martini, “Polarization preserving ultra fast optical shutter for quantum information processing,” Opt. Express 16, 17609–17615 (2008).
    [Crossref] [PubMed]
  19. M. A. Hall, J. B. Altepeter, and P. Kumar, “Ultrafast switching of photonic entanglement,” Phys. Rev. Lett. 106, 053901 (2011).
    [Crossref] [PubMed]
  20. X.-S. Ma, S. Zotter, N. Tetik, A. Qarry, T. Jennewein, and A. Zeilinger, “A high-speed tunable beam splitter for feed-forward photonic quantum information processing,” Opt. Express 19, 22723–22730 (2011).
    [Crossref] [PubMed]
  21. J. L. O’Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning, “Demonstration of an all-optical quantum controlled-NOT gate,” Nature 426, 264–267 (2003).
    [Crossref]
  22. M. A. Broome, A. Fedrizzi, B. P. Lanyon, I. Kassal, A. Aspuru-Guzik, and A. G. White, “Discrete single-Photon quantum walks with tunable decoherence,” Phys. Rev. Lett. 104, 153602 (2010).
    [Crossref] [PubMed]
  23. I. L. Chuang and M. A. Nielsen, “Prescription for experimental determination of the dynamics of a quantum black box,” J. Mod. Opt. 44, 2455–2467 (1997).
    [Crossref]
  24. J. F. Poyatos, J. I. Cirac, and P. Zoller, “Complete characterization of a quantum process: the two-bit quantum gate,” Phys. Rev. Lett. 78, 390–393 (1997).
    [Crossref]
  25. J. L. O’Brien, G. J. Pryde, A. Gilchrist, D. F. V. James, N. K. Langford, T. C. Ralph, and A. G. White, “Quantum process tomography of a controlled-not gate,” Phys. Rev. Lett. 93, 080502 (2004).
    [Crossref]
  26. S. Takeuchi, “Beamlike twin-photon generation by use of type II parametric downconversion,” Opt. Lett. 26, 843–845 (2001).
    [Crossref]
  27. D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
    [Crossref]
  28. A. Gilchrist, N. K. Langford, and M. A. Nielsen, “Distance measures to compare real and ideal quantum processes,” Phys. Rev. A 71, 062310 (2005).
    [Crossref]
  29. C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
    [Crossref] [PubMed]
  30. N. K. Langford, T. J. Weinhold, R. Prevedel, K. J. Resch, A. Gilchrist, J. L. O’Brien, G. J. Pryde, and A. G. White, “Demonstration of a simple entangling optical gate and its use in Bell-state analysis,” Phys. Rev. Lett. 95, 210504 (2005).
    [Crossref] [PubMed]
  31. N. Kiesel, C. Schmid, U. Weber, R. Ursin, and H. Weinfurter, “Linear optics controlled-phase gate made simple,” Phys. Rev. Lett. 95, 210505 (2005).
    [Crossref] [PubMed]
  32. R. Okamoto, H. F. Hofmann, S. Takeuchi, and K. Sasaki, “Demonstration of an optical quantum controlled-not gate without path interference,” Phys. Rev. Lett. 95, 210506 (2005).
    [Crossref] [PubMed]
  33. Y.-X. Gong, X.-B. Zou, Y.-F. Huang, and G.-C. Guo, “A simple scheme for expanding a polarization-entangled W state by adding one photon,” J. Phys. B: At. Mol. Opt. 42, 035503 (2009).
    [Crossref]
  34. T. Tashima, Şahin Kaya Özdemir, T. Yamamoto, M. Koashi, and N. Imoto, “Local expansion of photonic W state using a polarization-dependent beamsplitter,” New J. Phys. 11, 023024 (2009).
    [Crossref]

2014 (1)

A. Orieux, J. Boutari, M. Barbieri, M. Paternostro, and P. Mataloni, “Experimental linear-optics simulation of multipartite non-locality in the ground state of a quantum Ising ring,” Sci. Rep. 4, 7184 (2014).
[Crossref] [PubMed]

2012 (2)

J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter, A. Zeilinger, and M. Żukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777–838 (2012).
[Crossref]

A. Aspuru-Guzik and P. Walther, “Photonic quantum simulators,” Nat. Phys. 8, 285–291 (2012).
[Crossref]

2011 (4)

V. Giovannetti, S. Lloyd, and L. Maccone, “Advances in quantum metrology,” Nat. Photonics 5, 222–229 (2011).
[Crossref]

X.-S. Ma, B. Dakic, W. Naylor, A. Zeilinger, and P. Walther, “Quantum simulation of the wavefunction to probe frustrated Heisenberg spin systems,” Nat. Phys. 7, 399–405 (2011).
[Crossref]

M. A. Hall, J. B. Altepeter, and P. Kumar, “Ultrafast switching of photonic entanglement,” Phys. Rev. Lett. 106, 053901 (2011).
[Crossref] [PubMed]

X.-S. Ma, S. Zotter, N. Tetik, A. Qarry, T. Jennewein, and A. Zeilinger, “A high-speed tunable beam splitter for feed-forward photonic quantum information processing,” Opt. Express 19, 22723–22730 (2011).
[Crossref] [PubMed]

2010 (1)

M. A. Broome, A. Fedrizzi, B. P. Lanyon, I. Kassal, A. Aspuru-Guzik, and A. G. White, “Discrete single-Photon quantum walks with tunable decoherence,” Phys. Rev. Lett. 104, 153602 (2010).
[Crossref] [PubMed]

2009 (3)

Y.-X. Gong, X.-B. Zou, Y.-F. Huang, and G.-C. Guo, “A simple scheme for expanding a polarization-entangled W state by adding one photon,” J. Phys. B: At. Mol. Opt. 42, 035503 (2009).
[Crossref]

T. Tashima, Şahin Kaya Özdemir, T. Yamamoto, M. Koashi, and N. Imoto, “Local expansion of photonic W state using a polarization-dependent beamsplitter,” New J. Phys. 11, 023024 (2009).
[Crossref]

J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009).
[Crossref]

2008 (2)

Y.-X. Gong, X.-B. Zou, X.-L. Niu, J. Li, Y.-F. Huang, and G.-C. Guo, “Generation of arbitrary four-photon polarization-entangled decoherence-free states,” Phys. Rev. A 77, 042317 (2008).
[Crossref]

N. Spagnolo, C. Vitelli, S. Giacomini, F. Sciarrino, and F. De Martini, “Polarization preserving ultra fast optical shutter for quantum information processing,” Opt. Express 16, 17609–17615 (2008).
[Crossref] [PubMed]

2007 (2)

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[Crossref]

N. Gisin and R. Thew, “Quantum communication,” Nat. Photonics 1, 165–171 (2007).
[Crossref]

2006 (1)

X. Zou, J. Shu, and G. Guo, “Simple scheme for generating four-photon polarization-entangled decoherence-free states using spontaneous parametric down-conversions,” Phys. Rev. A 73, 054301 (2006).
[Crossref]

2005 (5)

A. Zeilinger, G. Weihs, T. Jennewein, and M. Aspelmeyer, “Happy centenary, photon,” Nature 433, 230–238 (2005).
[Crossref] [PubMed]

A. Gilchrist, N. K. Langford, and M. A. Nielsen, “Distance measures to compare real and ideal quantum processes,” Phys. Rev. A 71, 062310 (2005).
[Crossref]

N. K. Langford, T. J. Weinhold, R. Prevedel, K. J. Resch, A. Gilchrist, J. L. O’Brien, G. J. Pryde, and A. G. White, “Demonstration of a simple entangling optical gate and its use in Bell-state analysis,” Phys. Rev. Lett. 95, 210504 (2005).
[Crossref] [PubMed]

N. Kiesel, C. Schmid, U. Weber, R. Ursin, and H. Weinfurter, “Linear optics controlled-phase gate made simple,” Phys. Rev. Lett. 95, 210505 (2005).
[Crossref] [PubMed]

R. Okamoto, H. F. Hofmann, S. Takeuchi, and K. Sasaki, “Demonstration of an optical quantum controlled-not gate without path interference,” Phys. Rev. Lett. 95, 210506 (2005).
[Crossref] [PubMed]

2004 (2)

J. L. O’Brien, G. J. Pryde, A. Gilchrist, D. F. V. James, N. K. Langford, T. C. Ralph, and A. G. White, “Quantum process tomography of a controlled-not gate,” Phys. Rev. Lett. 93, 080502 (2004).
[Crossref]

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced measurements: beating the standard quantum limit,” Science 306, 1330–1336 (2004).
[Crossref] [PubMed]

2003 (1)

J. L. O’Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning, “Demonstration of an all-optical quantum controlled-NOT gate,” Nature 426, 264–267 (2003).
[Crossref]

2001 (3)

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref] [PubMed]

S. Takeuchi, “Beamlike twin-photon generation by use of type II parametric downconversion,” Opt. Lett. 26, 843–845 (2001).
[Crossref]

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[Crossref]

1997 (2)

I. L. Chuang and M. A. Nielsen, “Prescription for experimental determination of the dynamics of a quantum black box,” J. Mod. Opt. 44, 2455–2467 (1997).
[Crossref]

J. F. Poyatos, J. I. Cirac, and P. Zoller, “Complete characterization of a quantum process: the two-bit quantum gate,” Phys. Rev. Lett. 78, 390–393 (1997).
[Crossref]

1994 (1)

M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, “Experimental realization of any discrete unitary operator,” Phys. Rev. Lett. 73, 58–61 (1994).
[Crossref] [PubMed]

1987 (1)

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref] [PubMed]

Altepeter, J. B.

M. A. Hall, J. B. Altepeter, and P. Kumar, “Ultrafast switching of photonic entanglement,” Phys. Rev. Lett. 106, 053901 (2011).
[Crossref] [PubMed]

Aspelmeyer, M.

A. Zeilinger, G. Weihs, T. Jennewein, and M. Aspelmeyer, “Happy centenary, photon,” Nature 433, 230–238 (2005).
[Crossref] [PubMed]

Aspuru-Guzik, A.

A. Aspuru-Guzik and P. Walther, “Photonic quantum simulators,” Nat. Phys. 8, 285–291 (2012).
[Crossref]

M. A. Broome, A. Fedrizzi, B. P. Lanyon, I. Kassal, A. Aspuru-Guzik, and A. G. White, “Discrete single-Photon quantum walks with tunable decoherence,” Phys. Rev. Lett. 104, 153602 (2010).
[Crossref] [PubMed]

Barbieri, M.

A. Orieux, J. Boutari, M. Barbieri, M. Paternostro, and P. Mataloni, “Experimental linear-optics simulation of multipartite non-locality in the ground state of a quantum Ising ring,” Sci. Rep. 4, 7184 (2014).
[Crossref] [PubMed]

Bernstein, H. J.

M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, “Experimental realization of any discrete unitary operator,” Phys. Rev. Lett. 73, 58–61 (1994).
[Crossref] [PubMed]

Bertani, P.

M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, “Experimental realization of any discrete unitary operator,” Phys. Rev. Lett. 73, 58–61 (1994).
[Crossref] [PubMed]

Boutari, J.

A. Orieux, J. Boutari, M. Barbieri, M. Paternostro, and P. Mataloni, “Experimental linear-optics simulation of multipartite non-locality in the ground state of a quantum Ising ring,” Sci. Rep. 4, 7184 (2014).
[Crossref] [PubMed]

Branning, D.

J. L. O’Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning, “Demonstration of an all-optical quantum controlled-NOT gate,” Nature 426, 264–267 (2003).
[Crossref]

Broome, M. A.

M. A. Broome, A. Fedrizzi, B. P. Lanyon, I. Kassal, A. Aspuru-Guzik, and A. G. White, “Discrete single-Photon quantum walks with tunable decoherence,” Phys. Rev. Lett. 104, 153602 (2010).
[Crossref] [PubMed]

Chen, Z.-B.

J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter, A. Zeilinger, and M. Żukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777–838 (2012).
[Crossref]

Chuang, I. L.

I. L. Chuang and M. A. Nielsen, “Prescription for experimental determination of the dynamics of a quantum black box,” J. Mod. Opt. 44, 2455–2467 (1997).
[Crossref]

Cirac, J. I.

J. F. Poyatos, J. I. Cirac, and P. Zoller, “Complete characterization of a quantum process: the two-bit quantum gate,” Phys. Rev. Lett. 78, 390–393 (1997).
[Crossref]

Dakic, B.

X.-S. Ma, B. Dakic, W. Naylor, A. Zeilinger, and P. Walther, “Quantum simulation of the wavefunction to probe frustrated Heisenberg spin systems,” Nat. Phys. 7, 399–405 (2011).
[Crossref]

De Martini, F.

Dowling, J. P.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[Crossref]

Fedrizzi, A.

M. A. Broome, A. Fedrizzi, B. P. Lanyon, I. Kassal, A. Aspuru-Guzik, and A. G. White, “Discrete single-Photon quantum walks with tunable decoherence,” Phys. Rev. Lett. 104, 153602 (2010).
[Crossref] [PubMed]

Furusawa, A.

J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009).
[Crossref]

Giacomini, S.

Gilchrist, A.

N. K. Langford, T. J. Weinhold, R. Prevedel, K. J. Resch, A. Gilchrist, J. L. O’Brien, G. J. Pryde, and A. G. White, “Demonstration of a simple entangling optical gate and its use in Bell-state analysis,” Phys. Rev. Lett. 95, 210504 (2005).
[Crossref] [PubMed]

A. Gilchrist, N. K. Langford, and M. A. Nielsen, “Distance measures to compare real and ideal quantum processes,” Phys. Rev. A 71, 062310 (2005).
[Crossref]

J. L. O’Brien, G. J. Pryde, A. Gilchrist, D. F. V. James, N. K. Langford, T. C. Ralph, and A. G. White, “Quantum process tomography of a controlled-not gate,” Phys. Rev. Lett. 93, 080502 (2004).
[Crossref]

Giovannetti, V.

V. Giovannetti, S. Lloyd, and L. Maccone, “Advances in quantum metrology,” Nat. Photonics 5, 222–229 (2011).
[Crossref]

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced measurements: beating the standard quantum limit,” Science 306, 1330–1336 (2004).
[Crossref] [PubMed]

Gisin, N.

N. Gisin and R. Thew, “Quantum communication,” Nat. Photonics 1, 165–171 (2007).
[Crossref]

Gong, Y.-X.

Y.-X. Gong, X.-B. Zou, Y.-F. Huang, and G.-C. Guo, “A simple scheme for expanding a polarization-entangled W state by adding one photon,” J. Phys. B: At. Mol. Opt. 42, 035503 (2009).
[Crossref]

Y.-X. Gong, X.-B. Zou, X.-L. Niu, J. Li, Y.-F. Huang, and G.-C. Guo, “Generation of arbitrary four-photon polarization-entangled decoherence-free states,” Phys. Rev. A 77, 042317 (2008).
[Crossref]

Guo, G.

X. Zou, J. Shu, and G. Guo, “Simple scheme for generating four-photon polarization-entangled decoherence-free states using spontaneous parametric down-conversions,” Phys. Rev. A 73, 054301 (2006).
[Crossref]

Guo, G.-C.

Y.-X. Gong, X.-B. Zou, Y.-F. Huang, and G.-C. Guo, “A simple scheme for expanding a polarization-entangled W state by adding one photon,” J. Phys. B: At. Mol. Opt. 42, 035503 (2009).
[Crossref]

Y.-X. Gong, X.-B. Zou, X.-L. Niu, J. Li, Y.-F. Huang, and G.-C. Guo, “Generation of arbitrary four-photon polarization-entangled decoherence-free states,” Phys. Rev. A 77, 042317 (2008).
[Crossref]

Hall, M. A.

M. A. Hall, J. B. Altepeter, and P. Kumar, “Ultrafast switching of photonic entanglement,” Phys. Rev. Lett. 106, 053901 (2011).
[Crossref] [PubMed]

Hofmann, H. F.

R. Okamoto, H. F. Hofmann, S. Takeuchi, and K. Sasaki, “Demonstration of an optical quantum controlled-not gate without path interference,” Phys. Rev. Lett. 95, 210506 (2005).
[Crossref] [PubMed]

Hong, C. K.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref] [PubMed]

Huang, Y.-F.

Y.-X. Gong, X.-B. Zou, Y.-F. Huang, and G.-C. Guo, “A simple scheme for expanding a polarization-entangled W state by adding one photon,” J. Phys. B: At. Mol. Opt. 42, 035503 (2009).
[Crossref]

Y.-X. Gong, X.-B. Zou, X.-L. Niu, J. Li, Y.-F. Huang, and G.-C. Guo, “Generation of arbitrary four-photon polarization-entangled decoherence-free states,” Phys. Rev. A 77, 042317 (2008).
[Crossref]

Imoto, N.

T. Tashima, Şahin Kaya Özdemir, T. Yamamoto, M. Koashi, and N. Imoto, “Local expansion of photonic W state using a polarization-dependent beamsplitter,” New J. Phys. 11, 023024 (2009).
[Crossref]

James, D. F. V.

J. L. O’Brien, G. J. Pryde, A. Gilchrist, D. F. V. James, N. K. Langford, T. C. Ralph, and A. G. White, “Quantum process tomography of a controlled-not gate,” Phys. Rev. Lett. 93, 080502 (2004).
[Crossref]

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[Crossref]

Jeff Ou, Z.-Y.

Z.-Y. Jeff Ou, Multi-Photon Quantum Interference (Springer, 2007).

Jennewein, T.

Kassal, I.

M. A. Broome, A. Fedrizzi, B. P. Lanyon, I. Kassal, A. Aspuru-Guzik, and A. G. White, “Discrete single-Photon quantum walks with tunable decoherence,” Phys. Rev. Lett. 104, 153602 (2010).
[Crossref] [PubMed]

Kiesel, N.

N. Kiesel, C. Schmid, U. Weber, R. Ursin, and H. Weinfurter, “Linear optics controlled-phase gate made simple,” Phys. Rev. Lett. 95, 210505 (2005).
[Crossref] [PubMed]

Knill, E.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref] [PubMed]

Koashi, M.

T. Tashima, Şahin Kaya Özdemir, T. Yamamoto, M. Koashi, and N. Imoto, “Local expansion of photonic W state using a polarization-dependent beamsplitter,” New J. Phys. 11, 023024 (2009).
[Crossref]

Kok, P.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[Crossref]

Kumar, P.

M. A. Hall, J. B. Altepeter, and P. Kumar, “Ultrafast switching of photonic entanglement,” Phys. Rev. Lett. 106, 053901 (2011).
[Crossref] [PubMed]

Kwiat, P. G.

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[Crossref]

Laflamme, R.

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref] [PubMed]

Langford, N. K.

A. Gilchrist, N. K. Langford, and M. A. Nielsen, “Distance measures to compare real and ideal quantum processes,” Phys. Rev. A 71, 062310 (2005).
[Crossref]

N. K. Langford, T. J. Weinhold, R. Prevedel, K. J. Resch, A. Gilchrist, J. L. O’Brien, G. J. Pryde, and A. G. White, “Demonstration of a simple entangling optical gate and its use in Bell-state analysis,” Phys. Rev. Lett. 95, 210504 (2005).
[Crossref] [PubMed]

J. L. O’Brien, G. J. Pryde, A. Gilchrist, D. F. V. James, N. K. Langford, T. C. Ralph, and A. G. White, “Quantum process tomography of a controlled-not gate,” Phys. Rev. Lett. 93, 080502 (2004).
[Crossref]

Lanyon, B. P.

M. A. Broome, A. Fedrizzi, B. P. Lanyon, I. Kassal, A. Aspuru-Guzik, and A. G. White, “Discrete single-Photon quantum walks with tunable decoherence,” Phys. Rev. Lett. 104, 153602 (2010).
[Crossref] [PubMed]

Li, J.

Y.-X. Gong, X.-B. Zou, X.-L. Niu, J. Li, Y.-F. Huang, and G.-C. Guo, “Generation of arbitrary four-photon polarization-entangled decoherence-free states,” Phys. Rev. A 77, 042317 (2008).
[Crossref]

Lloyd, S.

V. Giovannetti, S. Lloyd, and L. Maccone, “Advances in quantum metrology,” Nat. Photonics 5, 222–229 (2011).
[Crossref]

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced measurements: beating the standard quantum limit,” Science 306, 1330–1336 (2004).
[Crossref] [PubMed]

Lu, C.-Y.

J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter, A. Zeilinger, and M. Żukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777–838 (2012).
[Crossref]

Ma, X.-S.

X.-S. Ma, B. Dakic, W. Naylor, A. Zeilinger, and P. Walther, “Quantum simulation of the wavefunction to probe frustrated Heisenberg spin systems,” Nat. Phys. 7, 399–405 (2011).
[Crossref]

X.-S. Ma, S. Zotter, N. Tetik, A. Qarry, T. Jennewein, and A. Zeilinger, “A high-speed tunable beam splitter for feed-forward photonic quantum information processing,” Opt. Express 19, 22723–22730 (2011).
[Crossref] [PubMed]

Maccone, L.

V. Giovannetti, S. Lloyd, and L. Maccone, “Advances in quantum metrology,” Nat. Photonics 5, 222–229 (2011).
[Crossref]

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced measurements: beating the standard quantum limit,” Science 306, 1330–1336 (2004).
[Crossref] [PubMed]

Mandel, L.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref] [PubMed]

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).
[Crossref]

Mataloni, P.

A. Orieux, J. Boutari, M. Barbieri, M. Paternostro, and P. Mataloni, “Experimental linear-optics simulation of multipartite non-locality in the ground state of a quantum Ising ring,” Sci. Rep. 4, 7184 (2014).
[Crossref] [PubMed]

Milburn, G. J.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[Crossref]

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref] [PubMed]

Munro, W. J.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[Crossref]

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[Crossref]

Naylor, W.

X.-S. Ma, B. Dakic, W. Naylor, A. Zeilinger, and P. Walther, “Quantum simulation of the wavefunction to probe frustrated Heisenberg spin systems,” Nat. Phys. 7, 399–405 (2011).
[Crossref]

Nemoto, K.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[Crossref]

Nielsen, M. A.

A. Gilchrist, N. K. Langford, and M. A. Nielsen, “Distance measures to compare real and ideal quantum processes,” Phys. Rev. A 71, 062310 (2005).
[Crossref]

I. L. Chuang and M. A. Nielsen, “Prescription for experimental determination of the dynamics of a quantum black box,” J. Mod. Opt. 44, 2455–2467 (1997).
[Crossref]

Niu, X.-L.

Y.-X. Gong, X.-B. Zou, X.-L. Niu, J. Li, Y.-F. Huang, and G.-C. Guo, “Generation of arbitrary four-photon polarization-entangled decoherence-free states,” Phys. Rev. A 77, 042317 (2008).
[Crossref]

O’Brien, J. L.

J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009).
[Crossref]

N. K. Langford, T. J. Weinhold, R. Prevedel, K. J. Resch, A. Gilchrist, J. L. O’Brien, G. J. Pryde, and A. G. White, “Demonstration of a simple entangling optical gate and its use in Bell-state analysis,” Phys. Rev. Lett. 95, 210504 (2005).
[Crossref] [PubMed]

J. L. O’Brien, G. J. Pryde, A. Gilchrist, D. F. V. James, N. K. Langford, T. C. Ralph, and A. G. White, “Quantum process tomography of a controlled-not gate,” Phys. Rev. Lett. 93, 080502 (2004).
[Crossref]

J. L. O’Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning, “Demonstration of an all-optical quantum controlled-NOT gate,” Nature 426, 264–267 (2003).
[Crossref]

Okamoto, R.

R. Okamoto, H. F. Hofmann, S. Takeuchi, and K. Sasaki, “Demonstration of an optical quantum controlled-not gate without path interference,” Phys. Rev. Lett. 95, 210506 (2005).
[Crossref] [PubMed]

Orieux, A.

A. Orieux, J. Boutari, M. Barbieri, M. Paternostro, and P. Mataloni, “Experimental linear-optics simulation of multipartite non-locality in the ground state of a quantum Ising ring,” Sci. Rep. 4, 7184 (2014).
[Crossref] [PubMed]

Ou, Z. Y.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref] [PubMed]

Özdemir, Sahin Kaya

T. Tashima, Şahin Kaya Özdemir, T. Yamamoto, M. Koashi, and N. Imoto, “Local expansion of photonic W state using a polarization-dependent beamsplitter,” New J. Phys. 11, 023024 (2009).
[Crossref]

Pan, J.-W.

J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter, A. Zeilinger, and M. Żukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777–838 (2012).
[Crossref]

Paternostro, M.

A. Orieux, J. Boutari, M. Barbieri, M. Paternostro, and P. Mataloni, “Experimental linear-optics simulation of multipartite non-locality in the ground state of a quantum Ising ring,” Sci. Rep. 4, 7184 (2014).
[Crossref] [PubMed]

Poyatos, J. F.

J. F. Poyatos, J. I. Cirac, and P. Zoller, “Complete characterization of a quantum process: the two-bit quantum gate,” Phys. Rev. Lett. 78, 390–393 (1997).
[Crossref]

Prevedel, R.

N. K. Langford, T. J. Weinhold, R. Prevedel, K. J. Resch, A. Gilchrist, J. L. O’Brien, G. J. Pryde, and A. G. White, “Demonstration of a simple entangling optical gate and its use in Bell-state analysis,” Phys. Rev. Lett. 95, 210504 (2005).
[Crossref] [PubMed]

Pryde, G. J.

N. K. Langford, T. J. Weinhold, R. Prevedel, K. J. Resch, A. Gilchrist, J. L. O’Brien, G. J. Pryde, and A. G. White, “Demonstration of a simple entangling optical gate and its use in Bell-state analysis,” Phys. Rev. Lett. 95, 210504 (2005).
[Crossref] [PubMed]

J. L. O’Brien, G. J. Pryde, A. Gilchrist, D. F. V. James, N. K. Langford, T. C. Ralph, and A. G. White, “Quantum process tomography of a controlled-not gate,” Phys. Rev. Lett. 93, 080502 (2004).
[Crossref]

J. L. O’Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning, “Demonstration of an all-optical quantum controlled-NOT gate,” Nature 426, 264–267 (2003).
[Crossref]

Qarry, A.

Ralph, T. C.

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[Crossref]

J. L. O’Brien, G. J. Pryde, A. Gilchrist, D. F. V. James, N. K. Langford, T. C. Ralph, and A. G. White, “Quantum process tomography of a controlled-not gate,” Phys. Rev. Lett. 93, 080502 (2004).
[Crossref]

J. L. O’Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning, “Demonstration of an all-optical quantum controlled-NOT gate,” Nature 426, 264–267 (2003).
[Crossref]

Reck, M.

M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, “Experimental realization of any discrete unitary operator,” Phys. Rev. Lett. 73, 58–61 (1994).
[Crossref] [PubMed]

Resch, K. J.

N. K. Langford, T. J. Weinhold, R. Prevedel, K. J. Resch, A. Gilchrist, J. L. O’Brien, G. J. Pryde, and A. G. White, “Demonstration of a simple entangling optical gate and its use in Bell-state analysis,” Phys. Rev. Lett. 95, 210504 (2005).
[Crossref] [PubMed]

Sasaki, K.

R. Okamoto, H. F. Hofmann, S. Takeuchi, and K. Sasaki, “Demonstration of an optical quantum controlled-not gate without path interference,” Phys. Rev. Lett. 95, 210506 (2005).
[Crossref] [PubMed]

Schmid, C.

N. Kiesel, C. Schmid, U. Weber, R. Ursin, and H. Weinfurter, “Linear optics controlled-phase gate made simple,” Phys. Rev. Lett. 95, 210505 (2005).
[Crossref] [PubMed]

Sciarrino, F.

Shu, J.

X. Zou, J. Shu, and G. Guo, “Simple scheme for generating four-photon polarization-entangled decoherence-free states using spontaneous parametric down-conversions,” Phys. Rev. A 73, 054301 (2006).
[Crossref]

Spagnolo, N.

Takeuchi, S.

R. Okamoto, H. F. Hofmann, S. Takeuchi, and K. Sasaki, “Demonstration of an optical quantum controlled-not gate without path interference,” Phys. Rev. Lett. 95, 210506 (2005).
[Crossref] [PubMed]

S. Takeuchi, “Beamlike twin-photon generation by use of type II parametric downconversion,” Opt. Lett. 26, 843–845 (2001).
[Crossref]

Tashima, T.

T. Tashima, Şahin Kaya Özdemir, T. Yamamoto, M. Koashi, and N. Imoto, “Local expansion of photonic W state using a polarization-dependent beamsplitter,” New J. Phys. 11, 023024 (2009).
[Crossref]

Tetik, N.

Thew, R.

N. Gisin and R. Thew, “Quantum communication,” Nat. Photonics 1, 165–171 (2007).
[Crossref]

Ursin, R.

N. Kiesel, C. Schmid, U. Weber, R. Ursin, and H. Weinfurter, “Linear optics controlled-phase gate made simple,” Phys. Rev. Lett. 95, 210505 (2005).
[Crossref] [PubMed]

Vitelli, C.

Vuckovic, J.

J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009).
[Crossref]

Walther, P.

A. Aspuru-Guzik and P. Walther, “Photonic quantum simulators,” Nat. Phys. 8, 285–291 (2012).
[Crossref]

X.-S. Ma, B. Dakic, W. Naylor, A. Zeilinger, and P. Walther, “Quantum simulation of the wavefunction to probe frustrated Heisenberg spin systems,” Nat. Phys. 7, 399–405 (2011).
[Crossref]

Weber, U.

N. Kiesel, C. Schmid, U. Weber, R. Ursin, and H. Weinfurter, “Linear optics controlled-phase gate made simple,” Phys. Rev. Lett. 95, 210505 (2005).
[Crossref] [PubMed]

Weihs, G.

A. Zeilinger, G. Weihs, T. Jennewein, and M. Aspelmeyer, “Happy centenary, photon,” Nature 433, 230–238 (2005).
[Crossref] [PubMed]

Weinfurter, H.

J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter, A. Zeilinger, and M. Żukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777–838 (2012).
[Crossref]

N. Kiesel, C. Schmid, U. Weber, R. Ursin, and H. Weinfurter, “Linear optics controlled-phase gate made simple,” Phys. Rev. Lett. 95, 210505 (2005).
[Crossref] [PubMed]

Weinhold, T. J.

N. K. Langford, T. J. Weinhold, R. Prevedel, K. J. Resch, A. Gilchrist, J. L. O’Brien, G. J. Pryde, and A. G. White, “Demonstration of a simple entangling optical gate and its use in Bell-state analysis,” Phys. Rev. Lett. 95, 210504 (2005).
[Crossref] [PubMed]

White, A. G.

M. A. Broome, A. Fedrizzi, B. P. Lanyon, I. Kassal, A. Aspuru-Guzik, and A. G. White, “Discrete single-Photon quantum walks with tunable decoherence,” Phys. Rev. Lett. 104, 153602 (2010).
[Crossref] [PubMed]

N. K. Langford, T. J. Weinhold, R. Prevedel, K. J. Resch, A. Gilchrist, J. L. O’Brien, G. J. Pryde, and A. G. White, “Demonstration of a simple entangling optical gate and its use in Bell-state analysis,” Phys. Rev. Lett. 95, 210504 (2005).
[Crossref] [PubMed]

J. L. O’Brien, G. J. Pryde, A. Gilchrist, D. F. V. James, N. K. Langford, T. C. Ralph, and A. G. White, “Quantum process tomography of a controlled-not gate,” Phys. Rev. Lett. 93, 080502 (2004).
[Crossref]

J. L. O’Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning, “Demonstration of an all-optical quantum controlled-NOT gate,” Nature 426, 264–267 (2003).
[Crossref]

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[Crossref]

Wolf, E.

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).
[Crossref]

Yamamoto, T.

T. Tashima, Şahin Kaya Özdemir, T. Yamamoto, M. Koashi, and N. Imoto, “Local expansion of photonic W state using a polarization-dependent beamsplitter,” New J. Phys. 11, 023024 (2009).
[Crossref]

Zeilinger, A.

J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter, A. Zeilinger, and M. Żukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777–838 (2012).
[Crossref]

X.-S. Ma, B. Dakic, W. Naylor, A. Zeilinger, and P. Walther, “Quantum simulation of the wavefunction to probe frustrated Heisenberg spin systems,” Nat. Phys. 7, 399–405 (2011).
[Crossref]

X.-S. Ma, S. Zotter, N. Tetik, A. Qarry, T. Jennewein, and A. Zeilinger, “A high-speed tunable beam splitter for feed-forward photonic quantum information processing,” Opt. Express 19, 22723–22730 (2011).
[Crossref] [PubMed]

A. Zeilinger, G. Weihs, T. Jennewein, and M. Aspelmeyer, “Happy centenary, photon,” Nature 433, 230–238 (2005).
[Crossref] [PubMed]

M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, “Experimental realization of any discrete unitary operator,” Phys. Rev. Lett. 73, 58–61 (1994).
[Crossref] [PubMed]

Zoller, P.

J. F. Poyatos, J. I. Cirac, and P. Zoller, “Complete characterization of a quantum process: the two-bit quantum gate,” Phys. Rev. Lett. 78, 390–393 (1997).
[Crossref]

Zotter, S.

Zou, X.

X. Zou, J. Shu, and G. Guo, “Simple scheme for generating four-photon polarization-entangled decoherence-free states using spontaneous parametric down-conversions,” Phys. Rev. A 73, 054301 (2006).
[Crossref]

Zou, X.-B.

Y.-X. Gong, X.-B. Zou, Y.-F. Huang, and G.-C. Guo, “A simple scheme for expanding a polarization-entangled W state by adding one photon,” J. Phys. B: At. Mol. Opt. 42, 035503 (2009).
[Crossref]

Y.-X. Gong, X.-B. Zou, X.-L. Niu, J. Li, Y.-F. Huang, and G.-C. Guo, “Generation of arbitrary four-photon polarization-entangled decoherence-free states,” Phys. Rev. A 77, 042317 (2008).
[Crossref]

Zukowski, M.

J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter, A. Zeilinger, and M. Żukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777–838 (2012).
[Crossref]

J. Mod. Opt. (1)

I. L. Chuang and M. A. Nielsen, “Prescription for experimental determination of the dynamics of a quantum black box,” J. Mod. Opt. 44, 2455–2467 (1997).
[Crossref]

J. Phys. B: At. Mol. Opt. (1)

Y.-X. Gong, X.-B. Zou, Y.-F. Huang, and G.-C. Guo, “A simple scheme for expanding a polarization-entangled W state by adding one photon,” J. Phys. B: At. Mol. Opt. 42, 035503 (2009).
[Crossref]

Nat. Photonics (3)

N. Gisin and R. Thew, “Quantum communication,” Nat. Photonics 1, 165–171 (2007).
[Crossref]

V. Giovannetti, S. Lloyd, and L. Maccone, “Advances in quantum metrology,” Nat. Photonics 5, 222–229 (2011).
[Crossref]

J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009).
[Crossref]

Nat. Phys. (2)

A. Aspuru-Guzik and P. Walther, “Photonic quantum simulators,” Nat. Phys. 8, 285–291 (2012).
[Crossref]

X.-S. Ma, B. Dakic, W. Naylor, A. Zeilinger, and P. Walther, “Quantum simulation of the wavefunction to probe frustrated Heisenberg spin systems,” Nat. Phys. 7, 399–405 (2011).
[Crossref]

Nature (3)

E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001).
[Crossref] [PubMed]

A. Zeilinger, G. Weihs, T. Jennewein, and M. Aspelmeyer, “Happy centenary, photon,” Nature 433, 230–238 (2005).
[Crossref] [PubMed]

J. L. O’Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning, “Demonstration of an all-optical quantum controlled-NOT gate,” Nature 426, 264–267 (2003).
[Crossref]

New J. Phys. (1)

T. Tashima, Şahin Kaya Özdemir, T. Yamamoto, M. Koashi, and N. Imoto, “Local expansion of photonic W state using a polarization-dependent beamsplitter,” New J. Phys. 11, 023024 (2009).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. A (4)

D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of qubits,” Phys. Rev. A 64, 052312 (2001).
[Crossref]

A. Gilchrist, N. K. Langford, and M. A. Nielsen, “Distance measures to compare real and ideal quantum processes,” Phys. Rev. A 71, 062310 (2005).
[Crossref]

X. Zou, J. Shu, and G. Guo, “Simple scheme for generating four-photon polarization-entangled decoherence-free states using spontaneous parametric down-conversions,” Phys. Rev. A 73, 054301 (2006).
[Crossref]

Y.-X. Gong, X.-B. Zou, X.-L. Niu, J. Li, Y.-F. Huang, and G.-C. Guo, “Generation of arbitrary four-photon polarization-entangled decoherence-free states,” Phys. Rev. A 77, 042317 (2008).
[Crossref]

Phys. Rev. Lett. (9)

M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, “Experimental realization of any discrete unitary operator,” Phys. Rev. Lett. 73, 58–61 (1994).
[Crossref] [PubMed]

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987).
[Crossref] [PubMed]

N. K. Langford, T. J. Weinhold, R. Prevedel, K. J. Resch, A. Gilchrist, J. L. O’Brien, G. J. Pryde, and A. G. White, “Demonstration of a simple entangling optical gate and its use in Bell-state analysis,” Phys. Rev. Lett. 95, 210504 (2005).
[Crossref] [PubMed]

N. Kiesel, C. Schmid, U. Weber, R. Ursin, and H. Weinfurter, “Linear optics controlled-phase gate made simple,” Phys. Rev. Lett. 95, 210505 (2005).
[Crossref] [PubMed]

R. Okamoto, H. F. Hofmann, S. Takeuchi, and K. Sasaki, “Demonstration of an optical quantum controlled-not gate without path interference,” Phys. Rev. Lett. 95, 210506 (2005).
[Crossref] [PubMed]

M. A. Hall, J. B. Altepeter, and P. Kumar, “Ultrafast switching of photonic entanglement,” Phys. Rev. Lett. 106, 053901 (2011).
[Crossref] [PubMed]

M. A. Broome, A. Fedrizzi, B. P. Lanyon, I. Kassal, A. Aspuru-Guzik, and A. G. White, “Discrete single-Photon quantum walks with tunable decoherence,” Phys. Rev. Lett. 104, 153602 (2010).
[Crossref] [PubMed]

J. F. Poyatos, J. I. Cirac, and P. Zoller, “Complete characterization of a quantum process: the two-bit quantum gate,” Phys. Rev. Lett. 78, 390–393 (1997).
[Crossref]

J. L. O’Brien, G. J. Pryde, A. Gilchrist, D. F. V. James, N. K. Langford, T. C. Ralph, and A. G. White, “Quantum process tomography of a controlled-not gate,” Phys. Rev. Lett. 93, 080502 (2004).
[Crossref]

Rev. Mod. Phys. (2)

P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, and G. J. Milburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007).
[Crossref]

J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter, A. Zeilinger, and M. Żukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84, 777–838 (2012).
[Crossref]

Sci. Rep. (1)

A. Orieux, J. Boutari, M. Barbieri, M. Paternostro, and P. Mataloni, “Experimental linear-optics simulation of multipartite non-locality in the ground state of a quantum Ising ring,” Sci. Rep. 4, 7184 (2014).
[Crossref] [PubMed]

Science (1)

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced measurements: beating the standard quantum limit,” Science 306, 1330–1336 (2004).
[Crossref] [PubMed]

Other (3)

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).
[Crossref]

Z.-Y. Jeff Ou, Multi-Photon Quantum Interference (Springer, 2007).

For example, see Thorlabs standard products: https://www.thorlabs.com/navigation.cfm?guide_id=18 .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Conceptual illustration of a beam splitter with reflectivity r.
Fig. 2
Fig. 2 Primary scheme for realizing the tunable beam splitter. The polarizing beam splitter (PBS) transmits horizontally polarized light and reflects vertically polarized light. The angle of each half-wave plate (HWP) is noted beside.
Fig. 3
Fig. 3 Experimental setup for (a) realizing the tunable beam splitter, (b) the spontaneous parametric down-conversion source, (c) tomographic measurement, (d) observing two-photon Hong-Ou-Mandel interference. PC: polarization controller. PS: phase shifter. HWP: half-wave plate. QWP: quarter-wave plate. BD: calcite beam displacer. BBO: beta-barium borate crystal. IF: 3-nm interference filter centered at 780 nm. Letters and numbers label the beams.
Fig. 4
Fig. 4 Measured output intensities as a function of the angle of HWP2. The intensities are all normalized by the maximal intensities at the corresponding output port. Notations “ij” with i = A, B, and j = C, D, mean measurement at port j when light is injected at port i. The input light is prepared in horizontal ((a) and (b)) and vertical ((c) and (d)) polarization, respectively. All the curves are fitted to sinusoidal functions.
Fig. 5
Fig. 5 Real parts of χ matrix determined by quantum process tomography for polarization transmission in four ways (a) AC, (b) AD, (c) BC, (d) BD, with corresponding imaginary parts shown in (e), (f), (g), (h), respectively.
Fig. 6
Fig. 6 Experimental results of twofold coincidence counts versus the relative delay for Hong-Ou-Mandel interferometer with input two-photon polarization states HH ((a) and (b)), VV ((c) and (d)), DD ((e) and (f)), and RR ((g) and (h)). The corresponding beam splitter reflectivities and measured visibilities are listed in the insets. The data of r ≠ 0, 1 are fitted with Gaussian curves, while the data of r = 0, 1 are fitted with linear curves.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

a ^ A r a ^ C + 1 r a ^ D , b ^ B 1 r b ^ C r b ^ D ,
a ^ = α a ^ H + β a ^ V , b ^ = γ b ^ H + δ b ^ V ,
a ^ H cos ( 2 ϕ ) a ^ H + sin ( 2 ϕ ) a ^ V , a ^ V sin ( 2 ϕ ) a ^ H cos ( 2 ϕ ) a ^ V .

Metrics