Abstract

In this investigation, we propose a dual low coherence scanning interferometer as the novel concept to measure large height steps on the topographic surface of a specimen and the thickness profile of a transparent optical plate. Dual low coherence characteristics by the tandem interferometric configuration can generate several discrete correlograms for the measured surfaces, which provide the possibility to reduce the scanning length of typical low coherence scanning interferometry significantly. Also, the spectrally-resolved interferometric method is combined to monitor the distance gaps between correlograms caused by the dual low coherence. To verify the proposed interferometry, a large height step specimen and a silicon wafer were used and the 3D surface and thickness profiles were rapidly and successfully measured. In addition, the technique which can identify each correlogram by the insertion of dispersive plates are suggested in this paper.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
High-speed polarized low coherence scanning interferometry based on spatial phase shifting

Jun Woo Jeon, Hee Won Jeong, Hyo Bin Jeong, and Ki-Nam Joo
Appl. Opt. 58(20) 5360-5365 (2019)

High-speed combined NIR low-coherence interferometry for wafer metrology

Hyo Mi Park and Ki-Nam Joo
Appl. Opt. 56(31) 8592-8597 (2017)

Low cost wafer metrology using a NIR low coherence interferometry

Young Gwang Kim, Yong Bum Seo, and Ki-Nam Joo
Opt. Express 21(11) 13648-13655 (2013)

References

  • View by:
  • |
  • |
  • |

  1. L. Deck and P. de Groot, “High-speed noncontact profiler based on scanning white-light interferometry,” Appl. Opt. 33(31), 7334–7338 (1994).
    [Crossref] [PubMed]
  2. S.-W. Kim and G.-H. Kim, “Thickness-profile measurement of transparent thin-film layers by white-light scanning interferometry,” Appl. Opt. 38(28), 5968–5973 (1999).
    [Crossref] [PubMed]
  3. I. Shavrin, L. Lipiäinen, K. Kokkonen, S. Novotny, M. Kaivola, and H. Ludvigsen, “Stroboscopic white-light interferometry of vibrating microstructures,” Opt. Express 21(14), 16901–16907 (2013).
    [Crossref] [PubMed]
  4. K. Creath and P. Hariharan, “Phase-shifting errors in interferometric tests with high-numerical-aperture reference surfaces,” Appl. Opt. 33(1), 24–25 (1994).
    [Crossref] [PubMed]
  5. P. A. Flournoy, R. W. McClure, and G. Wyntjes, “White-light interferometric thickness gauge,” Appl. Opt. 11(9), 1907–1915 (1972).
    [Crossref] [PubMed]
  6. M. Haruna, M. Ohmi, T. Mitsuyama, H. Tajiri, H. Maruyama, and M. Hashimoto, “Simultaneous measurement of the phase and group indices and the thickness of transparent plates by low-coherence interferometry,” Opt. Lett. 23(12), 966–968 (1998).
    [Crossref] [PubMed]
  7. H.-J. Lee and K.-N. Joo, “Optical interferometric approach for measuring the geometrical dimension and refractive index profiles of a double-sided polished undoped Si wafer,” Meas. Sci. Technol. 25(7), 075202 (2014).
    [Crossref]
  8. P. de Groot and L. Deck, “Three-dimensional imaging by sub-Nyquist sampling of white-light interferograms,” Opt. Lett. 18(17), 1462–1464 (1993).
    [Crossref] [PubMed]
  9. A. Olszak, “Lateral scanning white-light interferometer,” Appl. Opt. 39(22), 3906–3913 (2000).
    [Crossref] [PubMed]
  10. A. Hirai and H. Matsumoto, “Low-coherence tandem interferometer for measurement of group refractive index without knowledge of the thickness of the test sample,” Opt. Lett. 28(21), 2112–2114 (2003).
    [Crossref] [PubMed]
  11. H. Matsumoto, K. Sasaki, and A. Hirai, “In situ measurement of group refractive index using tandem low-coherence interferometer,” Opt. Commun. 266(1), 214–217 (2006).
    [Crossref]
  12. J. Schwider and L. Zhou, “Dispersive interferometric profilometer,” Opt. Lett. 19(13), 995–997 (1994).
    [Crossref] [PubMed]
  13. K.-N. Joo and S.-W. Kim, “Absolute distance measurement by dispersive interferometry using a femtosecond pulse laser,” Opt. Express 14(13), 5954–5960 (2006).
    [Crossref] [PubMed]
  14. Y. G. Kim, Y. B. Seo, and K.-N. Joo, “Low cost wafer metrology using a NIR low coherence interferometry,” Opt. Express 21(11), 13648–13655 (2013).
    [Crossref] [PubMed]
  15. M. A. Green, “Self-consistent optical parameters of intrinsic silicon at 300K including temperature coefficients,” Sol. Energy Mater. Sol. Cells 92(11), 1305–1310 (2008).
    [Crossref]
  16. S. Diddams and J.-C. Diels, “Dispersion measurements with white-light interferometry,” J. Opt. Soc. Am. B 13(6), 1120–1129 (1996).
    [Crossref]
  17. P. Pavliček and J. Soubusta, “Measurement of the influence of dispersion on white-light interferometry,” Appl. Opt. 43(4), 766–770 (2004).
    [Crossref] [PubMed]

2014 (1)

H.-J. Lee and K.-N. Joo, “Optical interferometric approach for measuring the geometrical dimension and refractive index profiles of a double-sided polished undoped Si wafer,” Meas. Sci. Technol. 25(7), 075202 (2014).
[Crossref]

2013 (2)

2008 (1)

M. A. Green, “Self-consistent optical parameters of intrinsic silicon at 300K including temperature coefficients,” Sol. Energy Mater. Sol. Cells 92(11), 1305–1310 (2008).
[Crossref]

2006 (2)

H. Matsumoto, K. Sasaki, and A. Hirai, “In situ measurement of group refractive index using tandem low-coherence interferometer,” Opt. Commun. 266(1), 214–217 (2006).
[Crossref]

K.-N. Joo and S.-W. Kim, “Absolute distance measurement by dispersive interferometry using a femtosecond pulse laser,” Opt. Express 14(13), 5954–5960 (2006).
[Crossref] [PubMed]

2004 (1)

2003 (1)

2000 (1)

1999 (1)

1998 (1)

1996 (1)

1994 (3)

1993 (1)

1972 (1)

Creath, K.

de Groot, P.

Deck, L.

Diddams, S.

Diels, J.-C.

Flournoy, P. A.

Green, M. A.

M. A. Green, “Self-consistent optical parameters of intrinsic silicon at 300K including temperature coefficients,” Sol. Energy Mater. Sol. Cells 92(11), 1305–1310 (2008).
[Crossref]

Hariharan, P.

Haruna, M.

Hashimoto, M.

Hirai, A.

H. Matsumoto, K. Sasaki, and A. Hirai, “In situ measurement of group refractive index using tandem low-coherence interferometer,” Opt. Commun. 266(1), 214–217 (2006).
[Crossref]

A. Hirai and H. Matsumoto, “Low-coherence tandem interferometer for measurement of group refractive index without knowledge of the thickness of the test sample,” Opt. Lett. 28(21), 2112–2114 (2003).
[Crossref] [PubMed]

Joo, K.-N.

Kaivola, M.

Kim, G.-H.

Kim, S.-W.

Kim, Y. G.

Kokkonen, K.

Lee, H.-J.

H.-J. Lee and K.-N. Joo, “Optical interferometric approach for measuring the geometrical dimension and refractive index profiles of a double-sided polished undoped Si wafer,” Meas. Sci. Technol. 25(7), 075202 (2014).
[Crossref]

Lipiäinen, L.

Ludvigsen, H.

Maruyama, H.

Matsumoto, H.

H. Matsumoto, K. Sasaki, and A. Hirai, “In situ measurement of group refractive index using tandem low-coherence interferometer,” Opt. Commun. 266(1), 214–217 (2006).
[Crossref]

A. Hirai and H. Matsumoto, “Low-coherence tandem interferometer for measurement of group refractive index without knowledge of the thickness of the test sample,” Opt. Lett. 28(21), 2112–2114 (2003).
[Crossref] [PubMed]

McClure, R. W.

Mitsuyama, T.

Novotny, S.

Ohmi, M.

Olszak, A.

Pavlicek, P.

Sasaki, K.

H. Matsumoto, K. Sasaki, and A. Hirai, “In situ measurement of group refractive index using tandem low-coherence interferometer,” Opt. Commun. 266(1), 214–217 (2006).
[Crossref]

Schwider, J.

Seo, Y. B.

Shavrin, I.

Soubusta, J.

Tajiri, H.

Wyntjes, G.

Zhou, L.

Appl. Opt. (6)

J. Opt. Soc. Am. B (1)

Meas. Sci. Technol. (1)

H.-J. Lee and K.-N. Joo, “Optical interferometric approach for measuring the geometrical dimension and refractive index profiles of a double-sided polished undoped Si wafer,” Meas. Sci. Technol. 25(7), 075202 (2014).
[Crossref]

Opt. Commun. (1)

H. Matsumoto, K. Sasaki, and A. Hirai, “In situ measurement of group refractive index using tandem low-coherence interferometer,” Opt. Commun. 266(1), 214–217 (2006).
[Crossref]

Opt. Express (3)

Opt. Lett. (4)

Sol. Energy Mater. Sol. Cells (1)

M. A. Green, “Self-consistent optical parameters of intrinsic silicon at 300K including temperature coefficients,” Sol. Energy Mater. Sol. Cells 92(11), 1305–1310 (2008).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Optical configuration of DLCSI which consists of optical source part and LCSI part; BS1 and BS2, beam splitter; M1 and M2, mirrors; BSP, beam sampler; FL, focusing lens; BE, beam expander; MR, reference mirror; S, specimen; IL, imaging lens.
Fig. 2
Fig. 2 (a) Correlograms of DLCSI and (b) comparison between typical LCSI and DLCSI when measuring a large height step sample.
Fig. 3
Fig. 3 (a) A large step height specimen which consists of 3 gauge blocks, (b) spectral interferogram obtained by the spectrometer for ΔL = 0.998 mm, (c) Fourier transformed result of (b) and (d) correlograms on 3 gauge blocks in the scanning range of 50 μm.
Fig. 4
Fig. 4 (a) 3D surface profile measurement result of 3 gauge blocks and (b) reconstructed surface profile with ΔL.
Fig. 5
Fig. 5 (a) Spectral interferogram obtained by the spectrometer for ΔL = 1.752 mm and (b) 6 correlograms from the front and rear surfaces of the wafer by the dual low coherence.
Fig. 6
Fig. 6 Measurement results of the DSP Si wafer (a) front surface, (b) rear surface, (c) thickness profiles and (d) reconstructed wafer.
Fig. 7
Fig. 7 (a) Modified DLCSI to identify each correlogram, (b) 3 correlogram identified by the dispersion effect.

Tables (1)

Tables Icon

Table 1 Summary of measurement results of gauge blocks

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

I DLCSI ( h )= I 0 + G 1 ( hz )cos[ 2 k c ( hz ) ]+ G 2 ( h+ΔLz )cos[ 2 k c ( h+ΔLz ) ] + G 3 ( hΔLz )cos[2 k c ( hΔLz )]

Metrics