Abstract

Here we introduce a phase-shifting digital holography-based method to determine the temperature profile around an irradiated (sub-)micron spherical bead. The method utilizes a Mach-Zehnder interferometer implemented into an open setup microscope. The results of irradiated gold spheres with diameter of 400 nm and also silver-coated micron-sized silica beads embedded in silicone oil are presented. We show that the applied method is able to accurately determine the surface temperature with accuracy of 1 °C. Our experimental results perfectly confirm the theoretical prediction of temperature profile around the irradiated bead.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Nanoscale heating of laser irradiated single gold nanoparticles in liquid

Mitsuhiro Honda, Yuika Saito, Nicholas I Smith, Katsumasa Fujita, and Satoshi Kawata
Opt. Express 19(13) 12375-12383 (2011)

Digital holography-based steganography

Habib Hamam
Opt. Lett. 35(24) 4175-4177 (2010)

Learning-based nonparametric autofocusing for digital holography

Zhenbo Ren, Zhimin Xu, and Edmund Y. Lam
Optica 5(4) 337-344 (2018)

References

  • View by:
  • |
  • |
  • |

  1. D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297, 1160–1163 (2002).
    [Crossref] [PubMed]
  2. E. C. Garnett, W. Cai, J. J. Cha, F. Mahmood, S. T. Connor, M. GreysonChristoforo, Y. Cui, M. D. McGehee, and M. L. Brongersma, “Self-limited plasmonic welding of silver nanowire junctions,” Nat. Mater. 11, 241–249 (2012).
    [Crossref] [PubMed]
  3. P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Au nanoparticles target cancer,” Nano Today 2, 18–29 (2007).
    [Crossref]
  4. T. Härtling, Y. Alaverdyan, M. T. Wenzel, R. Kullock, M. Käll, and L. M. Eng, “Photochemical tuning of plasmon resonances in single gold nanoparticles,” J. Phys. Chem. C 112, 4920–4924 (2008).
    [Crossref]
  5. L. Hirsch, R. Stafford, J. Bankson, S. Sershen, B. Rivera, R. Price, J. Hazle, N. Halas, and J. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100, 13549–13554 (2003).
    [Crossref] [PubMed]
  6. P. M. Bendix, S. N. S. Reihani, and L. B. Oddershede, “Direct measurements of heating by electromagnetically trapped gold nanoparticles on supported lipid bilayers,” ACS Nano 4, 2256–2262 (2010).
    [Crossref] [PubMed]
  7. A. Kyrsting, P. M. Bendix, D. G. Stamou, and L. B. Oddershede, “Heat profiling of three-dimensionally optically trapped gold nanoparticles using vesicle cargo release,” Nano Lett. 11, 888–892 (2010).
    [Crossref] [PubMed]
  8. H. H. Richardson, Z. N. Hickman, A. O. Govorov, A. C. Thomas, W. Zhang, and M. E. Kordesch, “Thermooptical properties of gold nanoparticles embedded in ice: characterization of heat generation and melting,” Nano Lett. 6, 783–788 (2006).
    [Crossref] [PubMed]
  9. J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13, 034024 (2008).
    [Crossref] [PubMed]
  10. G. Baffou, P. Bon, J. Savatier, J. Polleux, M. Zhu, M. Merlin, H. Rigneault, and S. Monneret, “Thermal imaging of nanostructures by quantitative optical phase analysis,” ACS Nano 6, 2452–2458 (2012).
    [Crossref] [PubMed]
  11. M. Honda, Y. Saito, N. I. Smith, K. Fujita, and S. Kawata, “Nanoscale heating of laser irradiated single gold nanoparticles in liquid,” Opt. Express 19, 12375–12383 (2011).
    [Crossref] [PubMed]
  12. Y. Seol, A. E. Carpenter, and T. T. Perkins, “Gold nanoparticles: enhanced optical trapping and sensitivity coupled with significant heating,” Opt. Lett. 31, 2429–2431 (2006).
    [Crossref] [PubMed]
  13. P. V. Ruijgrok, N. R. Verhart, P. Zijlstra, A. L. Tchebotareva, and M. Orrit, “Brownian fluctuations and heating of an optically aligned gold nanorod,” Phys. Rev. Lett. 107, 037401 (2011).
    [Crossref] [PubMed]
  14. S. Baral, S. C. Johnson, A. A. Alaulamie, and H. H. Richardson, “Nanothermometry using optically trapped erbium oxide nanoparticle,” Appl. Phys. A 122, 1–8 (2016).
    [Crossref]
  15. M. Šiler, J. Ježek, P. Jákl, Z. Pilát, and P. Zemánek, “Direct measurement of the temperature profile close to an optically trapped absorbing particle,” Opt. Lett. 41, 870–873 (2016).
    [Crossref] [PubMed]
  16. I. Yamaguchi, J.-i. Kato, S. Ohta, and J. Mizuno, “Image formation in phase-shifting digital holography and applications to microscopy, Appl. Opt. 40, 6177–6186 (2001).
    [Crossref]
  17. S. Kishk and B. Javidi, “Watermarking of three-dimensional objects by digital holography,",” Opt. Lett. 28, 167–169 (2003).
    [Crossref] [PubMed]
  18. M. T. Tavassoly and A. Saber, “Optical refractometry based on Fresnel diffraction from a phase wedge,” Opt. Lett. 35, 3679–3681 (2010).
    [Crossref] [PubMed]
  19. R. Gorenflo and S. Vessella, Abel Integral Equations: Analysis and Applications (Springer, 1991).
    [Crossref]
  20. H. Goldenberg and C. J. Tranter, “Heat flow in an infinite medium heated by a sphere,” Br. J. Appl. Phys. 3, 296 (1952).
    [Crossref]
  21. A. O. Govorov, W. Zhang, T. Skeini, H. Richardson, J. Lee, and N. A. Kotov, “Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances,” Nanoscale Res. Lett. 1, 84–90 (2006).
    [Crossref]
  22. W. Ebina, A. C. Rowat, and D. A. Weitz, “Electrodes on a budget: Micropatterned electrode fabrication by wet chemical deposition,” Biomicrofluidics 3, 034104 (2009).
    [Crossref]
  23. S. Oldenburg, R. Averitt, S. Westcott, and N. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288, 243–247 (1998).
    [Crossref]

2016 (2)

S. Baral, S. C. Johnson, A. A. Alaulamie, and H. H. Richardson, “Nanothermometry using optically trapped erbium oxide nanoparticle,” Appl. Phys. A 122, 1–8 (2016).
[Crossref]

M. Šiler, J. Ježek, P. Jákl, Z. Pilát, and P. Zemánek, “Direct measurement of the temperature profile close to an optically trapped absorbing particle,” Opt. Lett. 41, 870–873 (2016).
[Crossref] [PubMed]

2012 (2)

G. Baffou, P. Bon, J. Savatier, J. Polleux, M. Zhu, M. Merlin, H. Rigneault, and S. Monneret, “Thermal imaging of nanostructures by quantitative optical phase analysis,” ACS Nano 6, 2452–2458 (2012).
[Crossref] [PubMed]

E. C. Garnett, W. Cai, J. J. Cha, F. Mahmood, S. T. Connor, M. GreysonChristoforo, Y. Cui, M. D. McGehee, and M. L. Brongersma, “Self-limited plasmonic welding of silver nanowire junctions,” Nat. Mater. 11, 241–249 (2012).
[Crossref] [PubMed]

2011 (2)

P. V. Ruijgrok, N. R. Verhart, P. Zijlstra, A. L. Tchebotareva, and M. Orrit, “Brownian fluctuations and heating of an optically aligned gold nanorod,” Phys. Rev. Lett. 107, 037401 (2011).
[Crossref] [PubMed]

M. Honda, Y. Saito, N. I. Smith, K. Fujita, and S. Kawata, “Nanoscale heating of laser irradiated single gold nanoparticles in liquid,” Opt. Express 19, 12375–12383 (2011).
[Crossref] [PubMed]

2010 (3)

M. T. Tavassoly and A. Saber, “Optical refractometry based on Fresnel diffraction from a phase wedge,” Opt. Lett. 35, 3679–3681 (2010).
[Crossref] [PubMed]

P. M. Bendix, S. N. S. Reihani, and L. B. Oddershede, “Direct measurements of heating by electromagnetically trapped gold nanoparticles on supported lipid bilayers,” ACS Nano 4, 2256–2262 (2010).
[Crossref] [PubMed]

A. Kyrsting, P. M. Bendix, D. G. Stamou, and L. B. Oddershede, “Heat profiling of three-dimensionally optically trapped gold nanoparticles using vesicle cargo release,” Nano Lett. 11, 888–892 (2010).
[Crossref] [PubMed]

2009 (1)

W. Ebina, A. C. Rowat, and D. A. Weitz, “Electrodes on a budget: Micropatterned electrode fabrication by wet chemical deposition,” Biomicrofluidics 3, 034104 (2009).
[Crossref]

2008 (2)

J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13, 034024 (2008).
[Crossref] [PubMed]

T. Härtling, Y. Alaverdyan, M. T. Wenzel, R. Kullock, M. Käll, and L. M. Eng, “Photochemical tuning of plasmon resonances in single gold nanoparticles,” J. Phys. Chem. C 112, 4920–4924 (2008).
[Crossref]

2007 (1)

P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Au nanoparticles target cancer,” Nano Today 2, 18–29 (2007).
[Crossref]

2006 (3)

H. H. Richardson, Z. N. Hickman, A. O. Govorov, A. C. Thomas, W. Zhang, and M. E. Kordesch, “Thermooptical properties of gold nanoparticles embedded in ice: characterization of heat generation and melting,” Nano Lett. 6, 783–788 (2006).
[Crossref] [PubMed]

A. O. Govorov, W. Zhang, T. Skeini, H. Richardson, J. Lee, and N. A. Kotov, “Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances,” Nanoscale Res. Lett. 1, 84–90 (2006).
[Crossref]

Y. Seol, A. E. Carpenter, and T. T. Perkins, “Gold nanoparticles: enhanced optical trapping and sensitivity coupled with significant heating,” Opt. Lett. 31, 2429–2431 (2006).
[Crossref] [PubMed]

2003 (2)

S. Kishk and B. Javidi, “Watermarking of three-dimensional objects by digital holography,",” Opt. Lett. 28, 167–169 (2003).
[Crossref] [PubMed]

L. Hirsch, R. Stafford, J. Bankson, S. Sershen, B. Rivera, R. Price, J. Hazle, N. Halas, and J. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100, 13549–13554 (2003).
[Crossref] [PubMed]

2002 (1)

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297, 1160–1163 (2002).
[Crossref] [PubMed]

2001 (1)

1998 (1)

S. Oldenburg, R. Averitt, S. Westcott, and N. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288, 243–247 (1998).
[Crossref]

1952 (1)

H. Goldenberg and C. J. Tranter, “Heat flow in an infinite medium heated by a sphere,” Br. J. Appl. Phys. 3, 296 (1952).
[Crossref]

Aglyamov, S.

J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13, 034024 (2008).
[Crossref] [PubMed]

Alaulamie, A. A.

S. Baral, S. C. Johnson, A. A. Alaulamie, and H. H. Richardson, “Nanothermometry using optically trapped erbium oxide nanoparticle,” Appl. Phys. A 122, 1–8 (2016).
[Crossref]

Alaverdyan, Y.

T. Härtling, Y. Alaverdyan, M. T. Wenzel, R. Kullock, M. Käll, and L. M. Eng, “Photochemical tuning of plasmon resonances in single gold nanoparticles,” J. Phys. Chem. C 112, 4920–4924 (2008).
[Crossref]

Averitt, R.

S. Oldenburg, R. Averitt, S. Westcott, and N. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288, 243–247 (1998).
[Crossref]

Baffou, G.

G. Baffou, P. Bon, J. Savatier, J. Polleux, M. Zhu, M. Merlin, H. Rigneault, and S. Monneret, “Thermal imaging of nanostructures by quantitative optical phase analysis,” ACS Nano 6, 2452–2458 (2012).
[Crossref] [PubMed]

Bankson, J.

L. Hirsch, R. Stafford, J. Bankson, S. Sershen, B. Rivera, R. Price, J. Hazle, N. Halas, and J. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100, 13549–13554 (2003).
[Crossref] [PubMed]

Baral, S.

S. Baral, S. C. Johnson, A. A. Alaulamie, and H. H. Richardson, “Nanothermometry using optically trapped erbium oxide nanoparticle,” Appl. Phys. A 122, 1–8 (2016).
[Crossref]

Bendix, P. M.

A. Kyrsting, P. M. Bendix, D. G. Stamou, and L. B. Oddershede, “Heat profiling of three-dimensionally optically trapped gold nanoparticles using vesicle cargo release,” Nano Lett. 11, 888–892 (2010).
[Crossref] [PubMed]

P. M. Bendix, S. N. S. Reihani, and L. B. Oddershede, “Direct measurements of heating by electromagnetically trapped gold nanoparticles on supported lipid bilayers,” ACS Nano 4, 2256–2262 (2010).
[Crossref] [PubMed]

Bon, P.

G. Baffou, P. Bon, J. Savatier, J. Polleux, M. Zhu, M. Merlin, H. Rigneault, and S. Monneret, “Thermal imaging of nanostructures by quantitative optical phase analysis,” ACS Nano 6, 2452–2458 (2012).
[Crossref] [PubMed]

Boyer, D.

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297, 1160–1163 (2002).
[Crossref] [PubMed]

Brongersma, M. L.

E. C. Garnett, W. Cai, J. J. Cha, F. Mahmood, S. T. Connor, M. GreysonChristoforo, Y. Cui, M. D. McGehee, and M. L. Brongersma, “Self-limited plasmonic welding of silver nanowire junctions,” Nat. Mater. 11, 241–249 (2012).
[Crossref] [PubMed]

Cai, W.

E. C. Garnett, W. Cai, J. J. Cha, F. Mahmood, S. T. Connor, M. GreysonChristoforo, Y. Cui, M. D. McGehee, and M. L. Brongersma, “Self-limited plasmonic welding of silver nanowire junctions,” Nat. Mater. 11, 241–249 (2012).
[Crossref] [PubMed]

Carpenter, A. E.

Cha, J. J.

E. C. Garnett, W. Cai, J. J. Cha, F. Mahmood, S. T. Connor, M. GreysonChristoforo, Y. Cui, M. D. McGehee, and M. L. Brongersma, “Self-limited plasmonic welding of silver nanowire junctions,” Nat. Mater. 11, 241–249 (2012).
[Crossref] [PubMed]

Connor, S. T.

E. C. Garnett, W. Cai, J. J. Cha, F. Mahmood, S. T. Connor, M. GreysonChristoforo, Y. Cui, M. D. McGehee, and M. L. Brongersma, “Self-limited plasmonic welding of silver nanowire junctions,” Nat. Mater. 11, 241–249 (2012).
[Crossref] [PubMed]

Cui, Y.

E. C. Garnett, W. Cai, J. J. Cha, F. Mahmood, S. T. Connor, M. GreysonChristoforo, Y. Cui, M. D. McGehee, and M. L. Brongersma, “Self-limited plasmonic welding of silver nanowire junctions,” Nat. Mater. 11, 241–249 (2012).
[Crossref] [PubMed]

Ebina, W.

W. Ebina, A. C. Rowat, and D. A. Weitz, “Electrodes on a budget: Micropatterned electrode fabrication by wet chemical deposition,” Biomicrofluidics 3, 034104 (2009).
[Crossref]

El-Sayed, I. H.

P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Au nanoparticles target cancer,” Nano Today 2, 18–29 (2007).
[Crossref]

El-Sayed, M. A.

P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Au nanoparticles target cancer,” Nano Today 2, 18–29 (2007).
[Crossref]

Emelianov, S. Y.

J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13, 034024 (2008).
[Crossref] [PubMed]

Eng, L. M.

T. Härtling, Y. Alaverdyan, M. T. Wenzel, R. Kullock, M. Käll, and L. M. Eng, “Photochemical tuning of plasmon resonances in single gold nanoparticles,” J. Phys. Chem. C 112, 4920–4924 (2008).
[Crossref]

Fujita, K.

Garnett, E. C.

E. C. Garnett, W. Cai, J. J. Cha, F. Mahmood, S. T. Connor, M. GreysonChristoforo, Y. Cui, M. D. McGehee, and M. L. Brongersma, “Self-limited plasmonic welding of silver nanowire junctions,” Nat. Mater. 11, 241–249 (2012).
[Crossref] [PubMed]

Goldenberg, H.

H. Goldenberg and C. J. Tranter, “Heat flow in an infinite medium heated by a sphere,” Br. J. Appl. Phys. 3, 296 (1952).
[Crossref]

Gorenflo, R.

R. Gorenflo and S. Vessella, Abel Integral Equations: Analysis and Applications (Springer, 1991).
[Crossref]

Govorov, A. O.

A. O. Govorov, W. Zhang, T. Skeini, H. Richardson, J. Lee, and N. A. Kotov, “Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances,” Nanoscale Res. Lett. 1, 84–90 (2006).
[Crossref]

H. H. Richardson, Z. N. Hickman, A. O. Govorov, A. C. Thomas, W. Zhang, and M. E. Kordesch, “Thermooptical properties of gold nanoparticles embedded in ice: characterization of heat generation and melting,” Nano Lett. 6, 783–788 (2006).
[Crossref] [PubMed]

GreysonChristoforo, M.

E. C. Garnett, W. Cai, J. J. Cha, F. Mahmood, S. T. Connor, M. GreysonChristoforo, Y. Cui, M. D. McGehee, and M. L. Brongersma, “Self-limited plasmonic welding of silver nanowire junctions,” Nat. Mater. 11, 241–249 (2012).
[Crossref] [PubMed]

Halas, N.

L. Hirsch, R. Stafford, J. Bankson, S. Sershen, B. Rivera, R. Price, J. Hazle, N. Halas, and J. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100, 13549–13554 (2003).
[Crossref] [PubMed]

S. Oldenburg, R. Averitt, S. Westcott, and N. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288, 243–247 (1998).
[Crossref]

Härtling, T.

T. Härtling, Y. Alaverdyan, M. T. Wenzel, R. Kullock, M. Käll, and L. M. Eng, “Photochemical tuning of plasmon resonances in single gold nanoparticles,” J. Phys. Chem. C 112, 4920–4924 (2008).
[Crossref]

Hazle, J.

L. Hirsch, R. Stafford, J. Bankson, S. Sershen, B. Rivera, R. Price, J. Hazle, N. Halas, and J. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100, 13549–13554 (2003).
[Crossref] [PubMed]

Hickman, Z. N.

H. H. Richardson, Z. N. Hickman, A. O. Govorov, A. C. Thomas, W. Zhang, and M. E. Kordesch, “Thermooptical properties of gold nanoparticles embedded in ice: characterization of heat generation and melting,” Nano Lett. 6, 783–788 (2006).
[Crossref] [PubMed]

Hirsch, L.

L. Hirsch, R. Stafford, J. Bankson, S. Sershen, B. Rivera, R. Price, J. Hazle, N. Halas, and J. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100, 13549–13554 (2003).
[Crossref] [PubMed]

Honda, M.

Jain, P. K.

P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Au nanoparticles target cancer,” Nano Today 2, 18–29 (2007).
[Crossref]

Jákl, P.

Javidi, B.

Ježek, J.

Johnson, S. C.

S. Baral, S. C. Johnson, A. A. Alaulamie, and H. H. Richardson, “Nanothermometry using optically trapped erbium oxide nanoparticle,” Appl. Phys. A 122, 1–8 (2016).
[Crossref]

Johnston, K.

J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13, 034024 (2008).
[Crossref] [PubMed]

Käll, M.

T. Härtling, Y. Alaverdyan, M. T. Wenzel, R. Kullock, M. Käll, and L. M. Eng, “Photochemical tuning of plasmon resonances in single gold nanoparticles,” J. Phys. Chem. C 112, 4920–4924 (2008).
[Crossref]

Kato, J.-i.

Kawata, S.

Kishk, S.

Kordesch, M. E.

H. H. Richardson, Z. N. Hickman, A. O. Govorov, A. C. Thomas, W. Zhang, and M. E. Kordesch, “Thermooptical properties of gold nanoparticles embedded in ice: characterization of heat generation and melting,” Nano Lett. 6, 783–788 (2006).
[Crossref] [PubMed]

Kotov, N. A.

A. O. Govorov, W. Zhang, T. Skeini, H. Richardson, J. Lee, and N. A. Kotov, “Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances,” Nanoscale Res. Lett. 1, 84–90 (2006).
[Crossref]

Kullock, R.

T. Härtling, Y. Alaverdyan, M. T. Wenzel, R. Kullock, M. Käll, and L. M. Eng, “Photochemical tuning of plasmon resonances in single gold nanoparticles,” J. Phys. Chem. C 112, 4920–4924 (2008).
[Crossref]

Kyrsting, A.

A. Kyrsting, P. M. Bendix, D. G. Stamou, and L. B. Oddershede, “Heat profiling of three-dimensionally optically trapped gold nanoparticles using vesicle cargo release,” Nano Lett. 11, 888–892 (2010).
[Crossref] [PubMed]

Larson, T.

J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13, 034024 (2008).
[Crossref] [PubMed]

Lee, J.

A. O. Govorov, W. Zhang, T. Skeini, H. Richardson, J. Lee, and N. A. Kotov, “Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances,” Nanoscale Res. Lett. 1, 84–90 (2006).
[Crossref]

Lounis, B.

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297, 1160–1163 (2002).
[Crossref] [PubMed]

Ma, L.

J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13, 034024 (2008).
[Crossref] [PubMed]

Maali, A.

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297, 1160–1163 (2002).
[Crossref] [PubMed]

Mahmood, F.

E. C. Garnett, W. Cai, J. J. Cha, F. Mahmood, S. T. Connor, M. GreysonChristoforo, Y. Cui, M. D. McGehee, and M. L. Brongersma, “Self-limited plasmonic welding of silver nanowire junctions,” Nat. Mater. 11, 241–249 (2012).
[Crossref] [PubMed]

McGehee, M. D.

E. C. Garnett, W. Cai, J. J. Cha, F. Mahmood, S. T. Connor, M. GreysonChristoforo, Y. Cui, M. D. McGehee, and M. L. Brongersma, “Self-limited plasmonic welding of silver nanowire junctions,” Nat. Mater. 11, 241–249 (2012).
[Crossref] [PubMed]

Merlin, M.

G. Baffou, P. Bon, J. Savatier, J. Polleux, M. Zhu, M. Merlin, H. Rigneault, and S. Monneret, “Thermal imaging of nanostructures by quantitative optical phase analysis,” ACS Nano 6, 2452–2458 (2012).
[Crossref] [PubMed]

Milner, T.

J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13, 034024 (2008).
[Crossref] [PubMed]

Mizuno, J.

Monneret, S.

G. Baffou, P. Bon, J. Savatier, J. Polleux, M. Zhu, M. Merlin, H. Rigneault, and S. Monneret, “Thermal imaging of nanostructures by quantitative optical phase analysis,” ACS Nano 6, 2452–2458 (2012).
[Crossref] [PubMed]

Oddershede, L. B.

A. Kyrsting, P. M. Bendix, D. G. Stamou, and L. B. Oddershede, “Heat profiling of three-dimensionally optically trapped gold nanoparticles using vesicle cargo release,” Nano Lett. 11, 888–892 (2010).
[Crossref] [PubMed]

P. M. Bendix, S. N. S. Reihani, and L. B. Oddershede, “Direct measurements of heating by electromagnetically trapped gold nanoparticles on supported lipid bilayers,” ACS Nano 4, 2256–2262 (2010).
[Crossref] [PubMed]

Ohta, S.

Oldenburg, S.

S. Oldenburg, R. Averitt, S. Westcott, and N. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288, 243–247 (1998).
[Crossref]

Orrit, M.

P. V. Ruijgrok, N. R. Verhart, P. Zijlstra, A. L. Tchebotareva, and M. Orrit, “Brownian fluctuations and heating of an optically aligned gold nanorod,” Phys. Rev. Lett. 107, 037401 (2011).
[Crossref] [PubMed]

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297, 1160–1163 (2002).
[Crossref] [PubMed]

Park, S.

J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13, 034024 (2008).
[Crossref] [PubMed]

Perkins, T. T.

Pilát, Z.

Polleux, J.

G. Baffou, P. Bon, J. Savatier, J. Polleux, M. Zhu, M. Merlin, H. Rigneault, and S. Monneret, “Thermal imaging of nanostructures by quantitative optical phase analysis,” ACS Nano 6, 2452–2458 (2012).
[Crossref] [PubMed]

Price, R.

L. Hirsch, R. Stafford, J. Bankson, S. Sershen, B. Rivera, R. Price, J. Hazle, N. Halas, and J. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100, 13549–13554 (2003).
[Crossref] [PubMed]

Reihani, S. N. S.

P. M. Bendix, S. N. S. Reihani, and L. B. Oddershede, “Direct measurements of heating by electromagnetically trapped gold nanoparticles on supported lipid bilayers,” ACS Nano 4, 2256–2262 (2010).
[Crossref] [PubMed]

Richardson, H.

A. O. Govorov, W. Zhang, T. Skeini, H. Richardson, J. Lee, and N. A. Kotov, “Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances,” Nanoscale Res. Lett. 1, 84–90 (2006).
[Crossref]

Richardson, H. H.

S. Baral, S. C. Johnson, A. A. Alaulamie, and H. H. Richardson, “Nanothermometry using optically trapped erbium oxide nanoparticle,” Appl. Phys. A 122, 1–8 (2016).
[Crossref]

H. H. Richardson, Z. N. Hickman, A. O. Govorov, A. C. Thomas, W. Zhang, and M. E. Kordesch, “Thermooptical properties of gold nanoparticles embedded in ice: characterization of heat generation and melting,” Nano Lett. 6, 783–788 (2006).
[Crossref] [PubMed]

Rigneault, H.

G. Baffou, P. Bon, J. Savatier, J. Polleux, M. Zhu, M. Merlin, H. Rigneault, and S. Monneret, “Thermal imaging of nanostructures by quantitative optical phase analysis,” ACS Nano 6, 2452–2458 (2012).
[Crossref] [PubMed]

Rivera, B.

L. Hirsch, R. Stafford, J. Bankson, S. Sershen, B. Rivera, R. Price, J. Hazle, N. Halas, and J. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100, 13549–13554 (2003).
[Crossref] [PubMed]

Rowat, A. C.

W. Ebina, A. C. Rowat, and D. A. Weitz, “Electrodes on a budget: Micropatterned electrode fabrication by wet chemical deposition,” Biomicrofluidics 3, 034104 (2009).
[Crossref]

Ruijgrok, P. V.

P. V. Ruijgrok, N. R. Verhart, P. Zijlstra, A. L. Tchebotareva, and M. Orrit, “Brownian fluctuations and heating of an optically aligned gold nanorod,” Phys. Rev. Lett. 107, 037401 (2011).
[Crossref] [PubMed]

Saber, A.

Saito, Y.

Savatier, J.

G. Baffou, P. Bon, J. Savatier, J. Polleux, M. Zhu, M. Merlin, H. Rigneault, and S. Monneret, “Thermal imaging of nanostructures by quantitative optical phase analysis,” ACS Nano 6, 2452–2458 (2012).
[Crossref] [PubMed]

Seol, Y.

Sershen, S.

L. Hirsch, R. Stafford, J. Bankson, S. Sershen, B. Rivera, R. Price, J. Hazle, N. Halas, and J. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100, 13549–13554 (2003).
[Crossref] [PubMed]

Shah, J.

J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13, 034024 (2008).
[Crossref] [PubMed]

Šiler, M.

Skeini, T.

A. O. Govorov, W. Zhang, T. Skeini, H. Richardson, J. Lee, and N. A. Kotov, “Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances,” Nanoscale Res. Lett. 1, 84–90 (2006).
[Crossref]

Smith, N. I.

Sokolov, K.

J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13, 034024 (2008).
[Crossref] [PubMed]

Stafford, R.

L. Hirsch, R. Stafford, J. Bankson, S. Sershen, B. Rivera, R. Price, J. Hazle, N. Halas, and J. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100, 13549–13554 (2003).
[Crossref] [PubMed]

Stamou, D. G.

A. Kyrsting, P. M. Bendix, D. G. Stamou, and L. B. Oddershede, “Heat profiling of three-dimensionally optically trapped gold nanoparticles using vesicle cargo release,” Nano Lett. 11, 888–892 (2010).
[Crossref] [PubMed]

Tamarat, P.

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297, 1160–1163 (2002).
[Crossref] [PubMed]

Tavassoly, M. T.

Tchebotareva, A. L.

P. V. Ruijgrok, N. R. Verhart, P. Zijlstra, A. L. Tchebotareva, and M. Orrit, “Brownian fluctuations and heating of an optically aligned gold nanorod,” Phys. Rev. Lett. 107, 037401 (2011).
[Crossref] [PubMed]

Thomas, A. C.

H. H. Richardson, Z. N. Hickman, A. O. Govorov, A. C. Thomas, W. Zhang, and M. E. Kordesch, “Thermooptical properties of gold nanoparticles embedded in ice: characterization of heat generation and melting,” Nano Lett. 6, 783–788 (2006).
[Crossref] [PubMed]

Tranter, C. J.

H. Goldenberg and C. J. Tranter, “Heat flow in an infinite medium heated by a sphere,” Br. J. Appl. Phys. 3, 296 (1952).
[Crossref]

Verhart, N. R.

P. V. Ruijgrok, N. R. Verhart, P. Zijlstra, A. L. Tchebotareva, and M. Orrit, “Brownian fluctuations and heating of an optically aligned gold nanorod,” Phys. Rev. Lett. 107, 037401 (2011).
[Crossref] [PubMed]

Vessella, S.

R. Gorenflo and S. Vessella, Abel Integral Equations: Analysis and Applications (Springer, 1991).
[Crossref]

Weitz, D. A.

W. Ebina, A. C. Rowat, and D. A. Weitz, “Electrodes on a budget: Micropatterned electrode fabrication by wet chemical deposition,” Biomicrofluidics 3, 034104 (2009).
[Crossref]

Wenzel, M. T.

T. Härtling, Y. Alaverdyan, M. T. Wenzel, R. Kullock, M. Käll, and L. M. Eng, “Photochemical tuning of plasmon resonances in single gold nanoparticles,” J. Phys. Chem. C 112, 4920–4924 (2008).
[Crossref]

West, J.

L. Hirsch, R. Stafford, J. Bankson, S. Sershen, B. Rivera, R. Price, J. Hazle, N. Halas, and J. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100, 13549–13554 (2003).
[Crossref] [PubMed]

Westcott, S.

S. Oldenburg, R. Averitt, S. Westcott, and N. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288, 243–247 (1998).
[Crossref]

Yamaguchi, I.

Zemánek, P.

Zhang, W.

A. O. Govorov, W. Zhang, T. Skeini, H. Richardson, J. Lee, and N. A. Kotov, “Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances,” Nanoscale Res. Lett. 1, 84–90 (2006).
[Crossref]

H. H. Richardson, Z. N. Hickman, A. O. Govorov, A. C. Thomas, W. Zhang, and M. E. Kordesch, “Thermooptical properties of gold nanoparticles embedded in ice: characterization of heat generation and melting,” Nano Lett. 6, 783–788 (2006).
[Crossref] [PubMed]

Zhu, M.

G. Baffou, P. Bon, J. Savatier, J. Polleux, M. Zhu, M. Merlin, H. Rigneault, and S. Monneret, “Thermal imaging of nanostructures by quantitative optical phase analysis,” ACS Nano 6, 2452–2458 (2012).
[Crossref] [PubMed]

Zijlstra, P.

P. V. Ruijgrok, N. R. Verhart, P. Zijlstra, A. L. Tchebotareva, and M. Orrit, “Brownian fluctuations and heating of an optically aligned gold nanorod,” Phys. Rev. Lett. 107, 037401 (2011).
[Crossref] [PubMed]

ACS Nano (2)

P. M. Bendix, S. N. S. Reihani, and L. B. Oddershede, “Direct measurements of heating by electromagnetically trapped gold nanoparticles on supported lipid bilayers,” ACS Nano 4, 2256–2262 (2010).
[Crossref] [PubMed]

G. Baffou, P. Bon, J. Savatier, J. Polleux, M. Zhu, M. Merlin, H. Rigneault, and S. Monneret, “Thermal imaging of nanostructures by quantitative optical phase analysis,” ACS Nano 6, 2452–2458 (2012).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. A (1)

S. Baral, S. C. Johnson, A. A. Alaulamie, and H. H. Richardson, “Nanothermometry using optically trapped erbium oxide nanoparticle,” Appl. Phys. A 122, 1–8 (2016).
[Crossref]

Biomicrofluidics (1)

W. Ebina, A. C. Rowat, and D. A. Weitz, “Electrodes on a budget: Micropatterned electrode fabrication by wet chemical deposition,” Biomicrofluidics 3, 034104 (2009).
[Crossref]

Br. J. Appl. Phys. (1)

H. Goldenberg and C. J. Tranter, “Heat flow in an infinite medium heated by a sphere,” Br. J. Appl. Phys. 3, 296 (1952).
[Crossref]

Chem. Phys. Lett. (1)

S. Oldenburg, R. Averitt, S. Westcott, and N. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288, 243–247 (1998).
[Crossref]

J. Biomed. Opt. (1)

J. Shah, S. Park, S. Aglyamov, T. Larson, L. Ma, K. Sokolov, K. Johnston, T. Milner, and S. Y. Emelianov, “Photoacoustic imaging and temperature measurement for photothermal cancer therapy,” J. Biomed. Opt. 13, 034024 (2008).
[Crossref] [PubMed]

J. Phys. Chem. C (1)

T. Härtling, Y. Alaverdyan, M. T. Wenzel, R. Kullock, M. Käll, and L. M. Eng, “Photochemical tuning of plasmon resonances in single gold nanoparticles,” J. Phys. Chem. C 112, 4920–4924 (2008).
[Crossref]

Nano Lett. (2)

A. Kyrsting, P. M. Bendix, D. G. Stamou, and L. B. Oddershede, “Heat profiling of three-dimensionally optically trapped gold nanoparticles using vesicle cargo release,” Nano Lett. 11, 888–892 (2010).
[Crossref] [PubMed]

H. H. Richardson, Z. N. Hickman, A. O. Govorov, A. C. Thomas, W. Zhang, and M. E. Kordesch, “Thermooptical properties of gold nanoparticles embedded in ice: characterization of heat generation and melting,” Nano Lett. 6, 783–788 (2006).
[Crossref] [PubMed]

Nano Today (1)

P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, “Au nanoparticles target cancer,” Nano Today 2, 18–29 (2007).
[Crossref]

Nanoscale Res. Lett. (1)

A. O. Govorov, W. Zhang, T. Skeini, H. Richardson, J. Lee, and N. A. Kotov, “Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances,” Nanoscale Res. Lett. 1, 84–90 (2006).
[Crossref]

Nat. Mater. (1)

E. C. Garnett, W. Cai, J. J. Cha, F. Mahmood, S. T. Connor, M. GreysonChristoforo, Y. Cui, M. D. McGehee, and M. L. Brongersma, “Self-limited plasmonic welding of silver nanowire junctions,” Nat. Mater. 11, 241–249 (2012).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (4)

Phys. Rev. Lett. (1)

P. V. Ruijgrok, N. R. Verhart, P. Zijlstra, A. L. Tchebotareva, and M. Orrit, “Brownian fluctuations and heating of an optically aligned gold nanorod,” Phys. Rev. Lett. 107, 037401 (2011).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

L. Hirsch, R. Stafford, J. Bankson, S. Sershen, B. Rivera, R. Price, J. Hazle, N. Halas, and J. West, “Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance,” Proc. Natl. Acad. Sci. U.S.A. 100, 13549–13554 (2003).
[Crossref] [PubMed]

Science (1)

D. Boyer, P. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Photothermal imaging of nanometer-sized metal particles among scatterers,” Science 297, 1160–1163 (2002).
[Crossref] [PubMed]

Other (1)

R. Gorenflo and S. Vessella, Abel Integral Equations: Analysis and Applications (Springer, 1991).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Schematic of irradiated microscopic object. (b) Temperature dependency of refractive index for surrounding medium measured by Fresnel diffraction from a phase wedge [18]. (c) Typical refractive index (dashed-blue) and temperature (solid-red) as a function of distance from the center of the irradiated bead.
Fig. 2
Fig. 2 (a) Schematic of the setup: A Mach-Zehnder interferometer implemented into a custom-designed microscope. The heating and probe beams are shown in green and red, respectively. The mirror M2 is mounted on a PZT with nanometer resolution. The interference patterns are recorded using a CMOS camera. (b) and (c) show typical recorded holograms for a 3.2 μm silver coated silica bead, respectively, in absence and presence of the heating beam.
Fig. 3
Fig. 3 Two-dimensional phase distribution around the silver-coated beads. Particles size are 1.2 μm and 2.0 μm for (a) and (b)–(d), respectively. Δϕ axis and colors show the phase in radian. (b)–(d) Phase distribution in the situation at three different intensities of heating beam (Ih). The colorbar represents phase values in radian for right column.
Fig. 4
Fig. 4 (Top row:) Radial temperature profile around the irradiated beads: (a)–(c) Silver-coated silica beads with mean diameter of 3.2 μm, 2.0 μm, and 1.2 μm, respectively, and (d) Gold sphere with mean diameter of 400 nm. Solid lines show fit to the equation T = a/r + T0. (Bottom row:) Temperature measured on the surface of the beads resulted by (e) fit parameters of temperature profile around the particle, and (f) directly taken from the data points on the vicinity of the particle’s radius in plots (a)–(d).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I m ( x , y , δ m ) = I H ( δ m ) = | U r | 2 + | U o | 2 + U o U r * exp ( i δ m ) + U o * U r exp ( i δ m ) , ( m = 0 , 1 , 2 )
I H = U o U r * [ 1 e i δ 1 1 e i δ 1 1 e i δ 2 1 e i δ 2 ] .
n ( ρ , z ) n 0 = λ 2 π 2 ρ R ϕ ( x , z ) x ( ρ 2 x 2 ) 1 / 2 d x .
Δ T ( r ) = V p Q / ( 4 π k 0 r ) ,

Metrics