Abstract

A novel type of fiber Bragg grating is produced by annealing a type I-like grating that is written with multiple infrared femtosecond laser pulses through a phase mask under conditions that are typically used to fabricate thermally stable type II gratings. This new grating is created through a process similar to a regenerative one and displays low loss and high resilience in a 1000 °C ambient environment. Such gratings are ideally suited for quasi-distributed sensing at high temperatures.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Type I and II Bragg gratings made with infrared femtosecond radiation in high and low alumina content aluminosilicate optical fibers

Dan Grobnic, Stephen J. Mihailov, John Ballato, and Peter D. Dragic
Optica 2(4) 313-322 (2015)

Study of spectral and annealing properties of fiber Bragg gratings written in H2-free and H2-loaded fibers by use of femtosecond laser pulses

Yuhua Li, C. R. Liao, D. N. Wang, T. Sun, and K. T. V. Grattan
Opt. Express 16(26) 21239-21247 (2008)

Formation of Type I-IR and Type II-IR gratings with an ultrafast IR laser and a phase mask

Christopher W. Smelser, Stephen J. Mihailov, and Dan Grobnic
Opt. Express 13(14) 5377-5386 (2005)

References

  • View by:
  • |
  • |
  • |

  1. T. E. Tsai, G. M. Williams, and E. J. Friebele, “Index structure of fiber Bragg gratings in Ge-SiO2 fibers,” Opt. Lett. 22(4), 224–226 (1997).
    [Crossref] [PubMed]
  2. T. Erdogan, V. Mizrah, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76(1), 73–80 (1994).
    [Crossref]
  3. S. Bandyopadhyay, J. Canning, M. Stevenson, and K. Cook, “Ultrahigh-temperature regenerated gratings in boron-codoped germanosilicate optical fiber using 193 nm,” Opt. Lett. 33(16), 1917–1919 (2008).
    [Crossref] [PubMed]
  4. E. Lindner, C. Chojetzki, S. Brückner, M. Becker, M. Rothhardt, and H. Bartelt, “Thermal regeneration of fiber Bragg gratings in photosensitive fibers,” Opt. Express 17(15), 12523–12531 (2009).
    [Crossref] [PubMed]
  5. A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1172 (2004).
    [Crossref]
  6. D. Grobnic, C. W. Smelser, S. J. Mihailov, and R. B. Walker, “Long-term thermal stability tests at 1000 °C of silica fibre Bragg gratings made with ultrafast laser radiation,” Meas. Sci. Technol. 17(5), 1009–1013 (2006).
    [Crossref]
  7. E. Lindner, J. Canning, C. Chojetzki, S. Brückner, M. Becker, M. Rothhardt, and H. Bartelt, “Post-hydrogen-loaded draw tower fiber Bragg gratings and their thermal regeneration,” Appl. Opt. 50(17), 2519–2522 (2011).
    [Crossref] [PubMed]
  8. C. Smelser, S. Mihailov, and D. Grobnic, “Formation of Type I-IR and Type II-IR gratings with an ultrafast IR laser and a phase mask,” Opt. Express 13(14), 5377–5386 (2005).
    [Crossref] [PubMed]
  9. D. Grobnic, S. Mihailov, R. Walker, P. Lu, H. Ding, and D. Coulas, “Growth dynamics of type II gratings made with ultrafast radiation,” Advanced Photonics, OSA Technical Digest, paper JTu3A.2.
  10. S. J. Mihailov, D. Grobnic, R. B. Walker, C. Hnatovsky, H. Ding, D. Coulas, and P. Lu, “New technique for fabrication of low loss high temperature stable high reflectivity FBG sensor arrays,” Proc. SPIE 9852, 98520F (2016).
    [Crossref]
  11. R. B. Walker, H. Ding, D. Coulas, D. Grobnic, P. Lu, S. J. Mihailov, M. A. Duchesne, R. W. Hughes, D. J. McCalden, R. Burchat, and R. Yandon, “High temperature monitoring of an oxy-fuel fluidized bed combustor using femtosecond infrared laser written fiber Bragg gratings,” Proc. SPIE 9754, 975413 (2016).
    [Crossref]
  12. S. J. Mihailov, D. Grobnic, C. W. Smelser, P. Lu, R. B. Walker, and H. Ding, “Induced Bragg gratings in optical fibers and waveguides using an ultrafast infrared laser and a phase mask,” Laser Chem. 2008, 416251 (2008).
    [Crossref]
  13. P. Lu, D. Grobnic, and S. J. Mihailov, “Characterization of the birefringence in fiber Bragg gratings fabricated with an ultrafast-infrared laser,” J. Lightwave Technol. 25(3), 779–786 (2007).
    [Crossref]
  14. D. Grobnic, C. W. Smelser, S. J. Mihailov, R. B. Walker, and P. Lu, “Fiber Bragg gratings with suppressed cladding modes made in SMF-28 with a femtosecond IR laser and a phase mask,” IEEE Photonics Technol. Lett. 16(8), 1864–1866 (2004).
    [Crossref]
  15. S. J. Mihailov, C. W. Smelser, D. Grobnic, R. B. Walker, P. Lu, H. Ding, and J. Unruh, “Bragg gratings written in all-SiO2 and Ge-doped core fibers with 800-nm femtosecond radiation and a phase mask,” J. Lightwave Technol. 22(1), 94–100 (2004).
    [Crossref]
  16. D. Grobnic, C. W. Smelser, and S. J. Mihailov, “Low energy type II fiber Bragg gratings,” in Frontiers in Optics 2009/Laser Science XXV/Fall 2009 OSA Optics & Photonics Technical Digest, OSA Technical Digest (CD) (Optical Society of America, 2009), paper FTuE2.
  17. Y. Shimotsuma, M. Sakakura, and K. Miura, “Manipulation of optical anisotropy in silica glass,” Opt. Mater. Express 1(5), 803–815 (2011).
    [Crossref]
  18. S. Bandyopadhyay, P. Biswas, and J. Canning, “Regenerated gratings redefined,” in Photonics and Fiber Technology 2016 (ACOFT, BGPP, NP), OSA Technical Digest (online) (Optical Society of America, 2016), paper BTh3B.3.

2016 (2)

S. J. Mihailov, D. Grobnic, R. B. Walker, C. Hnatovsky, H. Ding, D. Coulas, and P. Lu, “New technique for fabrication of low loss high temperature stable high reflectivity FBG sensor arrays,” Proc. SPIE 9852, 98520F (2016).
[Crossref]

R. B. Walker, H. Ding, D. Coulas, D. Grobnic, P. Lu, S. J. Mihailov, M. A. Duchesne, R. W. Hughes, D. J. McCalden, R. Burchat, and R. Yandon, “High temperature monitoring of an oxy-fuel fluidized bed combustor using femtosecond infrared laser written fiber Bragg gratings,” Proc. SPIE 9754, 975413 (2016).
[Crossref]

2011 (2)

2009 (1)

2008 (2)

S. Bandyopadhyay, J. Canning, M. Stevenson, and K. Cook, “Ultrahigh-temperature regenerated gratings in boron-codoped germanosilicate optical fiber using 193 nm,” Opt. Lett. 33(16), 1917–1919 (2008).
[Crossref] [PubMed]

S. J. Mihailov, D. Grobnic, C. W. Smelser, P. Lu, R. B. Walker, and H. Ding, “Induced Bragg gratings in optical fibers and waveguides using an ultrafast infrared laser and a phase mask,” Laser Chem. 2008, 416251 (2008).
[Crossref]

2007 (1)

2006 (1)

D. Grobnic, C. W. Smelser, S. J. Mihailov, and R. B. Walker, “Long-term thermal stability tests at 1000 °C of silica fibre Bragg gratings made with ultrafast laser radiation,” Meas. Sci. Technol. 17(5), 1009–1013 (2006).
[Crossref]

2005 (1)

2004 (3)

S. J. Mihailov, C. W. Smelser, D. Grobnic, R. B. Walker, P. Lu, H. Ding, and J. Unruh, “Bragg gratings written in all-SiO2 and Ge-doped core fibers with 800-nm femtosecond radiation and a phase mask,” J. Lightwave Technol. 22(1), 94–100 (2004).
[Crossref]

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1172 (2004).
[Crossref]

D. Grobnic, C. W. Smelser, S. J. Mihailov, R. B. Walker, and P. Lu, “Fiber Bragg gratings with suppressed cladding modes made in SMF-28 with a femtosecond IR laser and a phase mask,” IEEE Photonics Technol. Lett. 16(8), 1864–1866 (2004).
[Crossref]

1997 (1)

1994 (1)

T. Erdogan, V. Mizrah, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76(1), 73–80 (1994).
[Crossref]

Bandyopadhyay, S.

Bartelt, H.

Becker, M.

Bennion, I.

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1172 (2004).
[Crossref]

Brückner, S.

Burchat, R.

R. B. Walker, H. Ding, D. Coulas, D. Grobnic, P. Lu, S. J. Mihailov, M. A. Duchesne, R. W. Hughes, D. J. McCalden, R. Burchat, and R. Yandon, “High temperature monitoring of an oxy-fuel fluidized bed combustor using femtosecond infrared laser written fiber Bragg gratings,” Proc. SPIE 9754, 975413 (2016).
[Crossref]

Canning, J.

Chojetzki, C.

Cook, K.

Coulas, D.

R. B. Walker, H. Ding, D. Coulas, D. Grobnic, P. Lu, S. J. Mihailov, M. A. Duchesne, R. W. Hughes, D. J. McCalden, R. Burchat, and R. Yandon, “High temperature monitoring of an oxy-fuel fluidized bed combustor using femtosecond infrared laser written fiber Bragg gratings,” Proc. SPIE 9754, 975413 (2016).
[Crossref]

S. J. Mihailov, D. Grobnic, R. B. Walker, C. Hnatovsky, H. Ding, D. Coulas, and P. Lu, “New technique for fabrication of low loss high temperature stable high reflectivity FBG sensor arrays,” Proc. SPIE 9852, 98520F (2016).
[Crossref]

Ding, H.

R. B. Walker, H. Ding, D. Coulas, D. Grobnic, P. Lu, S. J. Mihailov, M. A. Duchesne, R. W. Hughes, D. J. McCalden, R. Burchat, and R. Yandon, “High temperature monitoring of an oxy-fuel fluidized bed combustor using femtosecond infrared laser written fiber Bragg gratings,” Proc. SPIE 9754, 975413 (2016).
[Crossref]

S. J. Mihailov, D. Grobnic, R. B. Walker, C. Hnatovsky, H. Ding, D. Coulas, and P. Lu, “New technique for fabrication of low loss high temperature stable high reflectivity FBG sensor arrays,” Proc. SPIE 9852, 98520F (2016).
[Crossref]

S. J. Mihailov, D. Grobnic, C. W. Smelser, P. Lu, R. B. Walker, and H. Ding, “Induced Bragg gratings in optical fibers and waveguides using an ultrafast infrared laser and a phase mask,” Laser Chem. 2008, 416251 (2008).
[Crossref]

S. J. Mihailov, C. W. Smelser, D. Grobnic, R. B. Walker, P. Lu, H. Ding, and J. Unruh, “Bragg gratings written in all-SiO2 and Ge-doped core fibers with 800-nm femtosecond radiation and a phase mask,” J. Lightwave Technol. 22(1), 94–100 (2004).
[Crossref]

Dubov, M.

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1172 (2004).
[Crossref]

Duchesne, M. A.

R. B. Walker, H. Ding, D. Coulas, D. Grobnic, P. Lu, S. J. Mihailov, M. A. Duchesne, R. W. Hughes, D. J. McCalden, R. Burchat, and R. Yandon, “High temperature monitoring of an oxy-fuel fluidized bed combustor using femtosecond infrared laser written fiber Bragg gratings,” Proc. SPIE 9754, 975413 (2016).
[Crossref]

Erdogan, T.

T. Erdogan, V. Mizrah, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76(1), 73–80 (1994).
[Crossref]

Friebele, E. J.

Grobnic, D.

S. J. Mihailov, D. Grobnic, R. B. Walker, C. Hnatovsky, H. Ding, D. Coulas, and P. Lu, “New technique for fabrication of low loss high temperature stable high reflectivity FBG sensor arrays,” Proc. SPIE 9852, 98520F (2016).
[Crossref]

R. B. Walker, H. Ding, D. Coulas, D. Grobnic, P. Lu, S. J. Mihailov, M. A. Duchesne, R. W. Hughes, D. J. McCalden, R. Burchat, and R. Yandon, “High temperature monitoring of an oxy-fuel fluidized bed combustor using femtosecond infrared laser written fiber Bragg gratings,” Proc. SPIE 9754, 975413 (2016).
[Crossref]

S. J. Mihailov, D. Grobnic, C. W. Smelser, P. Lu, R. B. Walker, and H. Ding, “Induced Bragg gratings in optical fibers and waveguides using an ultrafast infrared laser and a phase mask,” Laser Chem. 2008, 416251 (2008).
[Crossref]

P. Lu, D. Grobnic, and S. J. Mihailov, “Characterization of the birefringence in fiber Bragg gratings fabricated with an ultrafast-infrared laser,” J. Lightwave Technol. 25(3), 779–786 (2007).
[Crossref]

D. Grobnic, C. W. Smelser, S. J. Mihailov, and R. B. Walker, “Long-term thermal stability tests at 1000 °C of silica fibre Bragg gratings made with ultrafast laser radiation,” Meas. Sci. Technol. 17(5), 1009–1013 (2006).
[Crossref]

C. Smelser, S. Mihailov, and D. Grobnic, “Formation of Type I-IR and Type II-IR gratings with an ultrafast IR laser and a phase mask,” Opt. Express 13(14), 5377–5386 (2005).
[Crossref] [PubMed]

S. J. Mihailov, C. W. Smelser, D. Grobnic, R. B. Walker, P. Lu, H. Ding, and J. Unruh, “Bragg gratings written in all-SiO2 and Ge-doped core fibers with 800-nm femtosecond radiation and a phase mask,” J. Lightwave Technol. 22(1), 94–100 (2004).
[Crossref]

D. Grobnic, C. W. Smelser, S. J. Mihailov, R. B. Walker, and P. Lu, “Fiber Bragg gratings with suppressed cladding modes made in SMF-28 with a femtosecond IR laser and a phase mask,” IEEE Photonics Technol. Lett. 16(8), 1864–1866 (2004).
[Crossref]

Hnatovsky, C.

S. J. Mihailov, D. Grobnic, R. B. Walker, C. Hnatovsky, H. Ding, D. Coulas, and P. Lu, “New technique for fabrication of low loss high temperature stable high reflectivity FBG sensor arrays,” Proc. SPIE 9852, 98520F (2016).
[Crossref]

Hughes, R. W.

R. B. Walker, H. Ding, D. Coulas, D. Grobnic, P. Lu, S. J. Mihailov, M. A. Duchesne, R. W. Hughes, D. J. McCalden, R. Burchat, and R. Yandon, “High temperature monitoring of an oxy-fuel fluidized bed combustor using femtosecond infrared laser written fiber Bragg gratings,” Proc. SPIE 9754, 975413 (2016).
[Crossref]

Khrushchev, I.

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1172 (2004).
[Crossref]

Lemaire, P. J.

T. Erdogan, V. Mizrah, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76(1), 73–80 (1994).
[Crossref]

Lindner, E.

Lu, P.

S. J. Mihailov, D. Grobnic, R. B. Walker, C. Hnatovsky, H. Ding, D. Coulas, and P. Lu, “New technique for fabrication of low loss high temperature stable high reflectivity FBG sensor arrays,” Proc. SPIE 9852, 98520F (2016).
[Crossref]

R. B. Walker, H. Ding, D. Coulas, D. Grobnic, P. Lu, S. J. Mihailov, M. A. Duchesne, R. W. Hughes, D. J. McCalden, R. Burchat, and R. Yandon, “High temperature monitoring of an oxy-fuel fluidized bed combustor using femtosecond infrared laser written fiber Bragg gratings,” Proc. SPIE 9754, 975413 (2016).
[Crossref]

S. J. Mihailov, D. Grobnic, C. W. Smelser, P. Lu, R. B. Walker, and H. Ding, “Induced Bragg gratings in optical fibers and waveguides using an ultrafast infrared laser and a phase mask,” Laser Chem. 2008, 416251 (2008).
[Crossref]

P. Lu, D. Grobnic, and S. J. Mihailov, “Characterization of the birefringence in fiber Bragg gratings fabricated with an ultrafast-infrared laser,” J. Lightwave Technol. 25(3), 779–786 (2007).
[Crossref]

S. J. Mihailov, C. W. Smelser, D. Grobnic, R. B. Walker, P. Lu, H. Ding, and J. Unruh, “Bragg gratings written in all-SiO2 and Ge-doped core fibers with 800-nm femtosecond radiation and a phase mask,” J. Lightwave Technol. 22(1), 94–100 (2004).
[Crossref]

D. Grobnic, C. W. Smelser, S. J. Mihailov, R. B. Walker, and P. Lu, “Fiber Bragg gratings with suppressed cladding modes made in SMF-28 with a femtosecond IR laser and a phase mask,” IEEE Photonics Technol. Lett. 16(8), 1864–1866 (2004).
[Crossref]

Martinez, A.

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1172 (2004).
[Crossref]

McCalden, D. J.

R. B. Walker, H. Ding, D. Coulas, D. Grobnic, P. Lu, S. J. Mihailov, M. A. Duchesne, R. W. Hughes, D. J. McCalden, R. Burchat, and R. Yandon, “High temperature monitoring of an oxy-fuel fluidized bed combustor using femtosecond infrared laser written fiber Bragg gratings,” Proc. SPIE 9754, 975413 (2016).
[Crossref]

Mihailov, S.

Mihailov, S. J.

R. B. Walker, H. Ding, D. Coulas, D. Grobnic, P. Lu, S. J. Mihailov, M. A. Duchesne, R. W. Hughes, D. J. McCalden, R. Burchat, and R. Yandon, “High temperature monitoring of an oxy-fuel fluidized bed combustor using femtosecond infrared laser written fiber Bragg gratings,” Proc. SPIE 9754, 975413 (2016).
[Crossref]

S. J. Mihailov, D. Grobnic, R. B. Walker, C. Hnatovsky, H. Ding, D. Coulas, and P. Lu, “New technique for fabrication of low loss high temperature stable high reflectivity FBG sensor arrays,” Proc. SPIE 9852, 98520F (2016).
[Crossref]

S. J. Mihailov, D. Grobnic, C. W. Smelser, P. Lu, R. B. Walker, and H. Ding, “Induced Bragg gratings in optical fibers and waveguides using an ultrafast infrared laser and a phase mask,” Laser Chem. 2008, 416251 (2008).
[Crossref]

P. Lu, D. Grobnic, and S. J. Mihailov, “Characterization of the birefringence in fiber Bragg gratings fabricated with an ultrafast-infrared laser,” J. Lightwave Technol. 25(3), 779–786 (2007).
[Crossref]

D. Grobnic, C. W. Smelser, S. J. Mihailov, and R. B. Walker, “Long-term thermal stability tests at 1000 °C of silica fibre Bragg gratings made with ultrafast laser radiation,” Meas. Sci. Technol. 17(5), 1009–1013 (2006).
[Crossref]

S. J. Mihailov, C. W. Smelser, D. Grobnic, R. B. Walker, P. Lu, H. Ding, and J. Unruh, “Bragg gratings written in all-SiO2 and Ge-doped core fibers with 800-nm femtosecond radiation and a phase mask,” J. Lightwave Technol. 22(1), 94–100 (2004).
[Crossref]

D. Grobnic, C. W. Smelser, S. J. Mihailov, R. B. Walker, and P. Lu, “Fiber Bragg gratings with suppressed cladding modes made in SMF-28 with a femtosecond IR laser and a phase mask,” IEEE Photonics Technol. Lett. 16(8), 1864–1866 (2004).
[Crossref]

Miura, K.

Mizrah, V.

T. Erdogan, V. Mizrah, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76(1), 73–80 (1994).
[Crossref]

Monroe, D.

T. Erdogan, V. Mizrah, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76(1), 73–80 (1994).
[Crossref]

Rothhardt, M.

Sakakura, M.

Shimotsuma, Y.

Smelser, C.

Smelser, C. W.

S. J. Mihailov, D. Grobnic, C. W. Smelser, P. Lu, R. B. Walker, and H. Ding, “Induced Bragg gratings in optical fibers and waveguides using an ultrafast infrared laser and a phase mask,” Laser Chem. 2008, 416251 (2008).
[Crossref]

D. Grobnic, C. W. Smelser, S. J. Mihailov, and R. B. Walker, “Long-term thermal stability tests at 1000 °C of silica fibre Bragg gratings made with ultrafast laser radiation,” Meas. Sci. Technol. 17(5), 1009–1013 (2006).
[Crossref]

D. Grobnic, C. W. Smelser, S. J. Mihailov, R. B. Walker, and P. Lu, “Fiber Bragg gratings with suppressed cladding modes made in SMF-28 with a femtosecond IR laser and a phase mask,” IEEE Photonics Technol. Lett. 16(8), 1864–1866 (2004).
[Crossref]

S. J. Mihailov, C. W. Smelser, D. Grobnic, R. B. Walker, P. Lu, H. Ding, and J. Unruh, “Bragg gratings written in all-SiO2 and Ge-doped core fibers with 800-nm femtosecond radiation and a phase mask,” J. Lightwave Technol. 22(1), 94–100 (2004).
[Crossref]

Stevenson, M.

Tsai, T. E.

Unruh, J.

Walker, R. B.

S. J. Mihailov, D. Grobnic, R. B. Walker, C. Hnatovsky, H. Ding, D. Coulas, and P. Lu, “New technique for fabrication of low loss high temperature stable high reflectivity FBG sensor arrays,” Proc. SPIE 9852, 98520F (2016).
[Crossref]

R. B. Walker, H. Ding, D. Coulas, D. Grobnic, P. Lu, S. J. Mihailov, M. A. Duchesne, R. W. Hughes, D. J. McCalden, R. Burchat, and R. Yandon, “High temperature monitoring of an oxy-fuel fluidized bed combustor using femtosecond infrared laser written fiber Bragg gratings,” Proc. SPIE 9754, 975413 (2016).
[Crossref]

S. J. Mihailov, D. Grobnic, C. W. Smelser, P. Lu, R. B. Walker, and H. Ding, “Induced Bragg gratings in optical fibers and waveguides using an ultrafast infrared laser and a phase mask,” Laser Chem. 2008, 416251 (2008).
[Crossref]

D. Grobnic, C. W. Smelser, S. J. Mihailov, and R. B. Walker, “Long-term thermal stability tests at 1000 °C of silica fibre Bragg gratings made with ultrafast laser radiation,” Meas. Sci. Technol. 17(5), 1009–1013 (2006).
[Crossref]

S. J. Mihailov, C. W. Smelser, D. Grobnic, R. B. Walker, P. Lu, H. Ding, and J. Unruh, “Bragg gratings written in all-SiO2 and Ge-doped core fibers with 800-nm femtosecond radiation and a phase mask,” J. Lightwave Technol. 22(1), 94–100 (2004).
[Crossref]

D. Grobnic, C. W. Smelser, S. J. Mihailov, R. B. Walker, and P. Lu, “Fiber Bragg gratings with suppressed cladding modes made in SMF-28 with a femtosecond IR laser and a phase mask,” IEEE Photonics Technol. Lett. 16(8), 1864–1866 (2004).
[Crossref]

Williams, G. M.

Yandon, R.

R. B. Walker, H. Ding, D. Coulas, D. Grobnic, P. Lu, S. J. Mihailov, M. A. Duchesne, R. W. Hughes, D. J. McCalden, R. Burchat, and R. Yandon, “High temperature monitoring of an oxy-fuel fluidized bed combustor using femtosecond infrared laser written fiber Bragg gratings,” Proc. SPIE 9754, 975413 (2016).
[Crossref]

Appl. Opt. (1)

Electron. Lett. (1)

A. Martinez, M. Dubov, I. Khrushchev, and I. Bennion, “Direct writing of fibre Bragg gratings by femtosecond laser,” Electron. Lett. 40(19), 1170–1172 (2004).
[Crossref]

IEEE Photonics Technol. Lett. (1)

D. Grobnic, C. W. Smelser, S. J. Mihailov, R. B. Walker, and P. Lu, “Fiber Bragg gratings with suppressed cladding modes made in SMF-28 with a femtosecond IR laser and a phase mask,” IEEE Photonics Technol. Lett. 16(8), 1864–1866 (2004).
[Crossref]

J. Appl. Phys. (1)

T. Erdogan, V. Mizrah, P. J. Lemaire, and D. Monroe, “Decay of ultraviolet-induced fiber Bragg gratings,” J. Appl. Phys. 76(1), 73–80 (1994).
[Crossref]

J. Lightwave Technol. (2)

Laser Chem. (1)

S. J. Mihailov, D. Grobnic, C. W. Smelser, P. Lu, R. B. Walker, and H. Ding, “Induced Bragg gratings in optical fibers and waveguides using an ultrafast infrared laser and a phase mask,” Laser Chem. 2008, 416251 (2008).
[Crossref]

Meas. Sci. Technol. (1)

D. Grobnic, C. W. Smelser, S. J. Mihailov, and R. B. Walker, “Long-term thermal stability tests at 1000 °C of silica fibre Bragg gratings made with ultrafast laser radiation,” Meas. Sci. Technol. 17(5), 1009–1013 (2006).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Opt. Mater. Express (1)

Proc. SPIE (2)

S. J. Mihailov, D. Grobnic, R. B. Walker, C. Hnatovsky, H. Ding, D. Coulas, and P. Lu, “New technique for fabrication of low loss high temperature stable high reflectivity FBG sensor arrays,” Proc. SPIE 9852, 98520F (2016).
[Crossref]

R. B. Walker, H. Ding, D. Coulas, D. Grobnic, P. Lu, S. J. Mihailov, M. A. Duchesne, R. W. Hughes, D. J. McCalden, R. Burchat, and R. Yandon, “High temperature monitoring of an oxy-fuel fluidized bed combustor using femtosecond infrared laser written fiber Bragg gratings,” Proc. SPIE 9754, 975413 (2016).
[Crossref]

Other (3)

S. Bandyopadhyay, P. Biswas, and J. Canning, “Regenerated gratings redefined,” in Photonics and Fiber Technology 2016 (ACOFT, BGPP, NP), OSA Technical Digest (online) (Optical Society of America, 2016), paper BTh3B.3.

D. Grobnic, C. W. Smelser, and S. J. Mihailov, “Low energy type II fiber Bragg gratings,” in Frontiers in Optics 2009/Laser Science XXV/Fall 2009 OSA Optics & Photonics Technical Digest, OSA Technical Digest (CD) (Optical Society of America, 2009), paper FTuE2.

D. Grobnic, S. Mihailov, R. Walker, P. Lu, H. Ding, and D. Coulas, “Growth dynamics of type II gratings made with ultrafast radiation,” Advanced Photonics, OSA Technical Digest, paper JTu3A.2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Evolution of the transmission spectra of (a) type I-like grating and (b) type II grating as a function of laser exposure. Transmission spectral traces are offset vertically for ease of viewing and correspond to increments of 15 laser pulses per trace.
Fig. 2
Fig. 2 Example of changes in grating reflectivity (blue trace) and Bragg wavelength shift (red trace) as a function of laser exposure. Stage A denotes type I-like grating growth to saturation, stage B denotes the type I-like grating erasure and stage C denotes development of a strong type II grating.
Fig. 3
Fig. 3 (a) Change in reflectivity of the stage A-grating during isochronal annealing; (b) evolution of a thermally stable grating as a function of time at 1000 °C.
Fig. 4
Fig. 4 (a) Grating reflectivity variation as a function of isochronal annealing temperature. Red trace is a standard type I grating, blue trace is the high dosage B-grating, the green trace is the low dosage B-grating; (b) denotes the stabilization of low dosage (green) and high dosage (blue) B-gratings when annealed at 1000 °C.
Fig. 5
Fig. 5 (a) The initial transmission spectrum of the high-dosage B-grating with a room temperature resonance at 1540 nm (red trace) and its spectrum at 1000 °C after several hours of annealing at 1000 °C (blue trace); (b) The transmission spectra of the initial room temperature low dosage B-grating (red trace) and its spectrum at 1000 °C after annealing at 1000 °C (green trace).
Fig. 6
Fig. 6 (a) Isochronal annealing behavior of a low dosage (blue) and high dosage (green) C-grating; (b) Changes in reflectivity (blue) and index modulation Δn (red) of the low dosage C-grating under sustained annealing at 900 °C.

Metrics