Abstract

Intense pulse pumped microlaser is proposed for high peak power and low timing jitter at high repetition rate. It is based on Intense and Fast Pulse Pump (IFPP) technique, in which fast pulse pumps up the upper-level population and then dumps it rapidly by Q-switching. That could come close to complete pumping efficiency to reduce thermal problems and contribute to suppress the timing jitter of passively Q-switched laser. In this work, linearly polarized 1064 nm beam from [100]-cut YAG/Nd3+:YAG and [110]-cut Cr4+:YAG passively Q-switched microlaser is directly guided into nonlinear crystals to obtain 532 nm and 266 nm output. By implementing IFPP concept, over 1 MW peak power, 215 ps pulse duration, 1 kHz pulses at 266 nm with reduced standard deviation timing jitter of 37 ns were obtained.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
> 6 MW peak power at 532 nm from passively Q-switched Nd:YAG/Cr4+:YAG microchip laser

Rakesh Bhandari and Takunori Taira
Opt. Express 19(20) 19135-19141 (2011)

> 3 MW peak power at 266 nm using Nd:YAG/ Cr4+:YAG microchip laser and fluxless-BBO

R. Bhandari, T. Taira, A. Miyamoto, Y. Furukawa, and T. Tago
Opt. Mater. Express 2(7) 907-913 (2012)

Low repetition rate 343 nm passively Q-switched solid-state laser for time-resolved fluorescence spectroscopy

Olga Rodenko, Peter Tidemand-Lichtenberg, and Christian Pedersen
Opt. Express 26(16) 20614-20621 (2018)

References

  • View by:
  • |
  • |
  • |

  1. F. J. McClung and R. W. Hellwarth, “Giant optical pulsations from ruby,” J. Appl. Phys. 33(3), 828–829 (1962).
    [Crossref]
  2. N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, “High average power diode end-pumped composite Nd:YAG laser passively Q-switched by Cr4+:YAG saturable absorber,” Jpn. J. Appl. Phys. 40(Part 1, No. 3A), 1253–1259 (2001).
    [Crossref]
  3. H. Sakai, H. Kan, and T. Taira, “>1 MW peak power single-mode high-brightness passively Q-switched Nd 3+:YAG microchip laser,” Opt. Express 16(24), 19891–19899 (2008).
    [Crossref] [PubMed]
  4. I. Shoji and T. Taira, “Intrinsic reduction of the depolarization loss in solid-state lasers by use of a (110)-cut Y3Al5O12 crystal,” Appl. Phys. Lett. 80(17), 3048–3050 (2002).
    [Crossref]
  5. P. Zhao, S. Ragam, Y. J. Ding, and I. B. Zotova, “Investigation of terahertz generation from passively Q-switched dual-frequency laser pulses,” Opt. Lett. 36(24), 4818–4820 (2011).
    [Crossref] [PubMed]
  6. M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
    [Crossref]
  7. S. L. Huang, T. Y. Tsui, C. H. Wang, and F. J. Kao, “Timing Jitter Reduction of a Passively Q-Switched Laser,” Jpn. J. Appl. Phys. 38(Part 2, No. 3A), L239–L241 (1999).
    [Crossref]
  8. B. Cole, L. Goldberg, C. W. Trussell, A. Hays, B. W. Schilling, and C. McIntosh, “Reduction of timing jitter in a Q-Switched Nd:YAG laser by direct bleaching of a Cr4+:YAG saturable absorber,” Opt. Express 17(3), 1766–1771 (2009).
    [Crossref] [PubMed]
  9. B. Hansson and M. Arvidsson, “Q-switched microchip laser with 65 ps timing jitter,” Electron. Lett. 36(13), 1123–1124 (2000).
    [Crossref]
  10. H. Kan, A. Sone, H. Sakai, T. Taira, N. Pavel, and V. Lupei, “Laser light source,” U. S. Patent 6,31,047 B2 (16th August 2005).
  11. J. B. Khurgin, F. Jin, G. Solyar, C. C. Wang, and S. Trivedi, “Cost-effective low timing jitter passively Q-switched diode-pumped solid-state laser with composite pumping pulses,” Appl. Opt. 41(6), 1095–1097 (2002).
    [Crossref] [PubMed]
  12. T. Sakamoto, K. Ohishi, Y. Furukawa, L. Zheng, and T. Taira, “A flange-mounted UV microchip laser for imaging mass spectrometry,” presented at the 4th Laser Ignition Conference, LIC4–3, Yokohama, Japan, 18–20 May 2016.
  13. R. Bhandari and T. Taira, “High repetition rate MW peak power at 532 nm using microchip laser,” in CLEO: 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper JW2A.26.
  14. A. E. Siegman, “Laser Pumping and Population Inversion,” in Lasers, A. E. Siegman, Eds (University Science Books, 1986), pp. 276.
  15. R. Bhandari and T. Taira, “> 0.5 MW peak power, kHz repetition rate at 266 nm using [100] cut Nd:YAG microchip laser,” in CLEO: 2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper STu1I.4.
  16. N. N. Il’ichev, A. V. Kir’yanov, É. S. Gulyamova, and P. P. Pashinin, “Influence of the nonlinear anisotropy of absorption in a passive Cr4+:YAG switch on the energy and polarisation characteristics of a neodymium laser,” Quantum Electron. 27(4), 298–301 (1997).
    [Crossref]
  17. V. Lupei, N. Pavel, and T. Taira, “Laser emission in highly doped Nd:YAG crystals under 4F5/2 and 4F3/2 pumping,” Opt. Lett. 26(21), 1678–1680 (2001).
    [Crossref] [PubMed]

2011 (1)

2010 (1)

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

2009 (1)

2008 (1)

2002 (2)

J. B. Khurgin, F. Jin, G. Solyar, C. C. Wang, and S. Trivedi, “Cost-effective low timing jitter passively Q-switched diode-pumped solid-state laser with composite pumping pulses,” Appl. Opt. 41(6), 1095–1097 (2002).
[Crossref] [PubMed]

I. Shoji and T. Taira, “Intrinsic reduction of the depolarization loss in solid-state lasers by use of a (110)-cut Y3Al5O12 crystal,” Appl. Phys. Lett. 80(17), 3048–3050 (2002).
[Crossref]

2001 (2)

V. Lupei, N. Pavel, and T. Taira, “Laser emission in highly doped Nd:YAG crystals under 4F5/2 and 4F3/2 pumping,” Opt. Lett. 26(21), 1678–1680 (2001).
[Crossref] [PubMed]

N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, “High average power diode end-pumped composite Nd:YAG laser passively Q-switched by Cr4+:YAG saturable absorber,” Jpn. J. Appl. Phys. 40(Part 1, No. 3A), 1253–1259 (2001).
[Crossref]

2000 (1)

B. Hansson and M. Arvidsson, “Q-switched microchip laser with 65 ps timing jitter,” Electron. Lett. 36(13), 1123–1124 (2000).
[Crossref]

1999 (1)

S. L. Huang, T. Y. Tsui, C. H. Wang, and F. J. Kao, “Timing Jitter Reduction of a Passively Q-Switched Laser,” Jpn. J. Appl. Phys. 38(Part 2, No. 3A), L239–L241 (1999).
[Crossref]

1997 (1)

N. N. Il’ichev, A. V. Kir’yanov, É. S. Gulyamova, and P. P. Pashinin, “Influence of the nonlinear anisotropy of absorption in a passive Cr4+:YAG switch on the energy and polarisation characteristics of a neodymium laser,” Quantum Electron. 27(4), 298–301 (1997).
[Crossref]

1962 (1)

F. J. McClung and R. W. Hellwarth, “Giant optical pulsations from ruby,” J. Appl. Phys. 33(3), 828–829 (1962).
[Crossref]

Ando, A.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

Arvidsson, M.

B. Hansson and M. Arvidsson, “Q-switched microchip laser with 65 ps timing jitter,” Electron. Lett. 36(13), 1123–1124 (2000).
[Crossref]

Cole, B.

Ding, Y. J.

Goldberg, L.

Gulyamova, É. S.

N. N. Il’ichev, A. V. Kir’yanov, É. S. Gulyamova, and P. P. Pashinin, “Influence of the nonlinear anisotropy of absorption in a passive Cr4+:YAG switch on the energy and polarisation characteristics of a neodymium laser,” Quantum Electron. 27(4), 298–301 (1997).
[Crossref]

Hansson, B.

B. Hansson and M. Arvidsson, “Q-switched microchip laser with 65 ps timing jitter,” Electron. Lett. 36(13), 1123–1124 (2000).
[Crossref]

Hays, A.

Hellwarth, R. W.

F. J. McClung and R. W. Hellwarth, “Giant optical pulsations from ruby,” J. Appl. Phys. 33(3), 828–829 (1962).
[Crossref]

Huang, S. L.

S. L. Huang, T. Y. Tsui, C. H. Wang, and F. J. Kao, “Timing Jitter Reduction of a Passively Q-Switched Laser,” Jpn. J. Appl. Phys. 38(Part 2, No. 3A), L239–L241 (1999).
[Crossref]

Il’ichev, N. N.

N. N. Il’ichev, A. V. Kir’yanov, É. S. Gulyamova, and P. P. Pashinin, “Influence of the nonlinear anisotropy of absorption in a passive Cr4+:YAG switch on the energy and polarisation characteristics of a neodymium laser,” Quantum Electron. 27(4), 298–301 (1997).
[Crossref]

Inohara, T.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

Jin, F.

Kan, H.

Kanehara, K.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

Kao, F. J.

S. L. Huang, T. Y. Tsui, C. H. Wang, and F. J. Kao, “Timing Jitter Reduction of a Passively Q-Switched Laser,” Jpn. J. Appl. Phys. 38(Part 2, No. 3A), L239–L241 (1999).
[Crossref]

Khurgin, J. B.

Kido, N.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

Kir’yanov, A. V.

N. N. Il’ichev, A. V. Kir’yanov, É. S. Gulyamova, and P. P. Pashinin, “Influence of the nonlinear anisotropy of absorption in a passive Cr4+:YAG switch on the energy and polarisation characteristics of a neodymium laser,” Quantum Electron. 27(4), 298–301 (1997).
[Crossref]

Kurimura, S.

N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, “High average power diode end-pumped composite Nd:YAG laser passively Q-switched by Cr4+:YAG saturable absorber,” Jpn. J. Appl. Phys. 40(Part 1, No. 3A), 1253–1259 (2001).
[Crossref]

Lupei, V.

McClung, F. J.

F. J. McClung and R. W. Hellwarth, “Giant optical pulsations from ruby,” J. Appl. Phys. 33(3), 828–829 (1962).
[Crossref]

McIntosh, C.

Pashinin, P. P.

N. N. Il’ichev, A. V. Kir’yanov, É. S. Gulyamova, and P. P. Pashinin, “Influence of the nonlinear anisotropy of absorption in a passive Cr4+:YAG switch on the energy and polarisation characteristics of a neodymium laser,” Quantum Electron. 27(4), 298–301 (1997).
[Crossref]

Pavel, N.

V. Lupei, N. Pavel, and T. Taira, “Laser emission in highly doped Nd:YAG crystals under 4F5/2 and 4F3/2 pumping,” Opt. Lett. 26(21), 1678–1680 (2001).
[Crossref] [PubMed]

N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, “High average power diode end-pumped composite Nd:YAG laser passively Q-switched by Cr4+:YAG saturable absorber,” Jpn. J. Appl. Phys. 40(Part 1, No. 3A), 1253–1259 (2001).
[Crossref]

Ragam, S.

Saikawa, J.

N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, “High average power diode end-pumped composite Nd:YAG laser passively Q-switched by Cr4+:YAG saturable absorber,” Jpn. J. Appl. Phys. 40(Part 1, No. 3A), 1253–1259 (2001).
[Crossref]

Sakai, H.

Schilling, B. W.

Shoji, I.

I. Shoji and T. Taira, “Intrinsic reduction of the depolarization loss in solid-state lasers by use of a (110)-cut Y3Al5O12 crystal,” Appl. Phys. Lett. 80(17), 3048–3050 (2002).
[Crossref]

Solyar, G.

Taira, T.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

H. Sakai, H. Kan, and T. Taira, “>1 MW peak power single-mode high-brightness passively Q-switched Nd 3+:YAG microchip laser,” Opt. Express 16(24), 19891–19899 (2008).
[Crossref] [PubMed]

I. Shoji and T. Taira, “Intrinsic reduction of the depolarization loss in solid-state lasers by use of a (110)-cut Y3Al5O12 crystal,” Appl. Phys. Lett. 80(17), 3048–3050 (2002).
[Crossref]

N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, “High average power diode end-pumped composite Nd:YAG laser passively Q-switched by Cr4+:YAG saturable absorber,” Jpn. J. Appl. Phys. 40(Part 1, No. 3A), 1253–1259 (2001).
[Crossref]

V. Lupei, N. Pavel, and T. Taira, “Laser emission in highly doped Nd:YAG crystals under 4F5/2 and 4F3/2 pumping,” Opt. Lett. 26(21), 1678–1680 (2001).
[Crossref] [PubMed]

Trivedi, S.

Trussell, C. W.

Tsui, T. Y.

S. L. Huang, T. Y. Tsui, C. H. Wang, and F. J. Kao, “Timing Jitter Reduction of a Passively Q-Switched Laser,” Jpn. J. Appl. Phys. 38(Part 2, No. 3A), L239–L241 (1999).
[Crossref]

Tsunekane, M.

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

Wang, C. C.

Wang, C. H.

S. L. Huang, T. Y. Tsui, C. H. Wang, and F. J. Kao, “Timing Jitter Reduction of a Passively Q-Switched Laser,” Jpn. J. Appl. Phys. 38(Part 2, No. 3A), L239–L241 (1999).
[Crossref]

Zhao, P.

Zotova, I. B.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

I. Shoji and T. Taira, “Intrinsic reduction of the depolarization loss in solid-state lasers by use of a (110)-cut Y3Al5O12 crystal,” Appl. Phys. Lett. 80(17), 3048–3050 (2002).
[Crossref]

Electron. Lett. (1)

B. Hansson and M. Arvidsson, “Q-switched microchip laser with 65 ps timing jitter,” Electron. Lett. 36(13), 1123–1124 (2000).
[Crossref]

IEEE J. Quantum Electron. (1)

M. Tsunekane, T. Inohara, A. Ando, N. Kido, K. Kanehara, and T. Taira, “High peak power, passively Q-switched microlaser for ignition of engines,” IEEE J. Quantum Electron. 46(2), 277–284 (2010).
[Crossref]

J. Appl. Phys. (1)

F. J. McClung and R. W. Hellwarth, “Giant optical pulsations from ruby,” J. Appl. Phys. 33(3), 828–829 (1962).
[Crossref]

Jpn. J. Appl. Phys. (2)

N. Pavel, J. Saikawa, S. Kurimura, and T. Taira, “High average power diode end-pumped composite Nd:YAG laser passively Q-switched by Cr4+:YAG saturable absorber,” Jpn. J. Appl. Phys. 40(Part 1, No. 3A), 1253–1259 (2001).
[Crossref]

S. L. Huang, T. Y. Tsui, C. H. Wang, and F. J. Kao, “Timing Jitter Reduction of a Passively Q-Switched Laser,” Jpn. J. Appl. Phys. 38(Part 2, No. 3A), L239–L241 (1999).
[Crossref]

Opt. Express (2)

Opt. Lett. (2)

Quantum Electron. (1)

N. N. Il’ichev, A. V. Kir’yanov, É. S. Gulyamova, and P. P. Pashinin, “Influence of the nonlinear anisotropy of absorption in a passive Cr4+:YAG switch on the energy and polarisation characteristics of a neodymium laser,” Quantum Electron. 27(4), 298–301 (1997).
[Crossref]

Other (5)

T. Sakamoto, K. Ohishi, Y. Furukawa, L. Zheng, and T. Taira, “A flange-mounted UV microchip laser for imaging mass spectrometry,” presented at the 4th Laser Ignition Conference, LIC4–3, Yokohama, Japan, 18–20 May 2016.

R. Bhandari and T. Taira, “High repetition rate MW peak power at 532 nm using microchip laser,” in CLEO: 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper JW2A.26.

A. E. Siegman, “Laser Pumping and Population Inversion,” in Lasers, A. E. Siegman, Eds (University Science Books, 1986), pp. 276.

R. Bhandari and T. Taira, “> 0.5 MW peak power, kHz repetition rate at 266 nm using [100] cut Nd:YAG microchip laser,” in CLEO: 2014, OSA Technical Digest (online) (Optical Society of America, 2014), paper STu1I.4.

H. Kan, A. Sone, H. Sakai, T. Taira, N. Pavel, and V. Lupei, “Laser light source,” U. S. Patent 6,31,047 B2 (16th August 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Simple diagram of thermal load Ph and jitter δ as a function of pump power density.
Fig. 2
Fig. 2 Block diagram of timing jitter measurement.
Fig. 3
Fig. 3 Scheme of intense pulse pumped UV microlaser. A [100]-cut YAG / 1.1 at.% Nd3+:YAG composite crystal was used as a gain material with aperture 3 × 3 mm2 and thickness 5 mm (1mm for YAG and 4mm for Nd3+:YAG). [100]-cut Cr4+:YAG crystal with initial transmission T0 = 30% was used as saturable absorber. The total module length was 63 mm.
Fig. 4
Fig. 4 Thermal load Ph at different normalized pulse duration Tpf. Thermal load was 12.12 W when the normalized pulse duration Tpf was 0.6 and the pump peak power was 170 W. By increasing the pump peak power to 400 W, Tpf was reduced to 0.2 and the thermal load Ph became 8.8 W. Accordingly, Ph was reduced by 27% when changing diode laser power from 170 W to 400W at 1 kHz.
Fig. 5
Fig. 5 Optical efficiency ratio η/ητf and timing jitter ratio δ/δτf as a function of pump power density ratio D/Dτf at 1 kHz. The optical efficiency got 50% rising when pump power increased by 2.3 times. By remaining the output energy at the same level, the timing jitter could be reduced by 6 times when increasing the pump power density up to 5 times higher than that required for a laser operation at pulse duration value of lifetime.
Fig. 6
Fig. 6 Simplified model for laser pumping.
Fig. 7
Fig. 7 Pumping efficiency ηp at different normalized pump duration Tp/τf. When the value of pulse duration Tp is 1.2 times higher than that of lifetime τf, pumping efficiency is 58%. By shortening the pump pulse duration value to Tp/τf = 0.12, the pumping efficiency reach 94%.
Fig. 8
Fig. 8 The mechanism of timing jitter in a passively Q-switched laser. (a): Higher pump power intensity D requires shorter pump pulse duration tp = t1-t2 to reach the same population inversion δNs. (b): Delay time t = ts,1-t1 in gain material becomes shorter at higher pump power, where ts stands for the starting point of Q-switch laser. (c): Timing jitter value δts could be limited in shorter period. (d): Peak to peak deviation could be mitigated in shorter period.

Tables (1)

Tables Icon

Table 1 Thermal load Ph in 1 kHz microlaser as a function of fractional thermal load ηh by considering pumping efficiency ηp. ηp was enhanced from 76% to 90% and Ph was reduced by 27%when increasing pump peak power from 170 W to 400 W. The measured and simulated temperature tolerance was within 12%.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

η D = 1 exp ( D τ f / D ) D τ f / D .
P D A [ 1 B 1 exp ( D τ f / D ) D τ f / D ] A ( 1 B η D )
δ t s = τ f 1 α δ D D
α = W P τ f N 0 / N s
d N 2 d t = W P ( N 0 N 2 ) N 2 τ f
d N 2 d t + ( 1 τ f + W P ) N 2 = W P N 0
1 τ f + W P 1 T = P ( x )
W P N 0 = W N = Q ( x )
d N 2 d t + 1 T N 2 = W N
d y d x + P ( x ) y = Q ( x )
N 2 = e t T ( W N T e t T + C )
y = e P ( x ) d x [ Q ( x ) e P ( x ) d x d x + C ]
N 2 = W N T ( 1 e t T ) = W P τ f N 0 W P τ f + 1 [ 1 e ( W P τ f + 1 ) t τ f ]
η P = W P τ f N 0 W P τ f + 1 [ 1 e ( W P τ f + 1 ) T P τ f ] W P T P N 0 = 1 W P τ f + 1 1 e ( W P τ f + 1 ) T P τ f T P / τ f
N 2 W P τ f N 0 [ 1 exp ( T P / τ f ) ]
η P 1 exp ( T P / τ f ) T P / τ f
t s = τ f ln ( α α 1 ) = τ f ln ( W P τ f N 0 / N s W P τ f N 0 / N s 1 ) , α = W P τ f N 0 / N s
δ t s = τ f 1 α δ α α = τ f 1 α δ P P = τ f 1 α δ D D = W P τ f δ D D

Metrics