Abstract

We report a monolithic gain-switched single-frequency Yb-doped fiber laser with widely tunable repetition rate. The single-frequency laser operation is realized by using an Yb-doped distributed Bragg reflection (DBR) fiber cavity, which is pumped by a commercial-available laser diode (LD) at 974 nm. The LD is electronically modulated by the driving current and the diode output contains both continuous wave (CW) and pulsed components. The CW component is set just below the threshold of the single-frequency fiber laser for reducing the requirement of the pump pulse energy. Above the threshold, the gain-switched oscillation is trigged by the pulsed component of the diode. Single-frequency pulsed laser output is achieved at 1.063 μm with a pulse duration of ~150 ns and a linewidth of 14 MHz. The repetition rate of the laser output can be tuned between 10 kHz and 400 kHz by tuning the electronic trigger signal. This kind of lasers shows potential for the applications in the area of coherent LIDAR etc.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Hybrid pumped gain-switched thulium fiber laser at a high repetition rate

Debasis Pal, Aritra Paul, Sourav Das Chowdhury, Mrinmay Pal, Ranjan Sen, and Atasi Pal
Appl. Opt. 57(13) 3546-3550 (2018)

Stable passively Q-switched and gain-switched Yb-doped all-fiber laser based on a dual-cavity with fiber Bragg gratings

Dongchen Jin, Ruoyu Sun, Hongxing Shi, Jiang Liu, and Pu Wang
Opt. Express 21(22) 26027-26033 (2013)

References

  • View by:
  • |
  • |
  • |

  1. P. Dainese, P. S. J. Russell, G. S. Wiederhecker, N. Joly, H. L. Fragnito, V. Laude, and A. Khelif, “Raman-like light scattering from acoustic phonons in photonic crystal fiber,” Opt. Express 14(9), 4141–4150 (2006).
    [Crossref] [PubMed]
  2. M. Leigh, W. Shi, J. Zong, Z. Yao, S. Jiang, and N. Peyghambarian, “Narrowband pulsed THz source using eyesafe region fiber lasers and a nonlinear crystal,” IEEE Photonics Technol. Lett. 21(1), 27–29 (2009).
    [Crossref]
  3. R. J. De Young and N. P. Barnes, “Profiling atmospheric water vapor using a fiber laser lidar system,” Appl. Opt. 49(4), 562–567 (2010).
    [Crossref] [PubMed]
  4. M. Leigh, W. Shi, J. Zong, J. Wang, S. Jiang, and N. Peyghambarian, “Compact, single-frequency all-fiber Q-switched laser at 1 microm,” Opt. Lett. 32(8), 897–899 (2007).
    [Crossref] [PubMed]
  5. J. Geng, Q. Wang, J. Smith, T. Luo, F. Amzajerdian, and S. Jiang, “All-fiber Q-switched single-frequency Tm-doped laser near 2 mum,” Opt. Lett. 34(23), 3713–3715 (2009).
    [Crossref] [PubMed]
  6. J. Geng, Q. Wang, T. Luo, B. Case, S. Jiang, F. Amzajerdian, and J. Yu, “Single-frequency gain-switched Ho-doped fiber laser,” Opt. Lett. 37(18), 3795–3797 (2012).
    [Crossref] [PubMed]
  7. J. Yang, Y. Tang, and J. Xu, “Development and applications of gain-switched fiber lasers [Invited],” Photon. Res. 1(1), 52–57 (2013).
    [Crossref]
  8. S. Yan, Y. Wang, Y. Zhou, N. Yang, Y. Li, Y. Tang, and J. Xu, “Developing high-power hybrid resonant gain-switched thulium fiber lasers,” Opt. Express 23(20), 25675–25687 (2015).
    [Crossref] [PubMed]
  9. Y. Hou, Q. Zhang, and P. Wang, “Frequency- and intensity-noise suppression in Yb3+-doped single-frequency fiber laser by a passive optical-feedback loop,” Opt. Express 24(12), 12991–12999 (2016).
    [Crossref] [PubMed]
  10. W. Koechner, Solid State Laser Engineering (Springer, 2006).
  11. L. A. Zenteno, E. Snitzer, H. Po, R. Tumminelli, and F. Hakimi, “Gain switching of a Nd+3-doped fiber laser,” Opt. Lett. 14(13), 671–673 (1989).
    [Crossref] [PubMed]
  12. V. Agrež, R. Petkovšek, D. Sangla, J. Saby, R. B. Picard, and F. Salin, “Effect of repetition rate on gain-switched fiber laser output pulses,” Laser Phys. 24(10), 105108 (2014).
    [Crossref]
  13. C. Larsen, K. P. Hansen, K. E. Mattsson, and O. Bang, “The all-fiber cladding-pumped Yb-doped gain-switched laser,” Opt. Express 22(2), 1490–1499 (2014).
    [Crossref] [PubMed]
  14. S. Hollitt, N. Simakov, A. Hemming, J. Haub, and A. Carter, “A linearly polarised, pulsed Ho-doped fiber laser,” Opt. Express 20(15), 16285–16290 (2012).
    [Crossref]
  15. O. Svelto, Principles of Lasers (Plenum Press, 1998).
  16. A. A. Fotiadi, O. L. Antipov, and P. Mégret, “Dynamics of pump-induced refractive index changes in single-mode Yb-doped optical fibers,” Opt. Express 16(17), 12658–12663 (2008).
    [Crossref] [PubMed]
  17. H. Tünnermann, J. Neumann, D. Kracht, and P. Weßels, “Gain dynamics and refractive index changes in fiber amplifiers: a frequency domain approach,” Opt. Express 20(12), 13539–13550 (2012).
    [Crossref] [PubMed]

2016 (1)

2015 (1)

2014 (2)

V. Agrež, R. Petkovšek, D. Sangla, J. Saby, R. B. Picard, and F. Salin, “Effect of repetition rate on gain-switched fiber laser output pulses,” Laser Phys. 24(10), 105108 (2014).
[Crossref]

C. Larsen, K. P. Hansen, K. E. Mattsson, and O. Bang, “The all-fiber cladding-pumped Yb-doped gain-switched laser,” Opt. Express 22(2), 1490–1499 (2014).
[Crossref] [PubMed]

2013 (1)

2012 (3)

2010 (1)

2009 (2)

M. Leigh, W. Shi, J. Zong, Z. Yao, S. Jiang, and N. Peyghambarian, “Narrowband pulsed THz source using eyesafe region fiber lasers and a nonlinear crystal,” IEEE Photonics Technol. Lett. 21(1), 27–29 (2009).
[Crossref]

J. Geng, Q. Wang, J. Smith, T. Luo, F. Amzajerdian, and S. Jiang, “All-fiber Q-switched single-frequency Tm-doped laser near 2 mum,” Opt. Lett. 34(23), 3713–3715 (2009).
[Crossref] [PubMed]

2008 (1)

2007 (1)

2006 (1)

1989 (1)

Agrež, V.

V. Agrež, R. Petkovšek, D. Sangla, J. Saby, R. B. Picard, and F. Salin, “Effect of repetition rate on gain-switched fiber laser output pulses,” Laser Phys. 24(10), 105108 (2014).
[Crossref]

Amzajerdian, F.

Antipov, O. L.

Bang, O.

Barnes, N. P.

Carter, A.

Case, B.

Dainese, P.

De Young, R. J.

Fotiadi, A. A.

Fragnito, H. L.

Geng, J.

Hakimi, F.

Hansen, K. P.

Haub, J.

Hemming, A.

Hollitt, S.

Hou, Y.

Jiang, S.

Joly, N.

Khelif, A.

Kracht, D.

Larsen, C.

Laude, V.

Leigh, M.

M. Leigh, W. Shi, J. Zong, Z. Yao, S. Jiang, and N. Peyghambarian, “Narrowband pulsed THz source using eyesafe region fiber lasers and a nonlinear crystal,” IEEE Photonics Technol. Lett. 21(1), 27–29 (2009).
[Crossref]

M. Leigh, W. Shi, J. Zong, J. Wang, S. Jiang, and N. Peyghambarian, “Compact, single-frequency all-fiber Q-switched laser at 1 microm,” Opt. Lett. 32(8), 897–899 (2007).
[Crossref] [PubMed]

Li, Y.

Luo, T.

Mattsson, K. E.

Mégret, P.

Neumann, J.

Petkovšek, R.

V. Agrež, R. Petkovšek, D. Sangla, J. Saby, R. B. Picard, and F. Salin, “Effect of repetition rate on gain-switched fiber laser output pulses,” Laser Phys. 24(10), 105108 (2014).
[Crossref]

Peyghambarian, N.

M. Leigh, W. Shi, J. Zong, Z. Yao, S. Jiang, and N. Peyghambarian, “Narrowband pulsed THz source using eyesafe region fiber lasers and a nonlinear crystal,” IEEE Photonics Technol. Lett. 21(1), 27–29 (2009).
[Crossref]

M. Leigh, W. Shi, J. Zong, J. Wang, S. Jiang, and N. Peyghambarian, “Compact, single-frequency all-fiber Q-switched laser at 1 microm,” Opt. Lett. 32(8), 897–899 (2007).
[Crossref] [PubMed]

Picard, R. B.

V. Agrež, R. Petkovšek, D. Sangla, J. Saby, R. B. Picard, and F. Salin, “Effect of repetition rate on gain-switched fiber laser output pulses,” Laser Phys. 24(10), 105108 (2014).
[Crossref]

Po, H.

Russell, P. S. J.

Saby, J.

V. Agrež, R. Petkovšek, D. Sangla, J. Saby, R. B. Picard, and F. Salin, “Effect of repetition rate on gain-switched fiber laser output pulses,” Laser Phys. 24(10), 105108 (2014).
[Crossref]

Salin, F.

V. Agrež, R. Petkovšek, D. Sangla, J. Saby, R. B. Picard, and F. Salin, “Effect of repetition rate on gain-switched fiber laser output pulses,” Laser Phys. 24(10), 105108 (2014).
[Crossref]

Sangla, D.

V. Agrež, R. Petkovšek, D. Sangla, J. Saby, R. B. Picard, and F. Salin, “Effect of repetition rate on gain-switched fiber laser output pulses,” Laser Phys. 24(10), 105108 (2014).
[Crossref]

Shi, W.

M. Leigh, W. Shi, J. Zong, Z. Yao, S. Jiang, and N. Peyghambarian, “Narrowband pulsed THz source using eyesafe region fiber lasers and a nonlinear crystal,” IEEE Photonics Technol. Lett. 21(1), 27–29 (2009).
[Crossref]

M. Leigh, W. Shi, J. Zong, J. Wang, S. Jiang, and N. Peyghambarian, “Compact, single-frequency all-fiber Q-switched laser at 1 microm,” Opt. Lett. 32(8), 897–899 (2007).
[Crossref] [PubMed]

Simakov, N.

Smith, J.

Snitzer, E.

Tang, Y.

Tumminelli, R.

Tünnermann, H.

Wang, J.

Wang, P.

Wang, Q.

Wang, Y.

Weßels, P.

Wiederhecker, G. S.

Xu, J.

Yan, S.

Yang, J.

Yang, N.

Yao, Z.

M. Leigh, W. Shi, J. Zong, Z. Yao, S. Jiang, and N. Peyghambarian, “Narrowband pulsed THz source using eyesafe region fiber lasers and a nonlinear crystal,” IEEE Photonics Technol. Lett. 21(1), 27–29 (2009).
[Crossref]

Yu, J.

Zenteno, L. A.

Zhang, Q.

Zhou, Y.

Zong, J.

M. Leigh, W. Shi, J. Zong, Z. Yao, S. Jiang, and N. Peyghambarian, “Narrowband pulsed THz source using eyesafe region fiber lasers and a nonlinear crystal,” IEEE Photonics Technol. Lett. 21(1), 27–29 (2009).
[Crossref]

M. Leigh, W. Shi, J. Zong, J. Wang, S. Jiang, and N. Peyghambarian, “Compact, single-frequency all-fiber Q-switched laser at 1 microm,” Opt. Lett. 32(8), 897–899 (2007).
[Crossref] [PubMed]

Appl. Opt. (1)

IEEE Photonics Technol. Lett. (1)

M. Leigh, W. Shi, J. Zong, Z. Yao, S. Jiang, and N. Peyghambarian, “Narrowband pulsed THz source using eyesafe region fiber lasers and a nonlinear crystal,” IEEE Photonics Technol. Lett. 21(1), 27–29 (2009).
[Crossref]

Laser Phys. (1)

V. Agrež, R. Petkovšek, D. Sangla, J. Saby, R. B. Picard, and F. Salin, “Effect of repetition rate on gain-switched fiber laser output pulses,” Laser Phys. 24(10), 105108 (2014).
[Crossref]

Opt. Express (7)

Opt. Lett. (4)

Photon. Res. (1)

Other (2)

W. Koechner, Solid State Laser Engineering (Springer, 2006).

O. Svelto, Principles of Lasers (Plenum Press, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Schematic of the gain-switched single-frequency Yb-doped fiber laser. A 974 nm LD pump is modulated by a diode driver, which is triggered by the electronic square wave signal as shown the yellow waveform. The modulated pump is inputted in the DBR laser through the WDM coupler. The gain-switched laser is separated from the pump by the WDM coupler and output through the isolator.
Fig. 2
Fig. 2 Empirical linear relation between pulse duration and X variable, based on the data from this work and other works [13, 14].
Fig. 3
Fig. 3 (a) Temporal profiles of pump pulses and gain-switched pulses with different pump energy. The red dotted line indicates the threshold of the laser. (b) Comparison of pulse duration and build-up time under the different repetition rates. The inset shows the enlarged profile of the gain-switched output pulse.
Fig. 4
Fig. 4 (a) Traces of pulse trains under different repetition rates. From top to bottom, the corresponding repetition rate is 10 kHz, 100 kHz, 200 kHz, 300 kHz and 400 kHz, respectively. (b) The spectrums of the gain-switched single-frequency laser with different pumping modes (Note that the OSA resolution is set at 0.02 nm). The black line is the spectrum of the pulsed output with the repetition rate of 100 kHz and the pulse width of 150ns under the hybrid pumping. The blue one is the ASE under the CW pumping.
Fig. 5
Fig. 5 (a) Verification of single-frequency operation using a scanning FPI with FSR of 10 GHz. (b) The linewidth of the laser is about 14 MHz measured by the scanning FPI with a 1.5 GHz free-spectrum range and a resolution of 7.5 MHz. The discrete peak spectrum is caused by the pulsed output.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

F( t )=f( t )+c,
t Lp 2 π AL c σ emi h ν p P abs ,
P abs = P pump ( 1exp( 0.23 α dB L Yb ) ).
t LP =K*X ,

Metrics