Abstract

We study the spectral features and phase of four-wave mixing (FWM) light according to the relative phase-noise of the optical fields coupled to a double Λ-type atomic system of the 5S1/2–5P1/2 transition of 87Rb atoms. We observe that the spectral shape of the FWM spectrum is identical to that of the two-photon absorption (TPA) spectrum due to two-photon coherence and that it is independent of the relative phase-noise of the pump light. From these results, we clarify that the two-photon coherence plays a very important role in the FWM process. Furthermore, we measure the relative linewidth of the FWM signal to the probe and pump lasers by means of a beat interferometer. We confirmed that the phase of the FWM signal is strongly correlated with that of the pump laser under the condition of phase-locked probe and coupling lasers for two-photon coherence.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Atomic coherence effects in four-wave mixing process of a ladder-type atomic system

Yoon-Seok Lee and Han Seb Moon
Opt. Express 24(10) 10723-10732 (2016)

Doppler-free three-photon coherence in Doppler-broadened diamond-type atomic system

Yoon-Seok Lee and Han Seb Moon
Opt. Express 25(5) 5316-5326 (2017)

Atomic coherences of on-resonant and off-resonant two-photon absorptions in a ladder-type atomic system

Han Seb Moon and Heung-Ryoul Noh
J. Opt. Soc. Am. B 31(5) 1217-1222 (2014)

References

  • View by:
  • |
  • |
  • |

  1. A. Yariv and D. M. Pepper, “Amplified reflection, phase conjugation, and oscillation in degenerate four-wave mixing,” Opt. Lett. 1(1), 16–18 (1977).
    [Crossref] [PubMed]
  2. S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990).
    [Crossref] [PubMed]
  3. K.-J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
    [Crossref] [PubMed]
  4. M. Jain, G. Y. Yin, J. E. Field, and S. E. Harris, “Observation of electromagnetically induced phase matching,” Opt. Lett. 18(12), 998–1000 (1993).
    [Crossref] [PubMed]
  5. P. R. Hemmer, D. P. Katz, J. Donoghue, M. S. Shahriar, P. Kumar, and M. Cronin-Golomb, “Efficient low-intensity optical phase conjugation based on coherent population trapping in sodium,” Opt. Lett. 20(9), 982–984 (1995).
    [Crossref] [PubMed]
  6. F. E. Becerra, R. T. Willis, S. L. Rolston, and L. A. Orozco, “Nondegenerate four-wave mixing in rubidium vapor: the diamond configuration,” Phys. Rev. A 78(1), 013834 (2008).
    [Crossref]
  7. R. T. Willis, F. E. Becerra, L. A. Orozco, and S. L. Rolston, “Four-wave mixing in the diamond configuration in an atomic vapor,” Phys. Rev. A 79(3), 033814 (2009).
    [Crossref]
  8. U. Khadka, H. Zheng, and M. Xiao, “Four-wave-mixing between the upper excited states in a ladder-type atomic configuration,” Opt. Express 20(6), 6204–6214 (2012).
    [Crossref] [PubMed]
  9. F. Wen, H. Zheng, X. Xue, H. Chen, J. Song, and Y. Zhang, “Electromagnetically induced transparency-assisted four-wave mixing process in the diamond-type four-level atomic system,” Opt. Mater. 37, 724–726 (2014).
    [Crossref]
  10. J. C. Petch, C. H. Keitel, P. L. Knight, and J. P. Marangos, “Role of electromagnetically induced transparency in resonant four-wave-mixing schemes,” Phys. Rev. A 53(1), 543–561 (1996).
    [Crossref] [PubMed]
  11. Y.-Q. Li and M. Xiao, “Enhancement of nondegenerate four-wave mixing based on electromagnetically induced transparency in rubidium atoms,” Opt. Lett. 21(14), 1064–1066 (1996).
    [Crossref] [PubMed]
  12. A. S. Zibrov, M. D. Lukin, and M. O. Scully, “Nondegenerate parametric self-oscillation via multiwave mixing in coherent atomic media,” Phys. Rev. Lett. 83(20), 4049–4052 (1999).
    [Crossref]
  13. Q. Glorieux, R. Dubessy, S. Guibal, L. Guidoni, J.-P. Likforman, T. Coudreau, and E. Arimondo, “Double-Λ microscopic model for entangled light generation by four-wave mixing,” Phys. Rev. A 82(3), 033819 (2010).
    [Crossref]
  14. C.-Y. Lee, B.-H. Wu, G. Wang, Y.-F. Chen, Y.-C. Chen, and I. A. Yu, “High conversion efficiency in resonant four-wave mixing processes,” Opt. Express 24(2), 1008–1016 (2016).
    [Crossref] [PubMed]
  15. Q. Glorieux, J. B. Clark, N. V. Corzo, and P. D. Lett, “Generation of pulsed bipartite entanglement using four-wave mixing,” New J. Phys. 14(12), 123024 (2012).
    [Crossref]
  16. V. Balić, D. A. Braje, P. Kolchin, G. Y. Yin, and S. E. Harris, “Generation of paired photons with controllable waveforms,” Phys. Rev. Lett. 94(18), 183601 (2005).
    [Crossref] [PubMed]
  17. S. Du, P. Kolchin, C. Belthangady, G. Y. Yin, and S. E. Harris, “Subnatural linewidth biphotons with controllable temporal length,” Phys. Rev. Lett. 100(18), 183603 (2008).
    [Crossref] [PubMed]
  18. R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, “Four-wave-mixing stopped light in hot atomic rubidium vapour,” Nat. Photonics 3(2), 103–106 (2009).
    [Crossref]
  19. Y.-W. Cho, K.-K. Park, J.-C. Lee, and Y.-H. Kim, “Engineering frequency-time quantum correlation of narrow-band biphotons from cold atoms,” Phys. Rev. Lett. 113(6), 063602 (2014).
    [Crossref] [PubMed]
  20. L. Zhao, X. Guo, Y. Sun, Y. Su, M. M. T. Loy, and S. Du, “Shaping the biphoton temporal waveform with spatial light modulation,” Phys. Rev. Lett. 115(19), 193601 (2015).
    [Crossref] [PubMed]
  21. P. Qian, Z. Gu, R. Cao, R. Wen, Z. Y. Ou, J. F. Chen, and W. Zhang, “Temporal purity and quantum interference of single photons from two independent cold atomic ensembles,” Phys. Rev. Lett. 117(1), 013602 (2016).
    [Crossref] [PubMed]
  22. B. Lü, W. H. Burkett, and M. Xiao, “Electromagnetically induced transparency with variable coupling-laser linewidth,” Phys. Rev. A 56(1), 976–979 (1997).
    [Crossref]
  23. E. E. Mikhailov, V. A. Sautenkov, Y. V. Rostovtsev, A. Zhang, M. S. Zubairy, M. O. Scully, and G. R. Welch, “Spectral narrowing via quantum coherence,” Phys. Rev. A 74(1), 013807 (2006).
    [Crossref]
  24. I.-H. Bae, H. J. Lee, and H. S. Moon, “Electromagnetically induced transparency with variable fluctuation time of photon number of pseudothermal probe light,” J. Opt. Soc. Am. B 28(6), 1578–1582 (2011).
    [Crossref]
  25. Y. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Temporal and spatial interference between four-wave mixing and six-wave mixing channels,” Phys. Rev. Lett. 102(1), 013601 (2009).
    [Crossref] [PubMed]
  26. N. B. Phillips, A. V. Gorshkov, and I. Novikova, “Light storage in an optically thick atomic ensemble under conditions of electromagnetically induced transparency and four wave mixing,” Phys. Rev. A 83(6), 063823 (2011).
    [Crossref]
  27. Y.-F. Hsiao, P.-J. Tsai, C.-C. Lin, Y.-F. Chen, I. A. Yu, and Y.-C. Chen, “Coherence properties of amplified slow light by four-wave mixing,” Opt. Lett. 39(12), 3394–3397 (2014).
    [Crossref] [PubMed]
  28. A. M. Akulshin, R. J. McLean, A. I. Sidorov, and P. Hannaford, “Probing degenerate two-level atomic media by coherent optical heterodyning,” J. Phys. At. Mol. Opt. Phys. 44(17), 175502 (2011).
    [Crossref]
  29. A. M. Akulshin and R. J. McLean, “Distinguishing coherent atomic processes using wave mixing,” Phys. Rev. A 85(6), 065802 (2012).
    [Crossref]
  30. Y.-S. Lee and H. S. Moon, “Atomic coherence effects in four-wave mixing process of a ladder-type atomic system,” Opt. Express 24(10), 10723–10732 (2016).
    [Crossref] [PubMed]
  31. D. J. Whiting, E. Bimbard, J. Keaveney, M. A. Zentile, C. S. Adams, and I. G. Hughes, “Electromagnetically induced absorption in a nondegenerate three-level ladder system,” Opt. Lett. 40(18), 4289–4292 (2015).
    [Crossref] [PubMed]
  32. D. J. Whiting, J. Keaveney, C. S. Adams, and I. G. Hughes, “Direct measurement of excited-state dipole matrix elements using electromagnetically induced transparency in the hyperfine Paschen-Back regime,” Phys. Rev. A 93(4), 043854 (2016).
    [Crossref]
  33. H. R. Noh and H. S. Moon, “Analytical solutions of the susceptibility for Doppler-broadened three-level atomic system,” J. Phys. At. Mol. Opt. Phys. 45(24), 245002 (2012).
    [Crossref]
  34. M. D. Rotondaro and G. P. Perram, “Collisional broadening and shift of the Rubidium D1 and D2 lines (52S1/2®52P1/2, 52P3/2) by rare gases, H2, D2, N2, CH4, and CF4,” J. Quant. Spectrosc. Radiat. Transf. 57(4), 497–507 (1997).
    [Crossref]
  35. H. S. Moon and H.-R. Noh, “Atomic coherences of on-resonant and off-resonant two-photon absorptions in a ladder-type,” J. Opt. Soc. Am. B 31(5), 1217–1222 (2014).
    [Crossref]

2016 (4)

C.-Y. Lee, B.-H. Wu, G. Wang, Y.-F. Chen, Y.-C. Chen, and I. A. Yu, “High conversion efficiency in resonant four-wave mixing processes,” Opt. Express 24(2), 1008–1016 (2016).
[Crossref] [PubMed]

P. Qian, Z. Gu, R. Cao, R. Wen, Z. Y. Ou, J. F. Chen, and W. Zhang, “Temporal purity and quantum interference of single photons from two independent cold atomic ensembles,” Phys. Rev. Lett. 117(1), 013602 (2016).
[Crossref] [PubMed]

Y.-S. Lee and H. S. Moon, “Atomic coherence effects in four-wave mixing process of a ladder-type atomic system,” Opt. Express 24(10), 10723–10732 (2016).
[Crossref] [PubMed]

D. J. Whiting, J. Keaveney, C. S. Adams, and I. G. Hughes, “Direct measurement of excited-state dipole matrix elements using electromagnetically induced transparency in the hyperfine Paschen-Back regime,” Phys. Rev. A 93(4), 043854 (2016).
[Crossref]

2015 (2)

D. J. Whiting, E. Bimbard, J. Keaveney, M. A. Zentile, C. S. Adams, and I. G. Hughes, “Electromagnetically induced absorption in a nondegenerate three-level ladder system,” Opt. Lett. 40(18), 4289–4292 (2015).
[Crossref] [PubMed]

L. Zhao, X. Guo, Y. Sun, Y. Su, M. M. T. Loy, and S. Du, “Shaping the biphoton temporal waveform with spatial light modulation,” Phys. Rev. Lett. 115(19), 193601 (2015).
[Crossref] [PubMed]

2014 (4)

Y.-W. Cho, K.-K. Park, J.-C. Lee, and Y.-H. Kim, “Engineering frequency-time quantum correlation of narrow-band biphotons from cold atoms,” Phys. Rev. Lett. 113(6), 063602 (2014).
[Crossref] [PubMed]

Y.-F. Hsiao, P.-J. Tsai, C.-C. Lin, Y.-F. Chen, I. A. Yu, and Y.-C. Chen, “Coherence properties of amplified slow light by four-wave mixing,” Opt. Lett. 39(12), 3394–3397 (2014).
[Crossref] [PubMed]

H. S. Moon and H.-R. Noh, “Atomic coherences of on-resonant and off-resonant two-photon absorptions in a ladder-type,” J. Opt. Soc. Am. B 31(5), 1217–1222 (2014).
[Crossref]

F. Wen, H. Zheng, X. Xue, H. Chen, J. Song, and Y. Zhang, “Electromagnetically induced transparency-assisted four-wave mixing process in the diamond-type four-level atomic system,” Opt. Mater. 37, 724–726 (2014).
[Crossref]

2012 (4)

Q. Glorieux, J. B. Clark, N. V. Corzo, and P. D. Lett, “Generation of pulsed bipartite entanglement using four-wave mixing,” New J. Phys. 14(12), 123024 (2012).
[Crossref]

U. Khadka, H. Zheng, and M. Xiao, “Four-wave-mixing between the upper excited states in a ladder-type atomic configuration,” Opt. Express 20(6), 6204–6214 (2012).
[Crossref] [PubMed]

A. M. Akulshin and R. J. McLean, “Distinguishing coherent atomic processes using wave mixing,” Phys. Rev. A 85(6), 065802 (2012).
[Crossref]

H. R. Noh and H. S. Moon, “Analytical solutions of the susceptibility for Doppler-broadened three-level atomic system,” J. Phys. At. Mol. Opt. Phys. 45(24), 245002 (2012).
[Crossref]

2011 (3)

A. M. Akulshin, R. J. McLean, A. I. Sidorov, and P. Hannaford, “Probing degenerate two-level atomic media by coherent optical heterodyning,” J. Phys. At. Mol. Opt. Phys. 44(17), 175502 (2011).
[Crossref]

I.-H. Bae, H. J. Lee, and H. S. Moon, “Electromagnetically induced transparency with variable fluctuation time of photon number of pseudothermal probe light,” J. Opt. Soc. Am. B 28(6), 1578–1582 (2011).
[Crossref]

N. B. Phillips, A. V. Gorshkov, and I. Novikova, “Light storage in an optically thick atomic ensemble under conditions of electromagnetically induced transparency and four wave mixing,” Phys. Rev. A 83(6), 063823 (2011).
[Crossref]

2010 (1)

Q. Glorieux, R. Dubessy, S. Guibal, L. Guidoni, J.-P. Likforman, T. Coudreau, and E. Arimondo, “Double-Λ microscopic model for entangled light generation by four-wave mixing,” Phys. Rev. A 82(3), 033819 (2010).
[Crossref]

2009 (3)

R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, “Four-wave-mixing stopped light in hot atomic rubidium vapour,” Nat. Photonics 3(2), 103–106 (2009).
[Crossref]

R. T. Willis, F. E. Becerra, L. A. Orozco, and S. L. Rolston, “Four-wave mixing in the diamond configuration in an atomic vapor,” Phys. Rev. A 79(3), 033814 (2009).
[Crossref]

Y. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Temporal and spatial interference between four-wave mixing and six-wave mixing channels,” Phys. Rev. Lett. 102(1), 013601 (2009).
[Crossref] [PubMed]

2008 (2)

F. E. Becerra, R. T. Willis, S. L. Rolston, and L. A. Orozco, “Nondegenerate four-wave mixing in rubidium vapor: the diamond configuration,” Phys. Rev. A 78(1), 013834 (2008).
[Crossref]

S. Du, P. Kolchin, C. Belthangady, G. Y. Yin, and S. E. Harris, “Subnatural linewidth biphotons with controllable temporal length,” Phys. Rev. Lett. 100(18), 183603 (2008).
[Crossref] [PubMed]

2006 (1)

E. E. Mikhailov, V. A. Sautenkov, Y. V. Rostovtsev, A. Zhang, M. S. Zubairy, M. O. Scully, and G. R. Welch, “Spectral narrowing via quantum coherence,” Phys. Rev. A 74(1), 013807 (2006).
[Crossref]

2005 (1)

V. Balić, D. A. Braje, P. Kolchin, G. Y. Yin, and S. E. Harris, “Generation of paired photons with controllable waveforms,” Phys. Rev. Lett. 94(18), 183601 (2005).
[Crossref] [PubMed]

1999 (1)

A. S. Zibrov, M. D. Lukin, and M. O. Scully, “Nondegenerate parametric self-oscillation via multiwave mixing in coherent atomic media,” Phys. Rev. Lett. 83(20), 4049–4052 (1999).
[Crossref]

1997 (2)

B. Lü, W. H. Burkett, and M. Xiao, “Electromagnetically induced transparency with variable coupling-laser linewidth,” Phys. Rev. A 56(1), 976–979 (1997).
[Crossref]

M. D. Rotondaro and G. P. Perram, “Collisional broadening and shift of the Rubidium D1 and D2 lines (52S1/2®52P1/2, 52P3/2) by rare gases, H2, D2, N2, CH4, and CF4,” J. Quant. Spectrosc. Radiat. Transf. 57(4), 497–507 (1997).
[Crossref]

1996 (2)

J. C. Petch, C. H. Keitel, P. L. Knight, and J. P. Marangos, “Role of electromagnetically induced transparency in resonant four-wave-mixing schemes,” Phys. Rev. A 53(1), 543–561 (1996).
[Crossref] [PubMed]

Y.-Q. Li and M. Xiao, “Enhancement of nondegenerate four-wave mixing based on electromagnetically induced transparency in rubidium atoms,” Opt. Lett. 21(14), 1064–1066 (1996).
[Crossref] [PubMed]

1995 (1)

1993 (1)

1991 (1)

K.-J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[Crossref] [PubMed]

1990 (1)

S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990).
[Crossref] [PubMed]

1977 (1)

Adams, C. S.

D. J. Whiting, J. Keaveney, C. S. Adams, and I. G. Hughes, “Direct measurement of excited-state dipole matrix elements using electromagnetically induced transparency in the hyperfine Paschen-Back regime,” Phys. Rev. A 93(4), 043854 (2016).
[Crossref]

D. J. Whiting, E. Bimbard, J. Keaveney, M. A. Zentile, C. S. Adams, and I. G. Hughes, “Electromagnetically induced absorption in a nondegenerate three-level ladder system,” Opt. Lett. 40(18), 4289–4292 (2015).
[Crossref] [PubMed]

Akulshin, A. M.

A. M. Akulshin and R. J. McLean, “Distinguishing coherent atomic processes using wave mixing,” Phys. Rev. A 85(6), 065802 (2012).
[Crossref]

A. M. Akulshin, R. J. McLean, A. I. Sidorov, and P. Hannaford, “Probing degenerate two-level atomic media by coherent optical heterodyning,” J. Phys. At. Mol. Opt. Phys. 44(17), 175502 (2011).
[Crossref]

Anderson, B.

Y. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Temporal and spatial interference between four-wave mixing and six-wave mixing channels,” Phys. Rev. Lett. 102(1), 013601 (2009).
[Crossref] [PubMed]

Arimondo, E.

Q. Glorieux, R. Dubessy, S. Guibal, L. Guidoni, J.-P. Likforman, T. Coudreau, and E. Arimondo, “Double-Λ microscopic model for entangled light generation by four-wave mixing,” Phys. Rev. A 82(3), 033819 (2010).
[Crossref]

Bae, I.-H.

Balic, V.

V. Balić, D. A. Braje, P. Kolchin, G. Y. Yin, and S. E. Harris, “Generation of paired photons with controllable waveforms,” Phys. Rev. Lett. 94(18), 183601 (2005).
[Crossref] [PubMed]

Becerra, F. E.

R. T. Willis, F. E. Becerra, L. A. Orozco, and S. L. Rolston, “Four-wave mixing in the diamond configuration in an atomic vapor,” Phys. Rev. A 79(3), 033814 (2009).
[Crossref]

F. E. Becerra, R. T. Willis, S. L. Rolston, and L. A. Orozco, “Nondegenerate four-wave mixing in rubidium vapor: the diamond configuration,” Phys. Rev. A 78(1), 013834 (2008).
[Crossref]

Belthangady, C.

S. Du, P. Kolchin, C. Belthangady, G. Y. Yin, and S. E. Harris, “Subnatural linewidth biphotons with controllable temporal length,” Phys. Rev. Lett. 100(18), 183603 (2008).
[Crossref] [PubMed]

Bimbard, E.

Boller, K.-J.

K.-J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[Crossref] [PubMed]

Braje, D. A.

V. Balić, D. A. Braje, P. Kolchin, G. Y. Yin, and S. E. Harris, “Generation of paired photons with controllable waveforms,” Phys. Rev. Lett. 94(18), 183601 (2005).
[Crossref] [PubMed]

Burkett, W. H.

B. Lü, W. H. Burkett, and M. Xiao, “Electromagnetically induced transparency with variable coupling-laser linewidth,” Phys. Rev. A 56(1), 976–979 (1997).
[Crossref]

Camacho, R. M.

R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, “Four-wave-mixing stopped light in hot atomic rubidium vapour,” Nat. Photonics 3(2), 103–106 (2009).
[Crossref]

Cao, R.

P. Qian, Z. Gu, R. Cao, R. Wen, Z. Y. Ou, J. F. Chen, and W. Zhang, “Temporal purity and quantum interference of single photons from two independent cold atomic ensembles,” Phys. Rev. Lett. 117(1), 013602 (2016).
[Crossref] [PubMed]

Chen, H.

F. Wen, H. Zheng, X. Xue, H. Chen, J. Song, and Y. Zhang, “Electromagnetically induced transparency-assisted four-wave mixing process in the diamond-type four-level atomic system,” Opt. Mater. 37, 724–726 (2014).
[Crossref]

Chen, J. F.

P. Qian, Z. Gu, R. Cao, R. Wen, Z. Y. Ou, J. F. Chen, and W. Zhang, “Temporal purity and quantum interference of single photons from two independent cold atomic ensembles,” Phys. Rev. Lett. 117(1), 013602 (2016).
[Crossref] [PubMed]

Chen, Y.-C.

Chen, Y.-F.

Cho, Y.-W.

Y.-W. Cho, K.-K. Park, J.-C. Lee, and Y.-H. Kim, “Engineering frequency-time quantum correlation of narrow-band biphotons from cold atoms,” Phys. Rev. Lett. 113(6), 063602 (2014).
[Crossref] [PubMed]

Clark, J. B.

Q. Glorieux, J. B. Clark, N. V. Corzo, and P. D. Lett, “Generation of pulsed bipartite entanglement using four-wave mixing,” New J. Phys. 14(12), 123024 (2012).
[Crossref]

Corzo, N. V.

Q. Glorieux, J. B. Clark, N. V. Corzo, and P. D. Lett, “Generation of pulsed bipartite entanglement using four-wave mixing,” New J. Phys. 14(12), 123024 (2012).
[Crossref]

Coudreau, T.

Q. Glorieux, R. Dubessy, S. Guibal, L. Guidoni, J.-P. Likforman, T. Coudreau, and E. Arimondo, “Double-Λ microscopic model for entangled light generation by four-wave mixing,” Phys. Rev. A 82(3), 033819 (2010).
[Crossref]

Cronin-Golomb, M.

Donoghue, J.

Du, S.

L. Zhao, X. Guo, Y. Sun, Y. Su, M. M. T. Loy, and S. Du, “Shaping the biphoton temporal waveform with spatial light modulation,” Phys. Rev. Lett. 115(19), 193601 (2015).
[Crossref] [PubMed]

S. Du, P. Kolchin, C. Belthangady, G. Y. Yin, and S. E. Harris, “Subnatural linewidth biphotons with controllable temporal length,” Phys. Rev. Lett. 100(18), 183603 (2008).
[Crossref] [PubMed]

Dubessy, R.

Q. Glorieux, R. Dubessy, S. Guibal, L. Guidoni, J.-P. Likforman, T. Coudreau, and E. Arimondo, “Double-Λ microscopic model for entangled light generation by four-wave mixing,” Phys. Rev. A 82(3), 033819 (2010).
[Crossref]

Field, J. E.

M. Jain, G. Y. Yin, J. E. Field, and S. E. Harris, “Observation of electromagnetically induced phase matching,” Opt. Lett. 18(12), 998–1000 (1993).
[Crossref] [PubMed]

S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990).
[Crossref] [PubMed]

Glorieux, Q.

Q. Glorieux, J. B. Clark, N. V. Corzo, and P. D. Lett, “Generation of pulsed bipartite entanglement using four-wave mixing,” New J. Phys. 14(12), 123024 (2012).
[Crossref]

Q. Glorieux, R. Dubessy, S. Guibal, L. Guidoni, J.-P. Likforman, T. Coudreau, and E. Arimondo, “Double-Λ microscopic model for entangled light generation by four-wave mixing,” Phys. Rev. A 82(3), 033819 (2010).
[Crossref]

Gorshkov, A. V.

N. B. Phillips, A. V. Gorshkov, and I. Novikova, “Light storage in an optically thick atomic ensemble under conditions of electromagnetically induced transparency and four wave mixing,” Phys. Rev. A 83(6), 063823 (2011).
[Crossref]

Gu, Z.

P. Qian, Z. Gu, R. Cao, R. Wen, Z. Y. Ou, J. F. Chen, and W. Zhang, “Temporal purity and quantum interference of single photons from two independent cold atomic ensembles,” Phys. Rev. Lett. 117(1), 013602 (2016).
[Crossref] [PubMed]

Guibal, S.

Q. Glorieux, R. Dubessy, S. Guibal, L. Guidoni, J.-P. Likforman, T. Coudreau, and E. Arimondo, “Double-Λ microscopic model for entangled light generation by four-wave mixing,” Phys. Rev. A 82(3), 033819 (2010).
[Crossref]

Guidoni, L.

Q. Glorieux, R. Dubessy, S. Guibal, L. Guidoni, J.-P. Likforman, T. Coudreau, and E. Arimondo, “Double-Λ microscopic model for entangled light generation by four-wave mixing,” Phys. Rev. A 82(3), 033819 (2010).
[Crossref]

Guo, X.

L. Zhao, X. Guo, Y. Sun, Y. Su, M. M. T. Loy, and S. Du, “Shaping the biphoton temporal waveform with spatial light modulation,” Phys. Rev. Lett. 115(19), 193601 (2015).
[Crossref] [PubMed]

Hannaford, P.

A. M. Akulshin, R. J. McLean, A. I. Sidorov, and P. Hannaford, “Probing degenerate two-level atomic media by coherent optical heterodyning,” J. Phys. At. Mol. Opt. Phys. 44(17), 175502 (2011).
[Crossref]

Harris, S. E.

S. Du, P. Kolchin, C. Belthangady, G. Y. Yin, and S. E. Harris, “Subnatural linewidth biphotons with controllable temporal length,” Phys. Rev. Lett. 100(18), 183603 (2008).
[Crossref] [PubMed]

V. Balić, D. A. Braje, P. Kolchin, G. Y. Yin, and S. E. Harris, “Generation of paired photons with controllable waveforms,” Phys. Rev. Lett. 94(18), 183601 (2005).
[Crossref] [PubMed]

M. Jain, G. Y. Yin, J. E. Field, and S. E. Harris, “Observation of electromagnetically induced phase matching,” Opt. Lett. 18(12), 998–1000 (1993).
[Crossref] [PubMed]

K.-J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[Crossref] [PubMed]

S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990).
[Crossref] [PubMed]

Hemmer, P. R.

Howell, J. C.

R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, “Four-wave-mixing stopped light in hot atomic rubidium vapour,” Nat. Photonics 3(2), 103–106 (2009).
[Crossref]

Hsiao, Y.-F.

Hughes, I. G.

D. J. Whiting, J. Keaveney, C. S. Adams, and I. G. Hughes, “Direct measurement of excited-state dipole matrix elements using electromagnetically induced transparency in the hyperfine Paschen-Back regime,” Phys. Rev. A 93(4), 043854 (2016).
[Crossref]

D. J. Whiting, E. Bimbard, J. Keaveney, M. A. Zentile, C. S. Adams, and I. G. Hughes, “Electromagnetically induced absorption in a nondegenerate three-level ladder system,” Opt. Lett. 40(18), 4289–4292 (2015).
[Crossref] [PubMed]

Imamoglu, A.

K.-J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[Crossref] [PubMed]

S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990).
[Crossref] [PubMed]

Jain, M.

Katz, D. P.

Keaveney, J.

D. J. Whiting, J. Keaveney, C. S. Adams, and I. G. Hughes, “Direct measurement of excited-state dipole matrix elements using electromagnetically induced transparency in the hyperfine Paschen-Back regime,” Phys. Rev. A 93(4), 043854 (2016).
[Crossref]

D. J. Whiting, E. Bimbard, J. Keaveney, M. A. Zentile, C. S. Adams, and I. G. Hughes, “Electromagnetically induced absorption in a nondegenerate three-level ladder system,” Opt. Lett. 40(18), 4289–4292 (2015).
[Crossref] [PubMed]

Keitel, C. H.

J. C. Petch, C. H. Keitel, P. L. Knight, and J. P. Marangos, “Role of electromagnetically induced transparency in resonant four-wave-mixing schemes,” Phys. Rev. A 53(1), 543–561 (1996).
[Crossref] [PubMed]

Khadka, U.

U. Khadka, H. Zheng, and M. Xiao, “Four-wave-mixing between the upper excited states in a ladder-type atomic configuration,” Opt. Express 20(6), 6204–6214 (2012).
[Crossref] [PubMed]

Y. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Temporal and spatial interference between four-wave mixing and six-wave mixing channels,” Phys. Rev. Lett. 102(1), 013601 (2009).
[Crossref] [PubMed]

Kim, Y.-H.

Y.-W. Cho, K.-K. Park, J.-C. Lee, and Y.-H. Kim, “Engineering frequency-time quantum correlation of narrow-band biphotons from cold atoms,” Phys. Rev. Lett. 113(6), 063602 (2014).
[Crossref] [PubMed]

Knight, P. L.

J. C. Petch, C. H. Keitel, P. L. Knight, and J. P. Marangos, “Role of electromagnetically induced transparency in resonant four-wave-mixing schemes,” Phys. Rev. A 53(1), 543–561 (1996).
[Crossref] [PubMed]

Kolchin, P.

S. Du, P. Kolchin, C. Belthangady, G. Y. Yin, and S. E. Harris, “Subnatural linewidth biphotons with controllable temporal length,” Phys. Rev. Lett. 100(18), 183603 (2008).
[Crossref] [PubMed]

V. Balić, D. A. Braje, P. Kolchin, G. Y. Yin, and S. E. Harris, “Generation of paired photons with controllable waveforms,” Phys. Rev. Lett. 94(18), 183601 (2005).
[Crossref] [PubMed]

Kumar, P.

Lee, C.-Y.

Lee, H. J.

Lee, J.-C.

Y.-W. Cho, K.-K. Park, J.-C. Lee, and Y.-H. Kim, “Engineering frequency-time quantum correlation of narrow-band biphotons from cold atoms,” Phys. Rev. Lett. 113(6), 063602 (2014).
[Crossref] [PubMed]

Lee, Y.-S.

Lett, P. D.

Q. Glorieux, J. B. Clark, N. V. Corzo, and P. D. Lett, “Generation of pulsed bipartite entanglement using four-wave mixing,” New J. Phys. 14(12), 123024 (2012).
[Crossref]

Li, Y.-Q.

Likforman, J.-P.

Q. Glorieux, R. Dubessy, S. Guibal, L. Guidoni, J.-P. Likforman, T. Coudreau, and E. Arimondo, “Double-Λ microscopic model for entangled light generation by four-wave mixing,” Phys. Rev. A 82(3), 033819 (2010).
[Crossref]

Lin, C.-C.

Loy, M. M. T.

L. Zhao, X. Guo, Y. Sun, Y. Su, M. M. T. Loy, and S. Du, “Shaping the biphoton temporal waveform with spatial light modulation,” Phys. Rev. Lett. 115(19), 193601 (2015).
[Crossref] [PubMed]

Lü, B.

B. Lü, W. H. Burkett, and M. Xiao, “Electromagnetically induced transparency with variable coupling-laser linewidth,” Phys. Rev. A 56(1), 976–979 (1997).
[Crossref]

Lukin, M. D.

A. S. Zibrov, M. D. Lukin, and M. O. Scully, “Nondegenerate parametric self-oscillation via multiwave mixing in coherent atomic media,” Phys. Rev. Lett. 83(20), 4049–4052 (1999).
[Crossref]

Marangos, J. P.

J. C. Petch, C. H. Keitel, P. L. Knight, and J. P. Marangos, “Role of electromagnetically induced transparency in resonant four-wave-mixing schemes,” Phys. Rev. A 53(1), 543–561 (1996).
[Crossref] [PubMed]

McLean, R. J.

A. M. Akulshin and R. J. McLean, “Distinguishing coherent atomic processes using wave mixing,” Phys. Rev. A 85(6), 065802 (2012).
[Crossref]

A. M. Akulshin, R. J. McLean, A. I. Sidorov, and P. Hannaford, “Probing degenerate two-level atomic media by coherent optical heterodyning,” J. Phys. At. Mol. Opt. Phys. 44(17), 175502 (2011).
[Crossref]

Mikhailov, E. E.

E. E. Mikhailov, V. A. Sautenkov, Y. V. Rostovtsev, A. Zhang, M. S. Zubairy, M. O. Scully, and G. R. Welch, “Spectral narrowing via quantum coherence,” Phys. Rev. A 74(1), 013807 (2006).
[Crossref]

Moon, H. S.

Noh, H. R.

H. R. Noh and H. S. Moon, “Analytical solutions of the susceptibility for Doppler-broadened three-level atomic system,” J. Phys. At. Mol. Opt. Phys. 45(24), 245002 (2012).
[Crossref]

Noh, H.-R.

Novikova, I.

N. B. Phillips, A. V. Gorshkov, and I. Novikova, “Light storage in an optically thick atomic ensemble under conditions of electromagnetically induced transparency and four wave mixing,” Phys. Rev. A 83(6), 063823 (2011).
[Crossref]

Orozco, L. A.

R. T. Willis, F. E. Becerra, L. A. Orozco, and S. L. Rolston, “Four-wave mixing in the diamond configuration in an atomic vapor,” Phys. Rev. A 79(3), 033814 (2009).
[Crossref]

F. E. Becerra, R. T. Willis, S. L. Rolston, and L. A. Orozco, “Nondegenerate four-wave mixing in rubidium vapor: the diamond configuration,” Phys. Rev. A 78(1), 013834 (2008).
[Crossref]

Ou, Z. Y.

P. Qian, Z. Gu, R. Cao, R. Wen, Z. Y. Ou, J. F. Chen, and W. Zhang, “Temporal purity and quantum interference of single photons from two independent cold atomic ensembles,” Phys. Rev. Lett. 117(1), 013602 (2016).
[Crossref] [PubMed]

Park, K.-K.

Y.-W. Cho, K.-K. Park, J.-C. Lee, and Y.-H. Kim, “Engineering frequency-time quantum correlation of narrow-band biphotons from cold atoms,” Phys. Rev. Lett. 113(6), 063602 (2014).
[Crossref] [PubMed]

Pepper, D. M.

Perram, G. P.

M. D. Rotondaro and G. P. Perram, “Collisional broadening and shift of the Rubidium D1 and D2 lines (52S1/2®52P1/2, 52P3/2) by rare gases, H2, D2, N2, CH4, and CF4,” J. Quant. Spectrosc. Radiat. Transf. 57(4), 497–507 (1997).
[Crossref]

Petch, J. C.

J. C. Petch, C. H. Keitel, P. L. Knight, and J. P. Marangos, “Role of electromagnetically induced transparency in resonant four-wave-mixing schemes,” Phys. Rev. A 53(1), 543–561 (1996).
[Crossref] [PubMed]

Phillips, N. B.

N. B. Phillips, A. V. Gorshkov, and I. Novikova, “Light storage in an optically thick atomic ensemble under conditions of electromagnetically induced transparency and four wave mixing,” Phys. Rev. A 83(6), 063823 (2011).
[Crossref]

Qian, P.

P. Qian, Z. Gu, R. Cao, R. Wen, Z. Y. Ou, J. F. Chen, and W. Zhang, “Temporal purity and quantum interference of single photons from two independent cold atomic ensembles,” Phys. Rev. Lett. 117(1), 013602 (2016).
[Crossref] [PubMed]

Rolston, S. L.

R. T. Willis, F. E. Becerra, L. A. Orozco, and S. L. Rolston, “Four-wave mixing in the diamond configuration in an atomic vapor,” Phys. Rev. A 79(3), 033814 (2009).
[Crossref]

F. E. Becerra, R. T. Willis, S. L. Rolston, and L. A. Orozco, “Nondegenerate four-wave mixing in rubidium vapor: the diamond configuration,” Phys. Rev. A 78(1), 013834 (2008).
[Crossref]

Rostovtsev, Y. V.

E. E. Mikhailov, V. A. Sautenkov, Y. V. Rostovtsev, A. Zhang, M. S. Zubairy, M. O. Scully, and G. R. Welch, “Spectral narrowing via quantum coherence,” Phys. Rev. A 74(1), 013807 (2006).
[Crossref]

Rotondaro, M. D.

M. D. Rotondaro and G. P. Perram, “Collisional broadening and shift of the Rubidium D1 and D2 lines (52S1/2®52P1/2, 52P3/2) by rare gases, H2, D2, N2, CH4, and CF4,” J. Quant. Spectrosc. Radiat. Transf. 57(4), 497–507 (1997).
[Crossref]

Sautenkov, V. A.

E. E. Mikhailov, V. A. Sautenkov, Y. V. Rostovtsev, A. Zhang, M. S. Zubairy, M. O. Scully, and G. R. Welch, “Spectral narrowing via quantum coherence,” Phys. Rev. A 74(1), 013807 (2006).
[Crossref]

Scully, M. O.

E. E. Mikhailov, V. A. Sautenkov, Y. V. Rostovtsev, A. Zhang, M. S. Zubairy, M. O. Scully, and G. R. Welch, “Spectral narrowing via quantum coherence,” Phys. Rev. A 74(1), 013807 (2006).
[Crossref]

A. S. Zibrov, M. D. Lukin, and M. O. Scully, “Nondegenerate parametric self-oscillation via multiwave mixing in coherent atomic media,” Phys. Rev. Lett. 83(20), 4049–4052 (1999).
[Crossref]

Shahriar, M. S.

Sidorov, A. I.

A. M. Akulshin, R. J. McLean, A. I. Sidorov, and P. Hannaford, “Probing degenerate two-level atomic media by coherent optical heterodyning,” J. Phys. At. Mol. Opt. Phys. 44(17), 175502 (2011).
[Crossref]

Song, J.

F. Wen, H. Zheng, X. Xue, H. Chen, J. Song, and Y. Zhang, “Electromagnetically induced transparency-assisted four-wave mixing process in the diamond-type four-level atomic system,” Opt. Mater. 37, 724–726 (2014).
[Crossref]

Su, Y.

L. Zhao, X. Guo, Y. Sun, Y. Su, M. M. T. Loy, and S. Du, “Shaping the biphoton temporal waveform with spatial light modulation,” Phys. Rev. Lett. 115(19), 193601 (2015).
[Crossref] [PubMed]

Sun, Y.

L. Zhao, X. Guo, Y. Sun, Y. Su, M. M. T. Loy, and S. Du, “Shaping the biphoton temporal waveform with spatial light modulation,” Phys. Rev. Lett. 115(19), 193601 (2015).
[Crossref] [PubMed]

Tsai, P.-J.

Vudyasetu, P. K.

R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, “Four-wave-mixing stopped light in hot atomic rubidium vapour,” Nat. Photonics 3(2), 103–106 (2009).
[Crossref]

Wang, G.

Welch, G. R.

E. E. Mikhailov, V. A. Sautenkov, Y. V. Rostovtsev, A. Zhang, M. S. Zubairy, M. O. Scully, and G. R. Welch, “Spectral narrowing via quantum coherence,” Phys. Rev. A 74(1), 013807 (2006).
[Crossref]

Wen, F.

F. Wen, H. Zheng, X. Xue, H. Chen, J. Song, and Y. Zhang, “Electromagnetically induced transparency-assisted four-wave mixing process in the diamond-type four-level atomic system,” Opt. Mater. 37, 724–726 (2014).
[Crossref]

Wen, R.

P. Qian, Z. Gu, R. Cao, R. Wen, Z. Y. Ou, J. F. Chen, and W. Zhang, “Temporal purity and quantum interference of single photons from two independent cold atomic ensembles,” Phys. Rev. Lett. 117(1), 013602 (2016).
[Crossref] [PubMed]

Whiting, D. J.

D. J. Whiting, J. Keaveney, C. S. Adams, and I. G. Hughes, “Direct measurement of excited-state dipole matrix elements using electromagnetically induced transparency in the hyperfine Paschen-Back regime,” Phys. Rev. A 93(4), 043854 (2016).
[Crossref]

D. J. Whiting, E. Bimbard, J. Keaveney, M. A. Zentile, C. S. Adams, and I. G. Hughes, “Electromagnetically induced absorption in a nondegenerate three-level ladder system,” Opt. Lett. 40(18), 4289–4292 (2015).
[Crossref] [PubMed]

Willis, R. T.

R. T. Willis, F. E. Becerra, L. A. Orozco, and S. L. Rolston, “Four-wave mixing in the diamond configuration in an atomic vapor,” Phys. Rev. A 79(3), 033814 (2009).
[Crossref]

F. E. Becerra, R. T. Willis, S. L. Rolston, and L. A. Orozco, “Nondegenerate four-wave mixing in rubidium vapor: the diamond configuration,” Phys. Rev. A 78(1), 013834 (2008).
[Crossref]

Wu, B.-H.

Xiao, M.

U. Khadka, H. Zheng, and M. Xiao, “Four-wave-mixing between the upper excited states in a ladder-type atomic configuration,” Opt. Express 20(6), 6204–6214 (2012).
[Crossref] [PubMed]

Y. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Temporal and spatial interference between four-wave mixing and six-wave mixing channels,” Phys. Rev. Lett. 102(1), 013601 (2009).
[Crossref] [PubMed]

B. Lü, W. H. Burkett, and M. Xiao, “Electromagnetically induced transparency with variable coupling-laser linewidth,” Phys. Rev. A 56(1), 976–979 (1997).
[Crossref]

Y.-Q. Li and M. Xiao, “Enhancement of nondegenerate four-wave mixing based on electromagnetically induced transparency in rubidium atoms,” Opt. Lett. 21(14), 1064–1066 (1996).
[Crossref] [PubMed]

Xue, X.

F. Wen, H. Zheng, X. Xue, H. Chen, J. Song, and Y. Zhang, “Electromagnetically induced transparency-assisted four-wave mixing process in the diamond-type four-level atomic system,” Opt. Mater. 37, 724–726 (2014).
[Crossref]

Yariv, A.

Yin, G. Y.

S. Du, P. Kolchin, C. Belthangady, G. Y. Yin, and S. E. Harris, “Subnatural linewidth biphotons with controllable temporal length,” Phys. Rev. Lett. 100(18), 183603 (2008).
[Crossref] [PubMed]

V. Balić, D. A. Braje, P. Kolchin, G. Y. Yin, and S. E. Harris, “Generation of paired photons with controllable waveforms,” Phys. Rev. Lett. 94(18), 183601 (2005).
[Crossref] [PubMed]

M. Jain, G. Y. Yin, J. E. Field, and S. E. Harris, “Observation of electromagnetically induced phase matching,” Opt. Lett. 18(12), 998–1000 (1993).
[Crossref] [PubMed]

Yu, I. A.

Zentile, M. A.

Zhang, A.

E. E. Mikhailov, V. A. Sautenkov, Y. V. Rostovtsev, A. Zhang, M. S. Zubairy, M. O. Scully, and G. R. Welch, “Spectral narrowing via quantum coherence,” Phys. Rev. A 74(1), 013807 (2006).
[Crossref]

Zhang, W.

P. Qian, Z. Gu, R. Cao, R. Wen, Z. Y. Ou, J. F. Chen, and W. Zhang, “Temporal purity and quantum interference of single photons from two independent cold atomic ensembles,” Phys. Rev. Lett. 117(1), 013602 (2016).
[Crossref] [PubMed]

Zhang, Y.

F. Wen, H. Zheng, X. Xue, H. Chen, J. Song, and Y. Zhang, “Electromagnetically induced transparency-assisted four-wave mixing process in the diamond-type four-level atomic system,” Opt. Mater. 37, 724–726 (2014).
[Crossref]

Y. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Temporal and spatial interference between four-wave mixing and six-wave mixing channels,” Phys. Rev. Lett. 102(1), 013601 (2009).
[Crossref] [PubMed]

Zhao, L.

L. Zhao, X. Guo, Y. Sun, Y. Su, M. M. T. Loy, and S. Du, “Shaping the biphoton temporal waveform with spatial light modulation,” Phys. Rev. Lett. 115(19), 193601 (2015).
[Crossref] [PubMed]

Zheng, H.

F. Wen, H. Zheng, X. Xue, H. Chen, J. Song, and Y. Zhang, “Electromagnetically induced transparency-assisted four-wave mixing process in the diamond-type four-level atomic system,” Opt. Mater. 37, 724–726 (2014).
[Crossref]

U. Khadka, H. Zheng, and M. Xiao, “Four-wave-mixing between the upper excited states in a ladder-type atomic configuration,” Opt. Express 20(6), 6204–6214 (2012).
[Crossref] [PubMed]

Zibrov, A. S.

A. S. Zibrov, M. D. Lukin, and M. O. Scully, “Nondegenerate parametric self-oscillation via multiwave mixing in coherent atomic media,” Phys. Rev. Lett. 83(20), 4049–4052 (1999).
[Crossref]

Zubairy, M. S.

E. E. Mikhailov, V. A. Sautenkov, Y. V. Rostovtsev, A. Zhang, M. S. Zubairy, M. O. Scully, and G. R. Welch, “Spectral narrowing via quantum coherence,” Phys. Rev. A 74(1), 013807 (2006).
[Crossref]

J. Opt. Soc. Am. B (2)

J. Phys. At. Mol. Opt. Phys. (2)

A. M. Akulshin, R. J. McLean, A. I. Sidorov, and P. Hannaford, “Probing degenerate two-level atomic media by coherent optical heterodyning,” J. Phys. At. Mol. Opt. Phys. 44(17), 175502 (2011).
[Crossref]

H. R. Noh and H. S. Moon, “Analytical solutions of the susceptibility for Doppler-broadened three-level atomic system,” J. Phys. At. Mol. Opt. Phys. 45(24), 245002 (2012).
[Crossref]

J. Quant. Spectrosc. Radiat. Transf. (1)

M. D. Rotondaro and G. P. Perram, “Collisional broadening and shift of the Rubidium D1 and D2 lines (52S1/2®52P1/2, 52P3/2) by rare gases, H2, D2, N2, CH4, and CF4,” J. Quant. Spectrosc. Radiat. Transf. 57(4), 497–507 (1997).
[Crossref]

Nat. Photonics (1)

R. M. Camacho, P. K. Vudyasetu, and J. C. Howell, “Four-wave-mixing stopped light in hot atomic rubidium vapour,” Nat. Photonics 3(2), 103–106 (2009).
[Crossref]

New J. Phys. (1)

Q. Glorieux, J. B. Clark, N. V. Corzo, and P. D. Lett, “Generation of pulsed bipartite entanglement using four-wave mixing,” New J. Phys. 14(12), 123024 (2012).
[Crossref]

Opt. Express (3)

Opt. Lett. (6)

Opt. Mater. (1)

F. Wen, H. Zheng, X. Xue, H. Chen, J. Song, and Y. Zhang, “Electromagnetically induced transparency-assisted four-wave mixing process in the diamond-type four-level atomic system,” Opt. Mater. 37, 724–726 (2014).
[Crossref]

Phys. Rev. A (9)

J. C. Petch, C. H. Keitel, P. L. Knight, and J. P. Marangos, “Role of electromagnetically induced transparency in resonant four-wave-mixing schemes,” Phys. Rev. A 53(1), 543–561 (1996).
[Crossref] [PubMed]

F. E. Becerra, R. T. Willis, S. L. Rolston, and L. A. Orozco, “Nondegenerate four-wave mixing in rubidium vapor: the diamond configuration,” Phys. Rev. A 78(1), 013834 (2008).
[Crossref]

R. T. Willis, F. E. Becerra, L. A. Orozco, and S. L. Rolston, “Four-wave mixing in the diamond configuration in an atomic vapor,” Phys. Rev. A 79(3), 033814 (2009).
[Crossref]

B. Lü, W. H. Burkett, and M. Xiao, “Electromagnetically induced transparency with variable coupling-laser linewidth,” Phys. Rev. A 56(1), 976–979 (1997).
[Crossref]

E. E. Mikhailov, V. A. Sautenkov, Y. V. Rostovtsev, A. Zhang, M. S. Zubairy, M. O. Scully, and G. R. Welch, “Spectral narrowing via quantum coherence,” Phys. Rev. A 74(1), 013807 (2006).
[Crossref]

Q. Glorieux, R. Dubessy, S. Guibal, L. Guidoni, J.-P. Likforman, T. Coudreau, and E. Arimondo, “Double-Λ microscopic model for entangled light generation by four-wave mixing,” Phys. Rev. A 82(3), 033819 (2010).
[Crossref]

A. M. Akulshin and R. J. McLean, “Distinguishing coherent atomic processes using wave mixing,” Phys. Rev. A 85(6), 065802 (2012).
[Crossref]

D. J. Whiting, J. Keaveney, C. S. Adams, and I. G. Hughes, “Direct measurement of excited-state dipole matrix elements using electromagnetically induced transparency in the hyperfine Paschen-Back regime,” Phys. Rev. A 93(4), 043854 (2016).
[Crossref]

N. B. Phillips, A. V. Gorshkov, and I. Novikova, “Light storage in an optically thick atomic ensemble under conditions of electromagnetically induced transparency and four wave mixing,” Phys. Rev. A 83(6), 063823 (2011).
[Crossref]

Phys. Rev. Lett. (9)

Y. Zhang, U. Khadka, B. Anderson, and M. Xiao, “Temporal and spatial interference between four-wave mixing and six-wave mixing channels,” Phys. Rev. Lett. 102(1), 013601 (2009).
[Crossref] [PubMed]

A. S. Zibrov, M. D. Lukin, and M. O. Scully, “Nondegenerate parametric self-oscillation via multiwave mixing in coherent atomic media,” Phys. Rev. Lett. 83(20), 4049–4052 (1999).
[Crossref]

Y.-W. Cho, K.-K. Park, J.-C. Lee, and Y.-H. Kim, “Engineering frequency-time quantum correlation of narrow-band biphotons from cold atoms,” Phys. Rev. Lett. 113(6), 063602 (2014).
[Crossref] [PubMed]

L. Zhao, X. Guo, Y. Sun, Y. Su, M. M. T. Loy, and S. Du, “Shaping the biphoton temporal waveform with spatial light modulation,” Phys. Rev. Lett. 115(19), 193601 (2015).
[Crossref] [PubMed]

P. Qian, Z. Gu, R. Cao, R. Wen, Z. Y. Ou, J. F. Chen, and W. Zhang, “Temporal purity and quantum interference of single photons from two independent cold atomic ensembles,” Phys. Rev. Lett. 117(1), 013602 (2016).
[Crossref] [PubMed]

S. E. Harris, J. E. Field, and A. Imamoglu, “Nonlinear optical processes using electromagnetically induced transparency,” Phys. Rev. Lett. 64(10), 1107–1110 (1990).
[Crossref] [PubMed]

K.-J. Boller, A. Imamoğlu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991).
[Crossref] [PubMed]

V. Balić, D. A. Braje, P. Kolchin, G. Y. Yin, and S. E. Harris, “Generation of paired photons with controllable waveforms,” Phys. Rev. Lett. 94(18), 183601 (2005).
[Crossref] [PubMed]

S. Du, P. Kolchin, C. Belthangady, G. Y. Yin, and S. E. Harris, “Subnatural linewidth biphotons with controllable temporal length,” Phys. Rev. Lett. 100(18), 183603 (2008).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic of experimental setup for examining the characteristics of four-wave mixing (FWM) in the double-Λ-type atomic system of 87Rb with the use of 795-nm external cavity diode lasers (ECDLs) for probe (Ωpr), coupling (ΩC), and pump (ΩP) lasers (PD: photo-current detector; PBS: polarization beam splitter; BS: beam splitter; OI: optical isolator; HWP: half-wave plate; M: Mirror). (b) Energy-level diagram of the 5S1/2(F = 1 and 2)−5P1/2(F′ = 2) transition of 87Rb atoms.
Fig. 2
Fig. 2 Transmittances of probe laser (black), two-photon absorption (TPA, blue), and four-wave mixing (FWM, red) spectra as functions of the detuning δpr/2π of the Ωpr laser, where TPA is due to the pure two-photon coherence by the phase-locked Ωp and ΩC lasers. The inset shows the normalized FWM and TPA spectra.
Fig. 3
Fig. 3 (a) Relative linewidth measurements in cases of phase-unlocked ΩP (blue curve) and phase-locked ΩP (red curve); spectral density curves of beat signal between the ΩP and ΩC lasers at the center frequency of 8.0 GHz. (b) Comparison of four-wave mixing (FWM) spectra obtained with the phase-unlocked (blue curve) and phase-locked (red curve) ΩP laser.
Fig. 4
Fig. 4 Relative phase-noise measurement of ΩFWM with respect to those of ΩP or Ωpr for phase-unlocked ΩP: Spectral density of the beat signal between (a) Ωpr and ΩFWM and (b) ΩP and ΩFWM.
Fig. 5
Fig. 5 (a) Double Λ-type four-level atomic model for four-wave mixing (FWM) generation. (b) Numerically calculated Im(σ23) for two-photon absorption (TPA, black curve) and |σ14|2 for FWM (red curve) spectra in four-level atomic model.
Fig. 6
Fig. 6 Numerically calculated |σ14|2 for FWM signal according to relative phase noise γP of ΩP.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ρ ij t = i k [ H ik ρ kj ρ ik H kj ] Γ ij ρ ij ,
σ 12 = Ω pr Ω C Δ 13 Δ 12 Δ 13 Δ 14 | Ω P | 2
σ 14 = Ω pr Ω C Ω P Δ 13 Δ 12 Δ 13 Δ 14 | Ω P | 2 ,
σ 14 = Ω P Δ P σ 12 ,
ρ 14 = σ 14 e i[ ω FWM t+ φ FWM (t)] .

Metrics