Abstract

We report a 1.3-μm dual-wavelength distributed feedback (DFB) photonic integrated chip with modulation bandwidth enhancement using integrated optical feedback section. The dual-wavelength DFB lasers were realized using the upper separate confinement heterostructure (SCH) selective area growth (SAG) approach. A modified butt-joint technique was also adopted to achieve high-quality active-passive interface and minimize unintentional intra-cavity optical feedbacks. The fabricated photonic chip exhibited stable single mode operations with a wavelength separation of 2.06 nm. The 3-dB modulation bandwidth was enhanced through the photon-photon resonance effect with f3dB > 17 GHz and open eyes up to 25 Gbit/s for both channels were also obtained. The design can also be scaled up to higher channel counts and higher data rate.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Widely tunable monolithic dual-mode laser for W-band photonic millimeter-wave generation and all-optical clock recovery

Biwei Pan, Lu Guo, Limeng Zhang, Dna Lu, Li Huo, Caiyun Lou, and Lingjuan Zhao
Appl. Opt. 55(11) 2930-2935 (2016)

1.55 µm high speed low chirp electroabsorption modulated laser arrays based on SAG scheme

Yuanbing Cheng, Qi Jie Wang, and Jiaoqing Pan
Opt. Express 22(25) 31286-31292 (2014)

A 10 × 10 Gb/s DFB laser diode array fabricated using a SAG technique

Oh Kee Kwon, Yong Ahn Leem, Young Tak Han, Chul Wook Lee, Ki Soo Kim, and Su Hwan Oh
Opt. Express 22(8) 9073-9080 (2014)

References

  • View by:
  • |
  • |
  • |

  1. IEEE, p802.3ba task force objectives [Online]. Available: http://www.ieee802.org/3/ba/ .
  2. T. Simoyama, M. Matsuda, S. Okumura, A. Uetake, M. Ekawa, and T. Yamamoto, “4-wavelength 25.8-Gbps directly modulated laser array of 1.3-μm AlGaInAs distributed-reflector lasers,” in Proceedings of International Semiconductor Laser Conference (ISLC, 2012), paper 54–55.
  3. T. Fujisawa, S. Kanazawa, H. Ishii, N. Nunoya, Y. Kawaguchi, A. Ohki, N. Fujiwara, K. Takahata, R. Iga, F. Kano, and H. Oohashi, “1.3-μm 4 × 25-gb/s monolithically integrated light source for metro area 100-Gb/s ethernet,” IEEE Photonics Technol. Lett. 23(6), 356–358 (2011).
    [Crossref]
  4. L. Hou, M. Haji, J. Akbar, J. H. Marsh, and A. C. Bryce, “CWDM source based on AlGaInAs/InP monolithically integrated DFB laser array,” Opt. Lett. 36(21), 4188–4190 (2011).
    [Crossref] [PubMed]
  5. C. Cole, B. Huebner, and J. E. Johnson, “Photonic integration for high-volume, low-cost applications,” IEEE Commun. Mag. 47(3), S16–S22 (2009).
    [Crossref]
  6. T. R. Chen, J. Ungar, X. L. Yeh, and N. Bar-Chaim, “Very large bandwidth strained MQW DFB laser at 1.3 μm,” IEEE Photonics Technol. Lett. 7(5), 458–460 (1995).
    [Crossref]
  7. Y. Matsui, H. Murai, S. Arahira, S. Kutsuzawa, and Y. Ogawa, “30-GHz bandwidth 1.55-μm strain-compensated InGaAlAs-InGaAsP MQW laser,” IEEE Photonics Technol. Lett. 9(1), 25–27 (1997).
    [Crossref]
  8. T. Fukamachi, K. Adachi, K. Shinoda, T. Kitatani, S. Tanaka, M. Aoki, and S. Tsuji, “Wide temperature range operation of 25-Gb/s 1.3-μm InGaAlAs directly modulated lasers,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1138–1145 (2011).
    [Crossref]
  9. M. N. Akram, C. Silfvenius, J. Berggren, O. Kjebon, and R. Schatz, “Design optimization of InGaAsP-InGaAlAs 1.55 μm strain-compensated MQW lasers for direct modulation applications,” in Proceedings of Indium Phosphide and Related Materials (IPRM, 2004), paper 418–421.
  10. J. P. Reithmaier, W. Kaiser, L. Bach, A. Forchel, V. Feies, M. Gioannini, I. Montrosset, T. W. Berg, B. Tromborg, “Modulation speed enhancement by coupling to higher order resonances: a road towards 40 GHz bandwidth lasers on InP,” in Proceedings of Indium Phosphide and Related Materials (IPRM, 2005), paper 118–123.
  11. E. K. Lau, Z. Xiaoxue, C. Chang-Hasnain, and M. C. Wu, “80-GHz intrinsic 3-dB bandwidth of directly modulated semiconductor lasers under optical injection locking,” in Proceedings of International Semiconductor Laser Conference (ISLC)2008, paper 171–172.
    [Crossref]
  12. M. Radziunas, A. Glitzky, U. Bandelow, M. Wolfrum, U. Troppenz, J. Kreissl, and W. Rehbein, “Improving the modulation bandwidth in semiconductor lasers by passive feedback,” IEEE J. Sel. Top. Quantum Electron. 13(1), 136–142 (2007).
    [Crossref]
  13. J. Kreissl, V. Vercesi, U. Troppenz, T. Gaertner, W. Wenisch, and M. Schell, “Up to 40 Gb/s directly modulated laser operating at low driving current: buried-heterostructure passive feedback laser (BH-PFL),” IEEE Photonics Technol. Lett. 24(5), 362–364 (2012).
    [Crossref]
  14. C. Zhang, S. Liang, H. Zhu, B. Wang, and W. Wang, “A modified SAG technique for the fabrication of DWDM DFB laser arrays with highly uniform wavelength spacings,” Opt. Express 20(28), 29620–29625 (2012).
    [Crossref] [PubMed]
  15. L. A. Wang, Y. H. Lo, A. S. Gozdz, P. S. D. Lin, M. Z. Iqbal, and R. Bhat, “Integrated four-wavelength DFB laser array with 10 Gb/s speed and 5 nm continuous tuning range,” IEEE Photonics Technol. Lett. 4(4), 318–320 (1992).
    [Crossref]
  16. H. Zhu, X. Xu, H. Wang, D. Kong, S. Liang, L. Zhao, and W. Wang, “The fabrication of eight-channel DFB laser array using sampled gratings,” IEEE Photonics Technol. Lett. 22(5), 353–355 (2010).
    [Crossref]
  17. F. Guo, R. Zhang, D. Lu, W. Wang, and C. Ji, “1.3-μm multi-wavelength DFB laser array fabricated by MOCVD selective area growth,” Opt. Commun. 331, 165–168 (2014).
    [Crossref]
  18. C. Sun, D. Liu, B. Xiong, Y. Luo, J. Wang, Z. Hao, Y. Han, L. Wang, and H. Li, “Modulation characteristics enhancement of monolithically integrated laser diodes under mutual injection locking,” IEEE J. Sel. Top. Quantum Electron. 21(6), 628–635 (2015).
    [Crossref]
  19. R. Paoletti, M. Agresti, D. Bertone, C. Bruschi, S. Codato, C. Coriasso, R. Defranceschi, P. Dellacasa, M. Diloreto, R. Y. Fang, P. Gotta, G. Meneghini, C. Rigo, E. Riva, G. Roggero, A. Stano, and M. Meliga, “Uncooled 20 Gb/s direct modulation of high yield, highly reliable 1300 nm InGaAlAs ridge DFB lasers,” in Proceedings of Optical Fiber Communication Conference (OFC, 2009), paper OThT1.
    [Crossref]

2015 (1)

C. Sun, D. Liu, B. Xiong, Y. Luo, J. Wang, Z. Hao, Y. Han, L. Wang, and H. Li, “Modulation characteristics enhancement of monolithically integrated laser diodes under mutual injection locking,” IEEE J. Sel. Top. Quantum Electron. 21(6), 628–635 (2015).
[Crossref]

2014 (1)

F. Guo, R. Zhang, D. Lu, W. Wang, and C. Ji, “1.3-μm multi-wavelength DFB laser array fabricated by MOCVD selective area growth,” Opt. Commun. 331, 165–168 (2014).
[Crossref]

2012 (2)

C. Zhang, S. Liang, H. Zhu, B. Wang, and W. Wang, “A modified SAG technique for the fabrication of DWDM DFB laser arrays with highly uniform wavelength spacings,” Opt. Express 20(28), 29620–29625 (2012).
[Crossref] [PubMed]

J. Kreissl, V. Vercesi, U. Troppenz, T. Gaertner, W. Wenisch, and M. Schell, “Up to 40 Gb/s directly modulated laser operating at low driving current: buried-heterostructure passive feedback laser (BH-PFL),” IEEE Photonics Technol. Lett. 24(5), 362–364 (2012).
[Crossref]

2011 (3)

T. Fukamachi, K. Adachi, K. Shinoda, T. Kitatani, S. Tanaka, M. Aoki, and S. Tsuji, “Wide temperature range operation of 25-Gb/s 1.3-μm InGaAlAs directly modulated lasers,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1138–1145 (2011).
[Crossref]

T. Fujisawa, S. Kanazawa, H. Ishii, N. Nunoya, Y. Kawaguchi, A. Ohki, N. Fujiwara, K. Takahata, R. Iga, F. Kano, and H. Oohashi, “1.3-μm 4 × 25-gb/s monolithically integrated light source for metro area 100-Gb/s ethernet,” IEEE Photonics Technol. Lett. 23(6), 356–358 (2011).
[Crossref]

L. Hou, M. Haji, J. Akbar, J. H. Marsh, and A. C. Bryce, “CWDM source based on AlGaInAs/InP monolithically integrated DFB laser array,” Opt. Lett. 36(21), 4188–4190 (2011).
[Crossref] [PubMed]

2010 (1)

H. Zhu, X. Xu, H. Wang, D. Kong, S. Liang, L. Zhao, and W. Wang, “The fabrication of eight-channel DFB laser array using sampled gratings,” IEEE Photonics Technol. Lett. 22(5), 353–355 (2010).
[Crossref]

2009 (1)

C. Cole, B. Huebner, and J. E. Johnson, “Photonic integration for high-volume, low-cost applications,” IEEE Commun. Mag. 47(3), S16–S22 (2009).
[Crossref]

2007 (1)

M. Radziunas, A. Glitzky, U. Bandelow, M. Wolfrum, U. Troppenz, J. Kreissl, and W. Rehbein, “Improving the modulation bandwidth in semiconductor lasers by passive feedback,” IEEE J. Sel. Top. Quantum Electron. 13(1), 136–142 (2007).
[Crossref]

1997 (1)

Y. Matsui, H. Murai, S. Arahira, S. Kutsuzawa, and Y. Ogawa, “30-GHz bandwidth 1.55-μm strain-compensated InGaAlAs-InGaAsP MQW laser,” IEEE Photonics Technol. Lett. 9(1), 25–27 (1997).
[Crossref]

1995 (1)

T. R. Chen, J. Ungar, X. L. Yeh, and N. Bar-Chaim, “Very large bandwidth strained MQW DFB laser at 1.3 μm,” IEEE Photonics Technol. Lett. 7(5), 458–460 (1995).
[Crossref]

1992 (1)

L. A. Wang, Y. H. Lo, A. S. Gozdz, P. S. D. Lin, M. Z. Iqbal, and R. Bhat, “Integrated four-wavelength DFB laser array with 10 Gb/s speed and 5 nm continuous tuning range,” IEEE Photonics Technol. Lett. 4(4), 318–320 (1992).
[Crossref]

Adachi, K.

T. Fukamachi, K. Adachi, K. Shinoda, T. Kitatani, S. Tanaka, M. Aoki, and S. Tsuji, “Wide temperature range operation of 25-Gb/s 1.3-μm InGaAlAs directly modulated lasers,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1138–1145 (2011).
[Crossref]

Akbar, J.

Aoki, M.

T. Fukamachi, K. Adachi, K. Shinoda, T. Kitatani, S. Tanaka, M. Aoki, and S. Tsuji, “Wide temperature range operation of 25-Gb/s 1.3-μm InGaAlAs directly modulated lasers,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1138–1145 (2011).
[Crossref]

Arahira, S.

Y. Matsui, H. Murai, S. Arahira, S. Kutsuzawa, and Y. Ogawa, “30-GHz bandwidth 1.55-μm strain-compensated InGaAlAs-InGaAsP MQW laser,” IEEE Photonics Technol. Lett. 9(1), 25–27 (1997).
[Crossref]

Bandelow, U.

M. Radziunas, A. Glitzky, U. Bandelow, M. Wolfrum, U. Troppenz, J. Kreissl, and W. Rehbein, “Improving the modulation bandwidth in semiconductor lasers by passive feedback,” IEEE J. Sel. Top. Quantum Electron. 13(1), 136–142 (2007).
[Crossref]

Bar-Chaim, N.

T. R. Chen, J. Ungar, X. L. Yeh, and N. Bar-Chaim, “Very large bandwidth strained MQW DFB laser at 1.3 μm,” IEEE Photonics Technol. Lett. 7(5), 458–460 (1995).
[Crossref]

Bhat, R.

L. A. Wang, Y. H. Lo, A. S. Gozdz, P. S. D. Lin, M. Z. Iqbal, and R. Bhat, “Integrated four-wavelength DFB laser array with 10 Gb/s speed and 5 nm continuous tuning range,” IEEE Photonics Technol. Lett. 4(4), 318–320 (1992).
[Crossref]

Bryce, A. C.

Chang-Hasnain, C.

E. K. Lau, Z. Xiaoxue, C. Chang-Hasnain, and M. C. Wu, “80-GHz intrinsic 3-dB bandwidth of directly modulated semiconductor lasers under optical injection locking,” in Proceedings of International Semiconductor Laser Conference (ISLC)2008, paper 171–172.
[Crossref]

Chen, T. R.

T. R. Chen, J. Ungar, X. L. Yeh, and N. Bar-Chaim, “Very large bandwidth strained MQW DFB laser at 1.3 μm,” IEEE Photonics Technol. Lett. 7(5), 458–460 (1995).
[Crossref]

Cole, C.

C. Cole, B. Huebner, and J. E. Johnson, “Photonic integration for high-volume, low-cost applications,” IEEE Commun. Mag. 47(3), S16–S22 (2009).
[Crossref]

Fujisawa, T.

T. Fujisawa, S. Kanazawa, H. Ishii, N. Nunoya, Y. Kawaguchi, A. Ohki, N. Fujiwara, K. Takahata, R. Iga, F. Kano, and H. Oohashi, “1.3-μm 4 × 25-gb/s monolithically integrated light source for metro area 100-Gb/s ethernet,” IEEE Photonics Technol. Lett. 23(6), 356–358 (2011).
[Crossref]

Fujiwara, N.

T. Fujisawa, S. Kanazawa, H. Ishii, N. Nunoya, Y. Kawaguchi, A. Ohki, N. Fujiwara, K. Takahata, R. Iga, F. Kano, and H. Oohashi, “1.3-μm 4 × 25-gb/s monolithically integrated light source for metro area 100-Gb/s ethernet,” IEEE Photonics Technol. Lett. 23(6), 356–358 (2011).
[Crossref]

Fukamachi, T.

T. Fukamachi, K. Adachi, K. Shinoda, T. Kitatani, S. Tanaka, M. Aoki, and S. Tsuji, “Wide temperature range operation of 25-Gb/s 1.3-μm InGaAlAs directly modulated lasers,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1138–1145 (2011).
[Crossref]

Gaertner, T.

J. Kreissl, V. Vercesi, U. Troppenz, T. Gaertner, W. Wenisch, and M. Schell, “Up to 40 Gb/s directly modulated laser operating at low driving current: buried-heterostructure passive feedback laser (BH-PFL),” IEEE Photonics Technol. Lett. 24(5), 362–364 (2012).
[Crossref]

Glitzky, A.

M. Radziunas, A. Glitzky, U. Bandelow, M. Wolfrum, U. Troppenz, J. Kreissl, and W. Rehbein, “Improving the modulation bandwidth in semiconductor lasers by passive feedback,” IEEE J. Sel. Top. Quantum Electron. 13(1), 136–142 (2007).
[Crossref]

Gozdz, A. S.

L. A. Wang, Y. H. Lo, A. S. Gozdz, P. S. D. Lin, M. Z. Iqbal, and R. Bhat, “Integrated four-wavelength DFB laser array with 10 Gb/s speed and 5 nm continuous tuning range,” IEEE Photonics Technol. Lett. 4(4), 318–320 (1992).
[Crossref]

Guo, F.

F. Guo, R. Zhang, D. Lu, W. Wang, and C. Ji, “1.3-μm multi-wavelength DFB laser array fabricated by MOCVD selective area growth,” Opt. Commun. 331, 165–168 (2014).
[Crossref]

Haji, M.

Han, Y.

C. Sun, D. Liu, B. Xiong, Y. Luo, J. Wang, Z. Hao, Y. Han, L. Wang, and H. Li, “Modulation characteristics enhancement of monolithically integrated laser diodes under mutual injection locking,” IEEE J. Sel. Top. Quantum Electron. 21(6), 628–635 (2015).
[Crossref]

Hao, Z.

C. Sun, D. Liu, B. Xiong, Y. Luo, J. Wang, Z. Hao, Y. Han, L. Wang, and H. Li, “Modulation characteristics enhancement of monolithically integrated laser diodes under mutual injection locking,” IEEE J. Sel. Top. Quantum Electron. 21(6), 628–635 (2015).
[Crossref]

Hou, L.

Huebner, B.

C. Cole, B. Huebner, and J. E. Johnson, “Photonic integration for high-volume, low-cost applications,” IEEE Commun. Mag. 47(3), S16–S22 (2009).
[Crossref]

Iga, R.

T. Fujisawa, S. Kanazawa, H. Ishii, N. Nunoya, Y. Kawaguchi, A. Ohki, N. Fujiwara, K. Takahata, R. Iga, F. Kano, and H. Oohashi, “1.3-μm 4 × 25-gb/s monolithically integrated light source for metro area 100-Gb/s ethernet,” IEEE Photonics Technol. Lett. 23(6), 356–358 (2011).
[Crossref]

Iqbal, M. Z.

L. A. Wang, Y. H. Lo, A. S. Gozdz, P. S. D. Lin, M. Z. Iqbal, and R. Bhat, “Integrated four-wavelength DFB laser array with 10 Gb/s speed and 5 nm continuous tuning range,” IEEE Photonics Technol. Lett. 4(4), 318–320 (1992).
[Crossref]

Ishii, H.

T. Fujisawa, S. Kanazawa, H. Ishii, N. Nunoya, Y. Kawaguchi, A. Ohki, N. Fujiwara, K. Takahata, R. Iga, F. Kano, and H. Oohashi, “1.3-μm 4 × 25-gb/s monolithically integrated light source for metro area 100-Gb/s ethernet,” IEEE Photonics Technol. Lett. 23(6), 356–358 (2011).
[Crossref]

Ji, C.

F. Guo, R. Zhang, D. Lu, W. Wang, and C. Ji, “1.3-μm multi-wavelength DFB laser array fabricated by MOCVD selective area growth,” Opt. Commun. 331, 165–168 (2014).
[Crossref]

Johnson, J. E.

C. Cole, B. Huebner, and J. E. Johnson, “Photonic integration for high-volume, low-cost applications,” IEEE Commun. Mag. 47(3), S16–S22 (2009).
[Crossref]

Kanazawa, S.

T. Fujisawa, S. Kanazawa, H. Ishii, N. Nunoya, Y. Kawaguchi, A. Ohki, N. Fujiwara, K. Takahata, R. Iga, F. Kano, and H. Oohashi, “1.3-μm 4 × 25-gb/s monolithically integrated light source for metro area 100-Gb/s ethernet,” IEEE Photonics Technol. Lett. 23(6), 356–358 (2011).
[Crossref]

Kano, F.

T. Fujisawa, S. Kanazawa, H. Ishii, N. Nunoya, Y. Kawaguchi, A. Ohki, N. Fujiwara, K. Takahata, R. Iga, F. Kano, and H. Oohashi, “1.3-μm 4 × 25-gb/s monolithically integrated light source for metro area 100-Gb/s ethernet,” IEEE Photonics Technol. Lett. 23(6), 356–358 (2011).
[Crossref]

Kawaguchi, Y.

T. Fujisawa, S. Kanazawa, H. Ishii, N. Nunoya, Y. Kawaguchi, A. Ohki, N. Fujiwara, K. Takahata, R. Iga, F. Kano, and H. Oohashi, “1.3-μm 4 × 25-gb/s monolithically integrated light source for metro area 100-Gb/s ethernet,” IEEE Photonics Technol. Lett. 23(6), 356–358 (2011).
[Crossref]

Kitatani, T.

T. Fukamachi, K. Adachi, K. Shinoda, T. Kitatani, S. Tanaka, M. Aoki, and S. Tsuji, “Wide temperature range operation of 25-Gb/s 1.3-μm InGaAlAs directly modulated lasers,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1138–1145 (2011).
[Crossref]

Kong, D.

H. Zhu, X. Xu, H. Wang, D. Kong, S. Liang, L. Zhao, and W. Wang, “The fabrication of eight-channel DFB laser array using sampled gratings,” IEEE Photonics Technol. Lett. 22(5), 353–355 (2010).
[Crossref]

Kreissl, J.

J. Kreissl, V. Vercesi, U. Troppenz, T. Gaertner, W. Wenisch, and M. Schell, “Up to 40 Gb/s directly modulated laser operating at low driving current: buried-heterostructure passive feedback laser (BH-PFL),” IEEE Photonics Technol. Lett. 24(5), 362–364 (2012).
[Crossref]

M. Radziunas, A. Glitzky, U. Bandelow, M. Wolfrum, U. Troppenz, J. Kreissl, and W. Rehbein, “Improving the modulation bandwidth in semiconductor lasers by passive feedback,” IEEE J. Sel. Top. Quantum Electron. 13(1), 136–142 (2007).
[Crossref]

Kutsuzawa, S.

Y. Matsui, H. Murai, S. Arahira, S. Kutsuzawa, and Y. Ogawa, “30-GHz bandwidth 1.55-μm strain-compensated InGaAlAs-InGaAsP MQW laser,” IEEE Photonics Technol. Lett. 9(1), 25–27 (1997).
[Crossref]

Lau, E. K.

E. K. Lau, Z. Xiaoxue, C. Chang-Hasnain, and M. C. Wu, “80-GHz intrinsic 3-dB bandwidth of directly modulated semiconductor lasers under optical injection locking,” in Proceedings of International Semiconductor Laser Conference (ISLC)2008, paper 171–172.
[Crossref]

Li, H.

C. Sun, D. Liu, B. Xiong, Y. Luo, J. Wang, Z. Hao, Y. Han, L. Wang, and H. Li, “Modulation characteristics enhancement of monolithically integrated laser diodes under mutual injection locking,” IEEE J. Sel. Top. Quantum Electron. 21(6), 628–635 (2015).
[Crossref]

Liang, S.

C. Zhang, S. Liang, H. Zhu, B. Wang, and W. Wang, “A modified SAG technique for the fabrication of DWDM DFB laser arrays with highly uniform wavelength spacings,” Opt. Express 20(28), 29620–29625 (2012).
[Crossref] [PubMed]

H. Zhu, X. Xu, H. Wang, D. Kong, S. Liang, L. Zhao, and W. Wang, “The fabrication of eight-channel DFB laser array using sampled gratings,” IEEE Photonics Technol. Lett. 22(5), 353–355 (2010).
[Crossref]

Lin, P. S. D.

L. A. Wang, Y. H. Lo, A. S. Gozdz, P. S. D. Lin, M. Z. Iqbal, and R. Bhat, “Integrated four-wavelength DFB laser array with 10 Gb/s speed and 5 nm continuous tuning range,” IEEE Photonics Technol. Lett. 4(4), 318–320 (1992).
[Crossref]

Liu, D.

C. Sun, D. Liu, B. Xiong, Y. Luo, J. Wang, Z. Hao, Y. Han, L. Wang, and H. Li, “Modulation characteristics enhancement of monolithically integrated laser diodes under mutual injection locking,” IEEE J. Sel. Top. Quantum Electron. 21(6), 628–635 (2015).
[Crossref]

Lo, Y. H.

L. A. Wang, Y. H. Lo, A. S. Gozdz, P. S. D. Lin, M. Z. Iqbal, and R. Bhat, “Integrated four-wavelength DFB laser array with 10 Gb/s speed and 5 nm continuous tuning range,” IEEE Photonics Technol. Lett. 4(4), 318–320 (1992).
[Crossref]

Lu, D.

F. Guo, R. Zhang, D. Lu, W. Wang, and C. Ji, “1.3-μm multi-wavelength DFB laser array fabricated by MOCVD selective area growth,” Opt. Commun. 331, 165–168 (2014).
[Crossref]

Luo, Y.

C. Sun, D. Liu, B. Xiong, Y. Luo, J. Wang, Z. Hao, Y. Han, L. Wang, and H. Li, “Modulation characteristics enhancement of monolithically integrated laser diodes under mutual injection locking,” IEEE J. Sel. Top. Quantum Electron. 21(6), 628–635 (2015).
[Crossref]

Marsh, J. H.

Matsui, Y.

Y. Matsui, H. Murai, S. Arahira, S. Kutsuzawa, and Y. Ogawa, “30-GHz bandwidth 1.55-μm strain-compensated InGaAlAs-InGaAsP MQW laser,” IEEE Photonics Technol. Lett. 9(1), 25–27 (1997).
[Crossref]

Murai, H.

Y. Matsui, H. Murai, S. Arahira, S. Kutsuzawa, and Y. Ogawa, “30-GHz bandwidth 1.55-μm strain-compensated InGaAlAs-InGaAsP MQW laser,” IEEE Photonics Technol. Lett. 9(1), 25–27 (1997).
[Crossref]

Nunoya, N.

T. Fujisawa, S. Kanazawa, H. Ishii, N. Nunoya, Y. Kawaguchi, A. Ohki, N. Fujiwara, K. Takahata, R. Iga, F. Kano, and H. Oohashi, “1.3-μm 4 × 25-gb/s monolithically integrated light source for metro area 100-Gb/s ethernet,” IEEE Photonics Technol. Lett. 23(6), 356–358 (2011).
[Crossref]

Ogawa, Y.

Y. Matsui, H. Murai, S. Arahira, S. Kutsuzawa, and Y. Ogawa, “30-GHz bandwidth 1.55-μm strain-compensated InGaAlAs-InGaAsP MQW laser,” IEEE Photonics Technol. Lett. 9(1), 25–27 (1997).
[Crossref]

Ohki, A.

T. Fujisawa, S. Kanazawa, H. Ishii, N. Nunoya, Y. Kawaguchi, A. Ohki, N. Fujiwara, K. Takahata, R. Iga, F. Kano, and H. Oohashi, “1.3-μm 4 × 25-gb/s monolithically integrated light source for metro area 100-Gb/s ethernet,” IEEE Photonics Technol. Lett. 23(6), 356–358 (2011).
[Crossref]

Oohashi, H.

T. Fujisawa, S. Kanazawa, H. Ishii, N. Nunoya, Y. Kawaguchi, A. Ohki, N. Fujiwara, K. Takahata, R. Iga, F. Kano, and H. Oohashi, “1.3-μm 4 × 25-gb/s monolithically integrated light source for metro area 100-Gb/s ethernet,” IEEE Photonics Technol. Lett. 23(6), 356–358 (2011).
[Crossref]

Radziunas, M.

M. Radziunas, A. Glitzky, U. Bandelow, M. Wolfrum, U. Troppenz, J. Kreissl, and W. Rehbein, “Improving the modulation bandwidth in semiconductor lasers by passive feedback,” IEEE J. Sel. Top. Quantum Electron. 13(1), 136–142 (2007).
[Crossref]

Rehbein, W.

M. Radziunas, A. Glitzky, U. Bandelow, M. Wolfrum, U. Troppenz, J. Kreissl, and W. Rehbein, “Improving the modulation bandwidth in semiconductor lasers by passive feedback,” IEEE J. Sel. Top. Quantum Electron. 13(1), 136–142 (2007).
[Crossref]

Schell, M.

J. Kreissl, V. Vercesi, U. Troppenz, T. Gaertner, W. Wenisch, and M. Schell, “Up to 40 Gb/s directly modulated laser operating at low driving current: buried-heterostructure passive feedback laser (BH-PFL),” IEEE Photonics Technol. Lett. 24(5), 362–364 (2012).
[Crossref]

Shinoda, K.

T. Fukamachi, K. Adachi, K. Shinoda, T. Kitatani, S. Tanaka, M. Aoki, and S. Tsuji, “Wide temperature range operation of 25-Gb/s 1.3-μm InGaAlAs directly modulated lasers,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1138–1145 (2011).
[Crossref]

Sun, C.

C. Sun, D. Liu, B. Xiong, Y. Luo, J. Wang, Z. Hao, Y. Han, L. Wang, and H. Li, “Modulation characteristics enhancement of monolithically integrated laser diodes under mutual injection locking,” IEEE J. Sel. Top. Quantum Electron. 21(6), 628–635 (2015).
[Crossref]

Takahata, K.

T. Fujisawa, S. Kanazawa, H. Ishii, N. Nunoya, Y. Kawaguchi, A. Ohki, N. Fujiwara, K. Takahata, R. Iga, F. Kano, and H. Oohashi, “1.3-μm 4 × 25-gb/s monolithically integrated light source for metro area 100-Gb/s ethernet,” IEEE Photonics Technol. Lett. 23(6), 356–358 (2011).
[Crossref]

Tanaka, S.

T. Fukamachi, K. Adachi, K. Shinoda, T. Kitatani, S. Tanaka, M. Aoki, and S. Tsuji, “Wide temperature range operation of 25-Gb/s 1.3-μm InGaAlAs directly modulated lasers,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1138–1145 (2011).
[Crossref]

Troppenz, U.

J. Kreissl, V. Vercesi, U. Troppenz, T. Gaertner, W. Wenisch, and M. Schell, “Up to 40 Gb/s directly modulated laser operating at low driving current: buried-heterostructure passive feedback laser (BH-PFL),” IEEE Photonics Technol. Lett. 24(5), 362–364 (2012).
[Crossref]

M. Radziunas, A. Glitzky, U. Bandelow, M. Wolfrum, U. Troppenz, J. Kreissl, and W. Rehbein, “Improving the modulation bandwidth in semiconductor lasers by passive feedback,” IEEE J. Sel. Top. Quantum Electron. 13(1), 136–142 (2007).
[Crossref]

Tsuji, S.

T. Fukamachi, K. Adachi, K. Shinoda, T. Kitatani, S. Tanaka, M. Aoki, and S. Tsuji, “Wide temperature range operation of 25-Gb/s 1.3-μm InGaAlAs directly modulated lasers,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1138–1145 (2011).
[Crossref]

Ungar, J.

T. R. Chen, J. Ungar, X. L. Yeh, and N. Bar-Chaim, “Very large bandwidth strained MQW DFB laser at 1.3 μm,” IEEE Photonics Technol. Lett. 7(5), 458–460 (1995).
[Crossref]

Vercesi, V.

J. Kreissl, V. Vercesi, U. Troppenz, T. Gaertner, W. Wenisch, and M. Schell, “Up to 40 Gb/s directly modulated laser operating at low driving current: buried-heterostructure passive feedback laser (BH-PFL),” IEEE Photonics Technol. Lett. 24(5), 362–364 (2012).
[Crossref]

Wang, B.

Wang, H.

H. Zhu, X. Xu, H. Wang, D. Kong, S. Liang, L. Zhao, and W. Wang, “The fabrication of eight-channel DFB laser array using sampled gratings,” IEEE Photonics Technol. Lett. 22(5), 353–355 (2010).
[Crossref]

Wang, J.

C. Sun, D. Liu, B. Xiong, Y. Luo, J. Wang, Z. Hao, Y. Han, L. Wang, and H. Li, “Modulation characteristics enhancement of monolithically integrated laser diodes under mutual injection locking,” IEEE J. Sel. Top. Quantum Electron. 21(6), 628–635 (2015).
[Crossref]

Wang, L.

C. Sun, D. Liu, B. Xiong, Y. Luo, J. Wang, Z. Hao, Y. Han, L. Wang, and H. Li, “Modulation characteristics enhancement of monolithically integrated laser diodes under mutual injection locking,” IEEE J. Sel. Top. Quantum Electron. 21(6), 628–635 (2015).
[Crossref]

Wang, L. A.

L. A. Wang, Y. H. Lo, A. S. Gozdz, P. S. D. Lin, M. Z. Iqbal, and R. Bhat, “Integrated four-wavelength DFB laser array with 10 Gb/s speed and 5 nm continuous tuning range,” IEEE Photonics Technol. Lett. 4(4), 318–320 (1992).
[Crossref]

Wang, W.

F. Guo, R. Zhang, D. Lu, W. Wang, and C. Ji, “1.3-μm multi-wavelength DFB laser array fabricated by MOCVD selective area growth,” Opt. Commun. 331, 165–168 (2014).
[Crossref]

C. Zhang, S. Liang, H. Zhu, B. Wang, and W. Wang, “A modified SAG technique for the fabrication of DWDM DFB laser arrays with highly uniform wavelength spacings,” Opt. Express 20(28), 29620–29625 (2012).
[Crossref] [PubMed]

H. Zhu, X. Xu, H. Wang, D. Kong, S. Liang, L. Zhao, and W. Wang, “The fabrication of eight-channel DFB laser array using sampled gratings,” IEEE Photonics Technol. Lett. 22(5), 353–355 (2010).
[Crossref]

Wenisch, W.

J. Kreissl, V. Vercesi, U. Troppenz, T. Gaertner, W. Wenisch, and M. Schell, “Up to 40 Gb/s directly modulated laser operating at low driving current: buried-heterostructure passive feedback laser (BH-PFL),” IEEE Photonics Technol. Lett. 24(5), 362–364 (2012).
[Crossref]

Wolfrum, M.

M. Radziunas, A. Glitzky, U. Bandelow, M. Wolfrum, U. Troppenz, J. Kreissl, and W. Rehbein, “Improving the modulation bandwidth in semiconductor lasers by passive feedback,” IEEE J. Sel. Top. Quantum Electron. 13(1), 136–142 (2007).
[Crossref]

Wu, M. C.

E. K. Lau, Z. Xiaoxue, C. Chang-Hasnain, and M. C. Wu, “80-GHz intrinsic 3-dB bandwidth of directly modulated semiconductor lasers under optical injection locking,” in Proceedings of International Semiconductor Laser Conference (ISLC)2008, paper 171–172.
[Crossref]

Xiaoxue, Z.

E. K. Lau, Z. Xiaoxue, C. Chang-Hasnain, and M. C. Wu, “80-GHz intrinsic 3-dB bandwidth of directly modulated semiconductor lasers under optical injection locking,” in Proceedings of International Semiconductor Laser Conference (ISLC)2008, paper 171–172.
[Crossref]

Xiong, B.

C. Sun, D. Liu, B. Xiong, Y. Luo, J. Wang, Z. Hao, Y. Han, L. Wang, and H. Li, “Modulation characteristics enhancement of monolithically integrated laser diodes under mutual injection locking,” IEEE J. Sel. Top. Quantum Electron. 21(6), 628–635 (2015).
[Crossref]

Xu, X.

H. Zhu, X. Xu, H. Wang, D. Kong, S. Liang, L. Zhao, and W. Wang, “The fabrication of eight-channel DFB laser array using sampled gratings,” IEEE Photonics Technol. Lett. 22(5), 353–355 (2010).
[Crossref]

Yeh, X. L.

T. R. Chen, J. Ungar, X. L. Yeh, and N. Bar-Chaim, “Very large bandwidth strained MQW DFB laser at 1.3 μm,” IEEE Photonics Technol. Lett. 7(5), 458–460 (1995).
[Crossref]

Zhang, C.

Zhang, R.

F. Guo, R. Zhang, D. Lu, W. Wang, and C. Ji, “1.3-μm multi-wavelength DFB laser array fabricated by MOCVD selective area growth,” Opt. Commun. 331, 165–168 (2014).
[Crossref]

Zhao, L.

H. Zhu, X. Xu, H. Wang, D. Kong, S. Liang, L. Zhao, and W. Wang, “The fabrication of eight-channel DFB laser array using sampled gratings,” IEEE Photonics Technol. Lett. 22(5), 353–355 (2010).
[Crossref]

Zhu, H.

C. Zhang, S. Liang, H. Zhu, B. Wang, and W. Wang, “A modified SAG technique for the fabrication of DWDM DFB laser arrays with highly uniform wavelength spacings,” Opt. Express 20(28), 29620–29625 (2012).
[Crossref] [PubMed]

H. Zhu, X. Xu, H. Wang, D. Kong, S. Liang, L. Zhao, and W. Wang, “The fabrication of eight-channel DFB laser array using sampled gratings,” IEEE Photonics Technol. Lett. 22(5), 353–355 (2010).
[Crossref]

IEEE Commun. Mag. (1)

C. Cole, B. Huebner, and J. E. Johnson, “Photonic integration for high-volume, low-cost applications,” IEEE Commun. Mag. 47(3), S16–S22 (2009).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

M. Radziunas, A. Glitzky, U. Bandelow, M. Wolfrum, U. Troppenz, J. Kreissl, and W. Rehbein, “Improving the modulation bandwidth in semiconductor lasers by passive feedback,” IEEE J. Sel. Top. Quantum Electron. 13(1), 136–142 (2007).
[Crossref]

C. Sun, D. Liu, B. Xiong, Y. Luo, J. Wang, Z. Hao, Y. Han, L. Wang, and H. Li, “Modulation characteristics enhancement of monolithically integrated laser diodes under mutual injection locking,” IEEE J. Sel. Top. Quantum Electron. 21(6), 628–635 (2015).
[Crossref]

T. Fukamachi, K. Adachi, K. Shinoda, T. Kitatani, S. Tanaka, M. Aoki, and S. Tsuji, “Wide temperature range operation of 25-Gb/s 1.3-μm InGaAlAs directly modulated lasers,” IEEE J. Sel. Top. Quantum Electron. 17(5), 1138–1145 (2011).
[Crossref]

IEEE Photonics Technol. Lett. (6)

T. Fujisawa, S. Kanazawa, H. Ishii, N. Nunoya, Y. Kawaguchi, A. Ohki, N. Fujiwara, K. Takahata, R. Iga, F. Kano, and H. Oohashi, “1.3-μm 4 × 25-gb/s monolithically integrated light source for metro area 100-Gb/s ethernet,” IEEE Photonics Technol. Lett. 23(6), 356–358 (2011).
[Crossref]

L. A. Wang, Y. H. Lo, A. S. Gozdz, P. S. D. Lin, M. Z. Iqbal, and R. Bhat, “Integrated four-wavelength DFB laser array with 10 Gb/s speed and 5 nm continuous tuning range,” IEEE Photonics Technol. Lett. 4(4), 318–320 (1992).
[Crossref]

H. Zhu, X. Xu, H. Wang, D. Kong, S. Liang, L. Zhao, and W. Wang, “The fabrication of eight-channel DFB laser array using sampled gratings,” IEEE Photonics Technol. Lett. 22(5), 353–355 (2010).
[Crossref]

J. Kreissl, V. Vercesi, U. Troppenz, T. Gaertner, W. Wenisch, and M. Schell, “Up to 40 Gb/s directly modulated laser operating at low driving current: buried-heterostructure passive feedback laser (BH-PFL),” IEEE Photonics Technol. Lett. 24(5), 362–364 (2012).
[Crossref]

T. R. Chen, J. Ungar, X. L. Yeh, and N. Bar-Chaim, “Very large bandwidth strained MQW DFB laser at 1.3 μm,” IEEE Photonics Technol. Lett. 7(5), 458–460 (1995).
[Crossref]

Y. Matsui, H. Murai, S. Arahira, S. Kutsuzawa, and Y. Ogawa, “30-GHz bandwidth 1.55-μm strain-compensated InGaAlAs-InGaAsP MQW laser,” IEEE Photonics Technol. Lett. 9(1), 25–27 (1997).
[Crossref]

Opt. Commun. (1)

F. Guo, R. Zhang, D. Lu, W. Wang, and C. Ji, “1.3-μm multi-wavelength DFB laser array fabricated by MOCVD selective area growth,” Opt. Commun. 331, 165–168 (2014).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Other (6)

IEEE, p802.3ba task force objectives [Online]. Available: http://www.ieee802.org/3/ba/ .

T. Simoyama, M. Matsuda, S. Okumura, A. Uetake, M. Ekawa, and T. Yamamoto, “4-wavelength 25.8-Gbps directly modulated laser array of 1.3-μm AlGaInAs distributed-reflector lasers,” in Proceedings of International Semiconductor Laser Conference (ISLC, 2012), paper 54–55.

M. N. Akram, C. Silfvenius, J. Berggren, O. Kjebon, and R. Schatz, “Design optimization of InGaAsP-InGaAlAs 1.55 μm strain-compensated MQW lasers for direct modulation applications,” in Proceedings of Indium Phosphide and Related Materials (IPRM, 2004), paper 418–421.

J. P. Reithmaier, W. Kaiser, L. Bach, A. Forchel, V. Feies, M. Gioannini, I. Montrosset, T. W. Berg, B. Tromborg, “Modulation speed enhancement by coupling to higher order resonances: a road towards 40 GHz bandwidth lasers on InP,” in Proceedings of Indium Phosphide and Related Materials (IPRM, 2005), paper 118–123.

E. K. Lau, Z. Xiaoxue, C. Chang-Hasnain, and M. C. Wu, “80-GHz intrinsic 3-dB bandwidth of directly modulated semiconductor lasers under optical injection locking,” in Proceedings of International Semiconductor Laser Conference (ISLC)2008, paper 171–172.
[Crossref]

R. Paoletti, M. Agresti, D. Bertone, C. Bruschi, S. Codato, C. Coriasso, R. Defranceschi, P. Dellacasa, M. Diloreto, R. Y. Fang, P. Gotta, G. Meneghini, C. Rigo, E. Riva, G. Roggero, A. Stano, and M. Meliga, “Uncooled 20 Gb/s direct modulation of high yield, highly reliable 1300 nm InGaAlAs ridge DFB lasers,” in Proceedings of Optical Fiber Communication Conference (OFC, 2009), paper OThT1.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Optical microscope image of a fabricated dual DFB integrated optical chip.
Fig. 2
Fig. 2 (a) The SEM cross-sectional image of the active/passive interface after the second MOCVD regrowth step. (b) The SEM of the grating with a uniform period only on the DFB section.
Fig. 3
Fig. 3 L-I properties of the fabricated device: (a) from the PFL facets; (b) from the MMI output port.
Fig. 4
Fig. 4 The optical spectrum of the dual-wavelength DFB integrated optical chip measured from the output waveguide, inset showing side mode with wavelength separation from the main DFB mode matching the PPR effect resonance peak.
Fig. 5
Fig. 5 Small-signal modulation responses of the dual-wavelength monolithically integrated device with each DFB section biased at 280mA.
Fig. 6
Fig. 6 Small-signal modulated the response of channel 2 of the chip with varying IFB current levels modifying the phase of integrated optical feedback, DFB laser section biasing held constant at 280 mA.
Fig. 7
Fig. 7 25Gb/s optical eye diagram of the dual channel integrated photonic chip.

Metrics