Abstract

An experimental setup capable of measuring simultaneous 2D scattered light angular distribution from two directions to study cell morphology without the use of bio-labels was developed. Experiments with hematopoietic stem cells (CD34+ cells) show good agreement with detailed numerical simulations of light scattering. Numerical simulations and computer models of cells are used to identify physical features of cells with the largest scattering cross sections. This allows for determination of size, geometry of the nucleus and distribution of mitochondria in hematopoietic stem cells by means of our label-free method.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Microscope-based label-free microfluidic cytometry

Xuantao Su, Sean E. Kirkwood, Manisha Gupta, Leah Marquez-Curtis, Yuanyuan Qiu, Anna Janowska-Wieczorek, Wojciech Rozmus, and Ying Y. Tsui
Opt. Express 19(1) 387-398 (2011)

Surface-enhanced Raman scattering for rapid hematopoietic stem cell differentiation analysis

Nebras Alattar, Hasbullah Daud, Rasoul Al-Majmaie, Domonic Zeulla, Mohameed Al-Rubeai, and James H. Rice
Appl. Opt. 57(22) E184-E189 (2018)

Light scattering characterization of mitochondrial aggregation in single cells

Xuan-Tao Su, Kirat Singh, Wojciech Rozmus, Christopher Backhouse, and Clarence Capjack
Opt. Express 17(16) 13381-13388 (2009)

References

  • View by:
  • |
  • |
  • |

  1. E. A. Copelan, “Hematopoietic stem-cell transplantation,” N. Engl. J. Med. 354(17), 1813–1826 (2006).
    [Crossref] [PubMed]
  2. M. Z. Ratajczak, Adult Stem Cell Therapies: Alternatives to Plasticity (Springer, 2014).
  3. H. Mayani and P. M. Lansdorp, “Biology of human umbilical cord blood-derived hematopoietic stem/progenitor cells,” Stem Cells 16(3), 153–165 (1998).
    [Crossref] [PubMed]
  4. X. Su, Y. Qiu, L. Marquez-Curtis, M. Gupta, C. E. Capjack, W. Rozmus, A. Janowska-Wieczorek, and Y. Y. Tsui, “Label-free and noninvasive optical detection of the distribution of nanometer-size mitochondria in single cells,” J. Biomed. Opt. 16(6), 067003 (2011).
    [Crossref] [PubMed]
  5. X. Su, S. E. Kirkwood, M. Gupta, L. Marquez-Curtis, Y. Qiu, A. Janowska-Wieczorek, W. Rozmus, and Y. Y. Tsui, “Microscope-based label-free microfluidic cytometry,” Opt. Express 19(1), 387–398 (2011).
    [Crossref] [PubMed]
  6. X. T. Su, K. Singh, C. Capjack, J. Petrácek, C. Backhouse, and W. Rozmus, “Measurements of light scattering in an integrated microfluidic waveguide cytometer,” J. Biomed. Opt. 13(2), 024024 (2008).
    [Crossref] [PubMed]
  7. X. T. Su, C. Capjack, W. Rozmus, and C. Backhouse, “2D light scattering patterns of mitochondria in single cells,” Opt. Express 15(17), 10562–10575 (2007).
    [Crossref] [PubMed]
  8. B. Agnarsson, A. Lundgren, A. Gunnarsson, M. Rabe, A. Kunze, M. Mapar, L. Simonsson, M. Bally, V. P. Zhdanov, and F. Höök, “Evanescent Light-Scattering Microscopy for Label-Free Interfacial Imaging: From Single Sub-100 nm Vesicles to Live Cells,” ACS Nano 9(12), 11849–11862 (2015).
    [Crossref] [PubMed]
  9. X. Su, S. Liu, X. Qiao, Y. Yang, K. Song, and B. Kong, “Pattern recognition cytometry for label-free cell classification by 2D light scattering measurements,” Opt. Express 23(21), 27558–27565 (2015).
    [Crossref] [PubMed]
  10. L. Zhang, Y. Qin, K.-X. Li, X. Zhao, Y.-F. Xing, H. Zhao, Z. Jiang, W. Chen, N.-L. Yao, and L. Yuan, “Light scattering properties in spatial planes for label free cells with different internal structures,” Opt. Quantum Electron. 47(5), 1005–1125 (2015).
    [Crossref]
  11. C. Liu, C. Capjack, and W. Rozmus, “3-D simulation of light scattering from biological cells and cell differentiation,” J. Biomed. Opt. 10(1), 014007 (2005).
    [Crossref] [PubMed]
  12. X. Su, W. Rozmus, and Y. Y. Tsui, “Wide-angle light-scattering differentiation of organelle-size particle distributions in whole cells,” Cytometry A 77(6), 580–584 (2010).
    [Crossref] [PubMed]
  13. A. Janowska-Wieczorek, L. A. Marquez, J. M. Nabholtz, M. L. Cabuhat, J. Montaño, H. Chang, J. Rozmus, J. A. Russell, D. R. Edwards, and A. R. Turner, “Growth factors and cytokines upregulate gelatinase expression in bone marrow CD34(+) cells and their transmigration through reconstituted basement membrane,” Blood 93(10), 3379–3390 (1999).
    [PubMed]
  14. H. Shanin, “Forward and Side Two Dimensional Scattered Light Patterns Studies of Single Cell for Label-Free Flow Cytometry,” MSc thesis, University of Alberta (2016).
  15. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd Edition (Artech House, 1995).
  16. C. Bohren and D. R. Huffman, Scattering of Light by Small Particles (Wiley-VCH, 1998).
  17. W. T. Grandy, Jr., Scattering of Waves from Large Spheres (Cambridge University, 2005).
  18. D. Watson, N. Hagen, J. Diver, P. Marchand, and M. Chachisvilis, “Elastic light scattering from single cells: orientational dynamics in optical trap,” Biophys. J. 87(2), 1298–1306 (2004).
    [Crossref] [PubMed]
  19. W. J. Choi, D. I. Jeon, S. G. Ahn, J. H. Yoon, S. Kim, and B. H. Lee, “Full-field optical coherence microscopy for identifying live cancer cells by quantitative measurement of refractive index distribution,” Opt. Express 18(22), 23285–23295 (2010).
    [Crossref] [PubMed]
  20. A. Brunsting and P. F. Mullaney, “Differential light scattering from spherical mammalian cells,” Biophys. J. 14(6), 439–453 (1974).
    [Crossref] [PubMed]
  21. K. M. Jacobs, J. Q. Lu, and X.-H. Hu, “Development of a diffraction imaging flow cytometer,” Opt. Lett. 34(19), 2985–2987 (2009).
    [Crossref] [PubMed]
  22. S. Yu, J. Zhang, M. S. Moran, J. Q. Lu, Y. Feng, and X.-H. Hu, “A novel method of diffraction imaging flow cytometry for sizing microspheres,” Opt. Express 20(20), 22245–22251 (2012).
    [Crossref] [PubMed]
  23. H. Liu, B. Beauvoit, M. Kimura, and B. Chance, “Dependence of tissue optical properties on solute-induced changes in refractive index and osmolarity,” J. Biomed. Opt. 1(2), 200–211 (1996).
    [Crossref] [PubMed]
  24. B. Beauvoit, T. Kitai, and B. Chance, “Contribution of the Mitochondrial Compartment to the Optical Properties of the Rat Liver: A Theoretical and Practical Approach,” Biophys. J. 67(6), 2501–2510 (1994).
    [Crossref] [PubMed]
  25. K. Haseda, K. Kanematsu, K. Noguchi, H. Saito, N. Umeda, and Y. Ohta, “Significant correlation between refractive index and activity of mitochondria: single mitochondrion study,” Biomed. Opt. Express 6(3), 859–869 (2015).
    [Crossref] [PubMed]
  26. P. L. Gourley, J. K. Hendricks, A. E. McDonald, R. G. Copeland, K. E. Barrett, C. R. Gourley, and R. K. Naviaux, “Ultrafast nanolaser flow device for detecting cancer in single cells,” Biomed. Microdevices 7(4), 331–339 (2005).
    [Crossref] [PubMed]
  27. P. C. Collins, S. D. Patel, E. T. Papoutsakis, and W. M. Miller, “Nuclei-size distributions as predictive tools of hematopoietic cell proliferation,” Cytotherapy 1(2), 99–110 (1999).
    [Crossref] [PubMed]

2015 (4)

B. Agnarsson, A. Lundgren, A. Gunnarsson, M. Rabe, A. Kunze, M. Mapar, L. Simonsson, M. Bally, V. P. Zhdanov, and F. Höök, “Evanescent Light-Scattering Microscopy for Label-Free Interfacial Imaging: From Single Sub-100 nm Vesicles to Live Cells,” ACS Nano 9(12), 11849–11862 (2015).
[Crossref] [PubMed]

X. Su, S. Liu, X. Qiao, Y. Yang, K. Song, and B. Kong, “Pattern recognition cytometry for label-free cell classification by 2D light scattering measurements,” Opt. Express 23(21), 27558–27565 (2015).
[Crossref] [PubMed]

L. Zhang, Y. Qin, K.-X. Li, X. Zhao, Y.-F. Xing, H. Zhao, Z. Jiang, W. Chen, N.-L. Yao, and L. Yuan, “Light scattering properties in spatial planes for label free cells with different internal structures,” Opt. Quantum Electron. 47(5), 1005–1125 (2015).
[Crossref]

K. Haseda, K. Kanematsu, K. Noguchi, H. Saito, N. Umeda, and Y. Ohta, “Significant correlation between refractive index and activity of mitochondria: single mitochondrion study,” Biomed. Opt. Express 6(3), 859–869 (2015).
[Crossref] [PubMed]

2012 (1)

2011 (2)

X. Su, Y. Qiu, L. Marquez-Curtis, M. Gupta, C. E. Capjack, W. Rozmus, A. Janowska-Wieczorek, and Y. Y. Tsui, “Label-free and noninvasive optical detection of the distribution of nanometer-size mitochondria in single cells,” J. Biomed. Opt. 16(6), 067003 (2011).
[Crossref] [PubMed]

X. Su, S. E. Kirkwood, M. Gupta, L. Marquez-Curtis, Y. Qiu, A. Janowska-Wieczorek, W. Rozmus, and Y. Y. Tsui, “Microscope-based label-free microfluidic cytometry,” Opt. Express 19(1), 387–398 (2011).
[Crossref] [PubMed]

2010 (2)

2009 (1)

2008 (1)

X. T. Su, K. Singh, C. Capjack, J. Petrácek, C. Backhouse, and W. Rozmus, “Measurements of light scattering in an integrated microfluidic waveguide cytometer,” J. Biomed. Opt. 13(2), 024024 (2008).
[Crossref] [PubMed]

2007 (1)

2006 (1)

E. A. Copelan, “Hematopoietic stem-cell transplantation,” N. Engl. J. Med. 354(17), 1813–1826 (2006).
[Crossref] [PubMed]

2005 (2)

C. Liu, C. Capjack, and W. Rozmus, “3-D simulation of light scattering from biological cells and cell differentiation,” J. Biomed. Opt. 10(1), 014007 (2005).
[Crossref] [PubMed]

P. L. Gourley, J. K. Hendricks, A. E. McDonald, R. G. Copeland, K. E. Barrett, C. R. Gourley, and R. K. Naviaux, “Ultrafast nanolaser flow device for detecting cancer in single cells,” Biomed. Microdevices 7(4), 331–339 (2005).
[Crossref] [PubMed]

2004 (1)

D. Watson, N. Hagen, J. Diver, P. Marchand, and M. Chachisvilis, “Elastic light scattering from single cells: orientational dynamics in optical trap,” Biophys. J. 87(2), 1298–1306 (2004).
[Crossref] [PubMed]

1999 (2)

A. Janowska-Wieczorek, L. A. Marquez, J. M. Nabholtz, M. L. Cabuhat, J. Montaño, H. Chang, J. Rozmus, J. A. Russell, D. R. Edwards, and A. R. Turner, “Growth factors and cytokines upregulate gelatinase expression in bone marrow CD34(+) cells and their transmigration through reconstituted basement membrane,” Blood 93(10), 3379–3390 (1999).
[PubMed]

P. C. Collins, S. D. Patel, E. T. Papoutsakis, and W. M. Miller, “Nuclei-size distributions as predictive tools of hematopoietic cell proliferation,” Cytotherapy 1(2), 99–110 (1999).
[Crossref] [PubMed]

1998 (1)

H. Mayani and P. M. Lansdorp, “Biology of human umbilical cord blood-derived hematopoietic stem/progenitor cells,” Stem Cells 16(3), 153–165 (1998).
[Crossref] [PubMed]

1996 (1)

H. Liu, B. Beauvoit, M. Kimura, and B. Chance, “Dependence of tissue optical properties on solute-induced changes in refractive index and osmolarity,” J. Biomed. Opt. 1(2), 200–211 (1996).
[Crossref] [PubMed]

1994 (1)

B. Beauvoit, T. Kitai, and B. Chance, “Contribution of the Mitochondrial Compartment to the Optical Properties of the Rat Liver: A Theoretical and Practical Approach,” Biophys. J. 67(6), 2501–2510 (1994).
[Crossref] [PubMed]

1974 (1)

A. Brunsting and P. F. Mullaney, “Differential light scattering from spherical mammalian cells,” Biophys. J. 14(6), 439–453 (1974).
[Crossref] [PubMed]

Agnarsson, B.

B. Agnarsson, A. Lundgren, A. Gunnarsson, M. Rabe, A. Kunze, M. Mapar, L. Simonsson, M. Bally, V. P. Zhdanov, and F. Höök, “Evanescent Light-Scattering Microscopy for Label-Free Interfacial Imaging: From Single Sub-100 nm Vesicles to Live Cells,” ACS Nano 9(12), 11849–11862 (2015).
[Crossref] [PubMed]

Ahn, S. G.

Backhouse, C.

X. T. Su, K. Singh, C. Capjack, J. Petrácek, C. Backhouse, and W. Rozmus, “Measurements of light scattering in an integrated microfluidic waveguide cytometer,” J. Biomed. Opt. 13(2), 024024 (2008).
[Crossref] [PubMed]

X. T. Su, C. Capjack, W. Rozmus, and C. Backhouse, “2D light scattering patterns of mitochondria in single cells,” Opt. Express 15(17), 10562–10575 (2007).
[Crossref] [PubMed]

Bally, M.

B. Agnarsson, A. Lundgren, A. Gunnarsson, M. Rabe, A. Kunze, M. Mapar, L. Simonsson, M. Bally, V. P. Zhdanov, and F. Höök, “Evanescent Light-Scattering Microscopy for Label-Free Interfacial Imaging: From Single Sub-100 nm Vesicles to Live Cells,” ACS Nano 9(12), 11849–11862 (2015).
[Crossref] [PubMed]

Barrett, K. E.

P. L. Gourley, J. K. Hendricks, A. E. McDonald, R. G. Copeland, K. E. Barrett, C. R. Gourley, and R. K. Naviaux, “Ultrafast nanolaser flow device for detecting cancer in single cells,” Biomed. Microdevices 7(4), 331–339 (2005).
[Crossref] [PubMed]

Beauvoit, B.

H. Liu, B. Beauvoit, M. Kimura, and B. Chance, “Dependence of tissue optical properties on solute-induced changes in refractive index and osmolarity,” J. Biomed. Opt. 1(2), 200–211 (1996).
[Crossref] [PubMed]

B. Beauvoit, T. Kitai, and B. Chance, “Contribution of the Mitochondrial Compartment to the Optical Properties of the Rat Liver: A Theoretical and Practical Approach,” Biophys. J. 67(6), 2501–2510 (1994).
[Crossref] [PubMed]

Brunsting, A.

A. Brunsting and P. F. Mullaney, “Differential light scattering from spherical mammalian cells,” Biophys. J. 14(6), 439–453 (1974).
[Crossref] [PubMed]

Cabuhat, M. L.

A. Janowska-Wieczorek, L. A. Marquez, J. M. Nabholtz, M. L. Cabuhat, J. Montaño, H. Chang, J. Rozmus, J. A. Russell, D. R. Edwards, and A. R. Turner, “Growth factors and cytokines upregulate gelatinase expression in bone marrow CD34(+) cells and their transmigration through reconstituted basement membrane,” Blood 93(10), 3379–3390 (1999).
[PubMed]

Capjack, C.

X. T. Su, K. Singh, C. Capjack, J. Petrácek, C. Backhouse, and W. Rozmus, “Measurements of light scattering in an integrated microfluidic waveguide cytometer,” J. Biomed. Opt. 13(2), 024024 (2008).
[Crossref] [PubMed]

X. T. Su, C. Capjack, W. Rozmus, and C. Backhouse, “2D light scattering patterns of mitochondria in single cells,” Opt. Express 15(17), 10562–10575 (2007).
[Crossref] [PubMed]

C. Liu, C. Capjack, and W. Rozmus, “3-D simulation of light scattering from biological cells and cell differentiation,” J. Biomed. Opt. 10(1), 014007 (2005).
[Crossref] [PubMed]

Capjack, C. E.

X. Su, Y. Qiu, L. Marquez-Curtis, M. Gupta, C. E. Capjack, W. Rozmus, A. Janowska-Wieczorek, and Y. Y. Tsui, “Label-free and noninvasive optical detection of the distribution of nanometer-size mitochondria in single cells,” J. Biomed. Opt. 16(6), 067003 (2011).
[Crossref] [PubMed]

Chachisvilis, M.

D. Watson, N. Hagen, J. Diver, P. Marchand, and M. Chachisvilis, “Elastic light scattering from single cells: orientational dynamics in optical trap,” Biophys. J. 87(2), 1298–1306 (2004).
[Crossref] [PubMed]

Chance, B.

H. Liu, B. Beauvoit, M. Kimura, and B. Chance, “Dependence of tissue optical properties on solute-induced changes in refractive index and osmolarity,” J. Biomed. Opt. 1(2), 200–211 (1996).
[Crossref] [PubMed]

B. Beauvoit, T. Kitai, and B. Chance, “Contribution of the Mitochondrial Compartment to the Optical Properties of the Rat Liver: A Theoretical and Practical Approach,” Biophys. J. 67(6), 2501–2510 (1994).
[Crossref] [PubMed]

Chang, H.

A. Janowska-Wieczorek, L. A. Marquez, J. M. Nabholtz, M. L. Cabuhat, J. Montaño, H. Chang, J. Rozmus, J. A. Russell, D. R. Edwards, and A. R. Turner, “Growth factors and cytokines upregulate gelatinase expression in bone marrow CD34(+) cells and their transmigration through reconstituted basement membrane,” Blood 93(10), 3379–3390 (1999).
[PubMed]

Chen, W.

L. Zhang, Y. Qin, K.-X. Li, X. Zhao, Y.-F. Xing, H. Zhao, Z. Jiang, W. Chen, N.-L. Yao, and L. Yuan, “Light scattering properties in spatial planes for label free cells with different internal structures,” Opt. Quantum Electron. 47(5), 1005–1125 (2015).
[Crossref]

Choi, W. J.

Collins, P. C.

P. C. Collins, S. D. Patel, E. T. Papoutsakis, and W. M. Miller, “Nuclei-size distributions as predictive tools of hematopoietic cell proliferation,” Cytotherapy 1(2), 99–110 (1999).
[Crossref] [PubMed]

Copelan, E. A.

E. A. Copelan, “Hematopoietic stem-cell transplantation,” N. Engl. J. Med. 354(17), 1813–1826 (2006).
[Crossref] [PubMed]

Copeland, R. G.

P. L. Gourley, J. K. Hendricks, A. E. McDonald, R. G. Copeland, K. E. Barrett, C. R. Gourley, and R. K. Naviaux, “Ultrafast nanolaser flow device for detecting cancer in single cells,” Biomed. Microdevices 7(4), 331–339 (2005).
[Crossref] [PubMed]

Diver, J.

D. Watson, N. Hagen, J. Diver, P. Marchand, and M. Chachisvilis, “Elastic light scattering from single cells: orientational dynamics in optical trap,” Biophys. J. 87(2), 1298–1306 (2004).
[Crossref] [PubMed]

Edwards, D. R.

A. Janowska-Wieczorek, L. A. Marquez, J. M. Nabholtz, M. L. Cabuhat, J. Montaño, H. Chang, J. Rozmus, J. A. Russell, D. R. Edwards, and A. R. Turner, “Growth factors and cytokines upregulate gelatinase expression in bone marrow CD34(+) cells and their transmigration through reconstituted basement membrane,” Blood 93(10), 3379–3390 (1999).
[PubMed]

Feng, Y.

Gourley, C. R.

P. L. Gourley, J. K. Hendricks, A. E. McDonald, R. G. Copeland, K. E. Barrett, C. R. Gourley, and R. K. Naviaux, “Ultrafast nanolaser flow device for detecting cancer in single cells,” Biomed. Microdevices 7(4), 331–339 (2005).
[Crossref] [PubMed]

Gourley, P. L.

P. L. Gourley, J. K. Hendricks, A. E. McDonald, R. G. Copeland, K. E. Barrett, C. R. Gourley, and R. K. Naviaux, “Ultrafast nanolaser flow device for detecting cancer in single cells,” Biomed. Microdevices 7(4), 331–339 (2005).
[Crossref] [PubMed]

Gunnarsson, A.

B. Agnarsson, A. Lundgren, A. Gunnarsson, M. Rabe, A. Kunze, M. Mapar, L. Simonsson, M. Bally, V. P. Zhdanov, and F. Höök, “Evanescent Light-Scattering Microscopy for Label-Free Interfacial Imaging: From Single Sub-100 nm Vesicles to Live Cells,” ACS Nano 9(12), 11849–11862 (2015).
[Crossref] [PubMed]

Gupta, M.

X. Su, Y. Qiu, L. Marquez-Curtis, M. Gupta, C. E. Capjack, W. Rozmus, A. Janowska-Wieczorek, and Y. Y. Tsui, “Label-free and noninvasive optical detection of the distribution of nanometer-size mitochondria in single cells,” J. Biomed. Opt. 16(6), 067003 (2011).
[Crossref] [PubMed]

X. Su, S. E. Kirkwood, M. Gupta, L. Marquez-Curtis, Y. Qiu, A. Janowska-Wieczorek, W. Rozmus, and Y. Y. Tsui, “Microscope-based label-free microfluidic cytometry,” Opt. Express 19(1), 387–398 (2011).
[Crossref] [PubMed]

Hagen, N.

D. Watson, N. Hagen, J. Diver, P. Marchand, and M. Chachisvilis, “Elastic light scattering from single cells: orientational dynamics in optical trap,” Biophys. J. 87(2), 1298–1306 (2004).
[Crossref] [PubMed]

Haseda, K.

Hendricks, J. K.

P. L. Gourley, J. K. Hendricks, A. E. McDonald, R. G. Copeland, K. E. Barrett, C. R. Gourley, and R. K. Naviaux, “Ultrafast nanolaser flow device for detecting cancer in single cells,” Biomed. Microdevices 7(4), 331–339 (2005).
[Crossref] [PubMed]

Höök, F.

B. Agnarsson, A. Lundgren, A. Gunnarsson, M. Rabe, A. Kunze, M. Mapar, L. Simonsson, M. Bally, V. P. Zhdanov, and F. Höök, “Evanescent Light-Scattering Microscopy for Label-Free Interfacial Imaging: From Single Sub-100 nm Vesicles to Live Cells,” ACS Nano 9(12), 11849–11862 (2015).
[Crossref] [PubMed]

Hu, X.-H.

Jacobs, K. M.

Janowska-Wieczorek, A.

X. Su, S. E. Kirkwood, M. Gupta, L. Marquez-Curtis, Y. Qiu, A. Janowska-Wieczorek, W. Rozmus, and Y. Y. Tsui, “Microscope-based label-free microfluidic cytometry,” Opt. Express 19(1), 387–398 (2011).
[Crossref] [PubMed]

X. Su, Y. Qiu, L. Marquez-Curtis, M. Gupta, C. E. Capjack, W. Rozmus, A. Janowska-Wieczorek, and Y. Y. Tsui, “Label-free and noninvasive optical detection of the distribution of nanometer-size mitochondria in single cells,” J. Biomed. Opt. 16(6), 067003 (2011).
[Crossref] [PubMed]

A. Janowska-Wieczorek, L. A. Marquez, J. M. Nabholtz, M. L. Cabuhat, J. Montaño, H. Chang, J. Rozmus, J. A. Russell, D. R. Edwards, and A. R. Turner, “Growth factors and cytokines upregulate gelatinase expression in bone marrow CD34(+) cells and their transmigration through reconstituted basement membrane,” Blood 93(10), 3379–3390 (1999).
[PubMed]

Jeon, D. I.

Jiang, Z.

L. Zhang, Y. Qin, K.-X. Li, X. Zhao, Y.-F. Xing, H. Zhao, Z. Jiang, W. Chen, N.-L. Yao, and L. Yuan, “Light scattering properties in spatial planes for label free cells with different internal structures,” Opt. Quantum Electron. 47(5), 1005–1125 (2015).
[Crossref]

Kanematsu, K.

Kim, S.

Kimura, M.

H. Liu, B. Beauvoit, M. Kimura, and B. Chance, “Dependence of tissue optical properties on solute-induced changes in refractive index and osmolarity,” J. Biomed. Opt. 1(2), 200–211 (1996).
[Crossref] [PubMed]

Kirkwood, S. E.

Kitai, T.

B. Beauvoit, T. Kitai, and B. Chance, “Contribution of the Mitochondrial Compartment to the Optical Properties of the Rat Liver: A Theoretical and Practical Approach,” Biophys. J. 67(6), 2501–2510 (1994).
[Crossref] [PubMed]

Kong, B.

Kunze, A.

B. Agnarsson, A. Lundgren, A. Gunnarsson, M. Rabe, A. Kunze, M. Mapar, L. Simonsson, M. Bally, V. P. Zhdanov, and F. Höök, “Evanescent Light-Scattering Microscopy for Label-Free Interfacial Imaging: From Single Sub-100 nm Vesicles to Live Cells,” ACS Nano 9(12), 11849–11862 (2015).
[Crossref] [PubMed]

Lansdorp, P. M.

H. Mayani and P. M. Lansdorp, “Biology of human umbilical cord blood-derived hematopoietic stem/progenitor cells,” Stem Cells 16(3), 153–165 (1998).
[Crossref] [PubMed]

Lee, B. H.

Li, K.-X.

L. Zhang, Y. Qin, K.-X. Li, X. Zhao, Y.-F. Xing, H. Zhao, Z. Jiang, W. Chen, N.-L. Yao, and L. Yuan, “Light scattering properties in spatial planes for label free cells with different internal structures,” Opt. Quantum Electron. 47(5), 1005–1125 (2015).
[Crossref]

Liu, C.

C. Liu, C. Capjack, and W. Rozmus, “3-D simulation of light scattering from biological cells and cell differentiation,” J. Biomed. Opt. 10(1), 014007 (2005).
[Crossref] [PubMed]

Liu, H.

H. Liu, B. Beauvoit, M. Kimura, and B. Chance, “Dependence of tissue optical properties on solute-induced changes in refractive index and osmolarity,” J. Biomed. Opt. 1(2), 200–211 (1996).
[Crossref] [PubMed]

Liu, S.

Lu, J. Q.

Lundgren, A.

B. Agnarsson, A. Lundgren, A. Gunnarsson, M. Rabe, A. Kunze, M. Mapar, L. Simonsson, M. Bally, V. P. Zhdanov, and F. Höök, “Evanescent Light-Scattering Microscopy for Label-Free Interfacial Imaging: From Single Sub-100 nm Vesicles to Live Cells,” ACS Nano 9(12), 11849–11862 (2015).
[Crossref] [PubMed]

Mapar, M.

B. Agnarsson, A. Lundgren, A. Gunnarsson, M. Rabe, A. Kunze, M. Mapar, L. Simonsson, M. Bally, V. P. Zhdanov, and F. Höök, “Evanescent Light-Scattering Microscopy for Label-Free Interfacial Imaging: From Single Sub-100 nm Vesicles to Live Cells,” ACS Nano 9(12), 11849–11862 (2015).
[Crossref] [PubMed]

Marchand, P.

D. Watson, N. Hagen, J. Diver, P. Marchand, and M. Chachisvilis, “Elastic light scattering from single cells: orientational dynamics in optical trap,” Biophys. J. 87(2), 1298–1306 (2004).
[Crossref] [PubMed]

Marquez, L. A.

A. Janowska-Wieczorek, L. A. Marquez, J. M. Nabholtz, M. L. Cabuhat, J. Montaño, H. Chang, J. Rozmus, J. A. Russell, D. R. Edwards, and A. R. Turner, “Growth factors and cytokines upregulate gelatinase expression in bone marrow CD34(+) cells and their transmigration through reconstituted basement membrane,” Blood 93(10), 3379–3390 (1999).
[PubMed]

Marquez-Curtis, L.

X. Su, Y. Qiu, L. Marquez-Curtis, M. Gupta, C. E. Capjack, W. Rozmus, A. Janowska-Wieczorek, and Y. Y. Tsui, “Label-free and noninvasive optical detection of the distribution of nanometer-size mitochondria in single cells,” J. Biomed. Opt. 16(6), 067003 (2011).
[Crossref] [PubMed]

X. Su, S. E. Kirkwood, M. Gupta, L. Marquez-Curtis, Y. Qiu, A. Janowska-Wieczorek, W. Rozmus, and Y. Y. Tsui, “Microscope-based label-free microfluidic cytometry,” Opt. Express 19(1), 387–398 (2011).
[Crossref] [PubMed]

Mayani, H.

H. Mayani and P. M. Lansdorp, “Biology of human umbilical cord blood-derived hematopoietic stem/progenitor cells,” Stem Cells 16(3), 153–165 (1998).
[Crossref] [PubMed]

McDonald, A. E.

P. L. Gourley, J. K. Hendricks, A. E. McDonald, R. G. Copeland, K. E. Barrett, C. R. Gourley, and R. K. Naviaux, “Ultrafast nanolaser flow device for detecting cancer in single cells,” Biomed. Microdevices 7(4), 331–339 (2005).
[Crossref] [PubMed]

Miller, W. M.

P. C. Collins, S. D. Patel, E. T. Papoutsakis, and W. M. Miller, “Nuclei-size distributions as predictive tools of hematopoietic cell proliferation,” Cytotherapy 1(2), 99–110 (1999).
[Crossref] [PubMed]

Montaño, J.

A. Janowska-Wieczorek, L. A. Marquez, J. M. Nabholtz, M. L. Cabuhat, J. Montaño, H. Chang, J. Rozmus, J. A. Russell, D. R. Edwards, and A. R. Turner, “Growth factors and cytokines upregulate gelatinase expression in bone marrow CD34(+) cells and their transmigration through reconstituted basement membrane,” Blood 93(10), 3379–3390 (1999).
[PubMed]

Moran, M. S.

Mullaney, P. F.

A. Brunsting and P. F. Mullaney, “Differential light scattering from spherical mammalian cells,” Biophys. J. 14(6), 439–453 (1974).
[Crossref] [PubMed]

Nabholtz, J. M.

A. Janowska-Wieczorek, L. A. Marquez, J. M. Nabholtz, M. L. Cabuhat, J. Montaño, H. Chang, J. Rozmus, J. A. Russell, D. R. Edwards, and A. R. Turner, “Growth factors and cytokines upregulate gelatinase expression in bone marrow CD34(+) cells and their transmigration through reconstituted basement membrane,” Blood 93(10), 3379–3390 (1999).
[PubMed]

Naviaux, R. K.

P. L. Gourley, J. K. Hendricks, A. E. McDonald, R. G. Copeland, K. E. Barrett, C. R. Gourley, and R. K. Naviaux, “Ultrafast nanolaser flow device for detecting cancer in single cells,” Biomed. Microdevices 7(4), 331–339 (2005).
[Crossref] [PubMed]

Noguchi, K.

Ohta, Y.

Papoutsakis, E. T.

P. C. Collins, S. D. Patel, E. T. Papoutsakis, and W. M. Miller, “Nuclei-size distributions as predictive tools of hematopoietic cell proliferation,” Cytotherapy 1(2), 99–110 (1999).
[Crossref] [PubMed]

Patel, S. D.

P. C. Collins, S. D. Patel, E. T. Papoutsakis, and W. M. Miller, “Nuclei-size distributions as predictive tools of hematopoietic cell proliferation,” Cytotherapy 1(2), 99–110 (1999).
[Crossref] [PubMed]

Petrácek, J.

X. T. Su, K. Singh, C. Capjack, J. Petrácek, C. Backhouse, and W. Rozmus, “Measurements of light scattering in an integrated microfluidic waveguide cytometer,” J. Biomed. Opt. 13(2), 024024 (2008).
[Crossref] [PubMed]

Qiao, X.

Qin, Y.

L. Zhang, Y. Qin, K.-X. Li, X. Zhao, Y.-F. Xing, H. Zhao, Z. Jiang, W. Chen, N.-L. Yao, and L. Yuan, “Light scattering properties in spatial planes for label free cells with different internal structures,” Opt. Quantum Electron. 47(5), 1005–1125 (2015).
[Crossref]

Qiu, Y.

X. Su, Y. Qiu, L. Marquez-Curtis, M. Gupta, C. E. Capjack, W. Rozmus, A. Janowska-Wieczorek, and Y. Y. Tsui, “Label-free and noninvasive optical detection of the distribution of nanometer-size mitochondria in single cells,” J. Biomed. Opt. 16(6), 067003 (2011).
[Crossref] [PubMed]

X. Su, S. E. Kirkwood, M. Gupta, L. Marquez-Curtis, Y. Qiu, A. Janowska-Wieczorek, W. Rozmus, and Y. Y. Tsui, “Microscope-based label-free microfluidic cytometry,” Opt. Express 19(1), 387–398 (2011).
[Crossref] [PubMed]

Rabe, M.

B. Agnarsson, A. Lundgren, A. Gunnarsson, M. Rabe, A. Kunze, M. Mapar, L. Simonsson, M. Bally, V. P. Zhdanov, and F. Höök, “Evanescent Light-Scattering Microscopy for Label-Free Interfacial Imaging: From Single Sub-100 nm Vesicles to Live Cells,” ACS Nano 9(12), 11849–11862 (2015).
[Crossref] [PubMed]

Rozmus, J.

A. Janowska-Wieczorek, L. A. Marquez, J. M. Nabholtz, M. L. Cabuhat, J. Montaño, H. Chang, J. Rozmus, J. A. Russell, D. R. Edwards, and A. R. Turner, “Growth factors and cytokines upregulate gelatinase expression in bone marrow CD34(+) cells and their transmigration through reconstituted basement membrane,” Blood 93(10), 3379–3390 (1999).
[PubMed]

Rozmus, W.

X. Su, Y. Qiu, L. Marquez-Curtis, M. Gupta, C. E. Capjack, W. Rozmus, A. Janowska-Wieczorek, and Y. Y. Tsui, “Label-free and noninvasive optical detection of the distribution of nanometer-size mitochondria in single cells,” J. Biomed. Opt. 16(6), 067003 (2011).
[Crossref] [PubMed]

X. Su, S. E. Kirkwood, M. Gupta, L. Marquez-Curtis, Y. Qiu, A. Janowska-Wieczorek, W. Rozmus, and Y. Y. Tsui, “Microscope-based label-free microfluidic cytometry,” Opt. Express 19(1), 387–398 (2011).
[Crossref] [PubMed]

X. Su, W. Rozmus, and Y. Y. Tsui, “Wide-angle light-scattering differentiation of organelle-size particle distributions in whole cells,” Cytometry A 77(6), 580–584 (2010).
[Crossref] [PubMed]

X. T. Su, K. Singh, C. Capjack, J. Petrácek, C. Backhouse, and W. Rozmus, “Measurements of light scattering in an integrated microfluidic waveguide cytometer,” J. Biomed. Opt. 13(2), 024024 (2008).
[Crossref] [PubMed]

X. T. Su, C. Capjack, W. Rozmus, and C. Backhouse, “2D light scattering patterns of mitochondria in single cells,” Opt. Express 15(17), 10562–10575 (2007).
[Crossref] [PubMed]

C. Liu, C. Capjack, and W. Rozmus, “3-D simulation of light scattering from biological cells and cell differentiation,” J. Biomed. Opt. 10(1), 014007 (2005).
[Crossref] [PubMed]

Russell, J. A.

A. Janowska-Wieczorek, L. A. Marquez, J. M. Nabholtz, M. L. Cabuhat, J. Montaño, H. Chang, J. Rozmus, J. A. Russell, D. R. Edwards, and A. R. Turner, “Growth factors and cytokines upregulate gelatinase expression in bone marrow CD34(+) cells and their transmigration through reconstituted basement membrane,” Blood 93(10), 3379–3390 (1999).
[PubMed]

Saito, H.

Simonsson, L.

B. Agnarsson, A. Lundgren, A. Gunnarsson, M. Rabe, A. Kunze, M. Mapar, L. Simonsson, M. Bally, V. P. Zhdanov, and F. Höök, “Evanescent Light-Scattering Microscopy for Label-Free Interfacial Imaging: From Single Sub-100 nm Vesicles to Live Cells,” ACS Nano 9(12), 11849–11862 (2015).
[Crossref] [PubMed]

Singh, K.

X. T. Su, K. Singh, C. Capjack, J. Petrácek, C. Backhouse, and W. Rozmus, “Measurements of light scattering in an integrated microfluidic waveguide cytometer,” J. Biomed. Opt. 13(2), 024024 (2008).
[Crossref] [PubMed]

Song, K.

Su, X.

X. Su, S. Liu, X. Qiao, Y. Yang, K. Song, and B. Kong, “Pattern recognition cytometry for label-free cell classification by 2D light scattering measurements,” Opt. Express 23(21), 27558–27565 (2015).
[Crossref] [PubMed]

X. Su, S. E. Kirkwood, M. Gupta, L. Marquez-Curtis, Y. Qiu, A. Janowska-Wieczorek, W. Rozmus, and Y. Y. Tsui, “Microscope-based label-free microfluidic cytometry,” Opt. Express 19(1), 387–398 (2011).
[Crossref] [PubMed]

X. Su, Y. Qiu, L. Marquez-Curtis, M. Gupta, C. E. Capjack, W. Rozmus, A. Janowska-Wieczorek, and Y. Y. Tsui, “Label-free and noninvasive optical detection of the distribution of nanometer-size mitochondria in single cells,” J. Biomed. Opt. 16(6), 067003 (2011).
[Crossref] [PubMed]

X. Su, W. Rozmus, and Y. Y. Tsui, “Wide-angle light-scattering differentiation of organelle-size particle distributions in whole cells,” Cytometry A 77(6), 580–584 (2010).
[Crossref] [PubMed]

Su, X. T.

X. T. Su, K. Singh, C. Capjack, J. Petrácek, C. Backhouse, and W. Rozmus, “Measurements of light scattering in an integrated microfluidic waveguide cytometer,” J. Biomed. Opt. 13(2), 024024 (2008).
[Crossref] [PubMed]

X. T. Su, C. Capjack, W. Rozmus, and C. Backhouse, “2D light scattering patterns of mitochondria in single cells,” Opt. Express 15(17), 10562–10575 (2007).
[Crossref] [PubMed]

Tsui, Y. Y.

X. Su, S. E. Kirkwood, M. Gupta, L. Marquez-Curtis, Y. Qiu, A. Janowska-Wieczorek, W. Rozmus, and Y. Y. Tsui, “Microscope-based label-free microfluidic cytometry,” Opt. Express 19(1), 387–398 (2011).
[Crossref] [PubMed]

X. Su, Y. Qiu, L. Marquez-Curtis, M. Gupta, C. E. Capjack, W. Rozmus, A. Janowska-Wieczorek, and Y. Y. Tsui, “Label-free and noninvasive optical detection of the distribution of nanometer-size mitochondria in single cells,” J. Biomed. Opt. 16(6), 067003 (2011).
[Crossref] [PubMed]

X. Su, W. Rozmus, and Y. Y. Tsui, “Wide-angle light-scattering differentiation of organelle-size particle distributions in whole cells,” Cytometry A 77(6), 580–584 (2010).
[Crossref] [PubMed]

Turner, A. R.

A. Janowska-Wieczorek, L. A. Marquez, J. M. Nabholtz, M. L. Cabuhat, J. Montaño, H. Chang, J. Rozmus, J. A. Russell, D. R. Edwards, and A. R. Turner, “Growth factors and cytokines upregulate gelatinase expression in bone marrow CD34(+) cells and their transmigration through reconstituted basement membrane,” Blood 93(10), 3379–3390 (1999).
[PubMed]

Umeda, N.

Watson, D.

D. Watson, N. Hagen, J. Diver, P. Marchand, and M. Chachisvilis, “Elastic light scattering from single cells: orientational dynamics in optical trap,” Biophys. J. 87(2), 1298–1306 (2004).
[Crossref] [PubMed]

Xing, Y.-F.

L. Zhang, Y. Qin, K.-X. Li, X. Zhao, Y.-F. Xing, H. Zhao, Z. Jiang, W. Chen, N.-L. Yao, and L. Yuan, “Light scattering properties in spatial planes for label free cells with different internal structures,” Opt. Quantum Electron. 47(5), 1005–1125 (2015).
[Crossref]

Yang, Y.

Yao, N.-L.

L. Zhang, Y. Qin, K.-X. Li, X. Zhao, Y.-F. Xing, H. Zhao, Z. Jiang, W. Chen, N.-L. Yao, and L. Yuan, “Light scattering properties in spatial planes for label free cells with different internal structures,” Opt. Quantum Electron. 47(5), 1005–1125 (2015).
[Crossref]

Yoon, J. H.

Yu, S.

Yuan, L.

L. Zhang, Y. Qin, K.-X. Li, X. Zhao, Y.-F. Xing, H. Zhao, Z. Jiang, W. Chen, N.-L. Yao, and L. Yuan, “Light scattering properties in spatial planes for label free cells with different internal structures,” Opt. Quantum Electron. 47(5), 1005–1125 (2015).
[Crossref]

Zhang, J.

Zhang, L.

L. Zhang, Y. Qin, K.-X. Li, X. Zhao, Y.-F. Xing, H. Zhao, Z. Jiang, W. Chen, N.-L. Yao, and L. Yuan, “Light scattering properties in spatial planes for label free cells with different internal structures,” Opt. Quantum Electron. 47(5), 1005–1125 (2015).
[Crossref]

Zhao, H.

L. Zhang, Y. Qin, K.-X. Li, X. Zhao, Y.-F. Xing, H. Zhao, Z. Jiang, W. Chen, N.-L. Yao, and L. Yuan, “Light scattering properties in spatial planes for label free cells with different internal structures,” Opt. Quantum Electron. 47(5), 1005–1125 (2015).
[Crossref]

Zhao, X.

L. Zhang, Y. Qin, K.-X. Li, X. Zhao, Y.-F. Xing, H. Zhao, Z. Jiang, W. Chen, N.-L. Yao, and L. Yuan, “Light scattering properties in spatial planes for label free cells with different internal structures,” Opt. Quantum Electron. 47(5), 1005–1125 (2015).
[Crossref]

Zhdanov, V. P.

B. Agnarsson, A. Lundgren, A. Gunnarsson, M. Rabe, A. Kunze, M. Mapar, L. Simonsson, M. Bally, V. P. Zhdanov, and F. Höök, “Evanescent Light-Scattering Microscopy for Label-Free Interfacial Imaging: From Single Sub-100 nm Vesicles to Live Cells,” ACS Nano 9(12), 11849–11862 (2015).
[Crossref] [PubMed]

ACS Nano (1)

B. Agnarsson, A. Lundgren, A. Gunnarsson, M. Rabe, A. Kunze, M. Mapar, L. Simonsson, M. Bally, V. P. Zhdanov, and F. Höök, “Evanescent Light-Scattering Microscopy for Label-Free Interfacial Imaging: From Single Sub-100 nm Vesicles to Live Cells,” ACS Nano 9(12), 11849–11862 (2015).
[Crossref] [PubMed]

Biomed. Microdevices (1)

P. L. Gourley, J. K. Hendricks, A. E. McDonald, R. G. Copeland, K. E. Barrett, C. R. Gourley, and R. K. Naviaux, “Ultrafast nanolaser flow device for detecting cancer in single cells,” Biomed. Microdevices 7(4), 331–339 (2005).
[Crossref] [PubMed]

Biomed. Opt. Express (1)

Biophys. J. (3)

B. Beauvoit, T. Kitai, and B. Chance, “Contribution of the Mitochondrial Compartment to the Optical Properties of the Rat Liver: A Theoretical and Practical Approach,” Biophys. J. 67(6), 2501–2510 (1994).
[Crossref] [PubMed]

A. Brunsting and P. F. Mullaney, “Differential light scattering from spherical mammalian cells,” Biophys. J. 14(6), 439–453 (1974).
[Crossref] [PubMed]

D. Watson, N. Hagen, J. Diver, P. Marchand, and M. Chachisvilis, “Elastic light scattering from single cells: orientational dynamics in optical trap,” Biophys. J. 87(2), 1298–1306 (2004).
[Crossref] [PubMed]

Blood (1)

A. Janowska-Wieczorek, L. A. Marquez, J. M. Nabholtz, M. L. Cabuhat, J. Montaño, H. Chang, J. Rozmus, J. A. Russell, D. R. Edwards, and A. R. Turner, “Growth factors and cytokines upregulate gelatinase expression in bone marrow CD34(+) cells and their transmigration through reconstituted basement membrane,” Blood 93(10), 3379–3390 (1999).
[PubMed]

Cytometry A (1)

X. Su, W. Rozmus, and Y. Y. Tsui, “Wide-angle light-scattering differentiation of organelle-size particle distributions in whole cells,” Cytometry A 77(6), 580–584 (2010).
[Crossref] [PubMed]

Cytotherapy (1)

P. C. Collins, S. D. Patel, E. T. Papoutsakis, and W. M. Miller, “Nuclei-size distributions as predictive tools of hematopoietic cell proliferation,” Cytotherapy 1(2), 99–110 (1999).
[Crossref] [PubMed]

J. Biomed. Opt. (4)

H. Liu, B. Beauvoit, M. Kimura, and B. Chance, “Dependence of tissue optical properties on solute-induced changes in refractive index and osmolarity,” J. Biomed. Opt. 1(2), 200–211 (1996).
[Crossref] [PubMed]

C. Liu, C. Capjack, and W. Rozmus, “3-D simulation of light scattering from biological cells and cell differentiation,” J. Biomed. Opt. 10(1), 014007 (2005).
[Crossref] [PubMed]

X. T. Su, K. Singh, C. Capjack, J. Petrácek, C. Backhouse, and W. Rozmus, “Measurements of light scattering in an integrated microfluidic waveguide cytometer,” J. Biomed. Opt. 13(2), 024024 (2008).
[Crossref] [PubMed]

X. Su, Y. Qiu, L. Marquez-Curtis, M. Gupta, C. E. Capjack, W. Rozmus, A. Janowska-Wieczorek, and Y. Y. Tsui, “Label-free and noninvasive optical detection of the distribution of nanometer-size mitochondria in single cells,” J. Biomed. Opt. 16(6), 067003 (2011).
[Crossref] [PubMed]

N. Engl. J. Med. (1)

E. A. Copelan, “Hematopoietic stem-cell transplantation,” N. Engl. J. Med. 354(17), 1813–1826 (2006).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (1)

Opt. Quantum Electron. (1)

L. Zhang, Y. Qin, K.-X. Li, X. Zhao, Y.-F. Xing, H. Zhao, Z. Jiang, W. Chen, N.-L. Yao, and L. Yuan, “Light scattering properties in spatial planes for label free cells with different internal structures,” Opt. Quantum Electron. 47(5), 1005–1125 (2015).
[Crossref]

Stem Cells (1)

H. Mayani and P. M. Lansdorp, “Biology of human umbilical cord blood-derived hematopoietic stem/progenitor cells,” Stem Cells 16(3), 153–165 (1998).
[Crossref] [PubMed]

Other (5)

H. Shanin, “Forward and Side Two Dimensional Scattered Light Patterns Studies of Single Cell for Label-Free Flow Cytometry,” MSc thesis, University of Alberta (2016).

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd Edition (Artech House, 1995).

C. Bohren and D. R. Huffman, Scattering of Light by Small Particles (Wiley-VCH, 1998).

W. T. Grandy, Jr., Scattering of Waves from Large Spheres (Cambridge University, 2005).

M. Z. Ratajczak, Adult Stem Cell Therapies: Alternatives to Plasticity (Springer, 2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic diagram of experimental setup. The setup consists of HeNe laser on the right, 2 CCD cameras at two different locations for measuring forward and side scattering lights and sample holder in the middle. Cell is located inside the sample holder and can be observed when it passes through a common observation region defined by illuminating laser beam, the 2 microscope objects and the 2 CCD cameras.
Fig. 2
Fig. 2 Scattering light pattern of a 3μm radius bead: (a) Experimental and (b) simulated by AETHER (c) Compares simulation results for AETHER and Mie theory in 1D spectrum. The two viewing range of angles are shown in forward and side directions.
Fig. 3
Fig. 3 3D simulated pattern for 3µm radius bead in forward and side directions.
Fig. 4
Fig. 4 Experimental forward-scattering and side-scattering patterns for UCB HSCs, A-E UCB HSC cells observed in pairs of forward and side direction for each cell.
Fig. 5
Fig. 5 This figure shows the simulated forward direction patterns for A) standalone cytoplasm, B) standalone nucleus and C) cytoplasm and nucleus as whole cell.
Fig. 6
Fig. 6 1D 1D FFT analysis of forward patterns obtained from different cytoplasm and nucleus simulations as shown in Fig. 5. The analysis indicates two pronounced peaks one due to the cytoplasm and the other one due to the nucleus. It is also observed shown in the upper panel that the effect from the cytoplasm is smaller than that of the nucleus.
Fig. 7
Fig. 7 This picture shows the simulated models for A) UCB HSC cell with no mitochondria, B) UCB HSC cell with mitochondria distributed randomly between the cytoplasm and nucleus gap, C) UCB HSC cell with mitochondria distributed randomly close to cytoplasm, D) UCB HSC cell with mitochondria distributed randomly close to nucleus E) UCB CD34 + previous model. Speckles size changes from model B-D in side direction patterns. Fringes similar patterns exist in forward direction as the effect of spherical shape nucleus.
Fig. 8
Fig. 8 As the figure shows, the average area ratio over the number of speckle peaks for numerical model “D” and “E”, red points, fits in the range for experimental results shown in black. Two other numerical models, “B”-“C”(green and blue), have other distinguishable values far from experimental results and two other numerical models “D” and “E”.

Metrics