Abstract

Deterministically integrating semiconductor quantum emitters with plasmonic nano-devices paves the way towards chip-scale integrable, true nanoscale quantum photonic technologies. For this purpose, stable and bright semiconductor emitters are needed, which moreover allow for CMOS-compatibility and optical activity in the telecommunication band. Here, we demonstrate strongly enhanced light-matter coupling of single near-surface (< 10 nm) InAs quantum dots monolithically integrated into electromagnetic hot-spots of sub-wavelength sized metal nanoantennas. The antenna strongly enhances the emission intensity of single quantum dots by up to ~ 16×, an effect accompanied by an up to 3.4× Purcell-enhanced spontaneous emission rate. Moreover, the emission is strongly polarised along the antenna axis with degrees of linear polarisation up to ~ 85 %. The results unambiguously demonstrate a pronounced coupling of individual quantum dots to state-of-the-art nanoantennas. Our work provides new perspectives for the realisation of quantum plasmonic sensors, step-changing photovoltaic devices, bright and ultrafast quantum light sources and efficient nano-lasers.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Quantum plasmonics: new opportunity in fundamental and applied photonics

Da Xu, Xiao Xiong, Lin Wu, Xi-Feng Ren, Ching Eng Png, Guang-Can Guo, Qihuang Gong, and Yun-Feng Xiao
Adv. Opt. Photon. 10(4) 703-756 (2018)

Metamorphic plasmonic nanoantennas for self-enhanced nonlinear light generation

Konrad Schraml, Armin Regler, Johannes Bartl, Glenn Glashagen, Jakob Wierzbowski, Jonathan J. Finley, and Michael Kaniber
Optica 3(12) 1453-1459 (2016)

Single defect centers in diamond nanocrystals as quantum probes for plasmonic nanostructures

Andreas W. Schell, Günter Kewes, Tobias Hanke, Alfred Leitenstorfer, Rudolf Bratschitsch, Oliver Benson, and Thomas Aichele
Opt. Express 19(8) 7914-7920 (2011)

References

  • View by:
  • |
  • |
  • |

  1. S. Maier, Plasmonics: Fundamentals and Applications (Springer US, 2007).
  2. S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).
    [Crossref]
  3. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
    [Crossref] [PubMed]
  4. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
    [Crossref] [PubMed]
  5. R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology The development of chip-scale electronics and photonics has led to,” Mater. Today 9, 20–27 (2006).
    [Crossref]
  6. D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-Dependent Optical Coupling of Single “Bowtie” nanoantennas resonant in the visible,” Nano Lett. 4, 957–961 (2004).
    [Crossref]
  7. K. Schraml, M. Spiegl, M. Kammerlocher, G. Bracher, J. Bartl, T. Campbell, J. J. Finley, and M. Kaniber, “Optical properties and interparticle coupling of plasmonic bowtie nanoantennas on a semiconducting substrate,” Phys. Rev. B 90, 035435 (2014).
    [Crossref]
  8. G. Bracher, K. Schraml, M. Blauth, J. Wierzbowski, N. Coca-López, M. Bichler, K. Müller, J. J. Finley, and M. Kaniber, “Imaging surface plasmon polaritons using proximal self-assembled InGaAs quantum dots,” J. Appl. Phys. 116, 033101 (2014).
    [Crossref]
  9. G. Bracher, K. Schraml, M. Ossiander, S. Frédérick, J. J. Finley, and M. Kaniber, “Optical study of lithographically defined, subwavelength plasmonic wires and their coupling to embedded quantum emitters,” Nanotechnology 25, 075203 (2014).
    [Crossref] [PubMed]
  10. E. Goldmann, M. Paul, F. F. Krause, K. Müller, J. Kettler, T. Mehrtens, A. Rosenauer, M. Jetter, P. Michler, and F. Jahnke, “Structural and emission properties of InGaAs/GaAs quantum dots emitting at 1.3 µ m,” Appl. Phys. Lett. 105, 152102 (2014).
    [Crossref]
  11. J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies”, Nat. Photonics 3, 687–695 (2010).
    [Crossref]
  12. D. Bimberg, M. Grundmann, and N. Ledentsov, Quantum Dot Heterostructures (Wiley, 1999).
  13. A. W. Schell, G. Kewes, T. Hanke, A. Leitenstorfer, R. Bratschitsch, O. Benson, and T. Aichele, “Single defect centers in diamond nanocrystals as quantum probes for plasmonic nanostructures,” Opt. Express 19, 7914–7920 (2011).
    [Crossref] [PubMed]
  14. T. B. Hoang, G. M. Akselrod, C. Argyropoulos, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Ultrafast spontaneous emission source using plasmonic nanoantennas,” Nat. Commun. 6, 7788 (2015).
    [Crossref] [PubMed]
  15. T. B. Hoang, G. M. Akselrod, and M. H. Mikkelsen, “Ultrafast room-temperature single photon emission from quantum dots coupled to plasmonic nanocavities,” Nano Lett. 16, 270–275 (2016).
    [Crossref]
  16. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3, 654–657 (2009).
    [Crossref]
  17. G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8, 835–840 (2014).
    [Crossref]
  18. J. C. Prangsma, J. Kern, A. G. Knapp, S. Grossmann, M. Emmerling, M. Kamp, and B. Hecht, “Electrically connected resonant optical antennas,” Nano Lett. 12, 3915–3919 (2012).
    [Crossref] [PubMed]
  19. P. Biagioni, J. S. Huang, L. Duò, M. Finazzi, and B. Hecht, “Cross resonant optical antenna,” Phys. Rev. Lett. 102, 256801 (2009).
    [Crossref] [PubMed]
  20. M. L. Andersen, S. Stobbe, A. S. Sørensen, and P. Lodahl, “Strongly modified plasmon-matter interaction with mesoscopic quantum emitters,” Nat. Phys. 7, 215–218 (2011).
    [Crossref]
  21. K. Adlkofer, E. F. Duijs, F. Findeis, M. Bichler, A. Zrenner, E. Sackmann, G. Abstreiter, and M. Tanaka, “Enhancement of photoluminescence from near-surface quantum dots by suppression of surface state density,” Phys. Chem. Chem. Phys. 4, 785–790 (2002).
    [Crossref]
  22. J. Zuloaga and P. Nordlander, “On the energy shift between near-field and far-field peak intensities in localized plasmon systems,” Nano Lett. 11, 1280–1283 (2011).
    [Crossref] [PubMed]
  23. M. Kaniber, K. Schraml, A. Regler, J. Bartl, G. Glashagen, F. Flassig, J. Wierzbowski, and J. J. Finley, “Surface plasmon resonance spectroscopy of single bowtie nano-antennas using a differential reflectivity method,” Sci. Rep. 6, 23203 (2016).
    [Crossref] [PubMed]
  24. T.-P. Hsieh, J.-I. Chyi, H.-S. Chang, W.-Y. Chen, T. M. Hsu, and W.-H. Chang, “Single photon emission from an InGaAs quantum dot precisely positioned on a nanoplane,” Appl. Phys. Lett. 90, 073105 (2007).
    [Crossref]
  25. M. Pfeiffer, K. Lindfors, H. Zhang, B. Fenk, F. Phillipp, P. Atkinson, A. Rastelli, O. G. Schmidt, H. Giessen, and M. Lippitz, “Eleven nanometer alignment precision of a plasmonic nanoantenna with a self-assembled GaAs quantum dot,” Nano Lett. 14, 197–201 (2014).
    [Crossref]
  26. M. Pfeiffer, K. Lindfors, C. Wolpert, P. Atkinson, M. Benyoucef, A. Rastelli, O. G. Schmidt, H. Giessen, and M. Lippitz, “Enhancing the optical excitation efficiency of a single self-assembled quantum dot with a plasmonic nanoantenna,” Nano Lett. 10, 4555–4558 (2010).
    [Crossref] [PubMed]
  27. A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
    [Crossref] [PubMed]
  28. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
  29. P. W. Fry, I. E. Itskevich, D. J. Mowbray, M. S. Skolnick, J. J. Finley, J. A. Barker, E. P. O’Reilly, L. R. Wilson, I. A. Larkin, P. A. Maksym, M. Hopkinson, M. Al-Khafaji, J. P. David, A. G. Cullis, G. Hill, and J. C. Clark, “Inverted electron-hole alignment in InAs-GaAs self-assembled quantum dots,” Phys. Rev. Lett. 84, 733–736 (2000).
    [Crossref] [PubMed]
  30. E. B. Flagg, A. Muller, J. W. Robertson, S. Founta, D. G. Deppe, M. Xiao, W. Ma, G. J. Salamo, and C. K. Shih, “Resonantly driven coherent oscillations in a solid-state quantum emitter,” Nat. Phys. 5, 203–207 (2009).
    [Crossref]
  31. H. Zhang, Y. Huo, K. Lindfors, Y. Chen, O. G. Schmidt, A. Rastelli, and M. Lippitz, “Narrow-line self-assembled GaAs quantum dots for plasmonics,” Appl. Phys. Lett. 106, 101110 (2015).
    [Crossref]
  32. A. R. Smith, K.-J. Chao, Q. Niu, and C.-K. Shih, “Formation of atomically flat silver films on GaAs with a “Silver Mean” quasi periodicity,” Science 273, 226–228 (1996).
    [Crossref] [PubMed]
  33. A. A. Lyamkina, S. P. Moshchenko, D. V. Dmitriev, A. I. Toropov, and T. S. Shamirzaev, “Exciton-plasmon interaction in hybrid quantum dot/metal cluster structures fabricated by molecular-beam epitaxy,” JETP Letters 99, 219 (2014).
    [Crossref]

2016 (2)

T. B. Hoang, G. M. Akselrod, and M. H. Mikkelsen, “Ultrafast room-temperature single photon emission from quantum dots coupled to plasmonic nanocavities,” Nano Lett. 16, 270–275 (2016).
[Crossref]

M. Kaniber, K. Schraml, A. Regler, J. Bartl, G. Glashagen, F. Flassig, J. Wierzbowski, and J. J. Finley, “Surface plasmon resonance spectroscopy of single bowtie nano-antennas using a differential reflectivity method,” Sci. Rep. 6, 23203 (2016).
[Crossref] [PubMed]

2015 (2)

T. B. Hoang, G. M. Akselrod, C. Argyropoulos, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Ultrafast spontaneous emission source using plasmonic nanoantennas,” Nat. Commun. 6, 7788 (2015).
[Crossref] [PubMed]

H. Zhang, Y. Huo, K. Lindfors, Y. Chen, O. G. Schmidt, A. Rastelli, and M. Lippitz, “Narrow-line self-assembled GaAs quantum dots for plasmonics,” Appl. Phys. Lett. 106, 101110 (2015).
[Crossref]

2014 (7)

A. A. Lyamkina, S. P. Moshchenko, D. V. Dmitriev, A. I. Toropov, and T. S. Shamirzaev, “Exciton-plasmon interaction in hybrid quantum dot/metal cluster structures fabricated by molecular-beam epitaxy,” JETP Letters 99, 219 (2014).
[Crossref]

K. Schraml, M. Spiegl, M. Kammerlocher, G. Bracher, J. Bartl, T. Campbell, J. J. Finley, and M. Kaniber, “Optical properties and interparticle coupling of plasmonic bowtie nanoantennas on a semiconducting substrate,” Phys. Rev. B 90, 035435 (2014).
[Crossref]

G. Bracher, K. Schraml, M. Blauth, J. Wierzbowski, N. Coca-López, M. Bichler, K. Müller, J. J. Finley, and M. Kaniber, “Imaging surface plasmon polaritons using proximal self-assembled InGaAs quantum dots,” J. Appl. Phys. 116, 033101 (2014).
[Crossref]

G. Bracher, K. Schraml, M. Ossiander, S. Frédérick, J. J. Finley, and M. Kaniber, “Optical study of lithographically defined, subwavelength plasmonic wires and their coupling to embedded quantum emitters,” Nanotechnology 25, 075203 (2014).
[Crossref] [PubMed]

E. Goldmann, M. Paul, F. F. Krause, K. Müller, J. Kettler, T. Mehrtens, A. Rosenauer, M. Jetter, P. Michler, and F. Jahnke, “Structural and emission properties of InGaAs/GaAs quantum dots emitting at 1.3 µ m,” Appl. Phys. Lett. 105, 152102 (2014).
[Crossref]

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8, 835–840 (2014).
[Crossref]

M. Pfeiffer, K. Lindfors, H. Zhang, B. Fenk, F. Phillipp, P. Atkinson, A. Rastelli, O. G. Schmidt, H. Giessen, and M. Lippitz, “Eleven nanometer alignment precision of a plasmonic nanoantenna with a self-assembled GaAs quantum dot,” Nano Lett. 14, 197–201 (2014).
[Crossref]

2012 (1)

J. C. Prangsma, J. Kern, A. G. Knapp, S. Grossmann, M. Emmerling, M. Kamp, and B. Hecht, “Electrically connected resonant optical antennas,” Nano Lett. 12, 3915–3919 (2012).
[Crossref] [PubMed]

2011 (3)

J. Zuloaga and P. Nordlander, “On the energy shift between near-field and far-field peak intensities in localized plasmon systems,” Nano Lett. 11, 1280–1283 (2011).
[Crossref] [PubMed]

M. L. Andersen, S. Stobbe, A. S. Sørensen, and P. Lodahl, “Strongly modified plasmon-matter interaction with mesoscopic quantum emitters,” Nat. Phys. 7, 215–218 (2011).
[Crossref]

A. W. Schell, G. Kewes, T. Hanke, A. Leitenstorfer, R. Bratschitsch, O. Benson, and T. Aichele, “Single defect centers in diamond nanocrystals as quantum probes for plasmonic nanostructures,” Opt. Express 19, 7914–7920 (2011).
[Crossref] [PubMed]

2010 (4)

J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies”, Nat. Photonics 3, 687–695 (2010).
[Crossref]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref] [PubMed]

M. Pfeiffer, K. Lindfors, C. Wolpert, P. Atkinson, M. Benyoucef, A. Rastelli, O. G. Schmidt, H. Giessen, and M. Lippitz, “Enhancing the optical excitation efficiency of a single self-assembled quantum dot with a plasmonic nanoantenna,” Nano Lett. 10, 4555–4558 (2010).
[Crossref] [PubMed]

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[Crossref] [PubMed]

2009 (3)

E. B. Flagg, A. Muller, J. W. Robertson, S. Founta, D. G. Deppe, M. Xiao, W. Ma, G. J. Salamo, and C. K. Shih, “Resonantly driven coherent oscillations in a solid-state quantum emitter,” Nat. Phys. 5, 203–207 (2009).
[Crossref]

P. Biagioni, J. S. Huang, L. Duò, M. Finazzi, and B. Hecht, “Cross resonant optical antenna,” Phys. Rev. Lett. 102, 256801 (2009).
[Crossref] [PubMed]

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3, 654–657 (2009).
[Crossref]

2007 (2)

T.-P. Hsieh, J.-I. Chyi, H.-S. Chang, W.-Y. Chen, T. M. Hsu, and W.-H. Chang, “Single photon emission from an InGaAs quantum dot precisely positioned on a nanoplane,” Appl. Phys. Lett. 90, 073105 (2007).
[Crossref]

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).
[Crossref]

2006 (2)

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[Crossref] [PubMed]

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology The development of chip-scale electronics and photonics has led to,” Mater. Today 9, 20–27 (2006).
[Crossref]

2004 (1)

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-Dependent Optical Coupling of Single “Bowtie” nanoantennas resonant in the visible,” Nano Lett. 4, 957–961 (2004).
[Crossref]

2002 (1)

K. Adlkofer, E. F. Duijs, F. Findeis, M. Bichler, A. Zrenner, E. Sackmann, G. Abstreiter, and M. Tanaka, “Enhancement of photoluminescence from near-surface quantum dots by suppression of surface state density,” Phys. Chem. Chem. Phys. 4, 785–790 (2002).
[Crossref]

2000 (1)

P. W. Fry, I. E. Itskevich, D. J. Mowbray, M. S. Skolnick, J. J. Finley, J. A. Barker, E. P. O’Reilly, L. R. Wilson, I. A. Larkin, P. A. Maksym, M. Hopkinson, M. Al-Khafaji, J. P. David, A. G. Cullis, G. Hill, and J. C. Clark, “Inverted electron-hole alignment in InAs-GaAs self-assembled quantum dots,” Phys. Rev. Lett. 84, 733–736 (2000).
[Crossref] [PubMed]

1996 (1)

A. R. Smith, K.-J. Chao, Q. Niu, and C.-K. Shih, “Formation of atomically flat silver films on GaAs with a “Silver Mean” quasi periodicity,” Science 273, 226–228 (1996).
[Crossref] [PubMed]

1946 (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Abstreiter, G.

K. Adlkofer, E. F. Duijs, F. Findeis, M. Bichler, A. Zrenner, E. Sackmann, G. Abstreiter, and M. Tanaka, “Enhancement of photoluminescence from near-surface quantum dots by suppression of surface state density,” Phys. Chem. Chem. Phys. 4, 785–790 (2002).
[Crossref]

Adlkofer, K.

K. Adlkofer, E. F. Duijs, F. Findeis, M. Bichler, A. Zrenner, E. Sackmann, G. Abstreiter, and M. Tanaka, “Enhancement of photoluminescence from near-surface quantum dots by suppression of surface state density,” Phys. Chem. Chem. Phys. 4, 785–790 (2002).
[Crossref]

Aichele, T.

Akselrod, G. M.

T. B. Hoang, G. M. Akselrod, and M. H. Mikkelsen, “Ultrafast room-temperature single photon emission from quantum dots coupled to plasmonic nanocavities,” Nano Lett. 16, 270–275 (2016).
[Crossref]

T. B. Hoang, G. M. Akselrod, C. Argyropoulos, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Ultrafast spontaneous emission source using plasmonic nanoantennas,” Nat. Commun. 6, 7788 (2015).
[Crossref] [PubMed]

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8, 835–840 (2014).
[Crossref]

Al-Khafaji, M.

P. W. Fry, I. E. Itskevich, D. J. Mowbray, M. S. Skolnick, J. J. Finley, J. A. Barker, E. P. O’Reilly, L. R. Wilson, I. A. Larkin, P. A. Maksym, M. Hopkinson, M. Al-Khafaji, J. P. David, A. G. Cullis, G. Hill, and J. C. Clark, “Inverted electron-hole alignment in InAs-GaAs self-assembled quantum dots,” Phys. Rev. Lett. 84, 733–736 (2000).
[Crossref] [PubMed]

Andersen, M. L.

M. L. Andersen, S. Stobbe, A. S. Sørensen, and P. Lodahl, “Strongly modified plasmon-matter interaction with mesoscopic quantum emitters,” Nat. Phys. 7, 215–218 (2011).
[Crossref]

Argyropoulos, C.

T. B. Hoang, G. M. Akselrod, C. Argyropoulos, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Ultrafast spontaneous emission source using plasmonic nanoantennas,” Nat. Commun. 6, 7788 (2015).
[Crossref] [PubMed]

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8, 835–840 (2014).
[Crossref]

Atkinson, P.

M. Pfeiffer, K. Lindfors, H. Zhang, B. Fenk, F. Phillipp, P. Atkinson, A. Rastelli, O. G. Schmidt, H. Giessen, and M. Lippitz, “Eleven nanometer alignment precision of a plasmonic nanoantenna with a self-assembled GaAs quantum dot,” Nano Lett. 14, 197–201 (2014).
[Crossref]

M. Pfeiffer, K. Lindfors, C. Wolpert, P. Atkinson, M. Benyoucef, A. Rastelli, O. G. Schmidt, H. Giessen, and M. Lippitz, “Enhancing the optical excitation efficiency of a single self-assembled quantum dot with a plasmonic nanoantenna,” Nano Lett. 10, 4555–4558 (2010).
[Crossref] [PubMed]

Avlasevich, Y.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3, 654–657 (2009).
[Crossref]

Barker, J. A.

P. W. Fry, I. E. Itskevich, D. J. Mowbray, M. S. Skolnick, J. J. Finley, J. A. Barker, E. P. O’Reilly, L. R. Wilson, I. A. Larkin, P. A. Maksym, M. Hopkinson, M. Al-Khafaji, J. P. David, A. G. Cullis, G. Hill, and J. C. Clark, “Inverted electron-hole alignment in InAs-GaAs self-assembled quantum dots,” Phys. Rev. Lett. 84, 733–736 (2000).
[Crossref] [PubMed]

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref] [PubMed]

Bartl, J.

M. Kaniber, K. Schraml, A. Regler, J. Bartl, G. Glashagen, F. Flassig, J. Wierzbowski, and J. J. Finley, “Surface plasmon resonance spectroscopy of single bowtie nano-antennas using a differential reflectivity method,” Sci. Rep. 6, 23203 (2016).
[Crossref] [PubMed]

K. Schraml, M. Spiegl, M. Kammerlocher, G. Bracher, J. Bartl, T. Campbell, J. J. Finley, and M. Kaniber, “Optical properties and interparticle coupling of plasmonic bowtie nanoantennas on a semiconducting substrate,” Phys. Rev. B 90, 035435 (2014).
[Crossref]

Benson, O.

Benyoucef, M.

M. Pfeiffer, K. Lindfors, C. Wolpert, P. Atkinson, M. Benyoucef, A. Rastelli, O. G. Schmidt, H. Giessen, and M. Lippitz, “Enhancing the optical excitation efficiency of a single self-assembled quantum dot with a plasmonic nanoantenna,” Nano Lett. 10, 4555–4558 (2010).
[Crossref] [PubMed]

Biagioni, P.

P. Biagioni, J. S. Huang, L. Duò, M. Finazzi, and B. Hecht, “Cross resonant optical antenna,” Phys. Rev. Lett. 102, 256801 (2009).
[Crossref] [PubMed]

Bichler, M.

G. Bracher, K. Schraml, M. Blauth, J. Wierzbowski, N. Coca-López, M. Bichler, K. Müller, J. J. Finley, and M. Kaniber, “Imaging surface plasmon polaritons using proximal self-assembled InGaAs quantum dots,” J. Appl. Phys. 116, 033101 (2014).
[Crossref]

K. Adlkofer, E. F. Duijs, F. Findeis, M. Bichler, A. Zrenner, E. Sackmann, G. Abstreiter, and M. Tanaka, “Enhancement of photoluminescence from near-surface quantum dots by suppression of surface state density,” Phys. Chem. Chem. Phys. 4, 785–790 (2002).
[Crossref]

Bimberg, D.

D. Bimberg, M. Grundmann, and N. Ledentsov, Quantum Dot Heterostructures (Wiley, 1999).

Blauth, M.

G. Bracher, K. Schraml, M. Blauth, J. Wierzbowski, N. Coca-López, M. Bichler, K. Müller, J. J. Finley, and M. Kaniber, “Imaging surface plasmon polaritons using proximal self-assembled InGaAs quantum dots,” J. Appl. Phys. 116, 033101 (2014).
[Crossref]

Bracher, G.

K. Schraml, M. Spiegl, M. Kammerlocher, G. Bracher, J. Bartl, T. Campbell, J. J. Finley, and M. Kaniber, “Optical properties and interparticle coupling of plasmonic bowtie nanoantennas on a semiconducting substrate,” Phys. Rev. B 90, 035435 (2014).
[Crossref]

G. Bracher, K. Schraml, M. Blauth, J. Wierzbowski, N. Coca-López, M. Bichler, K. Müller, J. J. Finley, and M. Kaniber, “Imaging surface plasmon polaritons using proximal self-assembled InGaAs quantum dots,” J. Appl. Phys. 116, 033101 (2014).
[Crossref]

G. Bracher, K. Schraml, M. Ossiander, S. Frédérick, J. J. Finley, and M. Kaniber, “Optical study of lithographically defined, subwavelength plasmonic wires and their coupling to embedded quantum emitters,” Nanotechnology 25, 075203 (2014).
[Crossref] [PubMed]

Bratschitsch, R.

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref] [PubMed]

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology The development of chip-scale electronics and photonics has led to,” Mater. Today 9, 20–27 (2006).
[Crossref]

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref] [PubMed]

Campbell, T.

K. Schraml, M. Spiegl, M. Kammerlocher, G. Bracher, J. Bartl, T. Campbell, J. J. Finley, and M. Kaniber, “Optical properties and interparticle coupling of plasmonic bowtie nanoantennas on a semiconducting substrate,” Phys. Rev. B 90, 035435 (2014).
[Crossref]

Chandran, A.

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology The development of chip-scale electronics and photonics has led to,” Mater. Today 9, 20–27 (2006).
[Crossref]

Chang, H.-S.

T.-P. Hsieh, J.-I. Chyi, H.-S. Chang, W.-Y. Chen, T. M. Hsu, and W.-H. Chang, “Single photon emission from an InGaAs quantum dot precisely positioned on a nanoplane,” Appl. Phys. Lett. 90, 073105 (2007).
[Crossref]

Chang, W.-H.

T.-P. Hsieh, J.-I. Chyi, H.-S. Chang, W.-Y. Chen, T. M. Hsu, and W.-H. Chang, “Single photon emission from an InGaAs quantum dot precisely positioned on a nanoplane,” Appl. Phys. Lett. 90, 073105 (2007).
[Crossref]

Chao, K.-J.

A. R. Smith, K.-J. Chao, Q. Niu, and C.-K. Shih, “Formation of atomically flat silver films on GaAs with a “Silver Mean” quasi periodicity,” Science 273, 226–228 (1996).
[Crossref] [PubMed]

Chen, W.-Y.

T.-P. Hsieh, J.-I. Chyi, H.-S. Chang, W.-Y. Chen, T. M. Hsu, and W.-H. Chang, “Single photon emission from an InGaAs quantum dot precisely positioned on a nanoplane,” Appl. Phys. Lett. 90, 073105 (2007).
[Crossref]

Chen, Y.

H. Zhang, Y. Huo, K. Lindfors, Y. Chen, O. G. Schmidt, A. Rastelli, and M. Lippitz, “Narrow-line self-assembled GaAs quantum dots for plasmonics,” Appl. Phys. Lett. 106, 101110 (2015).
[Crossref]

Chyi, J.-I.

T.-P. Hsieh, J.-I. Chyi, H.-S. Chang, W.-Y. Chen, T. M. Hsu, and W.-H. Chang, “Single photon emission from an InGaAs quantum dot precisely positioned on a nanoplane,” Appl. Phys. Lett. 90, 073105 (2007).
[Crossref]

Ciracì, C.

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8, 835–840 (2014).
[Crossref]

Clark, J. C.

P. W. Fry, I. E. Itskevich, D. J. Mowbray, M. S. Skolnick, J. J. Finley, J. A. Barker, E. P. O’Reilly, L. R. Wilson, I. A. Larkin, P. A. Maksym, M. Hopkinson, M. Al-Khafaji, J. P. David, A. G. Cullis, G. Hill, and J. C. Clark, “Inverted electron-hole alignment in InAs-GaAs self-assembled quantum dots,” Phys. Rev. Lett. 84, 733–736 (2000).
[Crossref] [PubMed]

Coca-López, N.

G. Bracher, K. Schraml, M. Blauth, J. Wierzbowski, N. Coca-López, M. Bichler, K. Müller, J. J. Finley, and M. Kaniber, “Imaging surface plasmon polaritons using proximal self-assembled InGaAs quantum dots,” J. Appl. Phys. 116, 033101 (2014).
[Crossref]

Cullis, A. G.

P. W. Fry, I. E. Itskevich, D. J. Mowbray, M. S. Skolnick, J. J. Finley, J. A. Barker, E. P. O’Reilly, L. R. Wilson, I. A. Larkin, P. A. Maksym, M. Hopkinson, M. Al-Khafaji, J. P. David, A. G. Cullis, G. Hill, and J. C. Clark, “Inverted electron-hole alignment in InAs-GaAs self-assembled quantum dots,” Phys. Rev. Lett. 84, 733–736 (2000).
[Crossref] [PubMed]

Curto, A. G.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[Crossref] [PubMed]

David, J. P.

P. W. Fry, I. E. Itskevich, D. J. Mowbray, M. S. Skolnick, J. J. Finley, J. A. Barker, E. P. O’Reilly, L. R. Wilson, I. A. Larkin, P. A. Maksym, M. Hopkinson, M. Al-Khafaji, J. P. David, A. G. Cullis, G. Hill, and J. C. Clark, “Inverted electron-hole alignment in InAs-GaAs self-assembled quantum dots,” Phys. Rev. Lett. 84, 733–736 (2000).
[Crossref] [PubMed]

Deppe, D. G.

E. B. Flagg, A. Muller, J. W. Robertson, S. Founta, D. G. Deppe, M. Xiao, W. Ma, G. J. Salamo, and C. K. Shih, “Resonantly driven coherent oscillations in a solid-state quantum emitter,” Nat. Phys. 5, 203–207 (2009).
[Crossref]

Dmitriev, D. V.

A. A. Lyamkina, S. P. Moshchenko, D. V. Dmitriev, A. I. Toropov, and T. S. Shamirzaev, “Exciton-plasmon interaction in hybrid quantum dot/metal cluster structures fabricated by molecular-beam epitaxy,” JETP Letters 99, 219 (2014).
[Crossref]

Duijs, E. F.

K. Adlkofer, E. F. Duijs, F. Findeis, M. Bichler, A. Zrenner, E. Sackmann, G. Abstreiter, and M. Tanaka, “Enhancement of photoluminescence from near-surface quantum dots by suppression of surface state density,” Phys. Chem. Chem. Phys. 4, 785–790 (2002).
[Crossref]

Duò, L.

P. Biagioni, J. S. Huang, L. Duò, M. Finazzi, and B. Hecht, “Cross resonant optical antenna,” Phys. Rev. Lett. 102, 256801 (2009).
[Crossref] [PubMed]

Emmerling, M.

J. C. Prangsma, J. Kern, A. G. Knapp, S. Grossmann, M. Emmerling, M. Kamp, and B. Hecht, “Electrically connected resonant optical antennas,” Nano Lett. 12, 3915–3919 (2012).
[Crossref] [PubMed]

Fan, S.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3, 654–657 (2009).
[Crossref]

Fang, C.

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8, 835–840 (2014).
[Crossref]

Fenk, B.

M. Pfeiffer, K. Lindfors, H. Zhang, B. Fenk, F. Phillipp, P. Atkinson, A. Rastelli, O. G. Schmidt, H. Giessen, and M. Lippitz, “Eleven nanometer alignment precision of a plasmonic nanoantenna with a self-assembled GaAs quantum dot,” Nano Lett. 14, 197–201 (2014).
[Crossref]

Finazzi, M.

P. Biagioni, J. S. Huang, L. Duò, M. Finazzi, and B. Hecht, “Cross resonant optical antenna,” Phys. Rev. Lett. 102, 256801 (2009).
[Crossref] [PubMed]

Findeis, F.

K. Adlkofer, E. F. Duijs, F. Findeis, M. Bichler, A. Zrenner, E. Sackmann, G. Abstreiter, and M. Tanaka, “Enhancement of photoluminescence from near-surface quantum dots by suppression of surface state density,” Phys. Chem. Chem. Phys. 4, 785–790 (2002).
[Crossref]

Finley, J. J.

M. Kaniber, K. Schraml, A. Regler, J. Bartl, G. Glashagen, F. Flassig, J. Wierzbowski, and J. J. Finley, “Surface plasmon resonance spectroscopy of single bowtie nano-antennas using a differential reflectivity method,” Sci. Rep. 6, 23203 (2016).
[Crossref] [PubMed]

G. Bracher, K. Schraml, M. Ossiander, S. Frédérick, J. J. Finley, and M. Kaniber, “Optical study of lithographically defined, subwavelength plasmonic wires and their coupling to embedded quantum emitters,” Nanotechnology 25, 075203 (2014).
[Crossref] [PubMed]

G. Bracher, K. Schraml, M. Blauth, J. Wierzbowski, N. Coca-López, M. Bichler, K. Müller, J. J. Finley, and M. Kaniber, “Imaging surface plasmon polaritons using proximal self-assembled InGaAs quantum dots,” J. Appl. Phys. 116, 033101 (2014).
[Crossref]

K. Schraml, M. Spiegl, M. Kammerlocher, G. Bracher, J. Bartl, T. Campbell, J. J. Finley, and M. Kaniber, “Optical properties and interparticle coupling of plasmonic bowtie nanoantennas on a semiconducting substrate,” Phys. Rev. B 90, 035435 (2014).
[Crossref]

P. W. Fry, I. E. Itskevich, D. J. Mowbray, M. S. Skolnick, J. J. Finley, J. A. Barker, E. P. O’Reilly, L. R. Wilson, I. A. Larkin, P. A. Maksym, M. Hopkinson, M. Al-Khafaji, J. P. David, A. G. Cullis, G. Hill, and J. C. Clark, “Inverted electron-hole alignment in InAs-GaAs self-assembled quantum dots,” Phys. Rev. Lett. 84, 733–736 (2000).
[Crossref] [PubMed]

Flagg, E. B.

E. B. Flagg, A. Muller, J. W. Robertson, S. Founta, D. G. Deppe, M. Xiao, W. Ma, G. J. Salamo, and C. K. Shih, “Resonantly driven coherent oscillations in a solid-state quantum emitter,” Nat. Phys. 5, 203–207 (2009).
[Crossref]

Flassig, F.

M. Kaniber, K. Schraml, A. Regler, J. Bartl, G. Glashagen, F. Flassig, J. Wierzbowski, and J. J. Finley, “Surface plasmon resonance spectroscopy of single bowtie nano-antennas using a differential reflectivity method,” Sci. Rep. 6, 23203 (2016).
[Crossref] [PubMed]

Founta, S.

E. B. Flagg, A. Muller, J. W. Robertson, S. Founta, D. G. Deppe, M. Xiao, W. Ma, G. J. Salamo, and C. K. Shih, “Resonantly driven coherent oscillations in a solid-state quantum emitter,” Nat. Phys. 5, 203–207 (2009).
[Crossref]

Frédérick, S.

G. Bracher, K. Schraml, M. Ossiander, S. Frédérick, J. J. Finley, and M. Kaniber, “Optical study of lithographically defined, subwavelength plasmonic wires and their coupling to embedded quantum emitters,” Nanotechnology 25, 075203 (2014).
[Crossref] [PubMed]

Fromm, D. P.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-Dependent Optical Coupling of Single “Bowtie” nanoantennas resonant in the visible,” Nano Lett. 4, 957–961 (2004).
[Crossref]

Fry, P. W.

P. W. Fry, I. E. Itskevich, D. J. Mowbray, M. S. Skolnick, J. J. Finley, J. A. Barker, E. P. O’Reilly, L. R. Wilson, I. A. Larkin, P. A. Maksym, M. Hopkinson, M. Al-Khafaji, J. P. David, A. G. Cullis, G. Hill, and J. C. Clark, “Inverted electron-hole alignment in InAs-GaAs self-assembled quantum dots,” Phys. Rev. Lett. 84, 733–736 (2000).
[Crossref] [PubMed]

Furusawa, A.

J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies”, Nat. Photonics 3, 687–695 (2010).
[Crossref]

Giessen, H.

M. Pfeiffer, K. Lindfors, H. Zhang, B. Fenk, F. Phillipp, P. Atkinson, A. Rastelli, O. G. Schmidt, H. Giessen, and M. Lippitz, “Eleven nanometer alignment precision of a plasmonic nanoantenna with a self-assembled GaAs quantum dot,” Nano Lett. 14, 197–201 (2014).
[Crossref]

M. Pfeiffer, K. Lindfors, C. Wolpert, P. Atkinson, M. Benyoucef, A. Rastelli, O. G. Schmidt, H. Giessen, and M. Lippitz, “Enhancing the optical excitation efficiency of a single self-assembled quantum dot with a plasmonic nanoantenna,” Nano Lett. 10, 4555–4558 (2010).
[Crossref] [PubMed]

Glashagen, G.

M. Kaniber, K. Schraml, A. Regler, J. Bartl, G. Glashagen, F. Flassig, J. Wierzbowski, and J. J. Finley, “Surface plasmon resonance spectroscopy of single bowtie nano-antennas using a differential reflectivity method,” Sci. Rep. 6, 23203 (2016).
[Crossref] [PubMed]

Goldmann, E.

E. Goldmann, M. Paul, F. F. Krause, K. Müller, J. Kettler, T. Mehrtens, A. Rosenauer, M. Jetter, P. Michler, and F. Jahnke, “Structural and emission properties of InGaAs/GaAs quantum dots emitting at 1.3 µ m,” Appl. Phys. Lett. 105, 152102 (2014).
[Crossref]

Grossmann, S.

J. C. Prangsma, J. Kern, A. G. Knapp, S. Grossmann, M. Emmerling, M. Kamp, and B. Hecht, “Electrically connected resonant optical antennas,” Nano Lett. 12, 3915–3919 (2012).
[Crossref] [PubMed]

Grundmann, M.

D. Bimberg, M. Grundmann, and N. Ledentsov, Quantum Dot Heterostructures (Wiley, 1999).

Halas, N. J.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).
[Crossref]

Hanke, T.

Hecht, B.

J. C. Prangsma, J. Kern, A. G. Knapp, S. Grossmann, M. Emmerling, M. Kamp, and B. Hecht, “Electrically connected resonant optical antennas,” Nano Lett. 12, 3915–3919 (2012).
[Crossref] [PubMed]

P. Biagioni, J. S. Huang, L. Duò, M. Finazzi, and B. Hecht, “Cross resonant optical antenna,” Phys. Rev. Lett. 102, 256801 (2009).
[Crossref] [PubMed]

Hill, G.

P. W. Fry, I. E. Itskevich, D. J. Mowbray, M. S. Skolnick, J. J. Finley, J. A. Barker, E. P. O’Reilly, L. R. Wilson, I. A. Larkin, P. A. Maksym, M. Hopkinson, M. Al-Khafaji, J. P. David, A. G. Cullis, G. Hill, and J. C. Clark, “Inverted electron-hole alignment in InAs-GaAs self-assembled quantum dots,” Phys. Rev. Lett. 84, 733–736 (2000).
[Crossref] [PubMed]

Hoang, T. B.

T. B. Hoang, G. M. Akselrod, and M. H. Mikkelsen, “Ultrafast room-temperature single photon emission from quantum dots coupled to plasmonic nanocavities,” Nano Lett. 16, 270–275 (2016).
[Crossref]

T. B. Hoang, G. M. Akselrod, C. Argyropoulos, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Ultrafast spontaneous emission source using plasmonic nanoantennas,” Nat. Commun. 6, 7788 (2015).
[Crossref] [PubMed]

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8, 835–840 (2014).
[Crossref]

Hopkinson, M.

P. W. Fry, I. E. Itskevich, D. J. Mowbray, M. S. Skolnick, J. J. Finley, J. A. Barker, E. P. O’Reilly, L. R. Wilson, I. A. Larkin, P. A. Maksym, M. Hopkinson, M. Al-Khafaji, J. P. David, A. G. Cullis, G. Hill, and J. C. Clark, “Inverted electron-hole alignment in InAs-GaAs self-assembled quantum dots,” Phys. Rev. Lett. 84, 733–736 (2000).
[Crossref] [PubMed]

Hsieh, T.-P.

T.-P. Hsieh, J.-I. Chyi, H.-S. Chang, W.-Y. Chen, T. M. Hsu, and W.-H. Chang, “Single photon emission from an InGaAs quantum dot precisely positioned on a nanoplane,” Appl. Phys. Lett. 90, 073105 (2007).
[Crossref]

Hsu, T. M.

T.-P. Hsieh, J.-I. Chyi, H.-S. Chang, W.-Y. Chen, T. M. Hsu, and W.-H. Chang, “Single photon emission from an InGaAs quantum dot precisely positioned on a nanoplane,” Appl. Phys. Lett. 90, 073105 (2007).
[Crossref]

Huang, J.

T. B. Hoang, G. M. Akselrod, C. Argyropoulos, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Ultrafast spontaneous emission source using plasmonic nanoantennas,” Nat. Commun. 6, 7788 (2015).
[Crossref] [PubMed]

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8, 835–840 (2014).
[Crossref]

Huang, J. S.

P. Biagioni, J. S. Huang, L. Duò, M. Finazzi, and B. Hecht, “Cross resonant optical antenna,” Phys. Rev. Lett. 102, 256801 (2009).
[Crossref] [PubMed]

Huo, Y.

H. Zhang, Y. Huo, K. Lindfors, Y. Chen, O. G. Schmidt, A. Rastelli, and M. Lippitz, “Narrow-line self-assembled GaAs quantum dots for plasmonics,” Appl. Phys. Lett. 106, 101110 (2015).
[Crossref]

Itskevich, I. E.

P. W. Fry, I. E. Itskevich, D. J. Mowbray, M. S. Skolnick, J. J. Finley, J. A. Barker, E. P. O’Reilly, L. R. Wilson, I. A. Larkin, P. A. Maksym, M. Hopkinson, M. Al-Khafaji, J. P. David, A. G. Cullis, G. Hill, and J. C. Clark, “Inverted electron-hole alignment in InAs-GaAs self-assembled quantum dots,” Phys. Rev. Lett. 84, 733–736 (2000).
[Crossref] [PubMed]

Jahnke, F.

E. Goldmann, M. Paul, F. F. Krause, K. Müller, J. Kettler, T. Mehrtens, A. Rosenauer, M. Jetter, P. Michler, and F. Jahnke, “Structural and emission properties of InGaAs/GaAs quantum dots emitting at 1.3 µ m,” Appl. Phys. Lett. 105, 152102 (2014).
[Crossref]

Jetter, M.

E. Goldmann, M. Paul, F. F. Krause, K. Müller, J. Kettler, T. Mehrtens, A. Rosenauer, M. Jetter, P. Michler, and F. Jahnke, “Structural and emission properties of InGaAs/GaAs quantum dots emitting at 1.3 µ m,” Appl. Phys. Lett. 105, 152102 (2014).
[Crossref]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref] [PubMed]

Kammerlocher, M.

K. Schraml, M. Spiegl, M. Kammerlocher, G. Bracher, J. Bartl, T. Campbell, J. J. Finley, and M. Kaniber, “Optical properties and interparticle coupling of plasmonic bowtie nanoantennas on a semiconducting substrate,” Phys. Rev. B 90, 035435 (2014).
[Crossref]

Kamp, M.

J. C. Prangsma, J. Kern, A. G. Knapp, S. Grossmann, M. Emmerling, M. Kamp, and B. Hecht, “Electrically connected resonant optical antennas,” Nano Lett. 12, 3915–3919 (2012).
[Crossref] [PubMed]

Kaniber, M.

M. Kaniber, K. Schraml, A. Regler, J. Bartl, G. Glashagen, F. Flassig, J. Wierzbowski, and J. J. Finley, “Surface plasmon resonance spectroscopy of single bowtie nano-antennas using a differential reflectivity method,” Sci. Rep. 6, 23203 (2016).
[Crossref] [PubMed]

G. Bracher, K. Schraml, M. Blauth, J. Wierzbowski, N. Coca-López, M. Bichler, K. Müller, J. J. Finley, and M. Kaniber, “Imaging surface plasmon polaritons using proximal self-assembled InGaAs quantum dots,” J. Appl. Phys. 116, 033101 (2014).
[Crossref]

G. Bracher, K. Schraml, M. Ossiander, S. Frédérick, J. J. Finley, and M. Kaniber, “Optical study of lithographically defined, subwavelength plasmonic wires and their coupling to embedded quantum emitters,” Nanotechnology 25, 075203 (2014).
[Crossref] [PubMed]

K. Schraml, M. Spiegl, M. Kammerlocher, G. Bracher, J. Bartl, T. Campbell, J. J. Finley, and M. Kaniber, “Optical properties and interparticle coupling of plasmonic bowtie nanoantennas on a semiconducting substrate,” Phys. Rev. B 90, 035435 (2014).
[Crossref]

Kern, J.

J. C. Prangsma, J. Kern, A. G. Knapp, S. Grossmann, M. Emmerling, M. Kamp, and B. Hecht, “Electrically connected resonant optical antennas,” Nano Lett. 12, 3915–3919 (2012).
[Crossref] [PubMed]

Kettler, J.

E. Goldmann, M. Paul, F. F. Krause, K. Müller, J. Kettler, T. Mehrtens, A. Rosenauer, M. Jetter, P. Michler, and F. Jahnke, “Structural and emission properties of InGaAs/GaAs quantum dots emitting at 1.3 µ m,” Appl. Phys. Lett. 105, 152102 (2014).
[Crossref]

Kewes, G.

Kinkhabwala, A.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3, 654–657 (2009).
[Crossref]

Kino, G.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-Dependent Optical Coupling of Single “Bowtie” nanoantennas resonant in the visible,” Nano Lett. 4, 957–961 (2004).
[Crossref]

Knapp, A. G.

J. C. Prangsma, J. Kern, A. G. Knapp, S. Grossmann, M. Emmerling, M. Kamp, and B. Hecht, “Electrically connected resonant optical antennas,” Nano Lett. 12, 3915–3919 (2012).
[Crossref] [PubMed]

Krause, F. F.

E. Goldmann, M. Paul, F. F. Krause, K. Müller, J. Kettler, T. Mehrtens, A. Rosenauer, M. Jetter, P. Michler, and F. Jahnke, “Structural and emission properties of InGaAs/GaAs quantum dots emitting at 1.3 µ m,” Appl. Phys. Lett. 105, 152102 (2014).
[Crossref]

Kreuzer, M. P.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[Crossref] [PubMed]

Lal, S.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).
[Crossref]

Larkin, I. A.

P. W. Fry, I. E. Itskevich, D. J. Mowbray, M. S. Skolnick, J. J. Finley, J. A. Barker, E. P. O’Reilly, L. R. Wilson, I. A. Larkin, P. A. Maksym, M. Hopkinson, M. Al-Khafaji, J. P. David, A. G. Cullis, G. Hill, and J. C. Clark, “Inverted electron-hole alignment in InAs-GaAs self-assembled quantum dots,” Phys. Rev. Lett. 84, 733–736 (2000).
[Crossref] [PubMed]

Ledentsov, N.

D. Bimberg, M. Grundmann, and N. Ledentsov, Quantum Dot Heterostructures (Wiley, 1999).

Leitenstorfer, A.

Lindfors, K.

H. Zhang, Y. Huo, K. Lindfors, Y. Chen, O. G. Schmidt, A. Rastelli, and M. Lippitz, “Narrow-line self-assembled GaAs quantum dots for plasmonics,” Appl. Phys. Lett. 106, 101110 (2015).
[Crossref]

M. Pfeiffer, K. Lindfors, H. Zhang, B. Fenk, F. Phillipp, P. Atkinson, A. Rastelli, O. G. Schmidt, H. Giessen, and M. Lippitz, “Eleven nanometer alignment precision of a plasmonic nanoantenna with a self-assembled GaAs quantum dot,” Nano Lett. 14, 197–201 (2014).
[Crossref]

M. Pfeiffer, K. Lindfors, C. Wolpert, P. Atkinson, M. Benyoucef, A. Rastelli, O. G. Schmidt, H. Giessen, and M. Lippitz, “Enhancing the optical excitation efficiency of a single self-assembled quantum dot with a plasmonic nanoantenna,” Nano Lett. 10, 4555–4558 (2010).
[Crossref] [PubMed]

Link, S.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).
[Crossref]

Lippitz, M.

H. Zhang, Y. Huo, K. Lindfors, Y. Chen, O. G. Schmidt, A. Rastelli, and M. Lippitz, “Narrow-line self-assembled GaAs quantum dots for plasmonics,” Appl. Phys. Lett. 106, 101110 (2015).
[Crossref]

M. Pfeiffer, K. Lindfors, H. Zhang, B. Fenk, F. Phillipp, P. Atkinson, A. Rastelli, O. G. Schmidt, H. Giessen, and M. Lippitz, “Eleven nanometer alignment precision of a plasmonic nanoantenna with a self-assembled GaAs quantum dot,” Nano Lett. 14, 197–201 (2014).
[Crossref]

M. Pfeiffer, K. Lindfors, C. Wolpert, P. Atkinson, M. Benyoucef, A. Rastelli, O. G. Schmidt, H. Giessen, and M. Lippitz, “Enhancing the optical excitation efficiency of a single self-assembled quantum dot with a plasmonic nanoantenna,” Nano Lett. 10, 4555–4558 (2010).
[Crossref] [PubMed]

Lodahl, P.

M. L. Andersen, S. Stobbe, A. S. Sørensen, and P. Lodahl, “Strongly modified plasmon-matter interaction with mesoscopic quantum emitters,” Nat. Phys. 7, 215–218 (2011).
[Crossref]

Lyamkina, A. A.

A. A. Lyamkina, S. P. Moshchenko, D. V. Dmitriev, A. I. Toropov, and T. S. Shamirzaev, “Exciton-plasmon interaction in hybrid quantum dot/metal cluster structures fabricated by molecular-beam epitaxy,” JETP Letters 99, 219 (2014).
[Crossref]

Ma, W.

E. B. Flagg, A. Muller, J. W. Robertson, S. Founta, D. G. Deppe, M. Xiao, W. Ma, G. J. Salamo, and C. K. Shih, “Resonantly driven coherent oscillations in a solid-state quantum emitter,” Nat. Phys. 5, 203–207 (2009).
[Crossref]

Maier, S.

S. Maier, Plasmonics: Fundamentals and Applications (Springer US, 2007).

Maksym, P. A.

P. W. Fry, I. E. Itskevich, D. J. Mowbray, M. S. Skolnick, J. J. Finley, J. A. Barker, E. P. O’Reilly, L. R. Wilson, I. A. Larkin, P. A. Maksym, M. Hopkinson, M. Al-Khafaji, J. P. David, A. G. Cullis, G. Hill, and J. C. Clark, “Inverted electron-hole alignment in InAs-GaAs self-assembled quantum dots,” Phys. Rev. Lett. 84, 733–736 (2000).
[Crossref] [PubMed]

Mehrtens, T.

E. Goldmann, M. Paul, F. F. Krause, K. Müller, J. Kettler, T. Mehrtens, A. Rosenauer, M. Jetter, P. Michler, and F. Jahnke, “Structural and emission properties of InGaAs/GaAs quantum dots emitting at 1.3 µ m,” Appl. Phys. Lett. 105, 152102 (2014).
[Crossref]

Michler, P.

E. Goldmann, M. Paul, F. F. Krause, K. Müller, J. Kettler, T. Mehrtens, A. Rosenauer, M. Jetter, P. Michler, and F. Jahnke, “Structural and emission properties of InGaAs/GaAs quantum dots emitting at 1.3 µ m,” Appl. Phys. Lett. 105, 152102 (2014).
[Crossref]

Mikkelsen, M. H.

T. B. Hoang, G. M. Akselrod, and M. H. Mikkelsen, “Ultrafast room-temperature single photon emission from quantum dots coupled to plasmonic nanocavities,” Nano Lett. 16, 270–275 (2016).
[Crossref]

T. B. Hoang, G. M. Akselrod, C. Argyropoulos, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Ultrafast spontaneous emission source using plasmonic nanoantennas,” Nat. Commun. 6, 7788 (2015).
[Crossref] [PubMed]

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8, 835–840 (2014).
[Crossref]

Moerner, W. E.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3, 654–657 (2009).
[Crossref]

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-Dependent Optical Coupling of Single “Bowtie” nanoantennas resonant in the visible,” Nano Lett. 4, 957–961 (2004).
[Crossref]

Moshchenko, S. P.

A. A. Lyamkina, S. P. Moshchenko, D. V. Dmitriev, A. I. Toropov, and T. S. Shamirzaev, “Exciton-plasmon interaction in hybrid quantum dot/metal cluster structures fabricated by molecular-beam epitaxy,” JETP Letters 99, 219 (2014).
[Crossref]

Mowbray, D. J.

P. W. Fry, I. E. Itskevich, D. J. Mowbray, M. S. Skolnick, J. J. Finley, J. A. Barker, E. P. O’Reilly, L. R. Wilson, I. A. Larkin, P. A. Maksym, M. Hopkinson, M. Al-Khafaji, J. P. David, A. G. Cullis, G. Hill, and J. C. Clark, “Inverted electron-hole alignment in InAs-GaAs self-assembled quantum dots,” Phys. Rev. Lett. 84, 733–736 (2000).
[Crossref] [PubMed]

Müllen, K.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3, 654–657 (2009).
[Crossref]

Muller, A.

E. B. Flagg, A. Muller, J. W. Robertson, S. Founta, D. G. Deppe, M. Xiao, W. Ma, G. J. Salamo, and C. K. Shih, “Resonantly driven coherent oscillations in a solid-state quantum emitter,” Nat. Phys. 5, 203–207 (2009).
[Crossref]

Müller, K.

G. Bracher, K. Schraml, M. Blauth, J. Wierzbowski, N. Coca-López, M. Bichler, K. Müller, J. J. Finley, and M. Kaniber, “Imaging surface plasmon polaritons using proximal self-assembled InGaAs quantum dots,” J. Appl. Phys. 116, 033101 (2014).
[Crossref]

E. Goldmann, M. Paul, F. F. Krause, K. Müller, J. Kettler, T. Mehrtens, A. Rosenauer, M. Jetter, P. Michler, and F. Jahnke, “Structural and emission properties of InGaAs/GaAs quantum dots emitting at 1.3 µ m,” Appl. Phys. Lett. 105, 152102 (2014).
[Crossref]

Niu, Q.

A. R. Smith, K.-J. Chao, Q. Niu, and C.-K. Shih, “Formation of atomically flat silver films on GaAs with a “Silver Mean” quasi periodicity,” Science 273, 226–228 (1996).
[Crossref] [PubMed]

Nordlander, P.

J. Zuloaga and P. Nordlander, “On the energy shift between near-field and far-field peak intensities in localized plasmon systems,” Nano Lett. 11, 1280–1283 (2011).
[Crossref] [PubMed]

O’Brien, J. L.

J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies”, Nat. Photonics 3, 687–695 (2010).
[Crossref]

O’Reilly, E. P.

P. W. Fry, I. E. Itskevich, D. J. Mowbray, M. S. Skolnick, J. J. Finley, J. A. Barker, E. P. O’Reilly, L. R. Wilson, I. A. Larkin, P. A. Maksym, M. Hopkinson, M. Al-Khafaji, J. P. David, A. G. Cullis, G. Hill, and J. C. Clark, “Inverted electron-hole alignment in InAs-GaAs self-assembled quantum dots,” Phys. Rev. Lett. 84, 733–736 (2000).
[Crossref] [PubMed]

Ossiander, M.

G. Bracher, K. Schraml, M. Ossiander, S. Frédérick, J. J. Finley, and M. Kaniber, “Optical study of lithographically defined, subwavelength plasmonic wires and their coupling to embedded quantum emitters,” Nanotechnology 25, 075203 (2014).
[Crossref] [PubMed]

Ozbay, E.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[Crossref] [PubMed]

Paul, M.

E. Goldmann, M. Paul, F. F. Krause, K. Müller, J. Kettler, T. Mehrtens, A. Rosenauer, M. Jetter, P. Michler, and F. Jahnke, “Structural and emission properties of InGaAs/GaAs quantum dots emitting at 1.3 µ m,” Appl. Phys. Lett. 105, 152102 (2014).
[Crossref]

Pfeiffer, M.

M. Pfeiffer, K. Lindfors, H. Zhang, B. Fenk, F. Phillipp, P. Atkinson, A. Rastelli, O. G. Schmidt, H. Giessen, and M. Lippitz, “Eleven nanometer alignment precision of a plasmonic nanoantenna with a self-assembled GaAs quantum dot,” Nano Lett. 14, 197–201 (2014).
[Crossref]

M. Pfeiffer, K. Lindfors, C. Wolpert, P. Atkinson, M. Benyoucef, A. Rastelli, O. G. Schmidt, H. Giessen, and M. Lippitz, “Enhancing the optical excitation efficiency of a single self-assembled quantum dot with a plasmonic nanoantenna,” Nano Lett. 10, 4555–4558 (2010).
[Crossref] [PubMed]

Phillipp, F.

M. Pfeiffer, K. Lindfors, H. Zhang, B. Fenk, F. Phillipp, P. Atkinson, A. Rastelli, O. G. Schmidt, H. Giessen, and M. Lippitz, “Eleven nanometer alignment precision of a plasmonic nanoantenna with a self-assembled GaAs quantum dot,” Nano Lett. 14, 197–201 (2014).
[Crossref]

Prangsma, J. C.

J. C. Prangsma, J. Kern, A. G. Knapp, S. Grossmann, M. Emmerling, M. Kamp, and B. Hecht, “Electrically connected resonant optical antennas,” Nano Lett. 12, 3915–3919 (2012).
[Crossref] [PubMed]

Purcell, E. M.

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Quidant, R.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[Crossref] [PubMed]

Rastelli, A.

H. Zhang, Y. Huo, K. Lindfors, Y. Chen, O. G. Schmidt, A. Rastelli, and M. Lippitz, “Narrow-line self-assembled GaAs quantum dots for plasmonics,” Appl. Phys. Lett. 106, 101110 (2015).
[Crossref]

M. Pfeiffer, K. Lindfors, H. Zhang, B. Fenk, F. Phillipp, P. Atkinson, A. Rastelli, O. G. Schmidt, H. Giessen, and M. Lippitz, “Eleven nanometer alignment precision of a plasmonic nanoantenna with a self-assembled GaAs quantum dot,” Nano Lett. 14, 197–201 (2014).
[Crossref]

M. Pfeiffer, K. Lindfors, C. Wolpert, P. Atkinson, M. Benyoucef, A. Rastelli, O. G. Schmidt, H. Giessen, and M. Lippitz, “Enhancing the optical excitation efficiency of a single self-assembled quantum dot with a plasmonic nanoantenna,” Nano Lett. 10, 4555–4558 (2010).
[Crossref] [PubMed]

Regler, A.

M. Kaniber, K. Schraml, A. Regler, J. Bartl, G. Glashagen, F. Flassig, J. Wierzbowski, and J. J. Finley, “Surface plasmon resonance spectroscopy of single bowtie nano-antennas using a differential reflectivity method,” Sci. Rep. 6, 23203 (2016).
[Crossref] [PubMed]

Robertson, J. W.

E. B. Flagg, A. Muller, J. W. Robertson, S. Founta, D. G. Deppe, M. Xiao, W. Ma, G. J. Salamo, and C. K. Shih, “Resonantly driven coherent oscillations in a solid-state quantum emitter,” Nat. Phys. 5, 203–207 (2009).
[Crossref]

Rosenauer, A.

E. Goldmann, M. Paul, F. F. Krause, K. Müller, J. Kettler, T. Mehrtens, A. Rosenauer, M. Jetter, P. Michler, and F. Jahnke, “Structural and emission properties of InGaAs/GaAs quantum dots emitting at 1.3 µ m,” Appl. Phys. Lett. 105, 152102 (2014).
[Crossref]

Sackmann, E.

K. Adlkofer, E. F. Duijs, F. Findeis, M. Bichler, A. Zrenner, E. Sackmann, G. Abstreiter, and M. Tanaka, “Enhancement of photoluminescence from near-surface quantum dots by suppression of surface state density,” Phys. Chem. Chem. Phys. 4, 785–790 (2002).
[Crossref]

Salamo, G. J.

E. B. Flagg, A. Muller, J. W. Robertson, S. Founta, D. G. Deppe, M. Xiao, W. Ma, G. J. Salamo, and C. K. Shih, “Resonantly driven coherent oscillations in a solid-state quantum emitter,” Nat. Phys. 5, 203–207 (2009).
[Crossref]

Schell, A. W.

Schmidt, O. G.

H. Zhang, Y. Huo, K. Lindfors, Y. Chen, O. G. Schmidt, A. Rastelli, and M. Lippitz, “Narrow-line self-assembled GaAs quantum dots for plasmonics,” Appl. Phys. Lett. 106, 101110 (2015).
[Crossref]

M. Pfeiffer, K. Lindfors, H. Zhang, B. Fenk, F. Phillipp, P. Atkinson, A. Rastelli, O. G. Schmidt, H. Giessen, and M. Lippitz, “Eleven nanometer alignment precision of a plasmonic nanoantenna with a self-assembled GaAs quantum dot,” Nano Lett. 14, 197–201 (2014).
[Crossref]

M. Pfeiffer, K. Lindfors, C. Wolpert, P. Atkinson, M. Benyoucef, A. Rastelli, O. G. Schmidt, H. Giessen, and M. Lippitz, “Enhancing the optical excitation efficiency of a single self-assembled quantum dot with a plasmonic nanoantenna,” Nano Lett. 10, 4555–4558 (2010).
[Crossref] [PubMed]

Schraml, K.

M. Kaniber, K. Schraml, A. Regler, J. Bartl, G. Glashagen, F. Flassig, J. Wierzbowski, and J. J. Finley, “Surface plasmon resonance spectroscopy of single bowtie nano-antennas using a differential reflectivity method,” Sci. Rep. 6, 23203 (2016).
[Crossref] [PubMed]

K. Schraml, M. Spiegl, M. Kammerlocher, G. Bracher, J. Bartl, T. Campbell, J. J. Finley, and M. Kaniber, “Optical properties and interparticle coupling of plasmonic bowtie nanoantennas on a semiconducting substrate,” Phys. Rev. B 90, 035435 (2014).
[Crossref]

G. Bracher, K. Schraml, M. Ossiander, S. Frédérick, J. J. Finley, and M. Kaniber, “Optical study of lithographically defined, subwavelength plasmonic wires and their coupling to embedded quantum emitters,” Nanotechnology 25, 075203 (2014).
[Crossref] [PubMed]

G. Bracher, K. Schraml, M. Blauth, J. Wierzbowski, N. Coca-López, M. Bichler, K. Müller, J. J. Finley, and M. Kaniber, “Imaging surface plasmon polaritons using proximal self-assembled InGaAs quantum dots,” J. Appl. Phys. 116, 033101 (2014).
[Crossref]

Schuck, P. J.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-Dependent Optical Coupling of Single “Bowtie” nanoantennas resonant in the visible,” Nano Lett. 4, 957–961 (2004).
[Crossref]

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref] [PubMed]

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology The development of chip-scale electronics and photonics has led to,” Mater. Today 9, 20–27 (2006).
[Crossref]

Shamirzaev, T. S.

A. A. Lyamkina, S. P. Moshchenko, D. V. Dmitriev, A. I. Toropov, and T. S. Shamirzaev, “Exciton-plasmon interaction in hybrid quantum dot/metal cluster structures fabricated by molecular-beam epitaxy,” JETP Letters 99, 219 (2014).
[Crossref]

Shih, C. K.

E. B. Flagg, A. Muller, J. W. Robertson, S. Founta, D. G. Deppe, M. Xiao, W. Ma, G. J. Salamo, and C. K. Shih, “Resonantly driven coherent oscillations in a solid-state quantum emitter,” Nat. Phys. 5, 203–207 (2009).
[Crossref]

Shih, C.-K.

A. R. Smith, K.-J. Chao, Q. Niu, and C.-K. Shih, “Formation of atomically flat silver films on GaAs with a “Silver Mean” quasi periodicity,” Science 273, 226–228 (1996).
[Crossref] [PubMed]

Skolnick, M. S.

P. W. Fry, I. E. Itskevich, D. J. Mowbray, M. S. Skolnick, J. J. Finley, J. A. Barker, E. P. O’Reilly, L. R. Wilson, I. A. Larkin, P. A. Maksym, M. Hopkinson, M. Al-Khafaji, J. P. David, A. G. Cullis, G. Hill, and J. C. Clark, “Inverted electron-hole alignment in InAs-GaAs self-assembled quantum dots,” Phys. Rev. Lett. 84, 733–736 (2000).
[Crossref] [PubMed]

Smith, A. R.

A. R. Smith, K.-J. Chao, Q. Niu, and C.-K. Shih, “Formation of atomically flat silver films on GaAs with a “Silver Mean” quasi periodicity,” Science 273, 226–228 (1996).
[Crossref] [PubMed]

Smith, D. R.

T. B. Hoang, G. M. Akselrod, C. Argyropoulos, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Ultrafast spontaneous emission source using plasmonic nanoantennas,” Nat. Commun. 6, 7788 (2015).
[Crossref] [PubMed]

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8, 835–840 (2014).
[Crossref]

Sørensen, A. S.

M. L. Andersen, S. Stobbe, A. S. Sørensen, and P. Lodahl, “Strongly modified plasmon-matter interaction with mesoscopic quantum emitters,” Nat. Phys. 7, 215–218 (2011).
[Crossref]

Spiegl, M.

K. Schraml, M. Spiegl, M. Kammerlocher, G. Bracher, J. Bartl, T. Campbell, J. J. Finley, and M. Kaniber, “Optical properties and interparticle coupling of plasmonic bowtie nanoantennas on a semiconducting substrate,” Phys. Rev. B 90, 035435 (2014).
[Crossref]

Stobbe, S.

M. L. Andersen, S. Stobbe, A. S. Sørensen, and P. Lodahl, “Strongly modified plasmon-matter interaction with mesoscopic quantum emitters,” Nat. Phys. 7, 215–218 (2011).
[Crossref]

Sundaramurthy, A.

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-Dependent Optical Coupling of Single “Bowtie” nanoantennas resonant in the visible,” Nano Lett. 4, 957–961 (2004).
[Crossref]

Taminiau, T. H.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[Crossref] [PubMed]

Tanaka, M.

K. Adlkofer, E. F. Duijs, F. Findeis, M. Bichler, A. Zrenner, E. Sackmann, G. Abstreiter, and M. Tanaka, “Enhancement of photoluminescence from near-surface quantum dots by suppression of surface state density,” Phys. Chem. Chem. Phys. 4, 785–790 (2002).
[Crossref]

Toropov, A. I.

A. A. Lyamkina, S. P. Moshchenko, D. V. Dmitriev, A. I. Toropov, and T. S. Shamirzaev, “Exciton-plasmon interaction in hybrid quantum dot/metal cluster structures fabricated by molecular-beam epitaxy,” JETP Letters 99, 219 (2014).
[Crossref]

van Hulst, N. F.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[Crossref] [PubMed]

Volpe, G.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[Crossref] [PubMed]

Vuckovic, J.

J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies”, Nat. Photonics 3, 687–695 (2010).
[Crossref]

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref] [PubMed]

Wierzbowski, J.

M. Kaniber, K. Schraml, A. Regler, J. Bartl, G. Glashagen, F. Flassig, J. Wierzbowski, and J. J. Finley, “Surface plasmon resonance spectroscopy of single bowtie nano-antennas using a differential reflectivity method,” Sci. Rep. 6, 23203 (2016).
[Crossref] [PubMed]

G. Bracher, K. Schraml, M. Blauth, J. Wierzbowski, N. Coca-López, M. Bichler, K. Müller, J. J. Finley, and M. Kaniber, “Imaging surface plasmon polaritons using proximal self-assembled InGaAs quantum dots,” J. Appl. Phys. 116, 033101 (2014).
[Crossref]

Wilson, L. R.

P. W. Fry, I. E. Itskevich, D. J. Mowbray, M. S. Skolnick, J. J. Finley, J. A. Barker, E. P. O’Reilly, L. R. Wilson, I. A. Larkin, P. A. Maksym, M. Hopkinson, M. Al-Khafaji, J. P. David, A. G. Cullis, G. Hill, and J. C. Clark, “Inverted electron-hole alignment in InAs-GaAs self-assembled quantum dots,” Phys. Rev. Lett. 84, 733–736 (2000).
[Crossref] [PubMed]

Wolpert, C.

M. Pfeiffer, K. Lindfors, C. Wolpert, P. Atkinson, M. Benyoucef, A. Rastelli, O. G. Schmidt, H. Giessen, and M. Lippitz, “Enhancing the optical excitation efficiency of a single self-assembled quantum dot with a plasmonic nanoantenna,” Nano Lett. 10, 4555–4558 (2010).
[Crossref] [PubMed]

Xiao, M.

E. B. Flagg, A. Muller, J. W. Robertson, S. Founta, D. G. Deppe, M. Xiao, W. Ma, G. J. Salamo, and C. K. Shih, “Resonantly driven coherent oscillations in a solid-state quantum emitter,” Nat. Phys. 5, 203–207 (2009).
[Crossref]

Yu, Z.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3, 654–657 (2009).
[Crossref]

Zhang, H.

H. Zhang, Y. Huo, K. Lindfors, Y. Chen, O. G. Schmidt, A. Rastelli, and M. Lippitz, “Narrow-line self-assembled GaAs quantum dots for plasmonics,” Appl. Phys. Lett. 106, 101110 (2015).
[Crossref]

M. Pfeiffer, K. Lindfors, H. Zhang, B. Fenk, F. Phillipp, P. Atkinson, A. Rastelli, O. G. Schmidt, H. Giessen, and M. Lippitz, “Eleven nanometer alignment precision of a plasmonic nanoantenna with a self-assembled GaAs quantum dot,” Nano Lett. 14, 197–201 (2014).
[Crossref]

Zia, R.

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology The development of chip-scale electronics and photonics has led to,” Mater. Today 9, 20–27 (2006).
[Crossref]

Zrenner, A.

K. Adlkofer, E. F. Duijs, F. Findeis, M. Bichler, A. Zrenner, E. Sackmann, G. Abstreiter, and M. Tanaka, “Enhancement of photoluminescence from near-surface quantum dots by suppression of surface state density,” Phys. Chem. Chem. Phys. 4, 785–790 (2002).
[Crossref]

Zuloaga, J.

J. Zuloaga and P. Nordlander, “On the energy shift between near-field and far-field peak intensities in localized plasmon systems,” Nano Lett. 11, 1280–1283 (2011).
[Crossref] [PubMed]

Appl. Phys. Lett. (3)

E. Goldmann, M. Paul, F. F. Krause, K. Müller, J. Kettler, T. Mehrtens, A. Rosenauer, M. Jetter, P. Michler, and F. Jahnke, “Structural and emission properties of InGaAs/GaAs quantum dots emitting at 1.3 µ m,” Appl. Phys. Lett. 105, 152102 (2014).
[Crossref]

T.-P. Hsieh, J.-I. Chyi, H.-S. Chang, W.-Y. Chen, T. M. Hsu, and W.-H. Chang, “Single photon emission from an InGaAs quantum dot precisely positioned on a nanoplane,” Appl. Phys. Lett. 90, 073105 (2007).
[Crossref]

H. Zhang, Y. Huo, K. Lindfors, Y. Chen, O. G. Schmidt, A. Rastelli, and M. Lippitz, “Narrow-line self-assembled GaAs quantum dots for plasmonics,” Appl. Phys. Lett. 106, 101110 (2015).
[Crossref]

J. Appl. Phys. (1)

G. Bracher, K. Schraml, M. Blauth, J. Wierzbowski, N. Coca-López, M. Bichler, K. Müller, J. J. Finley, and M. Kaniber, “Imaging surface plasmon polaritons using proximal self-assembled InGaAs quantum dots,” J. Appl. Phys. 116, 033101 (2014).
[Crossref]

JETP Letters (1)

A. A. Lyamkina, S. P. Moshchenko, D. V. Dmitriev, A. I. Toropov, and T. S. Shamirzaev, “Exciton-plasmon interaction in hybrid quantum dot/metal cluster structures fabricated by molecular-beam epitaxy,” JETP Letters 99, 219 (2014).
[Crossref]

Mater. Today (1)

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology The development of chip-scale electronics and photonics has led to,” Mater. Today 9, 20–27 (2006).
[Crossref]

Nano Lett. (6)

D. P. Fromm, A. Sundaramurthy, P. J. Schuck, G. Kino, and W. E. Moerner, “Gap-Dependent Optical Coupling of Single “Bowtie” nanoantennas resonant in the visible,” Nano Lett. 4, 957–961 (2004).
[Crossref]

T. B. Hoang, G. M. Akselrod, and M. H. Mikkelsen, “Ultrafast room-temperature single photon emission from quantum dots coupled to plasmonic nanocavities,” Nano Lett. 16, 270–275 (2016).
[Crossref]

J. C. Prangsma, J. Kern, A. G. Knapp, S. Grossmann, M. Emmerling, M. Kamp, and B. Hecht, “Electrically connected resonant optical antennas,” Nano Lett. 12, 3915–3919 (2012).
[Crossref] [PubMed]

M. Pfeiffer, K. Lindfors, H. Zhang, B. Fenk, F. Phillipp, P. Atkinson, A. Rastelli, O. G. Schmidt, H. Giessen, and M. Lippitz, “Eleven nanometer alignment precision of a plasmonic nanoantenna with a self-assembled GaAs quantum dot,” Nano Lett. 14, 197–201 (2014).
[Crossref]

M. Pfeiffer, K. Lindfors, C. Wolpert, P. Atkinson, M. Benyoucef, A. Rastelli, O. G. Schmidt, H. Giessen, and M. Lippitz, “Enhancing the optical excitation efficiency of a single self-assembled quantum dot with a plasmonic nanoantenna,” Nano Lett. 10, 4555–4558 (2010).
[Crossref] [PubMed]

J. Zuloaga and P. Nordlander, “On the energy shift between near-field and far-field peak intensities in localized plasmon systems,” Nano Lett. 11, 1280–1283 (2011).
[Crossref] [PubMed]

Nanotechnology (1)

G. Bracher, K. Schraml, M. Ossiander, S. Frédérick, J. J. Finley, and M. Kaniber, “Optical study of lithographically defined, subwavelength plasmonic wires and their coupling to embedded quantum emitters,” Nanotechnology 25, 075203 (2014).
[Crossref] [PubMed]

Nat. Commun. (1)

T. B. Hoang, G. M. Akselrod, C. Argyropoulos, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Ultrafast spontaneous emission source using plasmonic nanoantennas,” Nat. Commun. 6, 7788 (2015).
[Crossref] [PubMed]

Nat. Mater. (1)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater. 9, 193–204 (2010).
[Crossref] [PubMed]

Nat. Photonics (4)

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1, 641–648 (2007).
[Crossref]

J. L. O’Brien, A. Furusawa, and J. Vučković, “Photonic quantum technologies”, Nat. Photonics 3, 687–695 (2010).
[Crossref]

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3, 654–657 (2009).
[Crossref]

G. M. Akselrod, C. Argyropoulos, T. B. Hoang, C. Ciracì, C. Fang, J. Huang, D. R. Smith, and M. H. Mikkelsen, “Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas,” Nat. Photonics 8, 835–840 (2014).
[Crossref]

Nat. Phys. (2)

M. L. Andersen, S. Stobbe, A. S. Sørensen, and P. Lodahl, “Strongly modified plasmon-matter interaction with mesoscopic quantum emitters,” Nat. Phys. 7, 215–218 (2011).
[Crossref]

E. B. Flagg, A. Muller, J. W. Robertson, S. Founta, D. G. Deppe, M. Xiao, W. Ma, G. J. Salamo, and C. K. Shih, “Resonantly driven coherent oscillations in a solid-state quantum emitter,” Nat. Phys. 5, 203–207 (2009).
[Crossref]

Opt. Express (1)

Phys. Chem. Chem. Phys. (1)

K. Adlkofer, E. F. Duijs, F. Findeis, M. Bichler, A. Zrenner, E. Sackmann, G. Abstreiter, and M. Tanaka, “Enhancement of photoluminescence from near-surface quantum dots by suppression of surface state density,” Phys. Chem. Chem. Phys. 4, 785–790 (2002).
[Crossref]

Phys. Rev. (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Phys. Rev. B (1)

K. Schraml, M. Spiegl, M. Kammerlocher, G. Bracher, J. Bartl, T. Campbell, J. J. Finley, and M. Kaniber, “Optical properties and interparticle coupling of plasmonic bowtie nanoantennas on a semiconducting substrate,” Phys. Rev. B 90, 035435 (2014).
[Crossref]

Phys. Rev. Lett. (2)

P. Biagioni, J. S. Huang, L. Duò, M. Finazzi, and B. Hecht, “Cross resonant optical antenna,” Phys. Rev. Lett. 102, 256801 (2009).
[Crossref] [PubMed]

P. W. Fry, I. E. Itskevich, D. J. Mowbray, M. S. Skolnick, J. J. Finley, J. A. Barker, E. P. O’Reilly, L. R. Wilson, I. A. Larkin, P. A. Maksym, M. Hopkinson, M. Al-Khafaji, J. P. David, A. G. Cullis, G. Hill, and J. C. Clark, “Inverted electron-hole alignment in InAs-GaAs self-assembled quantum dots,” Phys. Rev. Lett. 84, 733–736 (2000).
[Crossref] [PubMed]

Sci. Rep. (1)

M. Kaniber, K. Schraml, A. Regler, J. Bartl, G. Glashagen, F. Flassig, J. Wierzbowski, and J. J. Finley, “Surface plasmon resonance spectroscopy of single bowtie nano-antennas using a differential reflectivity method,” Sci. Rep. 6, 23203 (2016).
[Crossref] [PubMed]

Science (3)

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010).
[Crossref] [PubMed]

A. R. Smith, K.-J. Chao, Q. Niu, and C.-K. Shih, “Formation of atomically flat silver films on GaAs with a “Silver Mean” quasi periodicity,” Science 273, 226–228 (1996).
[Crossref] [PubMed]

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311, 189–193 (2006).
[Crossref] [PubMed]

Other (2)

S. Maier, Plasmonics: Fundamentals and Applications (Springer US, 2007).

D. Bimberg, M. Grundmann, and N. Ledentsov, Quantum Dot Heterostructures (Wiley, 1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 Sample layout, structural and optical characterisation: (a) Schematic illustration of the monolithically integrated quantum dot-nanoantenna system. (b) Scanning electron microscopy image of the bowtie nanoantenna array (left) and an individual bowtie nanoantenna (right) with s = 87 nm and g = 26 nm. Scale bar, 20 nm. (c) Top: Simulated scattering cross-section σscatt and normalised decay rate Γ/Γ0 of a bowtie nanoantenna with nominal s0 = 90 nm and g0 = 15 nm in blue and red, respectively. Bottom: Measured quantum dot spectrum (L: laser, C: carbon impurities) and differential reflectivity of a bowtie nanoantenna with s = 87 nm and g = 26 nm in red/green and grey, respectively. Blue curve shows a 50-point-smoothed average.
Fig. 2
Fig. 2 Enhanced luminescence from coupled quantum dot-nanoantenna systems: (a) Spatially resolved laser reflectivity, co-, cross-polarised and differential quantum dot emission from left to right, respectively. (b), (c) Photoluminescence spectra of uncoupled and coupled quantum dots for co- and cross-polarised emission in blue and red, respectively.
Fig. 3
Fig. 3 Strong linearly polarised emission from coupled quantum dot-nanoantenna systems: (a) Polarisation-resolved photoluminescence for a coupled quantum dot-nanoantenna system (top) and an uncoupled quantum dot (bottom). (b) Corresponding peak intensities of a coupled quantum dot-nanoantenna system (top) and an uncouped quantum dot (bottom) in a polar-plot representation. (c) Degree of linear polarisation ρ for coupled quantum dot-nanoantenna systems (red) and uncoupled quantum dots (blue).
Fig. 4
Fig. 4 Purcell-enhanced emission from coupled quantum dot-nanoantenna systems: (a) Time-resolved photoluminescence transients of a coupled quantum dot-nanoantenna system (red), an uncoupled quantum dot (blue) and the instrument response function (black). (b) Histogram of the spontaneous emission lifetimes for coupled quantum dot-nanoantenna systems (red) and uncoupled quantum dots (blue). (c) Correlation between the spontaneous emission lifetime and the degree of linear polarisation.

Metrics