Abstract

We demonstrate a full control ultra-stability Yb-doped fiber optical frequency comb (OFC). The carrier-envelop offset frequency (fceo) and the repetition rate (fr) are locked with the standard phase locked loop (PLL) technique. The fceo is locked to the radio frequency (RF) synthesizer, and the Allan deviation is 1.2 × 10−17/s. The fr is locked to an ultra-stability continuous wave (CW) laser at 972 nm. The beat signal (fbeat) between the Yb-doped fiber OFC and CW laser is obtained with the signal to noise ratio (SNR) of 43 dB at 300 kHz resolution bandwidth (RBW). The time jitter of the fbeat signal is 278 as, which is integrated from 1 Hz to 10 MHz. The long-term stability is 575 μHz in 3 hours, and the corresponding Allan deviation is 2 × 10−18/s, which is the best stability result in Yb-doped fiber OFC. The linewidth is narrowed from 200 kHz to subhertz magnitude limited by the instrument resolution bandwidth.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
CEO stabilized frequency comb from a 1-μm Kerr-lens mode-locked bulk Yb:CYA laser

Zijiao Yu, Hainian Han, Yang Xie, Yingnan Peng, Xiaodong Xu, and Zhiyi Wei
Opt. Express 24(3) 3103-3111 (2016)

Full stabilization and characterization of an optical frequency comb from a diode-pumped solid-state laser with GHz repetition rate

Sargis Hakobyan, Valentin J. Wittwer, Pierre Brochard, Kutan Gürel, Stéphane Schilt, Aline S. Mayer, Ursula Keller, and Thomas Südmeyer
Opt. Express 25(17) 20437-20453 (2017)

Simple method for stabilizing an optical frequency comb to an optical reference without an RF signal generator

Atsushi Ishizawa, Kenya Hitomi, Kazutaka Hara, Kenichi Hitachi, Tadashi Nishikawa, Tetsuomi Sogawa, and Hideki Gotoh
OSA Continuum 2(5) 1706-1712 (2019)

References

  • View by:
  • |
  • |
  • |

  1. T. W. Hänsch, “Nobel lecture: passion for precision,” Rev. Mod. Phys. 78(4), 1297–1309 (2006).
    [Crossref]
  2. J. L. Hall, “Nobel Lecture: Defining and measuring optical frequencies,” Rev. Mod. Phys. 78(4), 1279–1295 (2006).
    [Crossref] [PubMed]
  3. J. Ye, H. Schnatz, and L. W. Hollberg, “Optical frequency combs: from frequency metrology to optical phase control,” IEEE J. Sel. Top. Quantum Electron. 9(4), 1041–1058 (2003).
    [Crossref]
  4. S. T. Cundiff and J. Ye, “Colloquium: Femtosecond optical frequency combs,” Rev. Mod. Phys. 75(1), 325–342 (2003).
    [Crossref]
  5. N. R. Newbury, “Searching for applications with a fine-tooth comb,” Nat. Photonics 5(4), 186–188 (2011).
    [Crossref]
  6. T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
    [Crossref] [PubMed]
  7. S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science 293(5531), 825–828 (2001).
    [Crossref] [PubMed]
  8. J. Kim, J. A. Cox, J. Chen, and F. X. Kärtner, “Drift-free femtosecond timing synchronization of remote optical and microwave sources,” Nat. Photonics 2(12), 733–736 (2008).
    [Crossref]
  9. T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwave via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
    [Crossref]
  10. J. Millo, R. Boudot, M. Lours, P. Y. Bourgeois, A. N. Luiten, Y. Le Coq, Y. Kersalé, and G. Santarelli, “Ultra-low-noise microwave extraction from fiber-based optical frequency comb,” Opt. Lett. 34(23), 3707–3709 (2009).
    [Crossref] [PubMed]
  11. T. Yasui, S. Yokoyama, H. Inaba, K. Minoshima, T. Nagatsuma, and T. Araki, “Terahertz frequency metrology based on frequency comb,” IEEE J. Sel. Top. Quantum Electron. 17(1), 191–201 (2011).
    [Crossref]
  12. A. Ruehl, A. Marcinkevicius, M. E. Fermann, and I. Hartl, “80 W, 120 fs Yb-fiber frequency comb,” Opt. Lett. 35(18), 3015–3017 (2010).
    [Crossref] [PubMed]
  13. T. C. Schratwieser, K. Balskus, R. A. McCracken, C. Farrell, C. G. Leburn, Z. Zhang, T. P. Lamour, T. I. Ferreiro, A. Marandi, A. S. Arnold, and D. T. Reid, “(87)Rb-stabilized 375-MHz Yb:fiber femtosecond frequency comb,” Opt. Express 22(9), 10494–10499 (2014).
    [Crossref] [PubMed]
  14. G. Wang, F. Meng, C. Li, T. Jiang, A. Wang, Z. Fang, and Z. Zhang, “500 MHz spaced Yb:fiber laser frequency comb without amplifiers,” Opt. Lett. 39(9), 2534–2536 (2014).
    [Crossref] [PubMed]
  15. D. Hou, J. Wu, S. Zhang, Q. Ren, Z. Zhang, and J. Zhao, “A stable frequency comb directly referenced to rubidium electromagnetically induced transparency and two-photon transitions,” Appl. Phys. Lett. 104(11), 111104 (2014).
    [Crossref]
  16. Y. Kim, S. Kim, Y. J. Kim, H. Hussein, and S. W. Kim, “Er-doped fiber frequency comb with mHz relative linewidth,” Opt. Express 17(14), 11972–11977 (2009).
    [Crossref] [PubMed]
  17. T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6(10), 687–692 (2012).
    [Crossref]
  18. D. Gatti, T. Sala, A. Gambetta, N. Coluccelli, G. N. Conti, G. Galzerano, P. Laporta, and M. Marangoni, “Analysis of the feed-forward method for the referencing of a CW laser to a frequency comb,” Opt. Express 20(22), 24880–24885 (2012).
    [Crossref] [PubMed]
  19. Y. Zhang, L. Yan, S. Fan, L. Zhang, and W. Zhao, W, Guo, S. Zhang, and H. Jiang, “Development of an erbium-fiber-laser-based optical frequency comb at NTSC,” IFCS-EFTF, IEEE, 599–601 (2015).
  20. F. C. Cruz, G. Ycas, D. L. Maser, and S. A. Diddams, “Frequency stabilization of a mid-infrared optical frequency comb to single-frequency optical references,” MICS, OSA, MM1C, 2 (2016).
  21. N. Kuse, C. C. Lee, J. Jiang, C. Mohr, T. R. Schibli, and M. E. Fermann, “Ultra-low noise all polarization-maintaining Er fiber-based optical frequency combs facilitated with a graphene modulator,” Opt. Express 23(19), 24342–24350 (2015).
    [Crossref] [PubMed]
  22. W. Hänsel, M. Giunta, K. Beha, M. Lezius, M. Fischer, and R. Holzwarth, “Ultra-low phase noise all-PM Er: fiber optical frequency comb,” ASSL, OSA, ATh4A. 2 (2015).
  23. E. Baumann, F. R. Giorgetta, J. W. Nicholson, W. C. Swann, I. Coddington, and N. R. Newbury, “High-performance, vibration-immune, fiber-laser frequency comb,” Opt. Lett. 34(5), 638–640 (2009).
    [Crossref] [PubMed]
  24. N. Daniele, B. Argence, W. Zhang, R. L. Targat, G. Santarelli, and Y. L. Coq, “Spectral Purity Transfer between Optical Wavelengths at the 10−18 Level,” Nat. Photonics 8(3), 219–223 (2014).
    [Crossref]
  25. M. Yan, W. Li, K. Yang, H. Zhou, X. Shen, Q. Zhou, Q. Ru, D. Bai, and H. Zeng, “High-power Yb-fiber comb with feed-forward control of nonlinear-polarization-rotation mode-locking and large-mode-area fiber amplification,” Opt. Lett. 37(9), 1511–1513 (2012).
    [Crossref] [PubMed]
  26. C. C. Lee, C. Mohr, J. Bethge, S. Suzuki, M. E. Fermann, I. Hartl, and T. R. Schibli, “Frequency comb stabilization with bandwidth beyond the limit of gain lifetime by an intracavity graphene electro-optic modulator,” Opt. Lett. 37(15), 3084–3086 (2012).
    [Crossref] [PubMed]
  27. J. A. Cox, A. H. Nejadmalayeri, J. Kim, and F. X. Kärtner, “Complete characterization of quantum-limited timing jitter in passively mode-locked fiber lasers,” Opt. Lett. 35(20), 3522–3524 (2010).
    [Crossref] [PubMed]
  28. Y. Song, K. Jung, and J. Kim, “Impact of pulse dynamics on timing jitter in mode-locked fiber lasers,” Opt. Lett. 36(10), 1761–1763 (2011).
    [Crossref] [PubMed]
  29. Y. Song, C. Kim, K. Jung, H. Kim, and J. Kim, “Timing jitter optimization of mode-locked Yb-fiber lasers toward the attosecond regime,” Opt. Express 19(15), 14518–14525 (2011).
    [Crossref] [PubMed]
  30. P. Pal, W. H. Knox, I. Hartl, and M. E. Fermann, “Self referenced Yb-fiber-laser frequency comb using a dispersion micromanaged tapered holey fiber,” Opt. Express 15(19), 12161–12166 (2007).
    [Crossref] [PubMed]
  31. C. Benko, A. Ruehl, M. J. Martin, K. S. E. Eikema, M. E. Fermann, I. Hartl, and J. Ye, “Full phase stabilization of a Yb:fiber femtosecond frequency comb via high-bandwidth transducers,” Opt. Lett. 37(12), 2196–2198 (2012).
    [Crossref] [PubMed]
  32. T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevičius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2(6), 355–359 (2008).
    [Crossref]
  33. A. Cingöz, D. C. Yost, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, “Broadband phase noise suppression in a Yb-fiber frequency comb,” Opt. Lett. 36(5), 743–745 (2011).
    [Crossref] [PubMed]
  34. L. Nugent-Glandorf, T. A. Johnson, Y. Kobayashi, and S. A. Diddams, “Impact of dispersion on amplitude and frequency noise in a Yb-fiber laser comb,” Opt. Lett. 36(9), 1578–1580 (2011).
    [Crossref] [PubMed]
  35. D. Hou, B. Ning, S. Zhang, J. Wu, and J. Zhao, “Long-term stabilization of fiber laser using phase-locking technique with ultra-low phase noise and phase drift,” IEEE J. Sel. Top. Quantum Electron. 20(5), 456–463 (2014).
    [Crossref]
  36. Y. Nakajima, H. Inaba, K. Hosaka, K. Minoshima, A. Onae, M. Yasuda, T. Kohno, S. Kawato, T. Kobayashi, T. Katsuyama, and F. L. Hong, “A multi-branch, fiber-based frequency comb with millihertz-level relative linewidths using an intra-cavity electro-optic modulator,” Opt. Express 18(2), 1667–1676 (2010).
    [Crossref] [PubMed]
  37. F. Quinlan, T. M. Fortier, M. S. Kirchner, J. A. Taylor, M. J. Thorpe, N. Lemke, A. D. Ludlow, Y. Jiang, and S. A. Diddams, “Ultralow phase noise microwave generation with an Er:fiber-based optical frequency divider,” Opt. Lett. 36(16), 3260–3262 (2011).
    [Crossref] [PubMed]
  38. S. Rieger, T. Hellwig, T. Walbaum, and C. Fallnich, “Optical repetition rate stabilization of a mode-locked all-fiber laser,” Opt. Express 21(4), 4889–4895 (2013).
    [Crossref] [PubMed]
  39. B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10(-18) level,” Nature 506(7486), 71–75 (2014).
    [Crossref] [PubMed]
  40. L. Hou, H. Han, L. Zhang, J. Zhang, D. Li, and Z. Wei, “A narrow linewidth diode laser at 243 nm,” Wuli Xuebao 64(13), 134205 (2015).
  41. R. J. Rafac, B. C. Young, J. A. Beall, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Sub-dekahertz ultraviolet spectroscopy of 199Hg+,” Phys. Rev. Lett. 85(12), 2462–2465 (2000).
    [Crossref] [PubMed]
  42. K. Iwakuni, H. Inaba, Y. Nakajima, T. Kobayashi, K. Hosaka, A. Onae, and F. L. Hong, “Narrow linewidth comb realized with a mode-locked fiber laser using an intra-cavity waveguide electro-optic modulator for high-speed control,” Opt. Express 20(13), 13769–13776 (2012).
    [Crossref] [PubMed]
  43. M. Hoffmann, S. Schilt, and T. Südmeyer, “CEO stabilization of a femtosecond laser using a SESAM as fast opto-optical modulator,” Opt. Express 21(24), 30054–30064 (2013).
    [Crossref] [PubMed]
  44. D. W. Allan, “Time and frequency (time-domain) characterization, estimation, and prediction of precision clocks and oscillators,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 34(6), 647–654 (1987).
    [Crossref] [PubMed]
  45. P. Lesage, “Characterization of frequency stability: bias due to the juxtaposition of time-interval measurements,” IEEE Trans. Instrum. Meas. 32(1), 204–207 (1983).
    [Crossref]
  46. I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, and H. Katori, “Cryogenic optical lattice clocks,” Nat. Photonics 5, 203–210 (2015).
  47. T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2 × 10(-18) total uncertainty,” Nat. Commun. 6, 6896 (2015).
    [Crossref] [PubMed]

2015 (4)

N. Kuse, C. C. Lee, J. Jiang, C. Mohr, T. R. Schibli, and M. E. Fermann, “Ultra-low noise all polarization-maintaining Er fiber-based optical frequency combs facilitated with a graphene modulator,” Opt. Express 23(19), 24342–24350 (2015).
[Crossref] [PubMed]

L. Hou, H. Han, L. Zhang, J. Zhang, D. Li, and Z. Wei, “A narrow linewidth diode laser at 243 nm,” Wuli Xuebao 64(13), 134205 (2015).

I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, and H. Katori, “Cryogenic optical lattice clocks,” Nat. Photonics 5, 203–210 (2015).

T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2 × 10(-18) total uncertainty,” Nat. Commun. 6, 6896 (2015).
[Crossref] [PubMed]

2014 (6)

B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10(-18) level,” Nature 506(7486), 71–75 (2014).
[Crossref] [PubMed]

N. Daniele, B. Argence, W. Zhang, R. L. Targat, G. Santarelli, and Y. L. Coq, “Spectral Purity Transfer between Optical Wavelengths at the 10−18 Level,” Nat. Photonics 8(3), 219–223 (2014).
[Crossref]

D. Hou, B. Ning, S. Zhang, J. Wu, and J. Zhao, “Long-term stabilization of fiber laser using phase-locking technique with ultra-low phase noise and phase drift,” IEEE J. Sel. Top. Quantum Electron. 20(5), 456–463 (2014).
[Crossref]

T. C. Schratwieser, K. Balskus, R. A. McCracken, C. Farrell, C. G. Leburn, Z. Zhang, T. P. Lamour, T. I. Ferreiro, A. Marandi, A. S. Arnold, and D. T. Reid, “(87)Rb-stabilized 375-MHz Yb:fiber femtosecond frequency comb,” Opt. Express 22(9), 10494–10499 (2014).
[Crossref] [PubMed]

G. Wang, F. Meng, C. Li, T. Jiang, A. Wang, Z. Fang, and Z. Zhang, “500 MHz spaced Yb:fiber laser frequency comb without amplifiers,” Opt. Lett. 39(9), 2534–2536 (2014).
[Crossref] [PubMed]

D. Hou, J. Wu, S. Zhang, Q. Ren, Z. Zhang, and J. Zhao, “A stable frequency comb directly referenced to rubidium electromagnetically induced transparency and two-photon transitions,” Appl. Phys. Lett. 104(11), 111104 (2014).
[Crossref]

2013 (2)

2012 (6)

K. Iwakuni, H. Inaba, Y. Nakajima, T. Kobayashi, K. Hosaka, A. Onae, and F. L. Hong, “Narrow linewidth comb realized with a mode-locked fiber laser using an intra-cavity waveguide electro-optic modulator for high-speed control,” Opt. Express 20(13), 13769–13776 (2012).
[Crossref] [PubMed]

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6(10), 687–692 (2012).
[Crossref]

D. Gatti, T. Sala, A. Gambetta, N. Coluccelli, G. N. Conti, G. Galzerano, P. Laporta, and M. Marangoni, “Analysis of the feed-forward method for the referencing of a CW laser to a frequency comb,” Opt. Express 20(22), 24880–24885 (2012).
[Crossref] [PubMed]

C. Benko, A. Ruehl, M. J. Martin, K. S. E. Eikema, M. E. Fermann, I. Hartl, and J. Ye, “Full phase stabilization of a Yb:fiber femtosecond frequency comb via high-bandwidth transducers,” Opt. Lett. 37(12), 2196–2198 (2012).
[Crossref] [PubMed]

M. Yan, W. Li, K. Yang, H. Zhou, X. Shen, Q. Zhou, Q. Ru, D. Bai, and H. Zeng, “High-power Yb-fiber comb with feed-forward control of nonlinear-polarization-rotation mode-locking and large-mode-area fiber amplification,” Opt. Lett. 37(9), 1511–1513 (2012).
[Crossref] [PubMed]

C. C. Lee, C. Mohr, J. Bethge, S. Suzuki, M. E. Fermann, I. Hartl, and T. R. Schibli, “Frequency comb stabilization with bandwidth beyond the limit of gain lifetime by an intracavity graphene electro-optic modulator,” Opt. Lett. 37(15), 3084–3086 (2012).
[Crossref] [PubMed]

2011 (8)

Y. Song, K. Jung, and J. Kim, “Impact of pulse dynamics on timing jitter in mode-locked fiber lasers,” Opt. Lett. 36(10), 1761–1763 (2011).
[Crossref] [PubMed]

Y. Song, C. Kim, K. Jung, H. Kim, and J. Kim, “Timing jitter optimization of mode-locked Yb-fiber lasers toward the attosecond regime,” Opt. Express 19(15), 14518–14525 (2011).
[Crossref] [PubMed]

A. Cingöz, D. C. Yost, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, “Broadband phase noise suppression in a Yb-fiber frequency comb,” Opt. Lett. 36(5), 743–745 (2011).
[Crossref] [PubMed]

L. Nugent-Glandorf, T. A. Johnson, Y. Kobayashi, and S. A. Diddams, “Impact of dispersion on amplitude and frequency noise in a Yb-fiber laser comb,” Opt. Lett. 36(9), 1578–1580 (2011).
[Crossref] [PubMed]

F. Quinlan, T. M. Fortier, M. S. Kirchner, J. A. Taylor, M. J. Thorpe, N. Lemke, A. D. Ludlow, Y. Jiang, and S. A. Diddams, “Ultralow phase noise microwave generation with an Er:fiber-based optical frequency divider,” Opt. Lett. 36(16), 3260–3262 (2011).
[Crossref] [PubMed]

T. Yasui, S. Yokoyama, H. Inaba, K. Minoshima, T. Nagatsuma, and T. Araki, “Terahertz frequency metrology based on frequency comb,” IEEE J. Sel. Top. Quantum Electron. 17(1), 191–201 (2011).
[Crossref]

N. R. Newbury, “Searching for applications with a fine-tooth comb,” Nat. Photonics 5(4), 186–188 (2011).
[Crossref]

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwave via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

2010 (3)

2009 (3)

2008 (3)

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[Crossref] [PubMed]

J. Kim, J. A. Cox, J. Chen, and F. X. Kärtner, “Drift-free femtosecond timing synchronization of remote optical and microwave sources,” Nat. Photonics 2(12), 733–736 (2008).
[Crossref]

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevičius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2(6), 355–359 (2008).
[Crossref]

2007 (1)

2006 (2)

T. W. Hänsch, “Nobel lecture: passion for precision,” Rev. Mod. Phys. 78(4), 1297–1309 (2006).
[Crossref]

J. L. Hall, “Nobel Lecture: Defining and measuring optical frequencies,” Rev. Mod. Phys. 78(4), 1279–1295 (2006).
[Crossref] [PubMed]

2003 (2)

J. Ye, H. Schnatz, and L. W. Hollberg, “Optical frequency combs: from frequency metrology to optical phase control,” IEEE J. Sel. Top. Quantum Electron. 9(4), 1041–1058 (2003).
[Crossref]

S. T. Cundiff and J. Ye, “Colloquium: Femtosecond optical frequency combs,” Rev. Mod. Phys. 75(1), 325–342 (2003).
[Crossref]

2001 (1)

S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science 293(5531), 825–828 (2001).
[Crossref] [PubMed]

2000 (1)

R. J. Rafac, B. C. Young, J. A. Beall, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Sub-dekahertz ultraviolet spectroscopy of 199Hg+,” Phys. Rev. Lett. 85(12), 2462–2465 (2000).
[Crossref] [PubMed]

1987 (1)

D. W. Allan, “Time and frequency (time-domain) characterization, estimation, and prediction of precision clocks and oscillators,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 34(6), 647–654 (1987).
[Crossref] [PubMed]

1983 (1)

P. Lesage, “Characterization of frequency stability: bias due to the juxtaposition of time-interval measurements,” IEEE Trans. Instrum. Meas. 32(1), 204–207 (1983).
[Crossref]

Allan, D. W.

D. W. Allan, “Time and frequency (time-domain) characterization, estimation, and prediction of precision clocks and oscillators,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 34(6), 647–654 (1987).
[Crossref] [PubMed]

Allison, T. K.

Araki, T.

T. Yasui, S. Yokoyama, H. Inaba, K. Minoshima, T. Nagatsuma, and T. Araki, “Terahertz frequency metrology based on frequency comb,” IEEE J. Sel. Top. Quantum Electron. 17(1), 191–201 (2011).
[Crossref]

Araujo-Hauck, C.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[Crossref] [PubMed]

Argence, B.

N. Daniele, B. Argence, W. Zhang, R. L. Targat, G. Santarelli, and Y. L. Coq, “Spectral Purity Transfer between Optical Wavelengths at the 10−18 Level,” Nat. Photonics 8(3), 219–223 (2014).
[Crossref]

Arnold, A. S.

Bai, D.

Balskus, K.

Barrett, M. D.

T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2 × 10(-18) total uncertainty,” Nat. Commun. 6, 6896 (2015).
[Crossref] [PubMed]

Baumann, E.

Beall, J. A.

R. J. Rafac, B. C. Young, J. A. Beall, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Sub-dekahertz ultraviolet spectroscopy of 199Hg+,” Phys. Rev. Lett. 85(12), 2462–2465 (2000).
[Crossref] [PubMed]

Benko, C.

Bergquist, J. C.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwave via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science 293(5531), 825–828 (2001).
[Crossref] [PubMed]

R. J. Rafac, B. C. Young, J. A. Beall, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Sub-dekahertz ultraviolet spectroscopy of 199Hg+,” Phys. Rev. Lett. 85(12), 2462–2465 (2000).
[Crossref] [PubMed]

Bethge, J.

Bishof, M.

B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10(-18) level,” Nature 506(7486), 71–75 (2014).
[Crossref] [PubMed]

Bloom, B. J.

T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2 × 10(-18) total uncertainty,” Nat. Commun. 6, 6896 (2015).
[Crossref] [PubMed]

B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10(-18) level,” Nature 506(7486), 71–75 (2014).
[Crossref] [PubMed]

Boudot, R.

Bourgeois, P. Y.

Bromley, S. L.

B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10(-18) level,” Nature 506(7486), 71–75 (2014).
[Crossref] [PubMed]

Campbell, S. L.

T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2 × 10(-18) total uncertainty,” Nat. Commun. 6, 6896 (2015).
[Crossref] [PubMed]

B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10(-18) level,” Nature 506(7486), 71–75 (2014).
[Crossref] [PubMed]

Chen, J.

J. Kim, J. A. Cox, J. Chen, and F. X. Kärtner, “Drift-free femtosecond timing synchronization of remote optical and microwave sources,” Nat. Photonics 2(12), 733–736 (2008).
[Crossref]

Chen, L.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6(10), 687–692 (2012).
[Crossref]

Cingöz, A.

Coddington, I.

Coluccelli, N.

Conti, G. N.

Coq, Y. L.

N. Daniele, B. Argence, W. Zhang, R. L. Targat, G. Santarelli, and Y. L. Coq, “Spectral Purity Transfer between Optical Wavelengths at the 10−18 Level,” Nat. Photonics 8(3), 219–223 (2014).
[Crossref]

Cox, J. A.

J. A. Cox, A. H. Nejadmalayeri, J. Kim, and F. X. Kärtner, “Complete characterization of quantum-limited timing jitter in passively mode-locked fiber lasers,” Opt. Lett. 35(20), 3522–3524 (2010).
[Crossref] [PubMed]

J. Kim, J. A. Cox, J. Chen, and F. X. Kärtner, “Drift-free femtosecond timing synchronization of remote optical and microwave sources,” Nat. Photonics 2(12), 733–736 (2008).
[Crossref]

Cundiff, S. T.

S. T. Cundiff and J. Ye, “Colloquium: Femtosecond optical frequency combs,” Rev. Mod. Phys. 75(1), 325–342 (2003).
[Crossref]

Curtis, E. A.

S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science 293(5531), 825–828 (2001).
[Crossref] [PubMed]

D’Odorico, S.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[Crossref] [PubMed]

Daniele, N.

N. Daniele, B. Argence, W. Zhang, R. L. Targat, G. Santarelli, and Y. L. Coq, “Spectral Purity Transfer between Optical Wavelengths at the 10−18 Level,” Nat. Photonics 8(3), 219–223 (2014).
[Crossref]

Das, M.

I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, and H. Katori, “Cryogenic optical lattice clocks,” Nat. Photonics 5, 203–210 (2015).

Diddams, S. A.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwave via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

F. Quinlan, T. M. Fortier, M. S. Kirchner, J. A. Taylor, M. J. Thorpe, N. Lemke, A. D. Ludlow, Y. Jiang, and S. A. Diddams, “Ultralow phase noise microwave generation with an Er:fiber-based optical frequency divider,” Opt. Lett. 36(16), 3260–3262 (2011).
[Crossref] [PubMed]

L. Nugent-Glandorf, T. A. Johnson, Y. Kobayashi, and S. A. Diddams, “Impact of dispersion on amplitude and frequency noise in a Yb-fiber laser comb,” Opt. Lett. 36(9), 1578–1580 (2011).
[Crossref] [PubMed]

S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science 293(5531), 825–828 (2001).
[Crossref] [PubMed]

Drullinger, R. E.

S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science 293(5531), 825–828 (2001).
[Crossref] [PubMed]

Eikema, K. S. E.

Fallnich, C.

Fang, Z.

Farrell, C.

Fermann, M. E.

N. Kuse, C. C. Lee, J. Jiang, C. Mohr, T. R. Schibli, and M. E. Fermann, “Ultra-low noise all polarization-maintaining Er fiber-based optical frequency combs facilitated with a graphene modulator,” Opt. Express 23(19), 24342–24350 (2015).
[Crossref] [PubMed]

C. C. Lee, C. Mohr, J. Bethge, S. Suzuki, M. E. Fermann, I. Hartl, and T. R. Schibli, “Frequency comb stabilization with bandwidth beyond the limit of gain lifetime by an intracavity graphene electro-optic modulator,” Opt. Lett. 37(15), 3084–3086 (2012).
[Crossref] [PubMed]

C. Benko, A. Ruehl, M. J. Martin, K. S. E. Eikema, M. E. Fermann, I. Hartl, and J. Ye, “Full phase stabilization of a Yb:fiber femtosecond frequency comb via high-bandwidth transducers,” Opt. Lett. 37(12), 2196–2198 (2012).
[Crossref] [PubMed]

A. Cingöz, D. C. Yost, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, “Broadband phase noise suppression in a Yb-fiber frequency comb,” Opt. Lett. 36(5), 743–745 (2011).
[Crossref] [PubMed]

A. Ruehl, A. Marcinkevicius, M. E. Fermann, and I. Hartl, “80 W, 120 fs Yb-fiber frequency comb,” Opt. Lett. 35(18), 3015–3017 (2010).
[Crossref] [PubMed]

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevičius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2(6), 355–359 (2008).
[Crossref]

P. Pal, W. H. Knox, I. Hartl, and M. E. Fermann, “Self referenced Yb-fiber-laser frequency comb using a dispersion micromanaged tapered holey fiber,” Opt. Express 15(19), 12161–12166 (2007).
[Crossref] [PubMed]

Ferreiro, T. I.

Fortier, T. M.

F. Quinlan, T. M. Fortier, M. S. Kirchner, J. A. Taylor, M. J. Thorpe, N. Lemke, A. D. Ludlow, Y. Jiang, and S. A. Diddams, “Ultralow phase noise microwave generation with an Er:fiber-based optical frequency divider,” Opt. Lett. 36(16), 3260–3262 (2011).
[Crossref] [PubMed]

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwave via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Galzerano, G.

Gambetta, A.

Gatti, D.

Giorgetta, F. R.

Grebing, C.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6(10), 687–692 (2012).
[Crossref]

Hagemann, C.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6(10), 687–692 (2012).
[Crossref]

Hall, J. L.

J. L. Hall, “Nobel Lecture: Defining and measuring optical frequencies,” Rev. Mod. Phys. 78(4), 1279–1295 (2006).
[Crossref] [PubMed]

Han, H.

L. Hou, H. Han, L. Zhang, J. Zhang, D. Li, and Z. Wei, “A narrow linewidth diode laser at 243 nm,” Wuli Xuebao 64(13), 134205 (2015).

Hänsch, T. W.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[Crossref] [PubMed]

T. W. Hänsch, “Nobel lecture: passion for precision,” Rev. Mod. Phys. 78(4), 1297–1309 (2006).
[Crossref]

Hartl, I.

Hellwig, T.

Hoffmann, M.

Hollberg, L.

S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science 293(5531), 825–828 (2001).
[Crossref] [PubMed]

Hollberg, L. W.

J. Ye, H. Schnatz, and L. W. Hollberg, “Optical frequency combs: from frequency metrology to optical phase control,” IEEE J. Sel. Top. Quantum Electron. 9(4), 1041–1058 (2003).
[Crossref]

Holzwarth, R.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[Crossref] [PubMed]

Hong, F. L.

Hosaka, K.

Hou, D.

D. Hou, J. Wu, S. Zhang, Q. Ren, Z. Zhang, and J. Zhao, “A stable frequency comb directly referenced to rubidium electromagnetically induced transparency and two-photon transitions,” Appl. Phys. Lett. 104(11), 111104 (2014).
[Crossref]

D. Hou, B. Ning, S. Zhang, J. Wu, and J. Zhao, “Long-term stabilization of fiber laser using phase-locking technique with ultra-low phase noise and phase drift,” IEEE J. Sel. Top. Quantum Electron. 20(5), 456–463 (2014).
[Crossref]

Hou, L.

L. Hou, H. Han, L. Zhang, J. Zhang, D. Li, and Z. Wei, “A narrow linewidth diode laser at 243 nm,” Wuli Xuebao 64(13), 134205 (2015).

Hussein, H.

Hutson, R. B.

T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2 × 10(-18) total uncertainty,” Nat. Commun. 6, 6896 (2015).
[Crossref] [PubMed]

Inaba, H.

Itano, W. M.

S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science 293(5531), 825–828 (2001).
[Crossref] [PubMed]

R. J. Rafac, B. C. Young, J. A. Beall, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Sub-dekahertz ultraviolet spectroscopy of 199Hg+,” Phys. Rev. Lett. 85(12), 2462–2465 (2000).
[Crossref] [PubMed]

Iwakuni, K.

Jiang, J.

Jiang, T.

Jiang, Y.

F. Quinlan, T. M. Fortier, M. S. Kirchner, J. A. Taylor, M. J. Thorpe, N. Lemke, A. D. Ludlow, Y. Jiang, and S. A. Diddams, “Ultralow phase noise microwave generation with an Er:fiber-based optical frequency divider,” Opt. Lett. 36(16), 3260–3262 (2011).
[Crossref] [PubMed]

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwave via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Johnson, T. A.

Jung, K.

Kärtner, F. X.

J. A. Cox, A. H. Nejadmalayeri, J. Kim, and F. X. Kärtner, “Complete characterization of quantum-limited timing jitter in passively mode-locked fiber lasers,” Opt. Lett. 35(20), 3522–3524 (2010).
[Crossref] [PubMed]

J. Kim, J. A. Cox, J. Chen, and F. X. Kärtner, “Drift-free femtosecond timing synchronization of remote optical and microwave sources,” Nat. Photonics 2(12), 733–736 (2008).
[Crossref]

Katori, H.

I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, and H. Katori, “Cryogenic optical lattice clocks,” Nat. Photonics 5, 203–210 (2015).

Katsuyama, T.

Kawato, S.

Kentischer, T.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[Crossref] [PubMed]

Kersalé, Y.

Kessler, T.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6(10), 687–692 (2012).
[Crossref]

Kim, C.

Kim, H.

Kim, J.

Kim, S.

Kim, S. W.

Kim, Y.

Kim, Y. J.

Kirchner, M. S.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwave via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

F. Quinlan, T. M. Fortier, M. S. Kirchner, J. A. Taylor, M. J. Thorpe, N. Lemke, A. D. Ludlow, Y. Jiang, and S. A. Diddams, “Ultralow phase noise microwave generation with an Er:fiber-based optical frequency divider,” Opt. Lett. 36(16), 3260–3262 (2011).
[Crossref] [PubMed]

Knox, W. H.

Kobayashi, T.

Kobayashi, Y.

Kohno, T.

Kuse, N.

Lamour, T. P.

Laporta, P.

Le Coq, Y.

Leburn, C. G.

Lee, C. C.

Lee, W. D.

S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science 293(5531), 825–828 (2001).
[Crossref] [PubMed]

Legero, T.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6(10), 687–692 (2012).
[Crossref]

Lemke, N.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwave via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

F. Quinlan, T. M. Fortier, M. S. Kirchner, J. A. Taylor, M. J. Thorpe, N. Lemke, A. D. Ludlow, Y. Jiang, and S. A. Diddams, “Ultralow phase noise microwave generation with an Er:fiber-based optical frequency divider,” Opt. Lett. 36(16), 3260–3262 (2011).
[Crossref] [PubMed]

Lesage, P.

P. Lesage, “Characterization of frequency stability: bias due to the juxtaposition of time-interval measurements,” IEEE Trans. Instrum. Meas. 32(1), 204–207 (1983).
[Crossref]

Li, C.

Li, D.

L. Hou, H. Han, L. Zhang, J. Zhang, D. Li, and Z. Wei, “A narrow linewidth diode laser at 243 nm,” Wuli Xuebao 64(13), 134205 (2015).

Li, W.

Lours, M.

Ludlow, A.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwave via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Ludlow, A. D.

Luiten, A. N.

Manescau, A.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[Crossref] [PubMed]

Marandi, A.

Marangoni, M.

Marcinkevicius, A.

A. Ruehl, A. Marcinkevicius, M. E. Fermann, and I. Hartl, “80 W, 120 fs Yb-fiber frequency comb,” Opt. Lett. 35(18), 3015–3017 (2010).
[Crossref] [PubMed]

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevičius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2(6), 355–359 (2008).
[Crossref]

Marti, G. E.

T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2 × 10(-18) total uncertainty,” Nat. Commun. 6, 6896 (2015).
[Crossref] [PubMed]

Martin, M. J.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6(10), 687–692 (2012).
[Crossref]

C. Benko, A. Ruehl, M. J. Martin, K. S. E. Eikema, M. E. Fermann, I. Hartl, and J. Ye, “Full phase stabilization of a Yb:fiber femtosecond frequency comb via high-bandwidth transducers,” Opt. Lett. 37(12), 2196–2198 (2012).
[Crossref] [PubMed]

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevičius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2(6), 355–359 (2008).
[Crossref]

McCracken, R. A.

McNally, R. L.

T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2 × 10(-18) total uncertainty,” Nat. Commun. 6, 6896 (2015).
[Crossref] [PubMed]

Meng, F.

Millo, J.

Minoshima, K.

Mohr, C.

Murphy, M. T.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[Crossref] [PubMed]

Nagatsuma, T.

T. Yasui, S. Yokoyama, H. Inaba, K. Minoshima, T. Nagatsuma, and T. Araki, “Terahertz frequency metrology based on frequency comb,” IEEE J. Sel. Top. Quantum Electron. 17(1), 191–201 (2011).
[Crossref]

Nakajima, Y.

Nejadmalayeri, A. H.

Newbury, N. R.

Nicholson, J. W.

Nicholson, T. L.

T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2 × 10(-18) total uncertainty,” Nat. Commun. 6, 6896 (2015).
[Crossref] [PubMed]

B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10(-18) level,” Nature 506(7486), 71–75 (2014).
[Crossref] [PubMed]

Ning, B.

D. Hou, B. Ning, S. Zhang, J. Wu, and J. Zhao, “Long-term stabilization of fiber laser using phase-locking technique with ultra-low phase noise and phase drift,” IEEE J. Sel. Top. Quantum Electron. 20(5), 456–463 (2014).
[Crossref]

Nugent-Glandorf, L.

Oates, C. W.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwave via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science 293(5531), 825–828 (2001).
[Crossref] [PubMed]

Ohkubo, T.

I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, and H. Katori, “Cryogenic optical lattice clocks,” Nat. Photonics 5, 203–210 (2015).

Onae, A.

Pal, P.

Pasquini, L.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[Crossref] [PubMed]

Quinlan, F.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwave via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

F. Quinlan, T. M. Fortier, M. S. Kirchner, J. A. Taylor, M. J. Thorpe, N. Lemke, A. D. Ludlow, Y. Jiang, and S. A. Diddams, “Ultralow phase noise microwave generation with an Er:fiber-based optical frequency divider,” Opt. Lett. 36(16), 3260–3262 (2011).
[Crossref] [PubMed]

Rafac, R. J.

R. J. Rafac, B. C. Young, J. A. Beall, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Sub-dekahertz ultraviolet spectroscopy of 199Hg+,” Phys. Rev. Lett. 85(12), 2462–2465 (2000).
[Crossref] [PubMed]

Reid, D. T.

Ren, Q.

D. Hou, J. Wu, S. Zhang, Q. Ren, Z. Zhang, and J. Zhao, “A stable frequency comb directly referenced to rubidium electromagnetically induced transparency and two-photon transitions,” Appl. Phys. Lett. 104(11), 111104 (2014).
[Crossref]

Rieger, S.

Riehle, F.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6(10), 687–692 (2012).
[Crossref]

Rosenband, T.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwave via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Ru, Q.

Ruehl, A.

Safronova, M. S.

T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2 × 10(-18) total uncertainty,” Nat. Commun. 6, 6896 (2015).
[Crossref] [PubMed]

Sala, T.

Santarelli, G.

N. Daniele, B. Argence, W. Zhang, R. L. Targat, G. Santarelli, and Y. L. Coq, “Spectral Purity Transfer between Optical Wavelengths at the 10−18 Level,” Nat. Photonics 8(3), 219–223 (2014).
[Crossref]

J. Millo, R. Boudot, M. Lours, P. Y. Bourgeois, A. N. Luiten, Y. Le Coq, Y. Kersalé, and G. Santarelli, “Ultra-low-noise microwave extraction from fiber-based optical frequency comb,” Opt. Lett. 34(23), 3707–3709 (2009).
[Crossref] [PubMed]

Schibli, T. R.

Schilt, S.

Schmidt, W.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[Crossref] [PubMed]

Schnatz, H.

J. Ye, H. Schnatz, and L. W. Hollberg, “Optical frequency combs: from frequency metrology to optical phase control,” IEEE J. Sel. Top. Quantum Electron. 9(4), 1041–1058 (2003).
[Crossref]

Schratwieser, T. C.

Shen, X.

Song, Y.

Steinmetz, T.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[Crossref] [PubMed]

Sterr, U.

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6(10), 687–692 (2012).
[Crossref]

Strouse, G. F.

T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2 × 10(-18) total uncertainty,” Nat. Commun. 6, 6896 (2015).
[Crossref] [PubMed]

Südmeyer, T.

Suzuki, S.

Swann, W. C.

Takamoto, M.

I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, and H. Katori, “Cryogenic optical lattice clocks,” Nat. Photonics 5, 203–210 (2015).

Targat, R. L.

N. Daniele, B. Argence, W. Zhang, R. L. Targat, G. Santarelli, and Y. L. Coq, “Spectral Purity Transfer between Optical Wavelengths at the 10−18 Level,” Nat. Photonics 8(3), 219–223 (2014).
[Crossref]

Taylor, J.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwave via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Taylor, J. A.

Tew, W. L.

T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2 × 10(-18) total uncertainty,” Nat. Commun. 6, 6896 (2015).
[Crossref] [PubMed]

Thorpe, M. J.

Udem, T.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[Crossref] [PubMed]

S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science 293(5531), 825–828 (2001).
[Crossref] [PubMed]

Ushijima, I.

I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, and H. Katori, “Cryogenic optical lattice clocks,” Nat. Photonics 5, 203–210 (2015).

Vogel, K. R.

S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science 293(5531), 825–828 (2001).
[Crossref] [PubMed]

Walbaum, T.

Wang, A.

Wang, G.

Wei, Z.

L. Hou, H. Han, L. Zhang, J. Zhang, D. Li, and Z. Wei, “A narrow linewidth diode laser at 243 nm,” Wuli Xuebao 64(13), 134205 (2015).

Wilken, T.

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[Crossref] [PubMed]

Williams, J. R.

B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10(-18) level,” Nature 506(7486), 71–75 (2014).
[Crossref] [PubMed]

Wineland, D. J.

S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science 293(5531), 825–828 (2001).
[Crossref] [PubMed]

R. J. Rafac, B. C. Young, J. A. Beall, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Sub-dekahertz ultraviolet spectroscopy of 199Hg+,” Phys. Rev. Lett. 85(12), 2462–2465 (2000).
[Crossref] [PubMed]

Wu, J.

D. Hou, B. Ning, S. Zhang, J. Wu, and J. Zhao, “Long-term stabilization of fiber laser using phase-locking technique with ultra-low phase noise and phase drift,” IEEE J. Sel. Top. Quantum Electron. 20(5), 456–463 (2014).
[Crossref]

D. Hou, J. Wu, S. Zhang, Q. Ren, Z. Zhang, and J. Zhao, “A stable frequency comb directly referenced to rubidium electromagnetically induced transparency and two-photon transitions,” Appl. Phys. Lett. 104(11), 111104 (2014).
[Crossref]

Yan, M.

Yang, K.

Yasuda, M.

Yasui, T.

T. Yasui, S. Yokoyama, H. Inaba, K. Minoshima, T. Nagatsuma, and T. Araki, “Terahertz frequency metrology based on frequency comb,” IEEE J. Sel. Top. Quantum Electron. 17(1), 191–201 (2011).
[Crossref]

Ye, J.

T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2 × 10(-18) total uncertainty,” Nat. Commun. 6, 6896 (2015).
[Crossref] [PubMed]

B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10(-18) level,” Nature 506(7486), 71–75 (2014).
[Crossref] [PubMed]

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6(10), 687–692 (2012).
[Crossref]

C. Benko, A. Ruehl, M. J. Martin, K. S. E. Eikema, M. E. Fermann, I. Hartl, and J. Ye, “Full phase stabilization of a Yb:fiber femtosecond frequency comb via high-bandwidth transducers,” Opt. Lett. 37(12), 2196–2198 (2012).
[Crossref] [PubMed]

A. Cingöz, D. C. Yost, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, “Broadband phase noise suppression in a Yb-fiber frequency comb,” Opt. Lett. 36(5), 743–745 (2011).
[Crossref] [PubMed]

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevičius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2(6), 355–359 (2008).
[Crossref]

S. T. Cundiff and J. Ye, “Colloquium: Femtosecond optical frequency combs,” Rev. Mod. Phys. 75(1), 325–342 (2003).
[Crossref]

J. Ye, H. Schnatz, and L. W. Hollberg, “Optical frequency combs: from frequency metrology to optical phase control,” IEEE J. Sel. Top. Quantum Electron. 9(4), 1041–1058 (2003).
[Crossref]

Yokoyama, S.

T. Yasui, S. Yokoyama, H. Inaba, K. Minoshima, T. Nagatsuma, and T. Araki, “Terahertz frequency metrology based on frequency comb,” IEEE J. Sel. Top. Quantum Electron. 17(1), 191–201 (2011).
[Crossref]

Yost, D. C.

A. Cingöz, D. C. Yost, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, “Broadband phase noise suppression in a Yb-fiber frequency comb,” Opt. Lett. 36(5), 743–745 (2011).
[Crossref] [PubMed]

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevičius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2(6), 355–359 (2008).
[Crossref]

Young, B. C.

R. J. Rafac, B. C. Young, J. A. Beall, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Sub-dekahertz ultraviolet spectroscopy of 199Hg+,” Phys. Rev. Lett. 85(12), 2462–2465 (2000).
[Crossref] [PubMed]

Zeng, H.

Zhang, J.

L. Hou, H. Han, L. Zhang, J. Zhang, D. Li, and Z. Wei, “A narrow linewidth diode laser at 243 nm,” Wuli Xuebao 64(13), 134205 (2015).

Zhang, L.

L. Hou, H. Han, L. Zhang, J. Zhang, D. Li, and Z. Wei, “A narrow linewidth diode laser at 243 nm,” Wuli Xuebao 64(13), 134205 (2015).

Zhang, S.

D. Hou, B. Ning, S. Zhang, J. Wu, and J. Zhao, “Long-term stabilization of fiber laser using phase-locking technique with ultra-low phase noise and phase drift,” IEEE J. Sel. Top. Quantum Electron. 20(5), 456–463 (2014).
[Crossref]

D. Hou, J. Wu, S. Zhang, Q. Ren, Z. Zhang, and J. Zhao, “A stable frequency comb directly referenced to rubidium electromagnetically induced transparency and two-photon transitions,” Appl. Phys. Lett. 104(11), 111104 (2014).
[Crossref]

Zhang, W.

T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2 × 10(-18) total uncertainty,” Nat. Commun. 6, 6896 (2015).
[Crossref] [PubMed]

B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10(-18) level,” Nature 506(7486), 71–75 (2014).
[Crossref] [PubMed]

N. Daniele, B. Argence, W. Zhang, R. L. Targat, G. Santarelli, and Y. L. Coq, “Spectral Purity Transfer between Optical Wavelengths at the 10−18 Level,” Nat. Photonics 8(3), 219–223 (2014).
[Crossref]

Zhang, X.

B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10(-18) level,” Nature 506(7486), 71–75 (2014).
[Crossref] [PubMed]

Zhang, Z.

Zhao, J.

D. Hou, J. Wu, S. Zhang, Q. Ren, Z. Zhang, and J. Zhao, “A stable frequency comb directly referenced to rubidium electromagnetically induced transparency and two-photon transitions,” Appl. Phys. Lett. 104(11), 111104 (2014).
[Crossref]

D. Hou, B. Ning, S. Zhang, J. Wu, and J. Zhao, “Long-term stabilization of fiber laser using phase-locking technique with ultra-low phase noise and phase drift,” IEEE J. Sel. Top. Quantum Electron. 20(5), 456–463 (2014).
[Crossref]

Zhou, H.

Zhou, Q.

Appl. Phys. Lett. (1)

D. Hou, J. Wu, S. Zhang, Q. Ren, Z. Zhang, and J. Zhao, “A stable frequency comb directly referenced to rubidium electromagnetically induced transparency and two-photon transitions,” Appl. Phys. Lett. 104(11), 111104 (2014).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

D. Hou, B. Ning, S. Zhang, J. Wu, and J. Zhao, “Long-term stabilization of fiber laser using phase-locking technique with ultra-low phase noise and phase drift,” IEEE J. Sel. Top. Quantum Electron. 20(5), 456–463 (2014).
[Crossref]

J. Ye, H. Schnatz, and L. W. Hollberg, “Optical frequency combs: from frequency metrology to optical phase control,” IEEE J. Sel. Top. Quantum Electron. 9(4), 1041–1058 (2003).
[Crossref]

T. Yasui, S. Yokoyama, H. Inaba, K. Minoshima, T. Nagatsuma, and T. Araki, “Terahertz frequency metrology based on frequency comb,” IEEE J. Sel. Top. Quantum Electron. 17(1), 191–201 (2011).
[Crossref]

IEEE Trans. Instrum. Meas. (1)

P. Lesage, “Characterization of frequency stability: bias due to the juxtaposition of time-interval measurements,” IEEE Trans. Instrum. Meas. 32(1), 204–207 (1983).
[Crossref]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

D. W. Allan, “Time and frequency (time-domain) characterization, estimation, and prediction of precision clocks and oscillators,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 34(6), 647–654 (1987).
[Crossref] [PubMed]

Nat. Commun. (1)

T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2 × 10(-18) total uncertainty,” Nat. Commun. 6, 6896 (2015).
[Crossref] [PubMed]

Nat. Photonics (7)

I. Ushijima, M. Takamoto, M. Das, T. Ohkubo, and H. Katori, “Cryogenic optical lattice clocks,” Nat. Photonics 5, 203–210 (2015).

T. Kessler, C. Hagemann, C. Grebing, T. Legero, U. Sterr, F. Riehle, M. J. Martin, L. Chen, and J. Ye, “A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity,” Nat. Photonics 6(10), 687–692 (2012).
[Crossref]

N. R. Newbury, “Searching for applications with a fine-tooth comb,” Nat. Photonics 5(4), 186–188 (2011).
[Crossref]

J. Kim, J. A. Cox, J. Chen, and F. X. Kärtner, “Drift-free femtosecond timing synchronization of remote optical and microwave sources,” Nat. Photonics 2(12), 733–736 (2008).
[Crossref]

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwave via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

T. R. Schibli, I. Hartl, D. C. Yost, M. J. Martin, A. Marcinkevičius, M. E. Fermann, and J. Ye, “Optical frequency comb with submillihertz linewidth and more than 10 W average power,” Nat. Photonics 2(6), 355–359 (2008).
[Crossref]

N. Daniele, B. Argence, W. Zhang, R. L. Targat, G. Santarelli, and Y. L. Coq, “Spectral Purity Transfer between Optical Wavelengths at the 10−18 Level,” Nat. Photonics 8(3), 219–223 (2014).
[Crossref]

Nature (1)

B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, and J. Ye, “An optical lattice clock with accuracy and stability at the 10(-18) level,” Nature 506(7486), 71–75 (2014).
[Crossref] [PubMed]

Opt. Express (10)

K. Iwakuni, H. Inaba, Y. Nakajima, T. Kobayashi, K. Hosaka, A. Onae, and F. L. Hong, “Narrow linewidth comb realized with a mode-locked fiber laser using an intra-cavity waveguide electro-optic modulator for high-speed control,” Opt. Express 20(13), 13769–13776 (2012).
[Crossref] [PubMed]

M. Hoffmann, S. Schilt, and T. Südmeyer, “CEO stabilization of a femtosecond laser using a SESAM as fast opto-optical modulator,” Opt. Express 21(24), 30054–30064 (2013).
[Crossref] [PubMed]

Y. Kim, S. Kim, Y. J. Kim, H. Hussein, and S. W. Kim, “Er-doped fiber frequency comb with mHz relative linewidth,” Opt. Express 17(14), 11972–11977 (2009).
[Crossref] [PubMed]

N. Kuse, C. C. Lee, J. Jiang, C. Mohr, T. R. Schibli, and M. E. Fermann, “Ultra-low noise all polarization-maintaining Er fiber-based optical frequency combs facilitated with a graphene modulator,” Opt. Express 23(19), 24342–24350 (2015).
[Crossref] [PubMed]

Y. Song, C. Kim, K. Jung, H. Kim, and J. Kim, “Timing jitter optimization of mode-locked Yb-fiber lasers toward the attosecond regime,” Opt. Express 19(15), 14518–14525 (2011).
[Crossref] [PubMed]

P. Pal, W. H. Knox, I. Hartl, and M. E. Fermann, “Self referenced Yb-fiber-laser frequency comb using a dispersion micromanaged tapered holey fiber,” Opt. Express 15(19), 12161–12166 (2007).
[Crossref] [PubMed]

Y. Nakajima, H. Inaba, K. Hosaka, K. Minoshima, A. Onae, M. Yasuda, T. Kohno, S. Kawato, T. Kobayashi, T. Katsuyama, and F. L. Hong, “A multi-branch, fiber-based frequency comb with millihertz-level relative linewidths using an intra-cavity electro-optic modulator,” Opt. Express 18(2), 1667–1676 (2010).
[Crossref] [PubMed]

S. Rieger, T. Hellwig, T. Walbaum, and C. Fallnich, “Optical repetition rate stabilization of a mode-locked all-fiber laser,” Opt. Express 21(4), 4889–4895 (2013).
[Crossref] [PubMed]

D. Gatti, T. Sala, A. Gambetta, N. Coluccelli, G. N. Conti, G. Galzerano, P. Laporta, and M. Marangoni, “Analysis of the feed-forward method for the referencing of a CW laser to a frequency comb,” Opt. Express 20(22), 24880–24885 (2012).
[Crossref] [PubMed]

T. C. Schratwieser, K. Balskus, R. A. McCracken, C. Farrell, C. G. Leburn, Z. Zhang, T. P. Lamour, T. I. Ferreiro, A. Marandi, A. S. Arnold, and D. T. Reid, “(87)Rb-stabilized 375-MHz Yb:fiber femtosecond frequency comb,” Opt. Express 22(9), 10494–10499 (2014).
[Crossref] [PubMed]

Opt. Lett. (12)

G. Wang, F. Meng, C. Li, T. Jiang, A. Wang, Z. Fang, and Z. Zhang, “500 MHz spaced Yb:fiber laser frequency comb without amplifiers,” Opt. Lett. 39(9), 2534–2536 (2014).
[Crossref] [PubMed]

A. Ruehl, A. Marcinkevicius, M. E. Fermann, and I. Hartl, “80 W, 120 fs Yb-fiber frequency comb,” Opt. Lett. 35(18), 3015–3017 (2010).
[Crossref] [PubMed]

J. Millo, R. Boudot, M. Lours, P. Y. Bourgeois, A. N. Luiten, Y. Le Coq, Y. Kersalé, and G. Santarelli, “Ultra-low-noise microwave extraction from fiber-based optical frequency comb,” Opt. Lett. 34(23), 3707–3709 (2009).
[Crossref] [PubMed]

E. Baumann, F. R. Giorgetta, J. W. Nicholson, W. C. Swann, I. Coddington, and N. R. Newbury, “High-performance, vibration-immune, fiber-laser frequency comb,” Opt. Lett. 34(5), 638–640 (2009).
[Crossref] [PubMed]

F. Quinlan, T. M. Fortier, M. S. Kirchner, J. A. Taylor, M. J. Thorpe, N. Lemke, A. D. Ludlow, Y. Jiang, and S. A. Diddams, “Ultralow phase noise microwave generation with an Er:fiber-based optical frequency divider,” Opt. Lett. 36(16), 3260–3262 (2011).
[Crossref] [PubMed]

C. Benko, A. Ruehl, M. J. Martin, K. S. E. Eikema, M. E. Fermann, I. Hartl, and J. Ye, “Full phase stabilization of a Yb:fiber femtosecond frequency comb via high-bandwidth transducers,” Opt. Lett. 37(12), 2196–2198 (2012).
[Crossref] [PubMed]

A. Cingöz, D. C. Yost, T. K. Allison, A. Ruehl, M. E. Fermann, I. Hartl, and J. Ye, “Broadband phase noise suppression in a Yb-fiber frequency comb,” Opt. Lett. 36(5), 743–745 (2011).
[Crossref] [PubMed]

L. Nugent-Glandorf, T. A. Johnson, Y. Kobayashi, and S. A. Diddams, “Impact of dispersion on amplitude and frequency noise in a Yb-fiber laser comb,” Opt. Lett. 36(9), 1578–1580 (2011).
[Crossref] [PubMed]

M. Yan, W. Li, K. Yang, H. Zhou, X. Shen, Q. Zhou, Q. Ru, D. Bai, and H. Zeng, “High-power Yb-fiber comb with feed-forward control of nonlinear-polarization-rotation mode-locking and large-mode-area fiber amplification,” Opt. Lett. 37(9), 1511–1513 (2012).
[Crossref] [PubMed]

C. C. Lee, C. Mohr, J. Bethge, S. Suzuki, M. E. Fermann, I. Hartl, and T. R. Schibli, “Frequency comb stabilization with bandwidth beyond the limit of gain lifetime by an intracavity graphene electro-optic modulator,” Opt. Lett. 37(15), 3084–3086 (2012).
[Crossref] [PubMed]

J. A. Cox, A. H. Nejadmalayeri, J. Kim, and F. X. Kärtner, “Complete characterization of quantum-limited timing jitter in passively mode-locked fiber lasers,” Opt. Lett. 35(20), 3522–3524 (2010).
[Crossref] [PubMed]

Y. Song, K. Jung, and J. Kim, “Impact of pulse dynamics on timing jitter in mode-locked fiber lasers,” Opt. Lett. 36(10), 1761–1763 (2011).
[Crossref] [PubMed]

Phys. Rev. Lett. (1)

R. J. Rafac, B. C. Young, J. A. Beall, W. M. Itano, D. J. Wineland, and J. C. Bergquist, “Sub-dekahertz ultraviolet spectroscopy of 199Hg+,” Phys. Rev. Lett. 85(12), 2462–2465 (2000).
[Crossref] [PubMed]

Rev. Mod. Phys. (3)

S. T. Cundiff and J. Ye, “Colloquium: Femtosecond optical frequency combs,” Rev. Mod. Phys. 75(1), 325–342 (2003).
[Crossref]

T. W. Hänsch, “Nobel lecture: passion for precision,” Rev. Mod. Phys. 78(4), 1297–1309 (2006).
[Crossref]

J. L. Hall, “Nobel Lecture: Defining and measuring optical frequencies,” Rev. Mod. Phys. 78(4), 1279–1295 (2006).
[Crossref] [PubMed]

Science (2)

T. Steinmetz, T. Wilken, C. Araujo-Hauck, R. Holzwarth, T. W. Hänsch, L. Pasquini, A. Manescau, S. D’Odorico, M. T. Murphy, T. Kentischer, W. Schmidt, and T. Udem, “Laser frequency combs for astronomical observations,” Science 321(5894), 1335–1337 (2008).
[Crossref] [PubMed]

S. A. Diddams, T. Udem, J. C. Bergquist, E. A. Curtis, R. E. Drullinger, L. Hollberg, W. M. Itano, W. D. Lee, C. W. Oates, K. R. Vogel, and D. J. Wineland, “An optical clock based on a single trapped 199Hg+ ion,” Science 293(5531), 825–828 (2001).
[Crossref] [PubMed]

Wuli Xuebao (1)

L. Hou, H. Han, L. Zhang, J. Zhang, D. Li, and Z. Wei, “A narrow linewidth diode laser at 243 nm,” Wuli Xuebao 64(13), 134205 (2015).

Other (3)

Y. Zhang, L. Yan, S. Fan, L. Zhang, and W. Zhao, W, Guo, S. Zhang, and H. Jiang, “Development of an erbium-fiber-laser-based optical frequency comb at NTSC,” IFCS-EFTF, IEEE, 599–601 (2015).

F. C. Cruz, G. Ycas, D. L. Maser, and S. A. Diddams, “Frequency stabilization of a mid-infrared optical frequency comb to single-frequency optical references,” MICS, OSA, MM1C, 2 (2016).

W. Hänsel, M. Giunta, K. Beha, M. Lezius, M. Fischer, and R. Holzwarth, “Ultra-low phase noise all-PM Er: fiber optical frequency comb,” ASSL, OSA, ATh4A. 2 (2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Layout of the Yb-doped fiber OFC and feedback loop. EOM: electro optical modulator; PZT: piezoelectric transducer; PC: pump current; DM: dichroic mirrors; L: lenses; λ/2: half-wavelength plate; HR: high reflection mirror; P: prism pair; PBS: polarization beam splitter; G: grating; APD: avalanche photo diode; PLL: phase locked loop; Col: collimator; AL: aspherical lens; PCF: photonic crystal fiber; PD: photo diode.
Fig. 2
Fig. 2 (a) The f c e o signal with SNR of 40 dB at the RBW = 300 kHz; (b) The frequency deviation of the locked f c e o signal for about 13 hours recorded by the counter at 1s gate time; (c) The corresponding Allan deviation to the optical laser frequency νopt (λopt = 1040 nm).
Fig. 3
Fig. 3 (a) The pulse width of 110 fs compressed from 6.7 ps seed light; (b) The broaden spectrum covering 972 nm component, the red line is the amplification light and the blue line is seed light.
Fig. 4
Fig. 4 (a) The f c e o signal with SNR of 43 dB at the RBW = 300 kHz; (b) Out of lock, the linewidth of the beat signal is about 200 kHz at RBW = 1 kHz; (c) In loop, the RF spectrum of beat observed with a spectrum analyzer. The spectrum is clean and its energy concentration to the coherent carrier is more than 90% at a bandwidth of 10 Hz; (d) The IPN is about 539 mrad from1 Hz to 10 MHz.
Fig. 5
Fig. 5 (a) The frequency deviation of the locked f b e a t signal for about 13 hours recorded by the counter at 1-s gate time; (b) The corresponding Allan deviation to the optical laser frequency νoptopt = 972 nm).

Metrics