Abstract

We demonstrate a gain-switched thulium-doped fiber laser (TDFL) built in an all-fiber format producing nanosecond pulses with variable wavelength in the 2 μm waveband. The laser features tunable operation in an ultra-wide spectral region of 1765 – 2055 nm (24 THz). The nearly 300 nm tunability doubles the record tuning range of existing gain-switched fiber lasers, and to the best of our knowledge, presents the broadest tuning range that has been reported for a monolithic pulsed rare earth doped fiber laser to date. The TDFL can operate at a repetition rate of 2.5 – 100 kHz with a pulse width as short as ~200 ns. Influences of various system parameters on the laser performance are investigated in detail.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Widely wavelength tunable gain-switched Er3+-doped ZBLAN fiber laser around 2.8 μm

Chen Wei, Hongyu Luo, Hongxia Shi, YanJia Lyu, Han Zhang, and Yong Liu
Opt. Express 25(8) 8816-8827 (2017)

All-fiber wavelength-tunable Tm-doped fiber laser mode locked by SESAM with 120  nm tuning range

Zhuo Xu, Zhi-Yuan Dou, Jing Hou, and Xiao-Jun Xu
Appl. Opt. 56(21) 5978-5981 (2017)

High-power all-fiber wavelength-tunable thulium doped fiber laser at 2 μm

Ke Yin, Bin Zhang, Guanghui Xue, Lei Li, and Jing Hou
Opt. Express 22(17) 19947-19952 (2014)

References

  • View by:
  • |
  • |
  • |

  1. S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
    [Crossref]
  2. A. M. Heidt, Z. Li, and D. J. Richardson, “High power diode-seeded fiber amplifiers at 2 µm–from architectures to applications,” IEEE J. Sel. Top. Quantum Electron. 20(5), 525 (2014).
    [Crossref]
  3. K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, “2 µm laser sources and their possible applications,” in Frontiers in Guided Wave Optics and Optoelectronic, B. Pal, ed. (InTech, 2010).
  4. A. Godard, “Infrared (2–12 μm) solid-state laser sources: a review,” C. R. Phys. 8(10), 1100–1128 (2007).
    [Crossref]
  5. J. P. Cariou, B. Augere, and M. Valla, “Laser source requirements for coherent lidars based on fiber technology,” C. R. Phys. 7(2), 213–223 (2006).
    [Crossref]
  6. F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. Numkam, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
    [Crossref]
  7. P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13(1), 236–244 (2005).
    [Crossref] [PubMed]
  8. Z. Liu, Y. Chen, Z. Li, B. Kelly, R. Phelan, J. O’Carroll, T. Bradley, J. P. Wooler, N. V. Wheeler, A. M. Heidt, T. Richter, C. Schubert, M. Becker, F. Poletti, M. N. Petrovich, S. Alam, D. J. Richardson, and R. Slavík, “High-capacity directly modulated optical transmitter for 2-μ m spectral region,” J. Lightwave Technol. 33(7), 1373–1379 (2015).
    [Crossref]
  9. H. Zhang, N. Kavanagh, Z. Li, J. Zhao, N. Ye, Y. Chen, N. V. Wheeler, J. P. Wooler, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, S. U. Alam, R. Phelan, J. O’Carroll, B. Kelly, L. Grüner-Nielsen, D. J. Richardson, B. Corbett, and F. C. Garcia Gunning, “100 Gbit/s WDM transmission at 2 µm: transmission studies in both low-loss hollow core photonic bandgap fiber and solid core fiber,” Opt. Express 23(4), 4946–4951 (2015).
    [Crossref] [PubMed]
  10. M. Zhang, E. J. R. Kelleher, T. H. Runcorn, V. M. Mashinsky, O. I. Medvedkov, E. M. Dianov, D. Popa, S. Milana, T. Hasan, Z. Sun, F. Bonaccorso, Z. Jiang, E. Flahaut, B. H. Chapman, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Mid-infrared Raman-soliton continuum pumped by a nanotube-mode-locked sub-picosecond Tm-doped MOPFA,” Opt. Express 21(20), 23261–23271 (2013).
    [Crossref] [PubMed]
  11. Y. Yu, X. Gai, T. Wang, P. Ma, R. Wang, Z. Yang, D.-Y. Choi, S. Madden, and B. Luther-Davies, “Mid-infrared supercontinuum generation in chalcogenides,” Opt. Mater. Express 3(8), 1075–1086 (2013).
    [Crossref]
  12. A. M. Heidt, J. H. V. Price, C. Baskiotis, J. S. Feehan, Z. Li, S. U. Alam, and D. J. Richardson, “Mid-infrared ZBLAN fiber supercontinuum source using picosecond diode-pumping at 2 µm,” Opt. Express 21(20), 24281–24287 (2013).
    [Crossref] [PubMed]
  13. C. Agger, C. Petersen, S. Dupont, H. Steffensen, J. K. Lyngsø, C. L. Thomsen, J. Thøgersen, S. R. Keiding, and O. Bang, “Supercontinuum generation in ZBLAN fibers—detailed comparison between measurement and simulation,” J. Opt. Soc. Am. B 29(4), 635–645 (2012).
    [Crossref]
  14. O. P. Kulkarni, V. V. Alexander, M. Kumar, M. J. Freeman, M. N. Islam, J. F. L Terry, M Neelakandan, and A Chan, “Supercontinuum generation from ~1.9 to 4.5 μm in ZBLAN fiber with high average power generation beyond 3.8 μm using a thulium-doped fiber amplifier,” J. Opt. Soc. Am. B 28(10), 2486–2498 (2011).
    [Crossref]
  15. N. Leindecker, A. Marandi, R. L. Byer, K. L. Vodopyanov, J. Jiang, I. Hartl, M. Fermann, and P. G. Schunemann, “Octave-spanning ultrafast OPO with 2.6-6.1 µm instantaneous bandwidth pumped by femtosecond Tm-fiber laser,” Opt. Express 20(7), 7046–7053 (2012).
    [Crossref] [PubMed]
  16. A. Schliesser, N. Picque, and T. W. Hansch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
    [Crossref]
  17. S. D. Jackson, “The spectroscopic and energy transfer characteristics of the rare earth ions used for silicate glass fibre lasers operating in the shortwave infrared,” Laser Photonics Rev. 3(5), 466–482 (2009).
    [Crossref]
  18. S. D. Agger and J. H. Povlsen, “Emission and absorption cross section of thulium doped silica fibers,” Opt. Express 14(1), 50–57 (2006).
    [Crossref] [PubMed]
  19. A. Hemming, N. Simakov, J. Haub, and A. Carter, “A review of recent progress in holmium-doped silica fibre sources,” Opt. Fiber Technol. 20(6), 621–630 (2014).
    [Crossref]
  20. G. Stevens and T. Legg, “All-fiber widely tunable thulium laser,” Proc. SPIE 9728, 972814 (2016).
    [Crossref]
  21. M. Tokurakawa, J. M. O. Daniel, C. S. Chenug, H. Liang, and W. A. Clarkson, “Ultra-broadband wavelength-swept Tm-doped fiber laser using wavelength-combined gain stages,” Opt. Express 23(1), 471–476 (2015).
    [Crossref] [PubMed]
  22. J. M. O. Daniel, N. Simakov, M. Tokurakawa, M. Ibsen, and W. A. Clarkson, “Ultra-short wavelength operation of a thulium fibre laser in the 1660-1750 nm wavelength band,” Opt. Express 23(14), 18269–18276 (2015).
    [Crossref] [PubMed]
  23. S. Kharitonov and C.-S. Brès, “Isolator-free unidirectional thulium-doped fiber laser,” Light Sci. Appl. 4(10), e340 (2015).
    [Crossref]
  24. J. Li, Z. Sun, H. Luo, Z. Yan, K. Zhou, Y. Liu, and L. Zhang, “Wide wavelength selectable all-fiber thulium doped fiber laser between 1925 nm and 2200 nm,” Opt. Express 22(5), 5387–5399 (2014).
    [Crossref] [PubMed]
  25. M. Tokurakawa, J. M. O. Daniel, C. S. Chenug, H. Liang, and W. A. Clarkson, “Wavelength-swept Tm-doped fiber laser operating in the two-micron wavelength band,” Opt. Express 22(17), 20014–20019 (2014).
    [Crossref] [PubMed]
  26. Z. Li, S. U. Alam, Y. Jung, A. M. Heidt, and D. J. Richardson, “All-fiber, ultra-wideband tunable laser at 2 μm,” Opt. Lett. 38(22), 4739–4742 (2013).
    [Crossref] [PubMed]
  27. J. M. O. Daniel, M. Tokurakawa, and W. A. Clarkson, “Power-scalable wavelength-agile fibre laser source at two-microns,” in 5th EPS-QEOD Europhoton Conference (2012).
  28. J. Geng, Q. Wang, J. Wang, S. Jiang, and K. Hsu, “All-fiber wavelength-swept laser near 2 μm,” Opt. Lett. 36(19), 3771–3773 (2011).
    [Crossref] [PubMed]
  29. T. S. McComb, R. A. Sims, C. C. C. Willis, P. Kadwani, V. Sudesh, L. Shah, and M. Richardson, “High-power widely tunable thulium fiber lasers,” Appl. Opt. 49(32), 6236–6242 (2010).
    [Crossref] [PubMed]
  30. D. Y. Shen, J. K. Sahu, and W. A. Clarkson, “High-power widely tunable Tm:fibre lasers pumped by an Er,Yb co-doped fibre laser at 1.6µm,” Opt. Express 14(13), 6084–6090 (2006).
    [Crossref] [PubMed]
  31. W. A. Clarkson, N. P. Barnes, P. W. Turner, J. Nilsson, and D. C. Hanna, “High-power cladding-pumped Tm-doped silica fiber laser with wavelength tuning from 1860 to 2090 nm,” Opt. Lett. 27(22), 1989–1991 (2002).
    [Crossref] [PubMed]
  32. Z. S. Sacks, Z. Schiffer, and D. David, “Long wavelength operation of double-clad Tm : silica fiber lasers,” Proc. SPIE 6453, 645320 (2007).
    [Crossref]
  33. G. Xue, B. Zhang, K. Yin, W. Yang, and J. Hou, “Ultra-wideband all-fiber tunable Tm/Ho-co-doped laser at 2 μm,” Opt. Express 22(21), 25976–25983 (2014).
    [Crossref] [PubMed]
  34. X. Wang, X. Jin, P. Zhou, X. Wang, H. Xiao, and Z. Liu, “High power, widely tunable, narrowband superfluorescent source at 2 μm based on a monolithic Tm-doped fiber amplifier,” Opt. Express 23(3), 3382–3389 (2015).
    [Crossref] [PubMed]
  35. K. Yin, B. Zhang, G. Xue, L. Li, and J. Hou, “High-power all-fiber wavelength-tunable thulium doped fiber laser at 2 μm,” Opt. Express 22(17), 19947–19952 (2014).
    [Crossref] [PubMed]
  36. N. Simakov, Z. Li, Y. Jung, J. M. O. Daniel, P. Barua, P. C. Shardlow, S. Liang, J. K. Sahu, A. Hemming, W. A. Clarkson, S.-U. Alam, and D. J. Richardson, “High gain holmium-doped fibre amplifiers,” Opt. Express 24(13), 13946–13956 (2016).
    [Crossref] [PubMed]
  37. N. Simakov, J. M. O. Daniel, J. Ward, W. A. Clarkson, A. Hemming, and J. Haub, “Wavelength agile holmium-doped fiber laser,” Proc. SPIE 9728, 97280Q (2016).
    [Crossref]
  38. N. Simakov, A. Hemming, W. A. Clarkson, J. Haub, and A. Carter, “A cladding-pumped, tunable holmium doped fiber laser,” Opt. Express 21(23), 28415–28422 (2013).
    [Crossref] [PubMed]
  39. V. A. Kamynin, S. I. Kablukov, K. S. Raspopin, S. O. Antipov, A. S. Kurkov, O. I. Medvedkov, and A. V. Marakulin, “All-fiber Ho-doped laser tunable in the range of 2.045 – 2.1 μm,” Laser Phys. Lett. 9(12), 893–895 (2012).
    [Crossref]
  40. Y. Li, Y. Zhao, B. Ashton, S. Jackson, and S. Fleming, “Highly efficient and wavelength-tunable Holmium-doped silica fibre lasers,” in European Conference on Optical Communication3, We4.P.089 (2005).
  41. A. Billat, S. Cordette, Y.-P. Tseng, S. Kharitonov, and C.-S. Brès, “High-power parametric conversion from near-infrared to short-wave infrared,” Opt. Express 22(12), 14341–14347 (2014).
    [Crossref] [PubMed]
  42. A. Billat, S. Cordette, and C.-S. Brès, “Broadly tunable source around 2050 nm based on wideband parametric conversion and thulium-holmium amplification cascade,” Opt. Express 22(22), 26635–26641 (2014).
    [Crossref] [PubMed]
  43. L. E. Nelson, E. P. Ippen, and H. A. Haus, “Broadly tunable sub-500 fs pulses from an additive-pulse mode-locked thulium-doped fiber ring laser,” Appl. Phys. Lett. 67(1), 19–21 (1995).
    [Crossref]
  44. Q. Fang, K. Kieu, and N. Peyghambarian, “An all-fiber 2-µm wavelength-tunable mode-locked laser,” IEEE Photonics Technol. Lett. 22(22), 1656–1658 (2010).
  45. N. Li, M. Y. Liu, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, Y. Ohishi, G. S. Qin, and W. P. Qin, “All-fiber widely tunable mode-locked thulium-doped laser using a curvature multimode interference filter,” Laser Phys. Lett. 13(7), 75103 (2016).
    [Crossref]
  46. Z. Yan, B. Sun, X. Li, J. Luo, P. P. Shum, X. Yu, Y. Zhang, and Q. J. Wang, “Widely tunable Tm-doped mode-locked all-fiber laser,” Sci. Rep. 6, 27245 (2016).
    [Crossref] [PubMed]
  47. Z. Yan, X. Li, Y. Tang, P. P. Shum, X. Yu, Y. Zhang, and Q. J. Wang, “Tunable and switchable dual-wavelength Tm-doped mode-locked fiber laser by nonlinear polarization evolution,” Opt. Express 23(4), 4369–4376 (2015).
    [Crossref] [PubMed]
  48. Z. Yan, Y. Tang, B. Sun, T. Liu, X. Li, P. S. Ping, X. Yu, Y. Zhang, and Q. J. Wang, “Switchable multi-wavelength Tm-doped mode-locked fiber laser,” Opt. Lett. 40(9), 1916–1919 (2015).
    [Crossref] [PubMed]
  49. S. Cordette, S. Kharitonov, A. Billat, and C.-S. Bres, “High Power Sub-Picosecond Pulsed SWIR Source Based on Thulium Assisted Raman Wavelength Shifting,” in Optical Fiber Communication Conference (Optical Society of America, 2015), p. Tu2C.4.
    [Crossref]
  50. S. J. Cordette, A. Billat, Y.-P. Tseng, and C. S. Brès, “Widely tunable picosecond-pulsed source near 2 μm based on cascaded Raman wavelength shifting,” in The European Conference on Optical Communication, P.1.17 (2014).
  51. A. Klose, G. Ycas, D. L. Maser, and S. A. Diddams, “Tunable, stable source of femtosecond pulses near 2 μm via supercontinuum of an Erbium mode-locked laser,” Opt. Express 22(23), 28400–28411 (2014).
    [Crossref] [PubMed]
  52. T. N. Nguyen, K. Kieu, D. Churin, T. Ota, M. Miyawaki, and N. Peyghambarian, “High power soliton self-frequency shift with improved flatness ranging from 1.6 to 1.78 µm,” IEEE Photonics Technol. Lett. 25(19), 1893–1896 (2013).
    [Crossref]
  53. J. Jiang, A. Ruehl, I. Hartl, and M. E. Fermann, “Tunable coherent Raman soliton generation with a Tm-fiber system,” in CLEO:2011- Laser Applications to Photonic Applications (Optical Society of America, 2011), p. CThBB5.
  54. S. Kivisto, T. Hakulinen, M. Guina, and O. G. Okhotnikov, “Tunable Raman soliton source using mode-locked Tm/Ho fiber laser,” IEEE Photonics Technol. Lett. 19(12), 934–936 (2007).
    [Crossref]
  55. G. Imeshev and M. Fermann, “230-kW peak power femtosecond pulses from a high power tunable source based on amplification in Tm-doped fiber,” Opt. Express 13(19), 7424–7431 (2005).
    [Crossref] [PubMed]
  56. N. Nishizawa and T. Goto, “Widely wavelength-tunable ultrashort pulse generation using polarization maintaining optical fibers,” IEEE J. Sel. Top. Quantum Electron. 7(4), 518–524 (2001).
    [Crossref]
  57. A. Billat, S. Cordette, and C.-S. Brès, “Versatile high repetition rate 2-μm pulsed source based on wideband parametric conversion,” J. Lightwave Technol. 34(3), 879–884 (2016).
    [Crossref]
  58. M. E. Durst and J. van Howe, “All-fiber, wavelength and repetition-rate tunable, ultrafast pulse generation in the 2.0 µm region without mode-locking,” J. Lightwave Technol. 31(23), 3714–3718 (2013).
    [Crossref]
  59. H. Ahmad, A. Muhamad, A. S. Sharbirin, M. Z. Samion, and M. F. Ismail, “Tunable Q-switched thulium-doped fiber laser using multiwall carbon nanotube and Fabry-Perot etalon filter,” Opt. Commun. 383, 359–365 (2017).
    [Crossref]
  60. M. Z. Samion, M. F. Ismail, A. Muhamad, A. S. Sharbirin, S. W. Harun, and H. Ahmad, “Tunable passively Q-switched thulium-doped fiber laser operating at 1.9 μm using arrayed waveguide grating (AWG),” Opt. Commun. 380, 195–200 (2016).
    [Crossref]
  61. F. Gutty, A. Grisard, A. Joly, C. Larat, D. Papillon-Ruggeri, and E. Lallier, “Multi-kW peak power acousto-optically tunable thulium-doped fiber laser system,” Opt. Express 23(5), 6754–6762 (2015).
    [Crossref] [PubMed]
  62. F. Li, H. Zhu, and Y. Zhang, “High-power widely tunable Q-switched thulium fiber lasers,” Laser Phys. Lett. 12(9), 95102 (2015).
    [Crossref]
  63. J. M. O. Daniel and W. A. Clarkson, “Bandwidth-controllable tunable Q-switched thulium fibre laser,” in Conference on Lasers and Electro-Optics - International Quantum Electronics Conference (Optical Society of America, 2013), p. CJ_10_2 (2013).
  64. J. Yang, Y. Tang, and J. Xu, “Development and applications of gain-switched fiber lasers,” Photon. Res. 1(1), 52–57 (2013).
    [Crossref]
  65. M. Chernysheva, C. Mou, R. Arif, M. AlAraimi, M. Rümmeli, S. Turitsyn, and A. Rozhin, “High power Q-switched thulium doped fibre laser using carbon nanotube polymer composite saturable absorber,” Sci. Rep. 6, 24220 (2016).
    [Crossref] [PubMed]
  66. F. Wang, Y. Meng, E. Kelleher, G. Guo, Y. Li, Y. Xu, and S. Zhu, “Stable gain-switched thulium fiber laser with 140-nm tuning range,” IEEE Photonics Technol. Lett. 28(12), 1340–1343 (2016).
    [Crossref]
  67. K. Yin, W. Yang, B. Zhang, S. Zeng, and J. Hou, “Temporal characteristics of gain-switched thulium-doped fiber laser near threshold,” J. Opt. Soc. Am. B 30(11), 2864–2868 (2013).
    [Crossref]
  68. Z. Li, Y. Jung, J. M. O. Daniel, N. Simakov, M. Tokurakawa, P. C. Shardlow, D. Jain, J. K. Sahu, A. M. Heidt, W. A. Clarkson, S. U. Alam, and D. J. Richardson, “Exploiting the short wavelength gain of silica-based thulium-doped fiber amplifiers,” Opt. Lett. 41(10), 2197–2200 (2016).
    [Crossref] [PubMed]
  69. W. Koechner, Solid-State Laser Engineering, 6th ed. (Springer, 2006), Chap. 8.
  70. M. Jiang and P. Tayebati, “Stable 10 ns, kilowatt peak-power pulse generation from a gain-switched Tm-doped fiber laser,” Opt. Lett. 32(13), 1797–1799 (2007).
    [Crossref] [PubMed]
  71. J. Geng, Q. Wang, J. Smith, T. Luo, F. Amzajerdian, and S. Jiang, “All-fiber Q-switched single-frequency Tm-doped laser near 2 mum,” Opt. Lett. 34(23), 3713–3715 (2009).
    [Crossref] [PubMed]
  72. Z. Zhang, A. J. Boyland, J. K. Sahu, W. A. Clarkson, and M. Ibsen, “High-power single-frequency thulium-doped fiber DBR laser at 1943 nm,” IEEE Photonics Technol. Lett. 23(7), 417–419 (2011).
    [Crossref]
  73. Q. Yang, S.-H. Xu, C. Li, C.-S. Yang, Z.-M. Feng, Y. Xiao, X. Huang, and Z.-M. Yang, “A single-frequency linearly polarized fiber laser using a newly developed heavily Tm 3+ -doped germanate glass fiber at 1.95 μm,” Chin. Phys. Lett. 32(9), 094206 (2015).
    [Crossref]

2017 (1)

H. Ahmad, A. Muhamad, A. S. Sharbirin, M. Z. Samion, and M. F. Ismail, “Tunable Q-switched thulium-doped fiber laser using multiwall carbon nanotube and Fabry-Perot etalon filter,” Opt. Commun. 383, 359–365 (2017).
[Crossref]

2016 (10)

M. Z. Samion, M. F. Ismail, A. Muhamad, A. S. Sharbirin, S. W. Harun, and H. Ahmad, “Tunable passively Q-switched thulium-doped fiber laser operating at 1.9 μm using arrayed waveguide grating (AWG),” Opt. Commun. 380, 195–200 (2016).
[Crossref]

M. Chernysheva, C. Mou, R. Arif, M. AlAraimi, M. Rümmeli, S. Turitsyn, and A. Rozhin, “High power Q-switched thulium doped fibre laser using carbon nanotube polymer composite saturable absorber,” Sci. Rep. 6, 24220 (2016).
[Crossref] [PubMed]

F. Wang, Y. Meng, E. Kelleher, G. Guo, Y. Li, Y. Xu, and S. Zhu, “Stable gain-switched thulium fiber laser with 140-nm tuning range,” IEEE Photonics Technol. Lett. 28(12), 1340–1343 (2016).
[Crossref]

N. Li, M. Y. Liu, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, Y. Ohishi, G. S. Qin, and W. P. Qin, “All-fiber widely tunable mode-locked thulium-doped laser using a curvature multimode interference filter,” Laser Phys. Lett. 13(7), 75103 (2016).
[Crossref]

Z. Yan, B. Sun, X. Li, J. Luo, P. P. Shum, X. Yu, Y. Zhang, and Q. J. Wang, “Widely tunable Tm-doped mode-locked all-fiber laser,” Sci. Rep. 6, 27245 (2016).
[Crossref] [PubMed]

G. Stevens and T. Legg, “All-fiber widely tunable thulium laser,” Proc. SPIE 9728, 972814 (2016).
[Crossref]

N. Simakov, J. M. O. Daniel, J. Ward, W. A. Clarkson, A. Hemming, and J. Haub, “Wavelength agile holmium-doped fiber laser,” Proc. SPIE 9728, 97280Q (2016).
[Crossref]

A. Billat, S. Cordette, and C.-S. Brès, “Versatile high repetition rate 2-μm pulsed source based on wideband parametric conversion,” J. Lightwave Technol. 34(3), 879–884 (2016).
[Crossref]

Z. Li, Y. Jung, J. M. O. Daniel, N. Simakov, M. Tokurakawa, P. C. Shardlow, D. Jain, J. K. Sahu, A. M. Heidt, W. A. Clarkson, S. U. Alam, and D. J. Richardson, “Exploiting the short wavelength gain of silica-based thulium-doped fiber amplifiers,” Opt. Lett. 41(10), 2197–2200 (2016).
[Crossref] [PubMed]

N. Simakov, Z. Li, Y. Jung, J. M. O. Daniel, P. Barua, P. C. Shardlow, S. Liang, J. K. Sahu, A. Hemming, W. A. Clarkson, S.-U. Alam, and D. J. Richardson, “High gain holmium-doped fibre amplifiers,” Opt. Express 24(13), 13946–13956 (2016).
[Crossref] [PubMed]

2015 (11)

M. Tokurakawa, J. M. O. Daniel, C. S. Chenug, H. Liang, and W. A. Clarkson, “Ultra-broadband wavelength-swept Tm-doped fiber laser using wavelength-combined gain stages,” Opt. Express 23(1), 471–476 (2015).
[Crossref] [PubMed]

X. Wang, X. Jin, P. Zhou, X. Wang, H. Xiao, and Z. Liu, “High power, widely tunable, narrowband superfluorescent source at 2 μm based on a monolithic Tm-doped fiber amplifier,” Opt. Express 23(3), 3382–3389 (2015).
[Crossref] [PubMed]

Z. Yan, X. Li, Y. Tang, P. P. Shum, X. Yu, Y. Zhang, and Q. J. Wang, “Tunable and switchable dual-wavelength Tm-doped mode-locked fiber laser by nonlinear polarization evolution,” Opt. Express 23(4), 4369–4376 (2015).
[Crossref] [PubMed]

H. Zhang, N. Kavanagh, Z. Li, J. Zhao, N. Ye, Y. Chen, N. V. Wheeler, J. P. Wooler, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, S. U. Alam, R. Phelan, J. O’Carroll, B. Kelly, L. Grüner-Nielsen, D. J. Richardson, B. Corbett, and F. C. Garcia Gunning, “100 Gbit/s WDM transmission at 2 µm: transmission studies in both low-loss hollow core photonic bandgap fiber and solid core fiber,” Opt. Express 23(4), 4946–4951 (2015).
[Crossref] [PubMed]

F. Gutty, A. Grisard, A. Joly, C. Larat, D. Papillon-Ruggeri, and E. Lallier, “Multi-kW peak power acousto-optically tunable thulium-doped fiber laser system,” Opt. Express 23(5), 6754–6762 (2015).
[Crossref] [PubMed]

Z. Liu, Y. Chen, Z. Li, B. Kelly, R. Phelan, J. O’Carroll, T. Bradley, J. P. Wooler, N. V. Wheeler, A. M. Heidt, T. Richter, C. Schubert, M. Becker, F. Poletti, M. N. Petrovich, S. Alam, D. J. Richardson, and R. Slavík, “High-capacity directly modulated optical transmitter for 2-μ m spectral region,” J. Lightwave Technol. 33(7), 1373–1379 (2015).
[Crossref]

Z. Yan, Y. Tang, B. Sun, T. Liu, X. Li, P. S. Ping, X. Yu, Y. Zhang, and Q. J. Wang, “Switchable multi-wavelength Tm-doped mode-locked fiber laser,” Opt. Lett. 40(9), 1916–1919 (2015).
[Crossref] [PubMed]

J. M. O. Daniel, N. Simakov, M. Tokurakawa, M. Ibsen, and W. A. Clarkson, “Ultra-short wavelength operation of a thulium fibre laser in the 1660-1750 nm wavelength band,” Opt. Express 23(14), 18269–18276 (2015).
[Crossref] [PubMed]

Q. Yang, S.-H. Xu, C. Li, C.-S. Yang, Z.-M. Feng, Y. Xiao, X. Huang, and Z.-M. Yang, “A single-frequency linearly polarized fiber laser using a newly developed heavily Tm 3+ -doped germanate glass fiber at 1.95 μm,” Chin. Phys. Lett. 32(9), 094206 (2015).
[Crossref]

S. Kharitonov and C.-S. Brès, “Isolator-free unidirectional thulium-doped fiber laser,” Light Sci. Appl. 4(10), e340 (2015).
[Crossref]

F. Li, H. Zhu, and Y. Zhang, “High-power widely tunable Q-switched thulium fiber lasers,” Laser Phys. Lett. 12(9), 95102 (2015).
[Crossref]

2014 (9)

A. Hemming, N. Simakov, J. Haub, and A. Carter, “A review of recent progress in holmium-doped silica fibre sources,” Opt. Fiber Technol. 20(6), 621–630 (2014).
[Crossref]

A. M. Heidt, Z. Li, and D. J. Richardson, “High power diode-seeded fiber amplifiers at 2 µm–from architectures to applications,” IEEE J. Sel. Top. Quantum Electron. 20(5), 525 (2014).
[Crossref]

J. Li, Z. Sun, H. Luo, Z. Yan, K. Zhou, Y. Liu, and L. Zhang, “Wide wavelength selectable all-fiber thulium doped fiber laser between 1925 nm and 2200 nm,” Opt. Express 22(5), 5387–5399 (2014).
[Crossref] [PubMed]

A. Billat, S. Cordette, Y.-P. Tseng, S. Kharitonov, and C.-S. Brès, “High-power parametric conversion from near-infrared to short-wave infrared,” Opt. Express 22(12), 14341–14347 (2014).
[Crossref] [PubMed]

K. Yin, B. Zhang, G. Xue, L. Li, and J. Hou, “High-power all-fiber wavelength-tunable thulium doped fiber laser at 2 μm,” Opt. Express 22(17), 19947–19952 (2014).
[Crossref] [PubMed]

M. Tokurakawa, J. M. O. Daniel, C. S. Chenug, H. Liang, and W. A. Clarkson, “Wavelength-swept Tm-doped fiber laser operating in the two-micron wavelength band,” Opt. Express 22(17), 20014–20019 (2014).
[Crossref] [PubMed]

G. Xue, B. Zhang, K. Yin, W. Yang, and J. Hou, “Ultra-wideband all-fiber tunable Tm/Ho-co-doped laser at 2 μm,” Opt. Express 22(21), 25976–25983 (2014).
[Crossref] [PubMed]

A. Billat, S. Cordette, and C.-S. Brès, “Broadly tunable source around 2050 nm based on wideband parametric conversion and thulium-holmium amplification cascade,” Opt. Express 22(22), 26635–26641 (2014).
[Crossref] [PubMed]

A. Klose, G. Ycas, D. L. Maser, and S. A. Diddams, “Tunable, stable source of femtosecond pulses near 2 μm via supercontinuum of an Erbium mode-locked laser,” Opt. Express 22(23), 28400–28411 (2014).
[Crossref] [PubMed]

2013 (10)

J. Yang, Y. Tang, and J. Xu, “Development and applications of gain-switched fiber lasers,” Photon. Res. 1(1), 52–57 (2013).
[Crossref]

Y. Yu, X. Gai, T. Wang, P. Ma, R. Wang, Z. Yang, D.-Y. Choi, S. Madden, and B. Luther-Davies, “Mid-infrared supercontinuum generation in chalcogenides,” Opt. Mater. Express 3(8), 1075–1086 (2013).
[Crossref]

M. Zhang, E. J. R. Kelleher, T. H. Runcorn, V. M. Mashinsky, O. I. Medvedkov, E. M. Dianov, D. Popa, S. Milana, T. Hasan, Z. Sun, F. Bonaccorso, Z. Jiang, E. Flahaut, B. H. Chapman, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Mid-infrared Raman-soliton continuum pumped by a nanotube-mode-locked sub-picosecond Tm-doped MOPFA,” Opt. Express 21(20), 23261–23271 (2013).
[Crossref] [PubMed]

A. M. Heidt, J. H. V. Price, C. Baskiotis, J. S. Feehan, Z. Li, S. U. Alam, and D. J. Richardson, “Mid-infrared ZBLAN fiber supercontinuum source using picosecond diode-pumping at 2 µm,” Opt. Express 21(20), 24281–24287 (2013).
[Crossref] [PubMed]

K. Yin, W. Yang, B. Zhang, S. Zeng, and J. Hou, “Temporal characteristics of gain-switched thulium-doped fiber laser near threshold,” J. Opt. Soc. Am. B 30(11), 2864–2868 (2013).
[Crossref]

Z. Li, S. U. Alam, Y. Jung, A. M. Heidt, and D. J. Richardson, “All-fiber, ultra-wideband tunable laser at 2 μm,” Opt. Lett. 38(22), 4739–4742 (2013).
[Crossref] [PubMed]

M. E. Durst and J. van Howe, “All-fiber, wavelength and repetition-rate tunable, ultrafast pulse generation in the 2.0 µm region without mode-locking,” J. Lightwave Technol. 31(23), 3714–3718 (2013).
[Crossref]

N. Simakov, A. Hemming, W. A. Clarkson, J. Haub, and A. Carter, “A cladding-pumped, tunable holmium doped fiber laser,” Opt. Express 21(23), 28415–28422 (2013).
[Crossref] [PubMed]

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. Numkam, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

T. N. Nguyen, K. Kieu, D. Churin, T. Ota, M. Miyawaki, and N. Peyghambarian, “High power soliton self-frequency shift with improved flatness ranging from 1.6 to 1.78 µm,” IEEE Photonics Technol. Lett. 25(19), 1893–1896 (2013).
[Crossref]

2012 (5)

A. Schliesser, N. Picque, and T. W. Hansch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

V. A. Kamynin, S. I. Kablukov, K. S. Raspopin, S. O. Antipov, A. S. Kurkov, O. I. Medvedkov, and A. V. Marakulin, “All-fiber Ho-doped laser tunable in the range of 2.045 – 2.1 μm,” Laser Phys. Lett. 9(12), 893–895 (2012).
[Crossref]

N. Leindecker, A. Marandi, R. L. Byer, K. L. Vodopyanov, J. Jiang, I. Hartl, M. Fermann, and P. G. Schunemann, “Octave-spanning ultrafast OPO with 2.6-6.1 µm instantaneous bandwidth pumped by femtosecond Tm-fiber laser,” Opt. Express 20(7), 7046–7053 (2012).
[Crossref] [PubMed]

C. Agger, C. Petersen, S. Dupont, H. Steffensen, J. K. Lyngsø, C. L. Thomsen, J. Thøgersen, S. R. Keiding, and O. Bang, “Supercontinuum generation in ZBLAN fibers—detailed comparison between measurement and simulation,” J. Opt. Soc. Am. B 29(4), 635–645 (2012).
[Crossref]

2011 (3)

2010 (2)

Q. Fang, K. Kieu, and N. Peyghambarian, “An all-fiber 2-µm wavelength-tunable mode-locked laser,” IEEE Photonics Technol. Lett. 22(22), 1656–1658 (2010).

T. S. McComb, R. A. Sims, C. C. C. Willis, P. Kadwani, V. Sudesh, L. Shah, and M. Richardson, “High-power widely tunable thulium fiber lasers,” Appl. Opt. 49(32), 6236–6242 (2010).
[Crossref] [PubMed]

2009 (2)

J. Geng, Q. Wang, J. Smith, T. Luo, F. Amzajerdian, and S. Jiang, “All-fiber Q-switched single-frequency Tm-doped laser near 2 mum,” Opt. Lett. 34(23), 3713–3715 (2009).
[Crossref] [PubMed]

S. D. Jackson, “The spectroscopic and energy transfer characteristics of the rare earth ions used for silicate glass fibre lasers operating in the shortwave infrared,” Laser Photonics Rev. 3(5), 466–482 (2009).
[Crossref]

2007 (4)

A. Godard, “Infrared (2–12 μm) solid-state laser sources: a review,” C. R. Phys. 8(10), 1100–1128 (2007).
[Crossref]

Z. S. Sacks, Z. Schiffer, and D. David, “Long wavelength operation of double-clad Tm : silica fiber lasers,” Proc. SPIE 6453, 645320 (2007).
[Crossref]

S. Kivisto, T. Hakulinen, M. Guina, and O. G. Okhotnikov, “Tunable Raman soliton source using mode-locked Tm/Ho fiber laser,” IEEE Photonics Technol. Lett. 19(12), 934–936 (2007).
[Crossref]

M. Jiang and P. Tayebati, “Stable 10 ns, kilowatt peak-power pulse generation from a gain-switched Tm-doped fiber laser,” Opt. Lett. 32(13), 1797–1799 (2007).
[Crossref] [PubMed]

2006 (3)

2005 (2)

2002 (1)

2001 (1)

N. Nishizawa and T. Goto, “Widely wavelength-tunable ultrashort pulse generation using polarization maintaining optical fibers,” IEEE J. Sel. Top. Quantum Electron. 7(4), 518–524 (2001).
[Crossref]

1995 (1)

L. E. Nelson, E. P. Ippen, and H. A. Haus, “Broadly tunable sub-500 fs pulses from an additive-pulse mode-locked thulium-doped fiber ring laser,” Appl. Phys. Lett. 67(1), 19–21 (1995).
[Crossref]

Agger, C.

Agger, S. D.

Ahmad, H.

H. Ahmad, A. Muhamad, A. S. Sharbirin, M. Z. Samion, and M. F. Ismail, “Tunable Q-switched thulium-doped fiber laser using multiwall carbon nanotube and Fabry-Perot etalon filter,” Opt. Commun. 383, 359–365 (2017).
[Crossref]

M. Z. Samion, M. F. Ismail, A. Muhamad, A. S. Sharbirin, S. W. Harun, and H. Ahmad, “Tunable passively Q-switched thulium-doped fiber laser operating at 1.9 μm using arrayed waveguide grating (AWG),” Opt. Commun. 380, 195–200 (2016).
[Crossref]

Alam, S.

Alam, S. U.

Alam, S.-U.

AlAraimi, M.

M. Chernysheva, C. Mou, R. Arif, M. AlAraimi, M. Rümmeli, S. Turitsyn, and A. Rozhin, “High power Q-switched thulium doped fibre laser using carbon nanotube polymer composite saturable absorber,” Sci. Rep. 6, 24220 (2016).
[Crossref] [PubMed]

Alexander, V. V.

Amzajerdian, F.

Antipov, S. O.

V. A. Kamynin, S. I. Kablukov, K. S. Raspopin, S. O. Antipov, A. S. Kurkov, O. I. Medvedkov, and A. V. Marakulin, “All-fiber Ho-doped laser tunable in the range of 2.045 – 2.1 μm,” Laser Phys. Lett. 9(12), 893–895 (2012).
[Crossref]

Arif, R.

M. Chernysheva, C. Mou, R. Arif, M. AlAraimi, M. Rümmeli, S. Turitsyn, and A. Rozhin, “High power Q-switched thulium doped fibre laser using carbon nanotube polymer composite saturable absorber,” Sci. Rep. 6, 24220 (2016).
[Crossref] [PubMed]

Augere, B.

J. P. Cariou, B. Augere, and M. Valla, “Laser source requirements for coherent lidars based on fiber technology,” C. R. Phys. 7(2), 213–223 (2006).
[Crossref]

Baddela, N.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. Numkam, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

Bang, O.

Barnes, N. P.

Barua, P.

Baskiotis, C.

Becker, M.

Billat, A.

A. Billat, S. Cordette, and C.-S. Brès, “Versatile high repetition rate 2-μm pulsed source based on wideband parametric conversion,” J. Lightwave Technol. 34(3), 879–884 (2016).
[Crossref]

A. Billat, S. Cordette, Y.-P. Tseng, S. Kharitonov, and C.-S. Brès, “High-power parametric conversion from near-infrared to short-wave infrared,” Opt. Express 22(12), 14341–14347 (2014).
[Crossref] [PubMed]

A. Billat, S. Cordette, and C.-S. Brès, “Broadly tunable source around 2050 nm based on wideband parametric conversion and thulium-holmium amplification cascade,” Opt. Express 22(22), 26635–26641 (2014).
[Crossref] [PubMed]

S. Cordette, S. Kharitonov, A. Billat, and C.-S. Bres, “High Power Sub-Picosecond Pulsed SWIR Source Based on Thulium Assisted Raman Wavelength Shifting,” in Optical Fiber Communication Conference (Optical Society of America, 2015), p. Tu2C.4.
[Crossref]

S. J. Cordette, A. Billat, Y.-P. Tseng, and C. S. Brès, “Widely tunable picosecond-pulsed source near 2 μm based on cascaded Raman wavelength shifting,” in The European Conference on Optical Communication, P.1.17 (2014).

Birks, T. A.

Bonaccorso, F.

Boyland, A. J.

Z. Zhang, A. J. Boyland, J. K. Sahu, W. A. Clarkson, and M. Ibsen, “High-power single-frequency thulium-doped fiber DBR laser at 1943 nm,” IEEE Photonics Technol. Lett. 23(7), 417–419 (2011).
[Crossref]

Bradley, T.

Bres, C.-S.

S. Cordette, S. Kharitonov, A. Billat, and C.-S. Bres, “High Power Sub-Picosecond Pulsed SWIR Source Based on Thulium Assisted Raman Wavelength Shifting,” in Optical Fiber Communication Conference (Optical Society of America, 2015), p. Tu2C.4.
[Crossref]

Brès, C. S.

S. J. Cordette, A. Billat, Y.-P. Tseng, and C. S. Brès, “Widely tunable picosecond-pulsed source near 2 μm based on cascaded Raman wavelength shifting,” in The European Conference on Optical Communication, P.1.17 (2014).

Brès, C.-S.

Byer, R. L.

Cariou, J. P.

J. P. Cariou, B. Augere, and M. Valla, “Laser source requirements for coherent lidars based on fiber technology,” C. R. Phys. 7(2), 213–223 (2006).
[Crossref]

Carter, A.

A. Hemming, N. Simakov, J. Haub, and A. Carter, “A review of recent progress in holmium-doped silica fibre sources,” Opt. Fiber Technol. 20(6), 621–630 (2014).
[Crossref]

N. Simakov, A. Hemming, W. A. Clarkson, J. Haub, and A. Carter, “A cladding-pumped, tunable holmium doped fiber laser,” Opt. Express 21(23), 28415–28422 (2013).
[Crossref] [PubMed]

Chan, A

Chapman, B. H.

Chen, Y.

Chenug, C. S.

Chernysheva, M.

M. Chernysheva, C. Mou, R. Arif, M. AlAraimi, M. Rümmeli, S. Turitsyn, and A. Rozhin, “High power Q-switched thulium doped fibre laser using carbon nanotube polymer composite saturable absorber,” Sci. Rep. 6, 24220 (2016).
[Crossref] [PubMed]

Choi, D.-Y.

Churin, D.

T. N. Nguyen, K. Kieu, D. Churin, T. Ota, M. Miyawaki, and N. Peyghambarian, “High power soliton self-frequency shift with improved flatness ranging from 1.6 to 1.78 µm,” IEEE Photonics Technol. Lett. 25(19), 1893–1896 (2013).
[Crossref]

Clarkson, W. A.

N. Simakov, J. M. O. Daniel, J. Ward, W. A. Clarkson, A. Hemming, and J. Haub, “Wavelength agile holmium-doped fiber laser,” Proc. SPIE 9728, 97280Q (2016).
[Crossref]

Z. Li, Y. Jung, J. M. O. Daniel, N. Simakov, M. Tokurakawa, P. C. Shardlow, D. Jain, J. K. Sahu, A. M. Heidt, W. A. Clarkson, S. U. Alam, and D. J. Richardson, “Exploiting the short wavelength gain of silica-based thulium-doped fiber amplifiers,” Opt. Lett. 41(10), 2197–2200 (2016).
[Crossref] [PubMed]

N. Simakov, Z. Li, Y. Jung, J. M. O. Daniel, P. Barua, P. C. Shardlow, S. Liang, J. K. Sahu, A. Hemming, W. A. Clarkson, S.-U. Alam, and D. J. Richardson, “High gain holmium-doped fibre amplifiers,” Opt. Express 24(13), 13946–13956 (2016).
[Crossref] [PubMed]

J. M. O. Daniel, N. Simakov, M. Tokurakawa, M. Ibsen, and W. A. Clarkson, “Ultra-short wavelength operation of a thulium fibre laser in the 1660-1750 nm wavelength band,” Opt. Express 23(14), 18269–18276 (2015).
[Crossref] [PubMed]

M. Tokurakawa, J. M. O. Daniel, C. S. Chenug, H. Liang, and W. A. Clarkson, “Ultra-broadband wavelength-swept Tm-doped fiber laser using wavelength-combined gain stages,” Opt. Express 23(1), 471–476 (2015).
[Crossref] [PubMed]

M. Tokurakawa, J. M. O. Daniel, C. S. Chenug, H. Liang, and W. A. Clarkson, “Wavelength-swept Tm-doped fiber laser operating in the two-micron wavelength band,” Opt. Express 22(17), 20014–20019 (2014).
[Crossref] [PubMed]

N. Simakov, A. Hemming, W. A. Clarkson, J. Haub, and A. Carter, “A cladding-pumped, tunable holmium doped fiber laser,” Opt. Express 21(23), 28415–28422 (2013).
[Crossref] [PubMed]

Z. Zhang, A. J. Boyland, J. K. Sahu, W. A. Clarkson, and M. Ibsen, “High-power single-frequency thulium-doped fiber DBR laser at 1943 nm,” IEEE Photonics Technol. Lett. 23(7), 417–419 (2011).
[Crossref]

D. Y. Shen, J. K. Sahu, and W. A. Clarkson, “High-power widely tunable Tm:fibre lasers pumped by an Er,Yb co-doped fibre laser at 1.6µm,” Opt. Express 14(13), 6084–6090 (2006).
[Crossref] [PubMed]

W. A. Clarkson, N. P. Barnes, P. W. Turner, J. Nilsson, and D. C. Hanna, “High-power cladding-pumped Tm-doped silica fiber laser with wavelength tuning from 1860 to 2090 nm,” Opt. Lett. 27(22), 1989–1991 (2002).
[Crossref] [PubMed]

J. M. O. Daniel, M. Tokurakawa, and W. A. Clarkson, “Power-scalable wavelength-agile fibre laser source at two-microns,” in 5th EPS-QEOD Europhoton Conference (2012).

Corbett, B.

Cordette, S.

Cordette, S. J.

S. J. Cordette, A. Billat, Y.-P. Tseng, and C. S. Brès, “Widely tunable picosecond-pulsed source near 2 μm based on cascaded Raman wavelength shifting,” in The European Conference on Optical Communication, P.1.17 (2014).

Couny, F.

Daniel, J. M. O.

N. Simakov, J. M. O. Daniel, J. Ward, W. A. Clarkson, A. Hemming, and J. Haub, “Wavelength agile holmium-doped fiber laser,” Proc. SPIE 9728, 97280Q (2016).
[Crossref]

Z. Li, Y. Jung, J. M. O. Daniel, N. Simakov, M. Tokurakawa, P. C. Shardlow, D. Jain, J. K. Sahu, A. M. Heidt, W. A. Clarkson, S. U. Alam, and D. J. Richardson, “Exploiting the short wavelength gain of silica-based thulium-doped fiber amplifiers,” Opt. Lett. 41(10), 2197–2200 (2016).
[Crossref] [PubMed]

N. Simakov, Z. Li, Y. Jung, J. M. O. Daniel, P. Barua, P. C. Shardlow, S. Liang, J. K. Sahu, A. Hemming, W. A. Clarkson, S.-U. Alam, and D. J. Richardson, “High gain holmium-doped fibre amplifiers,” Opt. Express 24(13), 13946–13956 (2016).
[Crossref] [PubMed]

J. M. O. Daniel, N. Simakov, M. Tokurakawa, M. Ibsen, and W. A. Clarkson, “Ultra-short wavelength operation of a thulium fibre laser in the 1660-1750 nm wavelength band,” Opt. Express 23(14), 18269–18276 (2015).
[Crossref] [PubMed]

M. Tokurakawa, J. M. O. Daniel, C. S. Chenug, H. Liang, and W. A. Clarkson, “Ultra-broadband wavelength-swept Tm-doped fiber laser using wavelength-combined gain stages,” Opt. Express 23(1), 471–476 (2015).
[Crossref] [PubMed]

M. Tokurakawa, J. M. O. Daniel, C. S. Chenug, H. Liang, and W. A. Clarkson, “Wavelength-swept Tm-doped fiber laser operating in the two-micron wavelength band,” Opt. Express 22(17), 20014–20019 (2014).
[Crossref] [PubMed]

J. M. O. Daniel, M. Tokurakawa, and W. A. Clarkson, “Power-scalable wavelength-agile fibre laser source at two-microns,” in 5th EPS-QEOD Europhoton Conference (2012).

David, D.

Z. S. Sacks, Z. Schiffer, and D. David, “Long wavelength operation of double-clad Tm : silica fiber lasers,” Proc. SPIE 6453, 645320 (2007).
[Crossref]

Dianov, E. M.

Diddams, S. A.

Dupont, S.

Durst, M. E.

Fang, Q.

Q. Fang, K. Kieu, and N. Peyghambarian, “An all-fiber 2-µm wavelength-tunable mode-locked laser,” IEEE Photonics Technol. Lett. 22(22), 1656–1658 (2010).

Farr, L.

Feehan, J. S.

Feng, Y.

N. Li, M. Y. Liu, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, Y. Ohishi, G. S. Qin, and W. P. Qin, “All-fiber widely tunable mode-locked thulium-doped laser using a curvature multimode interference filter,” Laser Phys. Lett. 13(7), 75103 (2016).
[Crossref]

Feng, Z.-M.

Q. Yang, S.-H. Xu, C. Li, C.-S. Yang, Z.-M. Feng, Y. Xiao, X. Huang, and Z.-M. Yang, “A single-frequency linearly polarized fiber laser using a newly developed heavily Tm 3+ -doped germanate glass fiber at 1.95 μm,” Chin. Phys. Lett. 32(9), 094206 (2015).
[Crossref]

Fermann, M.

Ferrari, A. C.

Flahaut, E.

Freeman, M. J.

Gai, X.

Gao, X. J.

N. Li, M. Y. Liu, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, Y. Ohishi, G. S. Qin, and W. P. Qin, “All-fiber widely tunable mode-locked thulium-doped laser using a curvature multimode interference filter,” Laser Phys. Lett. 13(7), 75103 (2016).
[Crossref]

Garcia Gunning, F. C.

Geng, J.

Godard, A.

A. Godard, “Infrared (2–12 μm) solid-state laser sources: a review,” C. R. Phys. 8(10), 1100–1128 (2007).
[Crossref]

Goto, T.

N. Nishizawa and T. Goto, “Widely wavelength-tunable ultrashort pulse generation using polarization maintaining optical fibers,” IEEE J. Sel. Top. Quantum Electron. 7(4), 518–524 (2001).
[Crossref]

Gray, D. R.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. Numkam, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

Grisard, A.

Grüner-Nielsen, L.

Guina, M.

S. Kivisto, T. Hakulinen, M. Guina, and O. G. Okhotnikov, “Tunable Raman soliton source using mode-locked Tm/Ho fiber laser,” IEEE Photonics Technol. Lett. 19(12), 934–936 (2007).
[Crossref]

Guo, G.

F. Wang, Y. Meng, E. Kelleher, G. Guo, Y. Li, Y. Xu, and S. Zhu, “Stable gain-switched thulium fiber laser with 140-nm tuning range,” IEEE Photonics Technol. Lett. 28(12), 1340–1343 (2016).
[Crossref]

Gutty, F.

Hakulinen, T.

S. Kivisto, T. Hakulinen, M. Guina, and O. G. Okhotnikov, “Tunable Raman soliton source using mode-locked Tm/Ho fiber laser,” IEEE Photonics Technol. Lett. 19(12), 934–936 (2007).
[Crossref]

Hanna, D. C.

Hansch, T. W.

A. Schliesser, N. Picque, and T. W. Hansch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

Hartl, I.

Harun, S. W.

M. Z. Samion, M. F. Ismail, A. Muhamad, A. S. Sharbirin, S. W. Harun, and H. Ahmad, “Tunable passively Q-switched thulium-doped fiber laser operating at 1.9 μm using arrayed waveguide grating (AWG),” Opt. Commun. 380, 195–200 (2016).
[Crossref]

Hasan, T.

Haub, J.

N. Simakov, J. M. O. Daniel, J. Ward, W. A. Clarkson, A. Hemming, and J. Haub, “Wavelength agile holmium-doped fiber laser,” Proc. SPIE 9728, 97280Q (2016).
[Crossref]

A. Hemming, N. Simakov, J. Haub, and A. Carter, “A review of recent progress in holmium-doped silica fibre sources,” Opt. Fiber Technol. 20(6), 621–630 (2014).
[Crossref]

N. Simakov, A. Hemming, W. A. Clarkson, J. Haub, and A. Carter, “A cladding-pumped, tunable holmium doped fiber laser,” Opt. Express 21(23), 28415–28422 (2013).
[Crossref] [PubMed]

Haus, H. A.

L. E. Nelson, E. P. Ippen, and H. A. Haus, “Broadly tunable sub-500 fs pulses from an additive-pulse mode-locked thulium-doped fiber ring laser,” Appl. Phys. Lett. 67(1), 19–21 (1995).
[Crossref]

Hayes, J. R.

Heidt, A. M.

Hemming, A.

N. Simakov, J. M. O. Daniel, J. Ward, W. A. Clarkson, A. Hemming, and J. Haub, “Wavelength agile holmium-doped fiber laser,” Proc. SPIE 9728, 97280Q (2016).
[Crossref]

N. Simakov, Z. Li, Y. Jung, J. M. O. Daniel, P. Barua, P. C. Shardlow, S. Liang, J. K. Sahu, A. Hemming, W. A. Clarkson, S.-U. Alam, and D. J. Richardson, “High gain holmium-doped fibre amplifiers,” Opt. Express 24(13), 13946–13956 (2016).
[Crossref] [PubMed]

A. Hemming, N. Simakov, J. Haub, and A. Carter, “A review of recent progress in holmium-doped silica fibre sources,” Opt. Fiber Technol. 20(6), 621–630 (2014).
[Crossref]

N. Simakov, A. Hemming, W. A. Clarkson, J. Haub, and A. Carter, “A cladding-pumped, tunable holmium doped fiber laser,” Opt. Express 21(23), 28415–28422 (2013).
[Crossref] [PubMed]

Hou, J.

Hsu, K.

Huang, X.

Q. Yang, S.-H. Xu, C. Li, C.-S. Yang, Z.-M. Feng, Y. Xiao, X. Huang, and Z.-M. Yang, “A single-frequency linearly polarized fiber laser using a newly developed heavily Tm 3+ -doped germanate glass fiber at 1.95 μm,” Chin. Phys. Lett. 32(9), 094206 (2015).
[Crossref]

Ibsen, M.

J. M. O. Daniel, N. Simakov, M. Tokurakawa, M. Ibsen, and W. A. Clarkson, “Ultra-short wavelength operation of a thulium fibre laser in the 1660-1750 nm wavelength band,” Opt. Express 23(14), 18269–18276 (2015).
[Crossref] [PubMed]

Z. Zhang, A. J. Boyland, J. K. Sahu, W. A. Clarkson, and M. Ibsen, “High-power single-frequency thulium-doped fiber DBR laser at 1943 nm,” IEEE Photonics Technol. Lett. 23(7), 417–419 (2011).
[Crossref]

Imeshev, G.

Ippen, E. P.

L. E. Nelson, E. P. Ippen, and H. A. Haus, “Broadly tunable sub-500 fs pulses from an additive-pulse mode-locked thulium-doped fiber ring laser,” Appl. Phys. Lett. 67(1), 19–21 (1995).
[Crossref]

Islam, M. N.

Ismail, M. F.

H. Ahmad, A. Muhamad, A. S. Sharbirin, M. Z. Samion, and M. F. Ismail, “Tunable Q-switched thulium-doped fiber laser using multiwall carbon nanotube and Fabry-Perot etalon filter,” Opt. Commun. 383, 359–365 (2017).
[Crossref]

M. Z. Samion, M. F. Ismail, A. Muhamad, A. S. Sharbirin, S. W. Harun, and H. Ahmad, “Tunable passively Q-switched thulium-doped fiber laser operating at 1.9 μm using arrayed waveguide grating (AWG),” Opt. Commun. 380, 195–200 (2016).
[Crossref]

Jackson, S. D.

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

S. D. Jackson, “The spectroscopic and energy transfer characteristics of the rare earth ions used for silicate glass fibre lasers operating in the shortwave infrared,” Laser Photonics Rev. 3(5), 466–482 (2009).
[Crossref]

Jain, D.

Jia, Z. X.

N. Li, M. Y. Liu, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, Y. Ohishi, G. S. Qin, and W. P. Qin, “All-fiber widely tunable mode-locked thulium-doped laser using a curvature multimode interference filter,” Laser Phys. Lett. 13(7), 75103 (2016).
[Crossref]

Jiang, J.

Jiang, M.

Jiang, S.

Jiang, Z.

Jin, X.

Joly, A.

Jung, Y.

Kablukov, S. I.

V. A. Kamynin, S. I. Kablukov, K. S. Raspopin, S. O. Antipov, A. S. Kurkov, O. I. Medvedkov, and A. V. Marakulin, “All-fiber Ho-doped laser tunable in the range of 2.045 – 2.1 μm,” Laser Phys. Lett. 9(12), 893–895 (2012).
[Crossref]

Kadwani, P.

Kamynin, V. A.

V. A. Kamynin, S. I. Kablukov, K. S. Raspopin, S. O. Antipov, A. S. Kurkov, O. I. Medvedkov, and A. V. Marakulin, “All-fiber Ho-doped laser tunable in the range of 2.045 – 2.1 μm,” Laser Phys. Lett. 9(12), 893–895 (2012).
[Crossref]

Kavanagh, N.

Keiding, S. R.

Kelleher, E.

F. Wang, Y. Meng, E. Kelleher, G. Guo, Y. Li, Y. Xu, and S. Zhu, “Stable gain-switched thulium fiber laser with 140-nm tuning range,” IEEE Photonics Technol. Lett. 28(12), 1340–1343 (2016).
[Crossref]

Kelleher, E. J. R.

Kelly, B.

Kharitonov, S.

S. Kharitonov and C.-S. Brès, “Isolator-free unidirectional thulium-doped fiber laser,” Light Sci. Appl. 4(10), e340 (2015).
[Crossref]

A. Billat, S. Cordette, Y.-P. Tseng, S. Kharitonov, and C.-S. Brès, “High-power parametric conversion from near-infrared to short-wave infrared,” Opt. Express 22(12), 14341–14347 (2014).
[Crossref] [PubMed]

S. Cordette, S. Kharitonov, A. Billat, and C.-S. Bres, “High Power Sub-Picosecond Pulsed SWIR Source Based on Thulium Assisted Raman Wavelength Shifting,” in Optical Fiber Communication Conference (Optical Society of America, 2015), p. Tu2C.4.
[Crossref]

Kieu, K.

T. N. Nguyen, K. Kieu, D. Churin, T. Ota, M. Miyawaki, and N. Peyghambarian, “High power soliton self-frequency shift with improved flatness ranging from 1.6 to 1.78 µm,” IEEE Photonics Technol. Lett. 25(19), 1893–1896 (2013).
[Crossref]

Q. Fang, K. Kieu, and N. Peyghambarian, “An all-fiber 2-µm wavelength-tunable mode-locked laser,” IEEE Photonics Technol. Lett. 22(22), 1656–1658 (2010).

Kivisto, S.

S. Kivisto, T. Hakulinen, M. Guina, and O. G. Okhotnikov, “Tunable Raman soliton source using mode-locked Tm/Ho fiber laser,” IEEE Photonics Technol. Lett. 19(12), 934–936 (2007).
[Crossref]

Klose, A.

Knight, J. C.

Kulkarni, O. P.

Kumar, M.

Kurkov, A. S.

V. A. Kamynin, S. I. Kablukov, K. S. Raspopin, S. O. Antipov, A. S. Kurkov, O. I. Medvedkov, and A. V. Marakulin, “All-fiber Ho-doped laser tunable in the range of 2.045 – 2.1 μm,” Laser Phys. Lett. 9(12), 893–895 (2012).
[Crossref]

Lallier, E.

Larat, C.

Legg, T.

G. Stevens and T. Legg, “All-fiber widely tunable thulium laser,” Proc. SPIE 9728, 972814 (2016).
[Crossref]

Leindecker, N.

Li, C.

Q. Yang, S.-H. Xu, C. Li, C.-S. Yang, Z.-M. Feng, Y. Xiao, X. Huang, and Z.-M. Yang, “A single-frequency linearly polarized fiber laser using a newly developed heavily Tm 3+ -doped germanate glass fiber at 1.95 μm,” Chin. Phys. Lett. 32(9), 094206 (2015).
[Crossref]

Li, F.

F. Li, H. Zhu, and Y. Zhang, “High-power widely tunable Q-switched thulium fiber lasers,” Laser Phys. Lett. 12(9), 95102 (2015).
[Crossref]

Li, J.

Li, L.

Li, N.

N. Li, M. Y. Liu, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, Y. Ohishi, G. S. Qin, and W. P. Qin, “All-fiber widely tunable mode-locked thulium-doped laser using a curvature multimode interference filter,” Laser Phys. Lett. 13(7), 75103 (2016).
[Crossref]

Li, X.

Li, Y.

F. Wang, Y. Meng, E. Kelleher, G. Guo, Y. Li, Y. Xu, and S. Zhu, “Stable gain-switched thulium fiber laser with 140-nm tuning range,” IEEE Photonics Technol. Lett. 28(12), 1340–1343 (2016).
[Crossref]

Li, Z.

Z. Li, Y. Jung, J. M. O. Daniel, N. Simakov, M. Tokurakawa, P. C. Shardlow, D. Jain, J. K. Sahu, A. M. Heidt, W. A. Clarkson, S. U. Alam, and D. J. Richardson, “Exploiting the short wavelength gain of silica-based thulium-doped fiber amplifiers,” Opt. Lett. 41(10), 2197–2200 (2016).
[Crossref] [PubMed]

N. Simakov, Z. Li, Y. Jung, J. M. O. Daniel, P. Barua, P. C. Shardlow, S. Liang, J. K. Sahu, A. Hemming, W. A. Clarkson, S.-U. Alam, and D. J. Richardson, “High gain holmium-doped fibre amplifiers,” Opt. Express 24(13), 13946–13956 (2016).
[Crossref] [PubMed]

H. Zhang, N. Kavanagh, Z. Li, J. Zhao, N. Ye, Y. Chen, N. V. Wheeler, J. P. Wooler, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, S. U. Alam, R. Phelan, J. O’Carroll, B. Kelly, L. Grüner-Nielsen, D. J. Richardson, B. Corbett, and F. C. Garcia Gunning, “100 Gbit/s WDM transmission at 2 µm: transmission studies in both low-loss hollow core photonic bandgap fiber and solid core fiber,” Opt. Express 23(4), 4946–4951 (2015).
[Crossref] [PubMed]

Z. Liu, Y. Chen, Z. Li, B. Kelly, R. Phelan, J. O’Carroll, T. Bradley, J. P. Wooler, N. V. Wheeler, A. M. Heidt, T. Richter, C. Schubert, M. Becker, F. Poletti, M. N. Petrovich, S. Alam, D. J. Richardson, and R. Slavík, “High-capacity directly modulated optical transmitter for 2-μ m spectral region,” J. Lightwave Technol. 33(7), 1373–1379 (2015).
[Crossref]

A. M. Heidt, Z. Li, and D. J. Richardson, “High power diode-seeded fiber amplifiers at 2 µm–from architectures to applications,” IEEE J. Sel. Top. Quantum Electron. 20(5), 525 (2014).
[Crossref]

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. Numkam, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

Z. Li, S. U. Alam, Y. Jung, A. M. Heidt, and D. J. Richardson, “All-fiber, ultra-wideband tunable laser at 2 μm,” Opt. Lett. 38(22), 4739–4742 (2013).
[Crossref] [PubMed]

A. M. Heidt, J. H. V. Price, C. Baskiotis, J. S. Feehan, Z. Li, S. U. Alam, and D. J. Richardson, “Mid-infrared ZBLAN fiber supercontinuum source using picosecond diode-pumping at 2 µm,” Opt. Express 21(20), 24281–24287 (2013).
[Crossref] [PubMed]

Liang, H.

Liang, S.

Liu, M. Y.

N. Li, M. Y. Liu, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, Y. Ohishi, G. S. Qin, and W. P. Qin, “All-fiber widely tunable mode-locked thulium-doped laser using a curvature multimode interference filter,” Laser Phys. Lett. 13(7), 75103 (2016).
[Crossref]

Liu, T.

Liu, Y.

Liu, Z.

Luo, H.

Luo, J.

Z. Yan, B. Sun, X. Li, J. Luo, P. P. Shum, X. Yu, Y. Zhang, and Q. J. Wang, “Widely tunable Tm-doped mode-locked all-fiber laser,” Sci. Rep. 6, 27245 (2016).
[Crossref] [PubMed]

Luo, T.

Luther-Davies, B.

Lyngsø, J. K.

Ma, P.

Madden, S.

Mangan, B. J.

Marakulin, A. V.

V. A. Kamynin, S. I. Kablukov, K. S. Raspopin, S. O. Antipov, A. S. Kurkov, O. I. Medvedkov, and A. V. Marakulin, “All-fiber Ho-doped laser tunable in the range of 2.045 – 2.1 μm,” Laser Phys. Lett. 9(12), 893–895 (2012).
[Crossref]

Marandi, A.

Maser, D. L.

Mashinsky, V. M.

Mason, M. W.

McComb, T. S.

Medvedkov, O. I.

Meng, Y.

F. Wang, Y. Meng, E. Kelleher, G. Guo, Y. Li, Y. Xu, and S. Zhu, “Stable gain-switched thulium fiber laser with 140-nm tuning range,” IEEE Photonics Technol. Lett. 28(12), 1340–1343 (2016).
[Crossref]

Milana, S.

Miyawaki, M.

T. N. Nguyen, K. Kieu, D. Churin, T. Ota, M. Miyawaki, and N. Peyghambarian, “High power soliton self-frequency shift with improved flatness ranging from 1.6 to 1.78 µm,” IEEE Photonics Technol. Lett. 25(19), 1893–1896 (2013).
[Crossref]

Mou, C.

M. Chernysheva, C. Mou, R. Arif, M. AlAraimi, M. Rümmeli, S. Turitsyn, and A. Rozhin, “High power Q-switched thulium doped fibre laser using carbon nanotube polymer composite saturable absorber,” Sci. Rep. 6, 24220 (2016).
[Crossref] [PubMed]

Muhamad, A.

H. Ahmad, A. Muhamad, A. S. Sharbirin, M. Z. Samion, and M. F. Ismail, “Tunable Q-switched thulium-doped fiber laser using multiwall carbon nanotube and Fabry-Perot etalon filter,” Opt. Commun. 383, 359–365 (2017).
[Crossref]

M. Z. Samion, M. F. Ismail, A. Muhamad, A. S. Sharbirin, S. W. Harun, and H. Ahmad, “Tunable passively Q-switched thulium-doped fiber laser operating at 1.9 μm using arrayed waveguide grating (AWG),” Opt. Commun. 380, 195–200 (2016).
[Crossref]

Neelakandan, M

Nelson, L. E.

L. E. Nelson, E. P. Ippen, and H. A. Haus, “Broadly tunable sub-500 fs pulses from an additive-pulse mode-locked thulium-doped fiber ring laser,” Appl. Phys. Lett. 67(1), 19–21 (1995).
[Crossref]

Nguyen, T. N.

T. N. Nguyen, K. Kieu, D. Churin, T. Ota, M. Miyawaki, and N. Peyghambarian, “High power soliton self-frequency shift with improved flatness ranging from 1.6 to 1.78 µm,” IEEE Photonics Technol. Lett. 25(19), 1893–1896 (2013).
[Crossref]

Nilsson, J.

Nishizawa, N.

N. Nishizawa and T. Goto, “Widely wavelength-tunable ultrashort pulse generation using polarization maintaining optical fibers,” IEEE J. Sel. Top. Quantum Electron. 7(4), 518–524 (2001).
[Crossref]

Numkam, E.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. Numkam, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

O’Carroll, J.

Ohishi, Y.

N. Li, M. Y. Liu, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, Y. Ohishi, G. S. Qin, and W. P. Qin, “All-fiber widely tunable mode-locked thulium-doped laser using a curvature multimode interference filter,” Laser Phys. Lett. 13(7), 75103 (2016).
[Crossref]

Okhotnikov, O. G.

S. Kivisto, T. Hakulinen, M. Guina, and O. G. Okhotnikov, “Tunable Raman soliton source using mode-locked Tm/Ho fiber laser,” IEEE Photonics Technol. Lett. 19(12), 934–936 (2007).
[Crossref]

Ota, T.

T. N. Nguyen, K. Kieu, D. Churin, T. Ota, M. Miyawaki, and N. Peyghambarian, “High power soliton self-frequency shift with improved flatness ranging from 1.6 to 1.78 µm,” IEEE Photonics Technol. Lett. 25(19), 1893–1896 (2013).
[Crossref]

Papillon-Ruggeri, D.

Petersen, C.

Petrovich, M. N.

Peyghambarian, N.

T. N. Nguyen, K. Kieu, D. Churin, T. Ota, M. Miyawaki, and N. Peyghambarian, “High power soliton self-frequency shift with improved flatness ranging from 1.6 to 1.78 µm,” IEEE Photonics Technol. Lett. 25(19), 1893–1896 (2013).
[Crossref]

Q. Fang, K. Kieu, and N. Peyghambarian, “An all-fiber 2-µm wavelength-tunable mode-locked laser,” IEEE Photonics Technol. Lett. 22(22), 1656–1658 (2010).

Phelan, R.

Picque, N.

A. Schliesser, N. Picque, and T. W. Hansch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

Ping, P. S.

Poletti, F.

Popa, D.

Popov, S. V.

Povlsen, J. H.

Price, J. H. V.

Qin, G. S.

N. Li, M. Y. Liu, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, Y. Ohishi, G. S. Qin, and W. P. Qin, “All-fiber widely tunable mode-locked thulium-doped laser using a curvature multimode interference filter,” Laser Phys. Lett. 13(7), 75103 (2016).
[Crossref]

Qin, W. P.

N. Li, M. Y. Liu, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, Y. Ohishi, G. S. Qin, and W. P. Qin, “All-fiber widely tunable mode-locked thulium-doped laser using a curvature multimode interference filter,” Laser Phys. Lett. 13(7), 75103 (2016).
[Crossref]

Raspopin, K. S.

V. A. Kamynin, S. I. Kablukov, K. S. Raspopin, S. O. Antipov, A. S. Kurkov, O. I. Medvedkov, and A. V. Marakulin, “All-fiber Ho-doped laser tunable in the range of 2.045 – 2.1 μm,” Laser Phys. Lett. 9(12), 893–895 (2012).
[Crossref]

Richardson, D. J.

N. Simakov, Z. Li, Y. Jung, J. M. O. Daniel, P. Barua, P. C. Shardlow, S. Liang, J. K. Sahu, A. Hemming, W. A. Clarkson, S.-U. Alam, and D. J. Richardson, “High gain holmium-doped fibre amplifiers,” Opt. Express 24(13), 13946–13956 (2016).
[Crossref] [PubMed]

Z. Li, Y. Jung, J. M. O. Daniel, N. Simakov, M. Tokurakawa, P. C. Shardlow, D. Jain, J. K. Sahu, A. M. Heidt, W. A. Clarkson, S. U. Alam, and D. J. Richardson, “Exploiting the short wavelength gain of silica-based thulium-doped fiber amplifiers,” Opt. Lett. 41(10), 2197–2200 (2016).
[Crossref] [PubMed]

Z. Liu, Y. Chen, Z. Li, B. Kelly, R. Phelan, J. O’Carroll, T. Bradley, J. P. Wooler, N. V. Wheeler, A. M. Heidt, T. Richter, C. Schubert, M. Becker, F. Poletti, M. N. Petrovich, S. Alam, D. J. Richardson, and R. Slavík, “High-capacity directly modulated optical transmitter for 2-μ m spectral region,” J. Lightwave Technol. 33(7), 1373–1379 (2015).
[Crossref]

H. Zhang, N. Kavanagh, Z. Li, J. Zhao, N. Ye, Y. Chen, N. V. Wheeler, J. P. Wooler, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, S. U. Alam, R. Phelan, J. O’Carroll, B. Kelly, L. Grüner-Nielsen, D. J. Richardson, B. Corbett, and F. C. Garcia Gunning, “100 Gbit/s WDM transmission at 2 µm: transmission studies in both low-loss hollow core photonic bandgap fiber and solid core fiber,” Opt. Express 23(4), 4946–4951 (2015).
[Crossref] [PubMed]

A. M. Heidt, Z. Li, and D. J. Richardson, “High power diode-seeded fiber amplifiers at 2 µm–from architectures to applications,” IEEE J. Sel. Top. Quantum Electron. 20(5), 525 (2014).
[Crossref]

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. Numkam, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

A. M. Heidt, J. H. V. Price, C. Baskiotis, J. S. Feehan, Z. Li, S. U. Alam, and D. J. Richardson, “Mid-infrared ZBLAN fiber supercontinuum source using picosecond diode-pumping at 2 µm,” Opt. Express 21(20), 24281–24287 (2013).
[Crossref] [PubMed]

Z. Li, S. U. Alam, Y. Jung, A. M. Heidt, and D. J. Richardson, “All-fiber, ultra-wideband tunable laser at 2 μm,” Opt. Lett. 38(22), 4739–4742 (2013).
[Crossref] [PubMed]

Richardson, M.

Richter, T.

Roberts, P. J.

Rozhin, A.

M. Chernysheva, C. Mou, R. Arif, M. AlAraimi, M. Rümmeli, S. Turitsyn, and A. Rozhin, “High power Q-switched thulium doped fibre laser using carbon nanotube polymer composite saturable absorber,” Sci. Rep. 6, 24220 (2016).
[Crossref] [PubMed]

Rümmeli, M.

M. Chernysheva, C. Mou, R. Arif, M. AlAraimi, M. Rümmeli, S. Turitsyn, and A. Rozhin, “High power Q-switched thulium doped fibre laser using carbon nanotube polymer composite saturable absorber,” Sci. Rep. 6, 24220 (2016).
[Crossref] [PubMed]

Runcorn, T. H.

Sabert, H.

Sacks, Z. S.

Z. S. Sacks, Z. Schiffer, and D. David, “Long wavelength operation of double-clad Tm : silica fiber lasers,” Proc. SPIE 6453, 645320 (2007).
[Crossref]

Sahu, J. K.

Samion, M. Z.

H. Ahmad, A. Muhamad, A. S. Sharbirin, M. Z. Samion, and M. F. Ismail, “Tunable Q-switched thulium-doped fiber laser using multiwall carbon nanotube and Fabry-Perot etalon filter,” Opt. Commun. 383, 359–365 (2017).
[Crossref]

M. Z. Samion, M. F. Ismail, A. Muhamad, A. S. Sharbirin, S. W. Harun, and H. Ahmad, “Tunable passively Q-switched thulium-doped fiber laser operating at 1.9 μm using arrayed waveguide grating (AWG),” Opt. Commun. 380, 195–200 (2016).
[Crossref]

Sandoghchi, S. R.

Schiffer, Z.

Z. S. Sacks, Z. Schiffer, and D. David, “Long wavelength operation of double-clad Tm : silica fiber lasers,” Proc. SPIE 6453, 645320 (2007).
[Crossref]

Schliesser, A.

A. Schliesser, N. Picque, and T. W. Hansch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

Schubert, C.

Schunemann, P. G.

Shah, L.

Sharbirin, A. S.

H. Ahmad, A. Muhamad, A. S. Sharbirin, M. Z. Samion, and M. F. Ismail, “Tunable Q-switched thulium-doped fiber laser using multiwall carbon nanotube and Fabry-Perot etalon filter,” Opt. Commun. 383, 359–365 (2017).
[Crossref]

M. Z. Samion, M. F. Ismail, A. Muhamad, A. S. Sharbirin, S. W. Harun, and H. Ahmad, “Tunable passively Q-switched thulium-doped fiber laser operating at 1.9 μm using arrayed waveguide grating (AWG),” Opt. Commun. 380, 195–200 (2016).
[Crossref]

Shardlow, P. C.

Shen, D. Y.

Shum, P. P.

Simakov, N.

Sims, R. A.

Slavík, R.

Z. Liu, Y. Chen, Z. Li, B. Kelly, R. Phelan, J. O’Carroll, T. Bradley, J. P. Wooler, N. V. Wheeler, A. M. Heidt, T. Richter, C. Schubert, M. Becker, F. Poletti, M. N. Petrovich, S. Alam, D. J. Richardson, and R. Slavík, “High-capacity directly modulated optical transmitter for 2-μ m spectral region,” J. Lightwave Technol. 33(7), 1373–1379 (2015).
[Crossref]

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. Numkam, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

Smith, J.

St. J. Russell, P.

Steffensen, H.

Stevens, G.

G. Stevens and T. Legg, “All-fiber widely tunable thulium laser,” Proc. SPIE 9728, 972814 (2016).
[Crossref]

Sudesh, V.

Sun, B.

Z. Yan, B. Sun, X. Li, J. Luo, P. P. Shum, X. Yu, Y. Zhang, and Q. J. Wang, “Widely tunable Tm-doped mode-locked all-fiber laser,” Sci. Rep. 6, 27245 (2016).
[Crossref] [PubMed]

Z. Yan, Y. Tang, B. Sun, T. Liu, X. Li, P. S. Ping, X. Yu, Y. Zhang, and Q. J. Wang, “Switchable multi-wavelength Tm-doped mode-locked fiber laser,” Opt. Lett. 40(9), 1916–1919 (2015).
[Crossref] [PubMed]

Sun, Z.

Tang, Y.

Tayebati, P.

Taylor, J. R.

Terry, J. F. L

Thøgersen, J.

Thomsen, C. L.

Tokurakawa, M.

Tomlinson, A.

Tseng, Y.-P.

A. Billat, S. Cordette, Y.-P. Tseng, S. Kharitonov, and C.-S. Brès, “High-power parametric conversion from near-infrared to short-wave infrared,” Opt. Express 22(12), 14341–14347 (2014).
[Crossref] [PubMed]

S. J. Cordette, A. Billat, Y.-P. Tseng, and C. S. Brès, “Widely tunable picosecond-pulsed source near 2 μm based on cascaded Raman wavelength shifting,” in The European Conference on Optical Communication, P.1.17 (2014).

Turitsyn, S.

M. Chernysheva, C. Mou, R. Arif, M. AlAraimi, M. Rümmeli, S. Turitsyn, and A. Rozhin, “High power Q-switched thulium doped fibre laser using carbon nanotube polymer composite saturable absorber,” Sci. Rep. 6, 24220 (2016).
[Crossref] [PubMed]

Turner, P. W.

Valla, M.

J. P. Cariou, B. Augere, and M. Valla, “Laser source requirements for coherent lidars based on fiber technology,” C. R. Phys. 7(2), 213–223 (2006).
[Crossref]

van Howe, J.

Vodopyanov, K. L.

Wang, F.

F. Wang, Y. Meng, E. Kelleher, G. Guo, Y. Li, Y. Xu, and S. Zhu, “Stable gain-switched thulium fiber laser with 140-nm tuning range,” IEEE Photonics Technol. Lett. 28(12), 1340–1343 (2016).
[Crossref]

Wang, J.

Wang, Q.

Wang, Q. J.

Wang, R.

Wang, T.

Wang, X.

Ward, J.

N. Simakov, J. M. O. Daniel, J. Ward, W. A. Clarkson, A. Hemming, and J. Haub, “Wavelength agile holmium-doped fiber laser,” Proc. SPIE 9728, 97280Q (2016).
[Crossref]

Wheeler, N. V.

Williams, D. P.

Willis, C. C. C.

Wooler, J. P.

Xiao, H.

Xiao, Y.

Q. Yang, S.-H. Xu, C. Li, C.-S. Yang, Z.-M. Feng, Y. Xiao, X. Huang, and Z.-M. Yang, “A single-frequency linearly polarized fiber laser using a newly developed heavily Tm 3+ -doped germanate glass fiber at 1.95 μm,” Chin. Phys. Lett. 32(9), 094206 (2015).
[Crossref]

Xu, J.

Xu, S.-H.

Q. Yang, S.-H. Xu, C. Li, C.-S. Yang, Z.-M. Feng, Y. Xiao, X. Huang, and Z.-M. Yang, “A single-frequency linearly polarized fiber laser using a newly developed heavily Tm 3+ -doped germanate glass fiber at 1.95 μm,” Chin. Phys. Lett. 32(9), 094206 (2015).
[Crossref]

Xu, Y.

F. Wang, Y. Meng, E. Kelleher, G. Guo, Y. Li, Y. Xu, and S. Zhu, “Stable gain-switched thulium fiber laser with 140-nm tuning range,” IEEE Photonics Technol. Lett. 28(12), 1340–1343 (2016).
[Crossref]

Xue, G.

Yan, Z.

Yang, C.-S.

Q. Yang, S.-H. Xu, C. Li, C.-S. Yang, Z.-M. Feng, Y. Xiao, X. Huang, and Z.-M. Yang, “A single-frequency linearly polarized fiber laser using a newly developed heavily Tm 3+ -doped germanate glass fiber at 1.95 μm,” Chin. Phys. Lett. 32(9), 094206 (2015).
[Crossref]

Yang, J.

Yang, Q.

Q. Yang, S.-H. Xu, C. Li, C.-S. Yang, Z.-M. Feng, Y. Xiao, X. Huang, and Z.-M. Yang, “A single-frequency linearly polarized fiber laser using a newly developed heavily Tm 3+ -doped germanate glass fiber at 1.95 μm,” Chin. Phys. Lett. 32(9), 094206 (2015).
[Crossref]

Yang, W.

Yang, Z.

Yang, Z.-M.

Q. Yang, S.-H. Xu, C. Li, C.-S. Yang, Z.-M. Feng, Y. Xiao, X. Huang, and Z.-M. Yang, “A single-frequency linearly polarized fiber laser using a newly developed heavily Tm 3+ -doped germanate glass fiber at 1.95 μm,” Chin. Phys. Lett. 32(9), 094206 (2015).
[Crossref]

Ycas, G.

Ye, N.

Yin, K.

Yu, X.

Yu, Y.

Zeng, S.

Zhang, B.

Zhang, H.

Zhang, L.

N. Li, M. Y. Liu, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, Y. Ohishi, G. S. Qin, and W. P. Qin, “All-fiber widely tunable mode-locked thulium-doped laser using a curvature multimode interference filter,” Laser Phys. Lett. 13(7), 75103 (2016).
[Crossref]

J. Li, Z. Sun, H. Luo, Z. Yan, K. Zhou, Y. Liu, and L. Zhang, “Wide wavelength selectable all-fiber thulium doped fiber laser between 1925 nm and 2200 nm,” Opt. Express 22(5), 5387–5399 (2014).
[Crossref] [PubMed]

Zhang, M.

Zhang, Y.

Zhang, Z.

Z. Zhang, A. J. Boyland, J. K. Sahu, W. A. Clarkson, and M. Ibsen, “High-power single-frequency thulium-doped fiber DBR laser at 1943 nm,” IEEE Photonics Technol. Lett. 23(7), 417–419 (2011).
[Crossref]

Zhao, J.

Zhou, K.

Zhou, P.

Zhu, H.

F. Li, H. Zhu, and Y. Zhang, “High-power widely tunable Q-switched thulium fiber lasers,” Laser Phys. Lett. 12(9), 95102 (2015).
[Crossref]

Zhu, S.

F. Wang, Y. Meng, E. Kelleher, G. Guo, Y. Li, Y. Xu, and S. Zhu, “Stable gain-switched thulium fiber laser with 140-nm tuning range,” IEEE Photonics Technol. Lett. 28(12), 1340–1343 (2016).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

L. E. Nelson, E. P. Ippen, and H. A. Haus, “Broadly tunable sub-500 fs pulses from an additive-pulse mode-locked thulium-doped fiber ring laser,” Appl. Phys. Lett. 67(1), 19–21 (1995).
[Crossref]

C. R. Phys. (2)

A. Godard, “Infrared (2–12 μm) solid-state laser sources: a review,” C. R. Phys. 8(10), 1100–1128 (2007).
[Crossref]

J. P. Cariou, B. Augere, and M. Valla, “Laser source requirements for coherent lidars based on fiber technology,” C. R. Phys. 7(2), 213–223 (2006).
[Crossref]

Chin. Phys. Lett. (1)

Q. Yang, S.-H. Xu, C. Li, C.-S. Yang, Z.-M. Feng, Y. Xiao, X. Huang, and Z.-M. Yang, “A single-frequency linearly polarized fiber laser using a newly developed heavily Tm 3+ -doped germanate glass fiber at 1.95 μm,” Chin. Phys. Lett. 32(9), 094206 (2015).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

A. M. Heidt, Z. Li, and D. J. Richardson, “High power diode-seeded fiber amplifiers at 2 µm–from architectures to applications,” IEEE J. Sel. Top. Quantum Electron. 20(5), 525 (2014).
[Crossref]

N. Nishizawa and T. Goto, “Widely wavelength-tunable ultrashort pulse generation using polarization maintaining optical fibers,” IEEE J. Sel. Top. Quantum Electron. 7(4), 518–524 (2001).
[Crossref]

IEEE Photonics Technol. Lett. (5)

T. N. Nguyen, K. Kieu, D. Churin, T. Ota, M. Miyawaki, and N. Peyghambarian, “High power soliton self-frequency shift with improved flatness ranging from 1.6 to 1.78 µm,” IEEE Photonics Technol. Lett. 25(19), 1893–1896 (2013).
[Crossref]

S. Kivisto, T. Hakulinen, M. Guina, and O. G. Okhotnikov, “Tunable Raman soliton source using mode-locked Tm/Ho fiber laser,” IEEE Photonics Technol. Lett. 19(12), 934–936 (2007).
[Crossref]

F. Wang, Y. Meng, E. Kelleher, G. Guo, Y. Li, Y. Xu, and S. Zhu, “Stable gain-switched thulium fiber laser with 140-nm tuning range,” IEEE Photonics Technol. Lett. 28(12), 1340–1343 (2016).
[Crossref]

Q. Fang, K. Kieu, and N. Peyghambarian, “An all-fiber 2-µm wavelength-tunable mode-locked laser,” IEEE Photonics Technol. Lett. 22(22), 1656–1658 (2010).

Z. Zhang, A. J. Boyland, J. K. Sahu, W. A. Clarkson, and M. Ibsen, “High-power single-frequency thulium-doped fiber DBR laser at 1943 nm,” IEEE Photonics Technol. Lett. 23(7), 417–419 (2011).
[Crossref]

J. Lightwave Technol. (3)

J. Opt. Soc. Am. B (3)

Laser Photonics Rev. (1)

S. D. Jackson, “The spectroscopic and energy transfer characteristics of the rare earth ions used for silicate glass fibre lasers operating in the shortwave infrared,” Laser Photonics Rev. 3(5), 466–482 (2009).
[Crossref]

Laser Phys. Lett. (3)

F. Li, H. Zhu, and Y. Zhang, “High-power widely tunable Q-switched thulium fiber lasers,” Laser Phys. Lett. 12(9), 95102 (2015).
[Crossref]

N. Li, M. Y. Liu, X. J. Gao, L. Zhang, Z. X. Jia, Y. Feng, Y. Ohishi, G. S. Qin, and W. P. Qin, “All-fiber widely tunable mode-locked thulium-doped laser using a curvature multimode interference filter,” Laser Phys. Lett. 13(7), 75103 (2016).
[Crossref]

V. A. Kamynin, S. I. Kablukov, K. S. Raspopin, S. O. Antipov, A. S. Kurkov, O. I. Medvedkov, and A. V. Marakulin, “All-fiber Ho-doped laser tunable in the range of 2.045 – 2.1 μm,” Laser Phys. Lett. 9(12), 893–895 (2012).
[Crossref]

Light Sci. Appl. (1)

S. Kharitonov and C.-S. Brès, “Isolator-free unidirectional thulium-doped fiber laser,” Light Sci. Appl. 4(10), e340 (2015).
[Crossref]

Nat. Photonics (3)

S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012).
[Crossref]

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. Numkam, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013).
[Crossref]

A. Schliesser, N. Picque, and T. W. Hansch, “Mid-infrared frequency combs,” Nat. Photonics 6(7), 440–449 (2012).
[Crossref]

Opt. Commun. (2)

H. Ahmad, A. Muhamad, A. S. Sharbirin, M. Z. Samion, and M. F. Ismail, “Tunable Q-switched thulium-doped fiber laser using multiwall carbon nanotube and Fabry-Perot etalon filter,” Opt. Commun. 383, 359–365 (2017).
[Crossref]

M. Z. Samion, M. F. Ismail, A. Muhamad, A. S. Sharbirin, S. W. Harun, and H. Ahmad, “Tunable passively Q-switched thulium-doped fiber laser operating at 1.9 μm using arrayed waveguide grating (AWG),” Opt. Commun. 380, 195–200 (2016).
[Crossref]

Opt. Express (22)

F. Gutty, A. Grisard, A. Joly, C. Larat, D. Papillon-Ruggeri, and E. Lallier, “Multi-kW peak power acousto-optically tunable thulium-doped fiber laser system,” Opt. Express 23(5), 6754–6762 (2015).
[Crossref] [PubMed]

G. Imeshev and M. Fermann, “230-kW peak power femtosecond pulses from a high power tunable source based on amplification in Tm-doped fiber,” Opt. Express 13(19), 7424–7431 (2005).
[Crossref] [PubMed]

Z. Yan, X. Li, Y. Tang, P. P. Shum, X. Yu, Y. Zhang, and Q. J. Wang, “Tunable and switchable dual-wavelength Tm-doped mode-locked fiber laser by nonlinear polarization evolution,” Opt. Express 23(4), 4369–4376 (2015).
[Crossref] [PubMed]

A. Billat, S. Cordette, Y.-P. Tseng, S. Kharitonov, and C.-S. Brès, “High-power parametric conversion from near-infrared to short-wave infrared,” Opt. Express 22(12), 14341–14347 (2014).
[Crossref] [PubMed]

A. Billat, S. Cordette, and C.-S. Brès, “Broadly tunable source around 2050 nm based on wideband parametric conversion and thulium-holmium amplification cascade,” Opt. Express 22(22), 26635–26641 (2014).
[Crossref] [PubMed]

N. Simakov, A. Hemming, W. A. Clarkson, J. Haub, and A. Carter, “A cladding-pumped, tunable holmium doped fiber laser,” Opt. Express 21(23), 28415–28422 (2013).
[Crossref] [PubMed]

A. Klose, G. Ycas, D. L. Maser, and S. A. Diddams, “Tunable, stable source of femtosecond pulses near 2 μm via supercontinuum of an Erbium mode-locked laser,” Opt. Express 22(23), 28400–28411 (2014).
[Crossref] [PubMed]

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13(1), 236–244 (2005).
[Crossref] [PubMed]

H. Zhang, N. Kavanagh, Z. Li, J. Zhao, N. Ye, Y. Chen, N. V. Wheeler, J. P. Wooler, J. R. Hayes, S. R. Sandoghchi, F. Poletti, M. N. Petrovich, S. U. Alam, R. Phelan, J. O’Carroll, B. Kelly, L. Grüner-Nielsen, D. J. Richardson, B. Corbett, and F. C. Garcia Gunning, “100 Gbit/s WDM transmission at 2 µm: transmission studies in both low-loss hollow core photonic bandgap fiber and solid core fiber,” Opt. Express 23(4), 4946–4951 (2015).
[Crossref] [PubMed]

M. Zhang, E. J. R. Kelleher, T. H. Runcorn, V. M. Mashinsky, O. I. Medvedkov, E. M. Dianov, D. Popa, S. Milana, T. Hasan, Z. Sun, F. Bonaccorso, Z. Jiang, E. Flahaut, B. H. Chapman, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Mid-infrared Raman-soliton continuum pumped by a nanotube-mode-locked sub-picosecond Tm-doped MOPFA,” Opt. Express 21(20), 23261–23271 (2013).
[Crossref] [PubMed]

A. M. Heidt, J. H. V. Price, C. Baskiotis, J. S. Feehan, Z. Li, S. U. Alam, and D. J. Richardson, “Mid-infrared ZBLAN fiber supercontinuum source using picosecond diode-pumping at 2 µm,” Opt. Express 21(20), 24281–24287 (2013).
[Crossref] [PubMed]

S. D. Agger and J. H. Povlsen, “Emission and absorption cross section of thulium doped silica fibers,” Opt. Express 14(1), 50–57 (2006).
[Crossref] [PubMed]

J. Li, Z. Sun, H. Luo, Z. Yan, K. Zhou, Y. Liu, and L. Zhang, “Wide wavelength selectable all-fiber thulium doped fiber laser between 1925 nm and 2200 nm,” Opt. Express 22(5), 5387–5399 (2014).
[Crossref] [PubMed]

M. Tokurakawa, J. M. O. Daniel, C. S. Chenug, H. Liang, and W. A. Clarkson, “Wavelength-swept Tm-doped fiber laser operating in the two-micron wavelength band,” Opt. Express 22(17), 20014–20019 (2014).
[Crossref] [PubMed]

N. Leindecker, A. Marandi, R. L. Byer, K. L. Vodopyanov, J. Jiang, I. Hartl, M. Fermann, and P. G. Schunemann, “Octave-spanning ultrafast OPO with 2.6-6.1 µm instantaneous bandwidth pumped by femtosecond Tm-fiber laser,” Opt. Express 20(7), 7046–7053 (2012).
[Crossref] [PubMed]

M. Tokurakawa, J. M. O. Daniel, C. S. Chenug, H. Liang, and W. A. Clarkson, “Ultra-broadband wavelength-swept Tm-doped fiber laser using wavelength-combined gain stages,” Opt. Express 23(1), 471–476 (2015).
[Crossref] [PubMed]

J. M. O. Daniel, N. Simakov, M. Tokurakawa, M. Ibsen, and W. A. Clarkson, “Ultra-short wavelength operation of a thulium fibre laser in the 1660-1750 nm wavelength band,” Opt. Express 23(14), 18269–18276 (2015).
[Crossref] [PubMed]

D. Y. Shen, J. K. Sahu, and W. A. Clarkson, “High-power widely tunable Tm:fibre lasers pumped by an Er,Yb co-doped fibre laser at 1.6µm,” Opt. Express 14(13), 6084–6090 (2006).
[Crossref] [PubMed]

G. Xue, B. Zhang, K. Yin, W. Yang, and J. Hou, “Ultra-wideband all-fiber tunable Tm/Ho-co-doped laser at 2 μm,” Opt. Express 22(21), 25976–25983 (2014).
[Crossref] [PubMed]

X. Wang, X. Jin, P. Zhou, X. Wang, H. Xiao, and Z. Liu, “High power, widely tunable, narrowband superfluorescent source at 2 μm based on a monolithic Tm-doped fiber amplifier,” Opt. Express 23(3), 3382–3389 (2015).
[Crossref] [PubMed]

K. Yin, B. Zhang, G. Xue, L. Li, and J. Hou, “High-power all-fiber wavelength-tunable thulium doped fiber laser at 2 μm,” Opt. Express 22(17), 19947–19952 (2014).
[Crossref] [PubMed]

N. Simakov, Z. Li, Y. Jung, J. M. O. Daniel, P. Barua, P. C. Shardlow, S. Liang, J. K. Sahu, A. Hemming, W. A. Clarkson, S.-U. Alam, and D. J. Richardson, “High gain holmium-doped fibre amplifiers,” Opt. Express 24(13), 13946–13956 (2016).
[Crossref] [PubMed]

Opt. Fiber Technol. (1)

A. Hemming, N. Simakov, J. Haub, and A. Carter, “A review of recent progress in holmium-doped silica fibre sources,” Opt. Fiber Technol. 20(6), 621–630 (2014).
[Crossref]

Opt. Lett. (7)

Opt. Mater. Express (1)

Photon. Res. (1)

Proc. SPIE (3)

G. Stevens and T. Legg, “All-fiber widely tunable thulium laser,” Proc. SPIE 9728, 972814 (2016).
[Crossref]

Z. S. Sacks, Z. Schiffer, and D. David, “Long wavelength operation of double-clad Tm : silica fiber lasers,” Proc. SPIE 6453, 645320 (2007).
[Crossref]

N. Simakov, J. M. O. Daniel, J. Ward, W. A. Clarkson, A. Hemming, and J. Haub, “Wavelength agile holmium-doped fiber laser,” Proc. SPIE 9728, 97280Q (2016).
[Crossref]

Sci. Rep. (2)

M. Chernysheva, C. Mou, R. Arif, M. AlAraimi, M. Rümmeli, S. Turitsyn, and A. Rozhin, “High power Q-switched thulium doped fibre laser using carbon nanotube polymer composite saturable absorber,” Sci. Rep. 6, 24220 (2016).
[Crossref] [PubMed]

Z. Yan, B. Sun, X. Li, J. Luo, P. P. Shum, X. Yu, Y. Zhang, and Q. J. Wang, “Widely tunable Tm-doped mode-locked all-fiber laser,” Sci. Rep. 6, 27245 (2016).
[Crossref] [PubMed]

Other (8)

Y. Li, Y. Zhao, B. Ashton, S. Jackson, and S. Fleming, “Highly efficient and wavelength-tunable Holmium-doped silica fibre lasers,” in European Conference on Optical Communication3, We4.P.089 (2005).

S. Cordette, S. Kharitonov, A. Billat, and C.-S. Bres, “High Power Sub-Picosecond Pulsed SWIR Source Based on Thulium Assisted Raman Wavelength Shifting,” in Optical Fiber Communication Conference (Optical Society of America, 2015), p. Tu2C.4.
[Crossref]

S. J. Cordette, A. Billat, Y.-P. Tseng, and C. S. Brès, “Widely tunable picosecond-pulsed source near 2 μm based on cascaded Raman wavelength shifting,” in The European Conference on Optical Communication, P.1.17 (2014).

J. M. O. Daniel and W. A. Clarkson, “Bandwidth-controllable tunable Q-switched thulium fibre laser,” in Conference on Lasers and Electro-Optics - International Quantum Electronics Conference (Optical Society of America, 2013), p. CJ_10_2 (2013).

W. Koechner, Solid-State Laser Engineering, 6th ed. (Springer, 2006), Chap. 8.

J. Jiang, A. Ruehl, I. Hartl, and M. E. Fermann, “Tunable coherent Raman soliton generation with a Tm-fiber system,” in CLEO:2011- Laser Applications to Photonic Applications (Optical Society of America, 2011), p. CThBB5.

J. M. O. Daniel, M. Tokurakawa, and W. A. Clarkson, “Power-scalable wavelength-agile fibre laser source at two-microns,” in 5th EPS-QEOD Europhoton Conference (2012).

K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, “2 µm laser sources and their possible applications,” in Frontiers in Guided Wave Optics and Optoelectronic, B. Pal, ed. (InTech, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Experimental setup of the gain-switched tunable TDFL. LD: laser diode; EYDFA: erbium ytterbium co-doped fiber amplifier; WDM: wavelength division multiplexer; TDF: thulium doped fiber; ISO: isolator; EYDFL: erbium ytterbium co-doped fiber laser.
Fig. 2
Fig. 2 Tunability of the TDFL. (a) Output average power and pulse width of the TDFL operating at different wavelengths at 10 kHz repetition frequency. Inset: Exemplary oscilloscope trace of the output pulse at 1925 nm. (b) Corresponding output spectra of the TDFL (measured with 0.05 nm OSA resolution).
Fig. 3
Fig. 3 Output pulse energy and pulse width as a function of pump pulse energy. All data were taken for 1930 nm at 10 kHz repetition rate. The CW pump power was kept at 285 mW.
Fig. 4
Fig. 4 (a) Output pulse energy and pulse width as a function of repetition frequency; (b) Waveforms of the TDFL output pulses at different repetition frequencies (top to bottom: 100 kHz, 50 kHz, and 5 kHz). The wavelength was fixed at 1930 nm. The CW pump power was kept at 285 mW.
Fig. 5
Fig. 5 (a) Pulse width as a function of cavity length (only the passive fiber length was changed); (b) Laser threshold and pulse width for different lengths of TDF. The TDFL operated at 1930 nm and 10 kHz repetition frequency. Except for the threshold measurement, the CW pump power was 285 mW, the average power of the pulsed pump was 300 mW (30 μJ pump pulse energy).
Fig. 6
Fig. 6 Output pulse energy and pulse width as a function of output coupling ratio. The laser ran at 1930 nm and 10 kHz repetition frequency. The CW pump power was 285 mW; the average power of the pulsed pump was 300 mW (30 μJ pump pulse energy).
Fig. 7
Fig. 7 Tunability of a TDFL with a modified configuration to achieve shorter pulse width. All data were taken at 10 kHz repetition frequency.

Metrics