Abstract

A 9.3dB improvement in optical gain and a 100x improvement in total optical power over prior published experimental results from the 4F3/2 to 4I13/2 transition in an Nd3+ doped fused silica optical fiber is demonstrated. This is enabled via an optical fiber waveguide design that creates high spectral attenuation in the 1050-1120nm-wavelength range, a continuous spectral filter for the primary 4F3/2 to 4I11/2 optical transition. A maximum output power at 1427nm of 1.2W was attained for 43mW coupled seed laser power and 22.2W of coupled pump diode laser power at 880nm a net optical gain of 14.5dB. Reducing the coupled seed laser power to 2.5mW enabled the system to attain 19.3dB of gain for 16.5W of coupled pump power. Four issues limited results; non-optimal seed laser wavelength, amplified spontaneous emission on the 4F3/2 to 4I9/2 optical transition, low absorption of pump light from the cladding and high spectral attenuation in the 1350-1450nm range. Future fibers that mitigate these issues should lead to significant improvements in the efficiency of the laser amplifier, though the shorter wavelength region of the transition from 1310nm to >1350nm is still expected to be limited by excited state absorption.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Towards the short-wavelength limit lasing at 1450 nm over 4I13/24I15/2 transition in silica-based erbium-doped fiber

Nan-Kuang Chen, Chi-Ming Hung, Sien Chi, and Yinchieh Lai
Opt. Express 15(25) 16448-16456 (2007)

Full investigation into continuous-wave Nd:LuAG lasers on 4F3/24I13/2 transition around 1.3 and 1.4 μm

Zhi Lin, Jinglong Lan, Qin Cui, Xiaoxu Huang, Bin Xu, Huiying Xu, Zhiping Cai, Xiaodong Xu, Jian Zhang, and Jun Xu
Opt. Mater. Express 6(11) 3386-3393 (2016)

References

  • View by:
  • |
  • |
  • |

  1. S. B. Poole, D. N. Payne, and M. E. Fermann, “Fabrication of low-loss optical fibres containing rare-earth ions,” Electron. Lett. 21(17), 737–738 (1985).
    [Crossref]
  2. R. J. Mears, L. Reekie, S. B. Poole, and D. N. Payne, “Neodymium-doped silica single-mode fiber lasers,” Electron. Lett. 21(17), 738–739 (1985).
    [Crossref]
  3. L. Reekie, R. J. Mears, S. B. Poole, and D. N. Payne, “Tunable single-mode fiber lasers,” J. Lightwave Technol. 4(7), 956–960 (1986).
    [Crossref]
  4. E. Desurvire, D. Bayart, B. Desthueux, and S. Bigo, Erbium-Doped Fiber Amplifiers, Device and System Developments (Wiley-Interscience, 2002)
  5. P. C. Becker, N. A. Olsson, and J. R. Simpson, Erbium-Doped Fiber Amplifiers: Fundamentals and Technology (Optics and Photonics), 1st ed. (Academic Press, 1999)
  6. M. J. F. Digonnet, Rare-Earth-Doped Fiber Lasers and Amplifiers, Second Edition, Revised and Expanded (Marcel Dekker, Inc., 2001)
  7. B. Clesca, H. Fevrier, and W. Pelouch, “Raman amplification,” Opt. Photonics News 26(9), 32–39 (2015).
    [Crossref]
  8. S. W. Harun, J. Dimyati, K. K. Jayapalan, and H. Ahmad, “An overview on S-band erbium-doped fiber amplifiers,” Laser Phys. Lett. 4(1), 10–15 (2007).
    [Crossref]
  9. S. Aozasa, H. Masuda, H. Ono, T. Sakamoto, T. Kanamori, Y. Ohishi, and M. Shimizu, “1480-1510 nm-band Tm doped fiber amplifier (TDFA) with a high power conversion efficiency of 42%,” in Optical Fiber Communication Conference and International Conference on Quantum Information, 2001 OSA Technical Digest Series (Optical Society of America, 2001) paper PD1.
    [Crossref]
  10. V. V. Dvoyrin, V. M. Mashinsky, L. I. Bulatov, I. A. Bufetov, A. V. Shubin, M. A. Melkumov, E. F. Kustov, E. M. Dianov, A. A. Umnikov, V. F. Khopin, M. V. Yashkov, and A. N. Guryanov, “Bismuth-doped-glass optical fibers--a new active medium for lasers and amplifiers,” Opt. Lett. 31(20), 2966–2968 (2006).
    [Crossref] [PubMed]
  11. N. K. Thipparapu, A. A. Umnikov, P. Barua, and J. K. Sahu, “Bi-doped fiber amplifier with a flat gain of 25 dB operating in the wavelength band 1320-1360 nm,” Opt. Lett. 41(7), 1518–1521 (2016).
    [Crossref] [PubMed]
  12. D. N. Payne, D. Hewak, and E. Taylor, “Progress in the development of efficient 1.3µm fibre amplifiers,” in 24th European Conferene on Optical Communication (IEEE, 1998), pp. 9–13.
  13. F. Hakimi, H. Po, R. Tumminelli, B. C. McCollum, L. Zenteno, N. M. Cho, and E. Snitzer, “Glass fiber laser at 1.36 µm from SiO2:Nd,” Opt. Lett. 14(19), 1060–1061 (1989).
    [Crossref] [PubMed]
  14. I. P. Alcock, A. I. Ferguson, D. C. Hanna, and A. C. Tropper, “Tunable, continuous-wave neodymium-doped monomode-fiber laser operating at 0.900-0.945 and 1.070-1.135 microm,” Opt. Lett. 11(11), 709–711 (1986).
    [Crossref] [PubMed]
  15. P. R. Morkel, M. C. Farries, and S. B. Poole, “Spectral variation of excited state absorption in neodymium doped fibre lasers,” Opt. Commun. 67(5), 349–352 (1988).
    [Crossref]
  16. S. Zemon, B. Pedersen, G. Lambert, W. J. Miniscalco, B. T. Hall, R. C. Folweiler, B. A. Thompson, and L. J. Andres, “Excited-state-absorption cross sections and amplifier modeling in the 1300-nm region for Nd-doped glasses,” IEEE Photonics Technol. Lett. 4(3), 244–247 (1992).
    [Crossref]
  17. W. J. Miniscalco, L. J. Andrews, B. A. Thompson, R. S. Quimby, L. J. B. Vacha, and M. G. Drexhage, “1.3µm fluoride fibre laser,” Electron. Lett. 24(1), 28–29 (1988).
    [Crossref]
  18. Y. Miyajima, T. Komukai, and T. Sugawa, “1.31-1.36µm optical amplification in Nd3+-doped fluorozirconate fibre,” Electron. Lett. 26(3), 194–195 (1990).
    [Crossref]
  19. E. Ishikawa, H. Aoki, T. Yamashita, and Y. Asahara, “Laser emission and amplification at 1.3µm in neodymium-doped fluorophosphates fibres,” Electron. Lett. 28(16), 1497–1499 (1992).
    [Crossref]
  20. T. Komukai, Y. Fukasaku, T. Sugawa, and Y. Miyajima, “Highly efficient and tunable Nd3+ doped fluoride fiber laser operating in 1.3µm band,” Electron. Lett. 29(9), 755–757 (1993).
    [Crossref]
  21. L. Htein, W. Fan, P. R. Watekar, and W. T. Han, “Amplification at 1400-1450 nm of the large-core Nd-doped fiber by white LED pumping,” IEEE Photonics Technol. Lett. 25(11), 1081–1083 (2013).
    [Crossref]
  22. O. Lumholt, M. Øbro, A. Bjarklev, T. Rasmussen, B. Pedersen, J. E. Pedersen, J. H. Povlsen, and K. Rottwitt, “Optimum placement of filters in 1300 nm Nd-fibre amplifiers,” Opt. Commun. 89(1), 30–32 (1992).
    [Crossref]
  23. M. Naftaly and A. Jha, “Nd3+-doped fluoroaluminate glasses for a 1.3µm amplifier,” J. Appl. Phys. 87(5), 2098–2104 (2000).
    [Crossref]
  24. D. J. DiGiovanni and K. Rottwitt, “Optical fiber communication system employing Nd doped fiber amplifier for the 1400 nm window,” United States Patent 6,393,194 (March 26, 2002).
  25. P. H. Pax, G. S. Allen, D. R. Drachenber, V. V. Khitrov, N. Schenkel, M. J. Messerly, J. W. Dawson, M. Dubinskii, and B. Ward, “Scalable waveguide design for three-level operation in Neodymium doped fiber laser,” submitted for publication to Optics Express.
  26. J. W. Dawson, R. Beach, A. Drobshoff, Z. Liao, D. M. Pennington, S. A. Payne, L. Taylor, W. Hackenberg, and D. Bonaccini, “Scalable 11W 938nm Nd3+ doped fiber laser,” in Advanced Solid-State Photonics, OSA Technical Digest (Optical Society of America, 2004), paper MD8.
  27. M. Laroche, B. Cadier, H. Gilles, S. Girard, L. Lablonde, and T. Robin, “20 W continuous-wave cladding-pumped Nd-doped fiber laser at 910 nm,” Opt. Lett. 38(16), 3065–3067 (2013).
    [Crossref] [PubMed]
  28. T. J. Kane, G. Keaton, M. A. Arbore, D. R. Balsley, J. F. Black, J. L. Brooks, M. Byer, L. A. Eyres, M. Leonardo, J. J. Morehead, C. Rich, D. J. Richard, L. A. Smoliar, and Y. Zhou, “3-Watt blue source based on 914-nm Nd:YVO4 passively-Q-switched laser amplified in cladding-pumped Nd:fiber,” in Advanced Solid-State Photonics (TOPS) (Optical Society of America, 2004), paper 160.
  29. D. B. S. Soh, S. Yoo, J. Nilsson, J. K. Sahu, K. Oh, S. Baek, Y. Jeong, C. Codemard, P. Dupriez, J. Kim, and V. Philippov, “Neodymium-doped cladding pumped aluminosilicate fiber laser tunable in the 0.9-µm wavelength range,” IEEE J. Quantum Electron. 40(9), 1275–1282 (2004).
    [Crossref]
  30. C. Bartolacci, M. Laroche, T. Robin, B. Cadier, S. Girard, and H. Gilles, “Effects of ions clustering in Nd3+/Al3+-codoped double-clad fiber laser operating near 930nm,” Appl. Phys. B 98(2-3), 317–322 (2010).
    [Crossref]
  31. F. Luan, A. K. George, T. D. Hedley, G. J. Pearce, D. M. Bird, J. C. Knight, and P. S. J. Russell, “All-solid photonic bandgap fiber,” Opt. Lett. 29(20), 2369–2371 (2004).
    [Crossref] [PubMed]
  32. S. Arismar Cerqueira, F. Luan, C. M. B. Cordeiro, A. K. George, and J. C. Knight, “Hybrid photonic crystal fiber,” Opt. Express 14(2), 926–931 (2006).
    [Crossref] [PubMed]

2016 (1)

2015 (1)

B. Clesca, H. Fevrier, and W. Pelouch, “Raman amplification,” Opt. Photonics News 26(9), 32–39 (2015).
[Crossref]

2013 (2)

L. Htein, W. Fan, P. R. Watekar, and W. T. Han, “Amplification at 1400-1450 nm of the large-core Nd-doped fiber by white LED pumping,” IEEE Photonics Technol. Lett. 25(11), 1081–1083 (2013).
[Crossref]

M. Laroche, B. Cadier, H. Gilles, S. Girard, L. Lablonde, and T. Robin, “20 W continuous-wave cladding-pumped Nd-doped fiber laser at 910 nm,” Opt. Lett. 38(16), 3065–3067 (2013).
[Crossref] [PubMed]

2010 (1)

C. Bartolacci, M. Laroche, T. Robin, B. Cadier, S. Girard, and H. Gilles, “Effects of ions clustering in Nd3+/Al3+-codoped double-clad fiber laser operating near 930nm,” Appl. Phys. B 98(2-3), 317–322 (2010).
[Crossref]

2007 (1)

S. W. Harun, J. Dimyati, K. K. Jayapalan, and H. Ahmad, “An overview on S-band erbium-doped fiber amplifiers,” Laser Phys. Lett. 4(1), 10–15 (2007).
[Crossref]

2006 (2)

2004 (2)

F. Luan, A. K. George, T. D. Hedley, G. J. Pearce, D. M. Bird, J. C. Knight, and P. S. J. Russell, “All-solid photonic bandgap fiber,” Opt. Lett. 29(20), 2369–2371 (2004).
[Crossref] [PubMed]

D. B. S. Soh, S. Yoo, J. Nilsson, J. K. Sahu, K. Oh, S. Baek, Y. Jeong, C. Codemard, P. Dupriez, J. Kim, and V. Philippov, “Neodymium-doped cladding pumped aluminosilicate fiber laser tunable in the 0.9-µm wavelength range,” IEEE J. Quantum Electron. 40(9), 1275–1282 (2004).
[Crossref]

2000 (1)

M. Naftaly and A. Jha, “Nd3+-doped fluoroaluminate glasses for a 1.3µm amplifier,” J. Appl. Phys. 87(5), 2098–2104 (2000).
[Crossref]

1993 (1)

T. Komukai, Y. Fukasaku, T. Sugawa, and Y. Miyajima, “Highly efficient and tunable Nd3+ doped fluoride fiber laser operating in 1.3µm band,” Electron. Lett. 29(9), 755–757 (1993).
[Crossref]

1992 (3)

O. Lumholt, M. Øbro, A. Bjarklev, T. Rasmussen, B. Pedersen, J. E. Pedersen, J. H. Povlsen, and K. Rottwitt, “Optimum placement of filters in 1300 nm Nd-fibre amplifiers,” Opt. Commun. 89(1), 30–32 (1992).
[Crossref]

S. Zemon, B. Pedersen, G. Lambert, W. J. Miniscalco, B. T. Hall, R. C. Folweiler, B. A. Thompson, and L. J. Andres, “Excited-state-absorption cross sections and amplifier modeling in the 1300-nm region for Nd-doped glasses,” IEEE Photonics Technol. Lett. 4(3), 244–247 (1992).
[Crossref]

E. Ishikawa, H. Aoki, T. Yamashita, and Y. Asahara, “Laser emission and amplification at 1.3µm in neodymium-doped fluorophosphates fibres,” Electron. Lett. 28(16), 1497–1499 (1992).
[Crossref]

1990 (1)

Y. Miyajima, T. Komukai, and T. Sugawa, “1.31-1.36µm optical amplification in Nd3+-doped fluorozirconate fibre,” Electron. Lett. 26(3), 194–195 (1990).
[Crossref]

1989 (1)

1988 (2)

P. R. Morkel, M. C. Farries, and S. B. Poole, “Spectral variation of excited state absorption in neodymium doped fibre lasers,” Opt. Commun. 67(5), 349–352 (1988).
[Crossref]

W. J. Miniscalco, L. J. Andrews, B. A. Thompson, R. S. Quimby, L. J. B. Vacha, and M. G. Drexhage, “1.3µm fluoride fibre laser,” Electron. Lett. 24(1), 28–29 (1988).
[Crossref]

1986 (2)

1985 (2)

S. B. Poole, D. N. Payne, and M. E. Fermann, “Fabrication of low-loss optical fibres containing rare-earth ions,” Electron. Lett. 21(17), 737–738 (1985).
[Crossref]

R. J. Mears, L. Reekie, S. B. Poole, and D. N. Payne, “Neodymium-doped silica single-mode fiber lasers,” Electron. Lett. 21(17), 738–739 (1985).
[Crossref]

Ahmad, H.

S. W. Harun, J. Dimyati, K. K. Jayapalan, and H. Ahmad, “An overview on S-band erbium-doped fiber amplifiers,” Laser Phys. Lett. 4(1), 10–15 (2007).
[Crossref]

Alcock, I. P.

Andres, L. J.

S. Zemon, B. Pedersen, G. Lambert, W. J. Miniscalco, B. T. Hall, R. C. Folweiler, B. A. Thompson, and L. J. Andres, “Excited-state-absorption cross sections and amplifier modeling in the 1300-nm region for Nd-doped glasses,” IEEE Photonics Technol. Lett. 4(3), 244–247 (1992).
[Crossref]

Andrews, L. J.

W. J. Miniscalco, L. J. Andrews, B. A. Thompson, R. S. Quimby, L. J. B. Vacha, and M. G. Drexhage, “1.3µm fluoride fibre laser,” Electron. Lett. 24(1), 28–29 (1988).
[Crossref]

Aoki, H.

E. Ishikawa, H. Aoki, T. Yamashita, and Y. Asahara, “Laser emission and amplification at 1.3µm in neodymium-doped fluorophosphates fibres,” Electron. Lett. 28(16), 1497–1499 (1992).
[Crossref]

Arismar Cerqueira, S.

Asahara, Y.

E. Ishikawa, H. Aoki, T. Yamashita, and Y. Asahara, “Laser emission and amplification at 1.3µm in neodymium-doped fluorophosphates fibres,” Electron. Lett. 28(16), 1497–1499 (1992).
[Crossref]

Baek, S.

D. B. S. Soh, S. Yoo, J. Nilsson, J. K. Sahu, K. Oh, S. Baek, Y. Jeong, C. Codemard, P. Dupriez, J. Kim, and V. Philippov, “Neodymium-doped cladding pumped aluminosilicate fiber laser tunable in the 0.9-µm wavelength range,” IEEE J. Quantum Electron. 40(9), 1275–1282 (2004).
[Crossref]

Bartolacci, C.

C. Bartolacci, M. Laroche, T. Robin, B. Cadier, S. Girard, and H. Gilles, “Effects of ions clustering in Nd3+/Al3+-codoped double-clad fiber laser operating near 930nm,” Appl. Phys. B 98(2-3), 317–322 (2010).
[Crossref]

Barua, P.

Bird, D. M.

Bjarklev, A.

O. Lumholt, M. Øbro, A. Bjarklev, T. Rasmussen, B. Pedersen, J. E. Pedersen, J. H. Povlsen, and K. Rottwitt, “Optimum placement of filters in 1300 nm Nd-fibre amplifiers,” Opt. Commun. 89(1), 30–32 (1992).
[Crossref]

Bufetov, I. A.

Bulatov, L. I.

Cadier, B.

M. Laroche, B. Cadier, H. Gilles, S. Girard, L. Lablonde, and T. Robin, “20 W continuous-wave cladding-pumped Nd-doped fiber laser at 910 nm,” Opt. Lett. 38(16), 3065–3067 (2013).
[Crossref] [PubMed]

C. Bartolacci, M. Laroche, T. Robin, B. Cadier, S. Girard, and H. Gilles, “Effects of ions clustering in Nd3+/Al3+-codoped double-clad fiber laser operating near 930nm,” Appl. Phys. B 98(2-3), 317–322 (2010).
[Crossref]

Cho, N. M.

Clesca, B.

B. Clesca, H. Fevrier, and W. Pelouch, “Raman amplification,” Opt. Photonics News 26(9), 32–39 (2015).
[Crossref]

Codemard, C.

D. B. S. Soh, S. Yoo, J. Nilsson, J. K. Sahu, K. Oh, S. Baek, Y. Jeong, C. Codemard, P. Dupriez, J. Kim, and V. Philippov, “Neodymium-doped cladding pumped aluminosilicate fiber laser tunable in the 0.9-µm wavelength range,” IEEE J. Quantum Electron. 40(9), 1275–1282 (2004).
[Crossref]

Cordeiro, C. M. B.

Dianov, E. M.

Dimyati, J.

S. W. Harun, J. Dimyati, K. K. Jayapalan, and H. Ahmad, “An overview on S-band erbium-doped fiber amplifiers,” Laser Phys. Lett. 4(1), 10–15 (2007).
[Crossref]

Drexhage, M. G.

W. J. Miniscalco, L. J. Andrews, B. A. Thompson, R. S. Quimby, L. J. B. Vacha, and M. G. Drexhage, “1.3µm fluoride fibre laser,” Electron. Lett. 24(1), 28–29 (1988).
[Crossref]

Dupriez, P.

D. B. S. Soh, S. Yoo, J. Nilsson, J. K. Sahu, K. Oh, S. Baek, Y. Jeong, C. Codemard, P. Dupriez, J. Kim, and V. Philippov, “Neodymium-doped cladding pumped aluminosilicate fiber laser tunable in the 0.9-µm wavelength range,” IEEE J. Quantum Electron. 40(9), 1275–1282 (2004).
[Crossref]

Dvoyrin, V. V.

Fan, W.

L. Htein, W. Fan, P. R. Watekar, and W. T. Han, “Amplification at 1400-1450 nm of the large-core Nd-doped fiber by white LED pumping,” IEEE Photonics Technol. Lett. 25(11), 1081–1083 (2013).
[Crossref]

Farries, M. C.

P. R. Morkel, M. C. Farries, and S. B. Poole, “Spectral variation of excited state absorption in neodymium doped fibre lasers,” Opt. Commun. 67(5), 349–352 (1988).
[Crossref]

Ferguson, A. I.

Fermann, M. E.

S. B. Poole, D. N. Payne, and M. E. Fermann, “Fabrication of low-loss optical fibres containing rare-earth ions,” Electron. Lett. 21(17), 737–738 (1985).
[Crossref]

Fevrier, H.

B. Clesca, H. Fevrier, and W. Pelouch, “Raman amplification,” Opt. Photonics News 26(9), 32–39 (2015).
[Crossref]

Folweiler, R. C.

S. Zemon, B. Pedersen, G. Lambert, W. J. Miniscalco, B. T. Hall, R. C. Folweiler, B. A. Thompson, and L. J. Andres, “Excited-state-absorption cross sections and amplifier modeling in the 1300-nm region for Nd-doped glasses,” IEEE Photonics Technol. Lett. 4(3), 244–247 (1992).
[Crossref]

Fukasaku, Y.

T. Komukai, Y. Fukasaku, T. Sugawa, and Y. Miyajima, “Highly efficient and tunable Nd3+ doped fluoride fiber laser operating in 1.3µm band,” Electron. Lett. 29(9), 755–757 (1993).
[Crossref]

George, A. K.

Gilles, H.

M. Laroche, B. Cadier, H. Gilles, S. Girard, L. Lablonde, and T. Robin, “20 W continuous-wave cladding-pumped Nd-doped fiber laser at 910 nm,” Opt. Lett. 38(16), 3065–3067 (2013).
[Crossref] [PubMed]

C. Bartolacci, M. Laroche, T. Robin, B. Cadier, S. Girard, and H. Gilles, “Effects of ions clustering in Nd3+/Al3+-codoped double-clad fiber laser operating near 930nm,” Appl. Phys. B 98(2-3), 317–322 (2010).
[Crossref]

Girard, S.

M. Laroche, B. Cadier, H. Gilles, S. Girard, L. Lablonde, and T. Robin, “20 W continuous-wave cladding-pumped Nd-doped fiber laser at 910 nm,” Opt. Lett. 38(16), 3065–3067 (2013).
[Crossref] [PubMed]

C. Bartolacci, M. Laroche, T. Robin, B. Cadier, S. Girard, and H. Gilles, “Effects of ions clustering in Nd3+/Al3+-codoped double-clad fiber laser operating near 930nm,” Appl. Phys. B 98(2-3), 317–322 (2010).
[Crossref]

Guryanov, A. N.

Hakimi, F.

Hall, B. T.

S. Zemon, B. Pedersen, G. Lambert, W. J. Miniscalco, B. T. Hall, R. C. Folweiler, B. A. Thompson, and L. J. Andres, “Excited-state-absorption cross sections and amplifier modeling in the 1300-nm region for Nd-doped glasses,” IEEE Photonics Technol. Lett. 4(3), 244–247 (1992).
[Crossref]

Han, W. T.

L. Htein, W. Fan, P. R. Watekar, and W. T. Han, “Amplification at 1400-1450 nm of the large-core Nd-doped fiber by white LED pumping,” IEEE Photonics Technol. Lett. 25(11), 1081–1083 (2013).
[Crossref]

Hanna, D. C.

Harun, S. W.

S. W. Harun, J. Dimyati, K. K. Jayapalan, and H. Ahmad, “An overview on S-band erbium-doped fiber amplifiers,” Laser Phys. Lett. 4(1), 10–15 (2007).
[Crossref]

Hedley, T. D.

Htein, L.

L. Htein, W. Fan, P. R. Watekar, and W. T. Han, “Amplification at 1400-1450 nm of the large-core Nd-doped fiber by white LED pumping,” IEEE Photonics Technol. Lett. 25(11), 1081–1083 (2013).
[Crossref]

Ishikawa, E.

E. Ishikawa, H. Aoki, T. Yamashita, and Y. Asahara, “Laser emission and amplification at 1.3µm in neodymium-doped fluorophosphates fibres,” Electron. Lett. 28(16), 1497–1499 (1992).
[Crossref]

Jayapalan, K. K.

S. W. Harun, J. Dimyati, K. K. Jayapalan, and H. Ahmad, “An overview on S-band erbium-doped fiber amplifiers,” Laser Phys. Lett. 4(1), 10–15 (2007).
[Crossref]

Jeong, Y.

D. B. S. Soh, S. Yoo, J. Nilsson, J. K. Sahu, K. Oh, S. Baek, Y. Jeong, C. Codemard, P. Dupriez, J. Kim, and V. Philippov, “Neodymium-doped cladding pumped aluminosilicate fiber laser tunable in the 0.9-µm wavelength range,” IEEE J. Quantum Electron. 40(9), 1275–1282 (2004).
[Crossref]

Jha, A.

M. Naftaly and A. Jha, “Nd3+-doped fluoroaluminate glasses for a 1.3µm amplifier,” J. Appl. Phys. 87(5), 2098–2104 (2000).
[Crossref]

Khopin, V. F.

Kim, J.

D. B. S. Soh, S. Yoo, J. Nilsson, J. K. Sahu, K. Oh, S. Baek, Y. Jeong, C. Codemard, P. Dupriez, J. Kim, and V. Philippov, “Neodymium-doped cladding pumped aluminosilicate fiber laser tunable in the 0.9-µm wavelength range,” IEEE J. Quantum Electron. 40(9), 1275–1282 (2004).
[Crossref]

Knight, J. C.

Komukai, T.

T. Komukai, Y. Fukasaku, T. Sugawa, and Y. Miyajima, “Highly efficient and tunable Nd3+ doped fluoride fiber laser operating in 1.3µm band,” Electron. Lett. 29(9), 755–757 (1993).
[Crossref]

Y. Miyajima, T. Komukai, and T. Sugawa, “1.31-1.36µm optical amplification in Nd3+-doped fluorozirconate fibre,” Electron. Lett. 26(3), 194–195 (1990).
[Crossref]

Kustov, E. F.

Lablonde, L.

Lambert, G.

S. Zemon, B. Pedersen, G. Lambert, W. J. Miniscalco, B. T. Hall, R. C. Folweiler, B. A. Thompson, and L. J. Andres, “Excited-state-absorption cross sections and amplifier modeling in the 1300-nm region for Nd-doped glasses,” IEEE Photonics Technol. Lett. 4(3), 244–247 (1992).
[Crossref]

Laroche, M.

M. Laroche, B. Cadier, H. Gilles, S. Girard, L. Lablonde, and T. Robin, “20 W continuous-wave cladding-pumped Nd-doped fiber laser at 910 nm,” Opt. Lett. 38(16), 3065–3067 (2013).
[Crossref] [PubMed]

C. Bartolacci, M. Laroche, T. Robin, B. Cadier, S. Girard, and H. Gilles, “Effects of ions clustering in Nd3+/Al3+-codoped double-clad fiber laser operating near 930nm,” Appl. Phys. B 98(2-3), 317–322 (2010).
[Crossref]

Luan, F.

Lumholt, O.

O. Lumholt, M. Øbro, A. Bjarklev, T. Rasmussen, B. Pedersen, J. E. Pedersen, J. H. Povlsen, and K. Rottwitt, “Optimum placement of filters in 1300 nm Nd-fibre amplifiers,” Opt. Commun. 89(1), 30–32 (1992).
[Crossref]

Mashinsky, V. M.

McCollum, B. C.

Mears, R. J.

L. Reekie, R. J. Mears, S. B. Poole, and D. N. Payne, “Tunable single-mode fiber lasers,” J. Lightwave Technol. 4(7), 956–960 (1986).
[Crossref]

R. J. Mears, L. Reekie, S. B. Poole, and D. N. Payne, “Neodymium-doped silica single-mode fiber lasers,” Electron. Lett. 21(17), 738–739 (1985).
[Crossref]

Melkumov, M. A.

Miniscalco, W. J.

S. Zemon, B. Pedersen, G. Lambert, W. J. Miniscalco, B. T. Hall, R. C. Folweiler, B. A. Thompson, and L. J. Andres, “Excited-state-absorption cross sections and amplifier modeling in the 1300-nm region for Nd-doped glasses,” IEEE Photonics Technol. Lett. 4(3), 244–247 (1992).
[Crossref]

W. J. Miniscalco, L. J. Andrews, B. A. Thompson, R. S. Quimby, L. J. B. Vacha, and M. G. Drexhage, “1.3µm fluoride fibre laser,” Electron. Lett. 24(1), 28–29 (1988).
[Crossref]

Miyajima, Y.

T. Komukai, Y. Fukasaku, T. Sugawa, and Y. Miyajima, “Highly efficient and tunable Nd3+ doped fluoride fiber laser operating in 1.3µm band,” Electron. Lett. 29(9), 755–757 (1993).
[Crossref]

Y. Miyajima, T. Komukai, and T. Sugawa, “1.31-1.36µm optical amplification in Nd3+-doped fluorozirconate fibre,” Electron. Lett. 26(3), 194–195 (1990).
[Crossref]

Morkel, P. R.

P. R. Morkel, M. C. Farries, and S. B. Poole, “Spectral variation of excited state absorption in neodymium doped fibre lasers,” Opt. Commun. 67(5), 349–352 (1988).
[Crossref]

Naftaly, M.

M. Naftaly and A. Jha, “Nd3+-doped fluoroaluminate glasses for a 1.3µm amplifier,” J. Appl. Phys. 87(5), 2098–2104 (2000).
[Crossref]

Nilsson, J.

D. B. S. Soh, S. Yoo, J. Nilsson, J. K. Sahu, K. Oh, S. Baek, Y. Jeong, C. Codemard, P. Dupriez, J. Kim, and V. Philippov, “Neodymium-doped cladding pumped aluminosilicate fiber laser tunable in the 0.9-µm wavelength range,” IEEE J. Quantum Electron. 40(9), 1275–1282 (2004).
[Crossref]

Øbro, M.

O. Lumholt, M. Øbro, A. Bjarklev, T. Rasmussen, B. Pedersen, J. E. Pedersen, J. H. Povlsen, and K. Rottwitt, “Optimum placement of filters in 1300 nm Nd-fibre amplifiers,” Opt. Commun. 89(1), 30–32 (1992).
[Crossref]

Oh, K.

D. B. S. Soh, S. Yoo, J. Nilsson, J. K. Sahu, K. Oh, S. Baek, Y. Jeong, C. Codemard, P. Dupriez, J. Kim, and V. Philippov, “Neodymium-doped cladding pumped aluminosilicate fiber laser tunable in the 0.9-µm wavelength range,” IEEE J. Quantum Electron. 40(9), 1275–1282 (2004).
[Crossref]

Payne, D. N.

L. Reekie, R. J. Mears, S. B. Poole, and D. N. Payne, “Tunable single-mode fiber lasers,” J. Lightwave Technol. 4(7), 956–960 (1986).
[Crossref]

S. B. Poole, D. N. Payne, and M. E. Fermann, “Fabrication of low-loss optical fibres containing rare-earth ions,” Electron. Lett. 21(17), 737–738 (1985).
[Crossref]

R. J. Mears, L. Reekie, S. B. Poole, and D. N. Payne, “Neodymium-doped silica single-mode fiber lasers,” Electron. Lett. 21(17), 738–739 (1985).
[Crossref]

Pearce, G. J.

Pedersen, B.

S. Zemon, B. Pedersen, G. Lambert, W. J. Miniscalco, B. T. Hall, R. C. Folweiler, B. A. Thompson, and L. J. Andres, “Excited-state-absorption cross sections and amplifier modeling in the 1300-nm region for Nd-doped glasses,” IEEE Photonics Technol. Lett. 4(3), 244–247 (1992).
[Crossref]

O. Lumholt, M. Øbro, A. Bjarklev, T. Rasmussen, B. Pedersen, J. E. Pedersen, J. H. Povlsen, and K. Rottwitt, “Optimum placement of filters in 1300 nm Nd-fibre amplifiers,” Opt. Commun. 89(1), 30–32 (1992).
[Crossref]

Pedersen, J. E.

O. Lumholt, M. Øbro, A. Bjarklev, T. Rasmussen, B. Pedersen, J. E. Pedersen, J. H. Povlsen, and K. Rottwitt, “Optimum placement of filters in 1300 nm Nd-fibre amplifiers,” Opt. Commun. 89(1), 30–32 (1992).
[Crossref]

Pelouch, W.

B. Clesca, H. Fevrier, and W. Pelouch, “Raman amplification,” Opt. Photonics News 26(9), 32–39 (2015).
[Crossref]

Philippov, V.

D. B. S. Soh, S. Yoo, J. Nilsson, J. K. Sahu, K. Oh, S. Baek, Y. Jeong, C. Codemard, P. Dupriez, J. Kim, and V. Philippov, “Neodymium-doped cladding pumped aluminosilicate fiber laser tunable in the 0.9-µm wavelength range,” IEEE J. Quantum Electron. 40(9), 1275–1282 (2004).
[Crossref]

Po, H.

Poole, S. B.

P. R. Morkel, M. C. Farries, and S. B. Poole, “Spectral variation of excited state absorption in neodymium doped fibre lasers,” Opt. Commun. 67(5), 349–352 (1988).
[Crossref]

L. Reekie, R. J. Mears, S. B. Poole, and D. N. Payne, “Tunable single-mode fiber lasers,” J. Lightwave Technol. 4(7), 956–960 (1986).
[Crossref]

S. B. Poole, D. N. Payne, and M. E. Fermann, “Fabrication of low-loss optical fibres containing rare-earth ions,” Electron. Lett. 21(17), 737–738 (1985).
[Crossref]

R. J. Mears, L. Reekie, S. B. Poole, and D. N. Payne, “Neodymium-doped silica single-mode fiber lasers,” Electron. Lett. 21(17), 738–739 (1985).
[Crossref]

Povlsen, J. H.

O. Lumholt, M. Øbro, A. Bjarklev, T. Rasmussen, B. Pedersen, J. E. Pedersen, J. H. Povlsen, and K. Rottwitt, “Optimum placement of filters in 1300 nm Nd-fibre amplifiers,” Opt. Commun. 89(1), 30–32 (1992).
[Crossref]

Quimby, R. S.

W. J. Miniscalco, L. J. Andrews, B. A. Thompson, R. S. Quimby, L. J. B. Vacha, and M. G. Drexhage, “1.3µm fluoride fibre laser,” Electron. Lett. 24(1), 28–29 (1988).
[Crossref]

Rasmussen, T.

O. Lumholt, M. Øbro, A. Bjarklev, T. Rasmussen, B. Pedersen, J. E. Pedersen, J. H. Povlsen, and K. Rottwitt, “Optimum placement of filters in 1300 nm Nd-fibre amplifiers,” Opt. Commun. 89(1), 30–32 (1992).
[Crossref]

Reekie, L.

L. Reekie, R. J. Mears, S. B. Poole, and D. N. Payne, “Tunable single-mode fiber lasers,” J. Lightwave Technol. 4(7), 956–960 (1986).
[Crossref]

R. J. Mears, L. Reekie, S. B. Poole, and D. N. Payne, “Neodymium-doped silica single-mode fiber lasers,” Electron. Lett. 21(17), 738–739 (1985).
[Crossref]

Robin, T.

M. Laroche, B. Cadier, H. Gilles, S. Girard, L. Lablonde, and T. Robin, “20 W continuous-wave cladding-pumped Nd-doped fiber laser at 910 nm,” Opt. Lett. 38(16), 3065–3067 (2013).
[Crossref] [PubMed]

C. Bartolacci, M. Laroche, T. Robin, B. Cadier, S. Girard, and H. Gilles, “Effects of ions clustering in Nd3+/Al3+-codoped double-clad fiber laser operating near 930nm,” Appl. Phys. B 98(2-3), 317–322 (2010).
[Crossref]

Rottwitt, K.

O. Lumholt, M. Øbro, A. Bjarklev, T. Rasmussen, B. Pedersen, J. E. Pedersen, J. H. Povlsen, and K. Rottwitt, “Optimum placement of filters in 1300 nm Nd-fibre amplifiers,” Opt. Commun. 89(1), 30–32 (1992).
[Crossref]

Russell, P. S. J.

Sahu, J. K.

N. K. Thipparapu, A. A. Umnikov, P. Barua, and J. K. Sahu, “Bi-doped fiber amplifier with a flat gain of 25 dB operating in the wavelength band 1320-1360 nm,” Opt. Lett. 41(7), 1518–1521 (2016).
[Crossref] [PubMed]

D. B. S. Soh, S. Yoo, J. Nilsson, J. K. Sahu, K. Oh, S. Baek, Y. Jeong, C. Codemard, P. Dupriez, J. Kim, and V. Philippov, “Neodymium-doped cladding pumped aluminosilicate fiber laser tunable in the 0.9-µm wavelength range,” IEEE J. Quantum Electron. 40(9), 1275–1282 (2004).
[Crossref]

Shubin, A. V.

Snitzer, E.

Soh, D. B. S.

D. B. S. Soh, S. Yoo, J. Nilsson, J. K. Sahu, K. Oh, S. Baek, Y. Jeong, C. Codemard, P. Dupriez, J. Kim, and V. Philippov, “Neodymium-doped cladding pumped aluminosilicate fiber laser tunable in the 0.9-µm wavelength range,” IEEE J. Quantum Electron. 40(9), 1275–1282 (2004).
[Crossref]

Sugawa, T.

T. Komukai, Y. Fukasaku, T. Sugawa, and Y. Miyajima, “Highly efficient and tunable Nd3+ doped fluoride fiber laser operating in 1.3µm band,” Electron. Lett. 29(9), 755–757 (1993).
[Crossref]

Y. Miyajima, T. Komukai, and T. Sugawa, “1.31-1.36µm optical amplification in Nd3+-doped fluorozirconate fibre,” Electron. Lett. 26(3), 194–195 (1990).
[Crossref]

Thipparapu, N. K.

Thompson, B. A.

S. Zemon, B. Pedersen, G. Lambert, W. J. Miniscalco, B. T. Hall, R. C. Folweiler, B. A. Thompson, and L. J. Andres, “Excited-state-absorption cross sections and amplifier modeling in the 1300-nm region for Nd-doped glasses,” IEEE Photonics Technol. Lett. 4(3), 244–247 (1992).
[Crossref]

W. J. Miniscalco, L. J. Andrews, B. A. Thompson, R. S. Quimby, L. J. B. Vacha, and M. G. Drexhage, “1.3µm fluoride fibre laser,” Electron. Lett. 24(1), 28–29 (1988).
[Crossref]

Tropper, A. C.

Tumminelli, R.

Umnikov, A. A.

Vacha, L. J. B.

W. J. Miniscalco, L. J. Andrews, B. A. Thompson, R. S. Quimby, L. J. B. Vacha, and M. G. Drexhage, “1.3µm fluoride fibre laser,” Electron. Lett. 24(1), 28–29 (1988).
[Crossref]

Watekar, P. R.

L. Htein, W. Fan, P. R. Watekar, and W. T. Han, “Amplification at 1400-1450 nm of the large-core Nd-doped fiber by white LED pumping,” IEEE Photonics Technol. Lett. 25(11), 1081–1083 (2013).
[Crossref]

Yamashita, T.

E. Ishikawa, H. Aoki, T. Yamashita, and Y. Asahara, “Laser emission and amplification at 1.3µm in neodymium-doped fluorophosphates fibres,” Electron. Lett. 28(16), 1497–1499 (1992).
[Crossref]

Yashkov, M. V.

Yoo, S.

D. B. S. Soh, S. Yoo, J. Nilsson, J. K. Sahu, K. Oh, S. Baek, Y. Jeong, C. Codemard, P. Dupriez, J. Kim, and V. Philippov, “Neodymium-doped cladding pumped aluminosilicate fiber laser tunable in the 0.9-µm wavelength range,” IEEE J. Quantum Electron. 40(9), 1275–1282 (2004).
[Crossref]

Zemon, S.

S. Zemon, B. Pedersen, G. Lambert, W. J. Miniscalco, B. T. Hall, R. C. Folweiler, B. A. Thompson, and L. J. Andres, “Excited-state-absorption cross sections and amplifier modeling in the 1300-nm region for Nd-doped glasses,” IEEE Photonics Technol. Lett. 4(3), 244–247 (1992).
[Crossref]

Zenteno, L.

Appl. Phys. B (1)

C. Bartolacci, M. Laroche, T. Robin, B. Cadier, S. Girard, and H. Gilles, “Effects of ions clustering in Nd3+/Al3+-codoped double-clad fiber laser operating near 930nm,” Appl. Phys. B 98(2-3), 317–322 (2010).
[Crossref]

Electron. Lett. (6)

S. B. Poole, D. N. Payne, and M. E. Fermann, “Fabrication of low-loss optical fibres containing rare-earth ions,” Electron. Lett. 21(17), 737–738 (1985).
[Crossref]

R. J. Mears, L. Reekie, S. B. Poole, and D. N. Payne, “Neodymium-doped silica single-mode fiber lasers,” Electron. Lett. 21(17), 738–739 (1985).
[Crossref]

W. J. Miniscalco, L. J. Andrews, B. A. Thompson, R. S. Quimby, L. J. B. Vacha, and M. G. Drexhage, “1.3µm fluoride fibre laser,” Electron. Lett. 24(1), 28–29 (1988).
[Crossref]

Y. Miyajima, T. Komukai, and T. Sugawa, “1.31-1.36µm optical amplification in Nd3+-doped fluorozirconate fibre,” Electron. Lett. 26(3), 194–195 (1990).
[Crossref]

E. Ishikawa, H. Aoki, T. Yamashita, and Y. Asahara, “Laser emission and amplification at 1.3µm in neodymium-doped fluorophosphates fibres,” Electron. Lett. 28(16), 1497–1499 (1992).
[Crossref]

T. Komukai, Y. Fukasaku, T. Sugawa, and Y. Miyajima, “Highly efficient and tunable Nd3+ doped fluoride fiber laser operating in 1.3µm band,” Electron. Lett. 29(9), 755–757 (1993).
[Crossref]

IEEE J. Quantum Electron. (1)

D. B. S. Soh, S. Yoo, J. Nilsson, J. K. Sahu, K. Oh, S. Baek, Y. Jeong, C. Codemard, P. Dupriez, J. Kim, and V. Philippov, “Neodymium-doped cladding pumped aluminosilicate fiber laser tunable in the 0.9-µm wavelength range,” IEEE J. Quantum Electron. 40(9), 1275–1282 (2004).
[Crossref]

IEEE Photonics Technol. Lett. (2)

S. Zemon, B. Pedersen, G. Lambert, W. J. Miniscalco, B. T. Hall, R. C. Folweiler, B. A. Thompson, and L. J. Andres, “Excited-state-absorption cross sections and amplifier modeling in the 1300-nm region for Nd-doped glasses,” IEEE Photonics Technol. Lett. 4(3), 244–247 (1992).
[Crossref]

L. Htein, W. Fan, P. R. Watekar, and W. T. Han, “Amplification at 1400-1450 nm of the large-core Nd-doped fiber by white LED pumping,” IEEE Photonics Technol. Lett. 25(11), 1081–1083 (2013).
[Crossref]

J. Appl. Phys. (1)

M. Naftaly and A. Jha, “Nd3+-doped fluoroaluminate glasses for a 1.3µm amplifier,” J. Appl. Phys. 87(5), 2098–2104 (2000).
[Crossref]

J. Lightwave Technol. (1)

L. Reekie, R. J. Mears, S. B. Poole, and D. N. Payne, “Tunable single-mode fiber lasers,” J. Lightwave Technol. 4(7), 956–960 (1986).
[Crossref]

Laser Phys. Lett. (1)

S. W. Harun, J. Dimyati, K. K. Jayapalan, and H. Ahmad, “An overview on S-band erbium-doped fiber amplifiers,” Laser Phys. Lett. 4(1), 10–15 (2007).
[Crossref]

Opt. Commun. (2)

O. Lumholt, M. Øbro, A. Bjarklev, T. Rasmussen, B. Pedersen, J. E. Pedersen, J. H. Povlsen, and K. Rottwitt, “Optimum placement of filters in 1300 nm Nd-fibre amplifiers,” Opt. Commun. 89(1), 30–32 (1992).
[Crossref]

P. R. Morkel, M. C. Farries, and S. B. Poole, “Spectral variation of excited state absorption in neodymium doped fibre lasers,” Opt. Commun. 67(5), 349–352 (1988).
[Crossref]

Opt. Express (1)

Opt. Lett. (6)

Opt. Photonics News (1)

B. Clesca, H. Fevrier, and W. Pelouch, “Raman amplification,” Opt. Photonics News 26(9), 32–39 (2015).
[Crossref]

Other (9)

D. N. Payne, D. Hewak, and E. Taylor, “Progress in the development of efficient 1.3µm fibre amplifiers,” in 24th European Conferene on Optical Communication (IEEE, 1998), pp. 9–13.

S. Aozasa, H. Masuda, H. Ono, T. Sakamoto, T. Kanamori, Y. Ohishi, and M. Shimizu, “1480-1510 nm-band Tm doped fiber amplifier (TDFA) with a high power conversion efficiency of 42%,” in Optical Fiber Communication Conference and International Conference on Quantum Information, 2001 OSA Technical Digest Series (Optical Society of America, 2001) paper PD1.
[Crossref]

E. Desurvire, D. Bayart, B. Desthueux, and S. Bigo, Erbium-Doped Fiber Amplifiers, Device and System Developments (Wiley-Interscience, 2002)

P. C. Becker, N. A. Olsson, and J. R. Simpson, Erbium-Doped Fiber Amplifiers: Fundamentals and Technology (Optics and Photonics), 1st ed. (Academic Press, 1999)

M. J. F. Digonnet, Rare-Earth-Doped Fiber Lasers and Amplifiers, Second Edition, Revised and Expanded (Marcel Dekker, Inc., 2001)

T. J. Kane, G. Keaton, M. A. Arbore, D. R. Balsley, J. F. Black, J. L. Brooks, M. Byer, L. A. Eyres, M. Leonardo, J. J. Morehead, C. Rich, D. J. Richard, L. A. Smoliar, and Y. Zhou, “3-Watt blue source based on 914-nm Nd:YVO4 passively-Q-switched laser amplified in cladding-pumped Nd:fiber,” in Advanced Solid-State Photonics (TOPS) (Optical Society of America, 2004), paper 160.

D. J. DiGiovanni and K. Rottwitt, “Optical fiber communication system employing Nd doped fiber amplifier for the 1400 nm window,” United States Patent 6,393,194 (March 26, 2002).

P. H. Pax, G. S. Allen, D. R. Drachenber, V. V. Khitrov, N. Schenkel, M. J. Messerly, J. W. Dawson, M. Dubinskii, and B. Ward, “Scalable waveguide design for three-level operation in Neodymium doped fiber laser,” submitted for publication to Optics Express.

J. W. Dawson, R. Beach, A. Drobshoff, Z. Liao, D. M. Pennington, S. A. Payne, L. Taylor, W. Hackenberg, and D. Bonaccini, “Scalable 11W 938nm Nd3+ doped fiber laser,” in Advanced Solid-State Photonics, OSA Technical Digest (Optical Society of America, 2004), paper MD8.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Simplified energy level diagram for Nd3+ in fused silica. Each energy level is a homogeneously broadened multiplet of states. The absorption and emission wavelengths are denoted as a band rather than only noting the peak in order to reflect the wide wavelength range of emissions represented by each pair of energy levels.
Fig. 2
Fig. 2 End-face of Nd3+ doped fused silica fiber employed in this work
Fig. 3
Fig. 3 Spectral attenuation of core of Nd3+ doped optical fiber (red line) short cutback 1020-1130nm, (blue dotted line) long cutback, (black solid line) theoretical model.
Fig. 4
Fig. 4 Measured absorption of the pump cladding.
Fig. 5
Fig. 5 Block diagram of experimental set-up
Fig. 6
Fig. 6 Core fluorescence as a function of coupled 880nm pump power
Fig. 7
Fig. 7 Increase in fluorescence in the 1300-1500nm wavelength region for an increase in pump power of 34.3x (0.37W to 12.7W coupled pump at 880nm into a 60m long fiber), black line. The core transmission of a 60m long fiber (red line) is plotted on the second y-axis to illustrate the rapidly changing fiber loss in this wavelength region. We assert that an increase of >60 in fluorescence in this fig. is convincing evidence of net gain.
Fig. 8
Fig. 8 Comparison of neodymium fiber fluorescence for 808nm and 880nm pumping at same nominal pump power and same nominal small signal absorption from the cladding (~11.7 dB).
Fig. 9
Fig. 9 Power and gain vs. coupled pump power for 43mW of 1427nm launched signal light.
Fig. 10
Fig. 10 Measured output spectra of 1427nm amplifier at selected power.
Fig. 11
Fig. 11 Amplifier gain as a function of launched signal power.

Metrics