Abstract

Single-polarization direct-detection transceivers may offer advantages compared to digital coherent technology for some metro, back-haul, access and inter-data center applications since they offer low-cost and complexity solutions. However, a direct-detection receiver introduces nonlinearity upon photo detection, since it is a square-law device, which results in signal distortion due to signal-signal beat interference (SSBI). Consequently, it is desirable to develop effective and low-cost SSBI compensation techniques to improve the performance of such transceivers. In this paper, we compare the performance of a number of recently proposed digital signal processing-based SSBI compensation schemes, including the use of single- and two-stage linearization filters, an iterative linearization filter and a SSBI estimation and cancellation technique. Their performance is assessed experimentally using a 7 × 25 Gb/s wavelength division multiplexed (WDM) single-sideband 16-QAM Nyquist-subcarrier modulation system operating at a net information spectral density of 2.3 (b/s)/Hz.

© 2016 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Signal-signal beat interference cancellation in spectrally-efficient WDM direct-detection Nyquist-pulse-shaped 16-QAM subcarrier modulation

Zhe Li, M. Sezer. Erkılınç, Stephan Pachnicke, Helmut Griesser, Rachid Bouziane, Benn C. Thomsen, Polina Bayvel, and Robert I. Killey
Opt. Express 23(18) 23694-23709 (2015)

Direct detection of polarization multiplexed single sideband signals with orthogonal offset carriers

Yixiao Zhu, Mingxuan Jiang, and Fan Zhang
Opt. Express 26(12) 15887-15898 (2018)

Hilbert superposition and modified signal-to-signal beating interference cancellation for single side-band optical NPAM-4 direct-detection system

Mingyue Zhu, Jing Zhang, Xingwen Yi, Yang Song, Bo Xu, Xiang Li, Xinwei Du, and Kun Qiu
Opt. Express 25(11) 12622-12631 (2017)

References

  • View by:
  • |
  • |
  • |

  1. Alcatel-Lucent, “Bell Labs metro network traffic growth: architecture impact study,” Strategic White Paper (2013).
  2. Cisco, “Cisco visual networking index: forecast and methodology, 2014-2019,” White Paper (2015).
  3. D. Che, Q. Hu, and W. Shieh, “Linearization of direct detection optical channels using self-coherent subsystems,” J. Lightwave Technol. 34(2), 516–524 (2016).
    [Crossref]
  4. R. I. Killey, M. S. Erkılınç, Z. Li, S. Pachnicke, H. Griesser, R. Bouziane, B. C. Thomsen, and P. Bayvel, “Spectrally-efficient direct-detection WDM transmission system,” in International Conference on Transparent Optical Networks (ICTON 2015), paper We.B3.2.
  5. B. J. C. Schmidt, A. J. Lowery, and L. B. Du, “Low sample rate transmitter for direct-detection optical OFDM,” in Optical Fiber Communication Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2009), paper OWM4.
    [Crossref]
  6. A. O. Wiberg, B.-E. Olsson, and P. A. Andrekson, “Single cycle subcarrier modulation,” in Optical Fiber Communication Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2009), paper OTuE.1.
  7. J. C. Cartledge and A. S. Karar, “100 Gb/s intensity modulation and direct detection,” J. Lightwave Technol. 32(16), 2809–2814 (2014).
    [Crossref]
  8. M. S. Erkılınç, Z. Li, S. Pachnicke, H. Griesser, B. C. Thomsen, P. Bayvel, and R. I. Killey, “Spectrally-efficient WDM Nyquist-pulse-shaped 16-QAM subcarrier modulation transmission with direct detection,” J. Lightwave Technol. 33(15), 3147–3155 (2015).
    [Crossref]
  9. W. R. Peng, I. Morita, and H. Tanaka, “Enabling high capacity direct-detection optical OFDM transmissions using beat interference cancellation receiver,” in European Conference and Exhibition on Optical Communication (ECOC 2010), paper Tu.4.A.2.
    [Crossref]
  10. S. A. Nezamalhosseini, L. R. Chen, Q. Zhuge, M. Malekiha, F. Marvasti, and D. V. Plant, “Theoretical and experimental investigation of direct detection optical OFDM transmission using beat interference cancellation receiver,” Opt. Express 21(13), 15237–15246 (2013).
    [Crossref] [PubMed]
  11. J. Ma, “Simple signal-to-signal beat interference cancellation receiver based on balanced detection for a single-sideband optical OFDM signal with a reduced guard band,” Opt. Lett. 38(21), 4335–4338 (2013).
    [Crossref] [PubMed]
  12. S. Randel, D. Pilori, S. Chandrasekhar, G. Raybon, and P. Winzer, “100-Gb/s discrete-multitone transmission over 80-km SSMF using single-sideband modulation with novel interference-cancellation scheme,” in European Conference and Exhibition on Optical Communication (ECOC 2015), paper Mo.4.5.2.
    [Crossref]
  13. K. Zou, Y. Zhu, F. Zhang, and Z. Chen, “Spectrally efficient terabit optical transmission with Nyquist 64-QAM half-cycle subcarrier modulation and direct detection,” Opt. Lett. 41(12), 2767–2770 (2016).
    [Crossref] [PubMed]
  14. Z. Li, M. S. Erkilinc, R. Maher, L. Galdino, K. Shi, B. C. Thomsen, P. Bayvel, and R. I. Killey, “Two-stage linearization filter for direct-detection subcarrier modulation,” IEEE Photonics Technol. Lett. 28(24), 2838–2841 (2016).
    [Crossref]
  15. Z. Li, M. S. Erkilinc, R. Maher, L. Galdino, K. Shi, B. C. Thomsen, P. Bayvel, and R. I. Killey, “Reach enhancement for WDM direct-detection subcarrier modulation using low-complexity two-stage signal-signal beat interference cancellation”, in European Conference and Exhibition on Optical Communication (ECOC 2016), paper M 2.B.1.
  16. W. R. Peng, X. Wu, K. M. Feng, V. R. Arbab, B. Shamee, J. Y. Yang, L. C. Christen, A. E. Willner, and S. Chi, “Spectrally efficient direct-detected OFDM transmission employing an iterative estimation and cancellation technique,” Opt. Express 17(11), 9099–9111 (2009).
    [Crossref] [PubMed]
  17. J.-H. Yan, Y.-W. Chen, B.-C. Tsai, and K.-M. Feng, “A multiband DDO-OFDM System with spectral efficient iterative SSBI reduction DSP,” IEEE Photonics Technol. Lett. 28(2), 119–122 (2016).
    [Crossref]
  18. Z. Li, M. S. Erkılınç, S. Pachnicke, H. Griesser, R. Bouziane, B. C. Thomsen, P. Bayvel, and R. I. Killey, “Signal-signal beat interference cancellation in spectrally-efficient WDM direct-detection Nyquist-pulse-shaped 16-QAM subcarrier modulation,” Opt. Express 23(18), 23694–23709 (2015).
    [Crossref] [PubMed]
  19. C. Sánchez, B. Ortega, and J. Capmany, “System performance enhancement with pre-distorted OOFDM signal waveforms in DM/DD systems,” Opt. Express 22(6), 7269–7283 (2014).
    [Crossref] [PubMed]
  20. C. Ju, X. Chen, N. Liu, and L. Wang, “SSII cancellation in 40 Gbps VSB-IMDD OFDM system based on symbol pre-distortion,” in European Conference and Exhibition on Optical Communication (ECOC 2014), paper P.7.9.
  21. Z. Li, M. S. Erkilinc, R. Bouziane, B. C. Thomsen, P. Bayvel, and R. I. Killey, “Simplifed DSP-based signal-signal beat interference mitigation technique for direct detection OFDM,” J. Lightwave Technol. 34(3), 866–872 (2016).
    [Crossref]
  22. H.-Y. Chen, C.-C. Wei, H.-H. Chu, Y.-C. Chen, I.-C. Lu, and J. Chen, “An EAM-based 50 Gbps 60-km OFDM system with 29-dB loss budget enabled by SSII cancellation or volterrra filter,” in European Conference and Exhibition on Optical Communication (ECOC 2014), paper P.3.21.
  23. L. Zhang, T. Zuo, Y. Mao, Q. Zhang, E. Zhou, G. N. Liu, and X. Xu, “Beyond 100-Gb/s transmission over 80-km SMF using direct-detection SSB-DMT at C-band,” J. Lightwave Technol. 34(2), 723–729 (2016).
    [Crossref]
  24. C. Y. Wong, S. Zhang, L. Liu, T. Wang, Q. Zhang, Y. Fang, S. Deng, G. N. Liu, and X. Xu, “56 Gb/s direct detected single-sideband DMT transmission over 320-km SMF using silicon IQ modulator,” “, in Optical Fiber Communication Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2015), paper Th4A.3.
    [Crossref]
  25. R. I. Killey, P. M. Watts, V. Mikhailov, M. Glick, and P. Bayvel, “Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach-Zehnder modulator,” IEEE Photonics Technol. Lett. 17(3), 714–716 (2005).
    [Crossref]
  26. R. A. Shafik, M. S. Rahman, and A. R. Islam, “On the extended relationships among EVM, BER and SNR as performance metrics,” in International Conference on Electrical and Computer Engineering (ICECE 2006), paper 408–411.
    [Crossref]
  27. S. L. Jansen, I. Morita, and H. Ranaka, “Carrier-to-signal power ratio in fiber-optics SSB-OFDM transmission systems,” in Institue of Electronics, Information and Communication Engineers Conference (IEICE 2007), paper B-10–24.

2016 (6)

2015 (2)

2014 (2)

2013 (2)

2009 (1)

2005 (1)

R. I. Killey, P. M. Watts, V. Mikhailov, M. Glick, and P. Bayvel, “Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach-Zehnder modulator,” IEEE Photonics Technol. Lett. 17(3), 714–716 (2005).
[Crossref]

Arbab, V. R.

Bayvel, P.

Bouziane, R.

Capmany, J.

Cartledge, J. C.

Che, D.

Chen, L. R.

Chen, Y.-W.

J.-H. Yan, Y.-W. Chen, B.-C. Tsai, and K.-M. Feng, “A multiband DDO-OFDM System with spectral efficient iterative SSBI reduction DSP,” IEEE Photonics Technol. Lett. 28(2), 119–122 (2016).
[Crossref]

Chen, Z.

Chi, S.

Christen, L. C.

Erkilinc, M. S.

Z. Li, M. S. Erkilinc, R. Maher, L. Galdino, K. Shi, B. C. Thomsen, P. Bayvel, and R. I. Killey, “Two-stage linearization filter for direct-detection subcarrier modulation,” IEEE Photonics Technol. Lett. 28(24), 2838–2841 (2016).
[Crossref]

Z. Li, M. S. Erkilinc, R. Bouziane, B. C. Thomsen, P. Bayvel, and R. I. Killey, “Simplifed DSP-based signal-signal beat interference mitigation technique for direct detection OFDM,” J. Lightwave Technol. 34(3), 866–872 (2016).
[Crossref]

Erkilinç, M. S.

Feng, K. M.

Feng, K.-M.

J.-H. Yan, Y.-W. Chen, B.-C. Tsai, and K.-M. Feng, “A multiband DDO-OFDM System with spectral efficient iterative SSBI reduction DSP,” IEEE Photonics Technol. Lett. 28(2), 119–122 (2016).
[Crossref]

Galdino, L.

Z. Li, M. S. Erkilinc, R. Maher, L. Galdino, K. Shi, B. C. Thomsen, P. Bayvel, and R. I. Killey, “Two-stage linearization filter for direct-detection subcarrier modulation,” IEEE Photonics Technol. Lett. 28(24), 2838–2841 (2016).
[Crossref]

Glick, M.

R. I. Killey, P. M. Watts, V. Mikhailov, M. Glick, and P. Bayvel, “Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach-Zehnder modulator,” IEEE Photonics Technol. Lett. 17(3), 714–716 (2005).
[Crossref]

Griesser, H.

Hu, Q.

Karar, A. S.

Killey, R. I.

Li, Z.

Liu, G. N.

Ma, J.

Maher, R.

Z. Li, M. S. Erkilinc, R. Maher, L. Galdino, K. Shi, B. C. Thomsen, P. Bayvel, and R. I. Killey, “Two-stage linearization filter for direct-detection subcarrier modulation,” IEEE Photonics Technol. Lett. 28(24), 2838–2841 (2016).
[Crossref]

Malekiha, M.

Mao, Y.

Marvasti, F.

Mikhailov, V.

R. I. Killey, P. M. Watts, V. Mikhailov, M. Glick, and P. Bayvel, “Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach-Zehnder modulator,” IEEE Photonics Technol. Lett. 17(3), 714–716 (2005).
[Crossref]

Nezamalhosseini, S. A.

Ortega, B.

Pachnicke, S.

Peng, W. R.

Plant, D. V.

Sánchez, C.

Shamee, B.

Shi, K.

Z. Li, M. S. Erkilinc, R. Maher, L. Galdino, K. Shi, B. C. Thomsen, P. Bayvel, and R. I. Killey, “Two-stage linearization filter for direct-detection subcarrier modulation,” IEEE Photonics Technol. Lett. 28(24), 2838–2841 (2016).
[Crossref]

Shieh, W.

Thomsen, B. C.

Tsai, B.-C.

J.-H. Yan, Y.-W. Chen, B.-C. Tsai, and K.-M. Feng, “A multiband DDO-OFDM System with spectral efficient iterative SSBI reduction DSP,” IEEE Photonics Technol. Lett. 28(2), 119–122 (2016).
[Crossref]

Watts, P. M.

R. I. Killey, P. M. Watts, V. Mikhailov, M. Glick, and P. Bayvel, “Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach-Zehnder modulator,” IEEE Photonics Technol. Lett. 17(3), 714–716 (2005).
[Crossref]

Willner, A. E.

Wu, X.

Xu, X.

Yan, J.-H.

J.-H. Yan, Y.-W. Chen, B.-C. Tsai, and K.-M. Feng, “A multiband DDO-OFDM System with spectral efficient iterative SSBI reduction DSP,” IEEE Photonics Technol. Lett. 28(2), 119–122 (2016).
[Crossref]

Yang, J. Y.

Zhang, F.

Zhang, L.

Zhang, Q.

Zhou, E.

Zhu, Y.

Zhuge, Q.

Zou, K.

Zuo, T.

IEEE Photonics Technol. Lett. (3)

Z. Li, M. S. Erkilinc, R. Maher, L. Galdino, K. Shi, B. C. Thomsen, P. Bayvel, and R. I. Killey, “Two-stage linearization filter for direct-detection subcarrier modulation,” IEEE Photonics Technol. Lett. 28(24), 2838–2841 (2016).
[Crossref]

J.-H. Yan, Y.-W. Chen, B.-C. Tsai, and K.-M. Feng, “A multiband DDO-OFDM System with spectral efficient iterative SSBI reduction DSP,” IEEE Photonics Technol. Lett. 28(2), 119–122 (2016).
[Crossref]

R. I. Killey, P. M. Watts, V. Mikhailov, M. Glick, and P. Bayvel, “Electronic dispersion compensation by signal predistortion using digital processing and a dual-drive Mach-Zehnder modulator,” IEEE Photonics Technol. Lett. 17(3), 714–716 (2005).
[Crossref]

J. Lightwave Technol. (5)

Opt. Express (4)

Opt. Lett. (2)

Other (13)

S. Randel, D. Pilori, S. Chandrasekhar, G. Raybon, and P. Winzer, “100-Gb/s discrete-multitone transmission over 80-km SSMF using single-sideband modulation with novel interference-cancellation scheme,” in European Conference and Exhibition on Optical Communication (ECOC 2015), paper Mo.4.5.2.
[Crossref]

Z. Li, M. S. Erkilinc, R. Maher, L. Galdino, K. Shi, B. C. Thomsen, P. Bayvel, and R. I. Killey, “Reach enhancement for WDM direct-detection subcarrier modulation using low-complexity two-stage signal-signal beat interference cancellation”, in European Conference and Exhibition on Optical Communication (ECOC 2016), paper M 2.B.1.

C. Ju, X. Chen, N. Liu, and L. Wang, “SSII cancellation in 40 Gbps VSB-IMDD OFDM system based on symbol pre-distortion,” in European Conference and Exhibition on Optical Communication (ECOC 2014), paper P.7.9.

W. R. Peng, I. Morita, and H. Tanaka, “Enabling high capacity direct-detection optical OFDM transmissions using beat interference cancellation receiver,” in European Conference and Exhibition on Optical Communication (ECOC 2010), paper Tu.4.A.2.
[Crossref]

Alcatel-Lucent, “Bell Labs metro network traffic growth: architecture impact study,” Strategic White Paper (2013).

Cisco, “Cisco visual networking index: forecast and methodology, 2014-2019,” White Paper (2015).

R. I. Killey, M. S. Erkılınç, Z. Li, S. Pachnicke, H. Griesser, R. Bouziane, B. C. Thomsen, and P. Bayvel, “Spectrally-efficient direct-detection WDM transmission system,” in International Conference on Transparent Optical Networks (ICTON 2015), paper We.B3.2.

B. J. C. Schmidt, A. J. Lowery, and L. B. Du, “Low sample rate transmitter for direct-detection optical OFDM,” in Optical Fiber Communication Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2009), paper OWM4.
[Crossref]

A. O. Wiberg, B.-E. Olsson, and P. A. Andrekson, “Single cycle subcarrier modulation,” in Optical Fiber Communication Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2009), paper OTuE.1.

H.-Y. Chen, C.-C. Wei, H.-H. Chu, Y.-C. Chen, I.-C. Lu, and J. Chen, “An EAM-based 50 Gbps 60-km OFDM system with 29-dB loss budget enabled by SSII cancellation or volterrra filter,” in European Conference and Exhibition on Optical Communication (ECOC 2014), paper P.3.21.

C. Y. Wong, S. Zhang, L. Liu, T. Wang, Q. Zhang, Y. Fang, S. Deng, G. N. Liu, and X. Xu, “56 Gb/s direct detected single-sideband DMT transmission over 320-km SMF using silicon IQ modulator,” “, in Optical Fiber Communication Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2015), paper Th4A.3.
[Crossref]

R. A. Shafik, M. S. Rahman, and A. R. Islam, “On the extended relationships among EVM, BER and SNR as performance metrics,” in International Conference on Electrical and Computer Engineering (ICECE 2006), paper 408–411.
[Crossref]

S. L. Jansen, I. Morita, and H. Ranaka, “Carrier-to-signal power ratio in fiber-optics SSB-OFDM transmission systems,” in Institue of Electronics, Information and Communication Engineers Conference (IEICE 2007), paper B-10–24.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1 Schematic diagram of the direct-detection system architecture. Tx & Rx DSP: Transmitter and receiver DSP, DAC: Digital-to-analog converter, MOD: Modulator, SSMF: Standard single-mode fiber, EDFA: Erbium-doped fiber amplifier, OBPF: Optical band-pass filter, PD: Photodiode, ADC: Analog-to-digital converter.
Fig. 2
Fig. 2 Receiver DSP design with single-stage linearization filter. SF: sideband filter. DEMOD DSP: SSB SCM signal demodulation.
Fig. 3
Fig. 3 Receiver DSP design with iterative linearization filter.
Fig. 4
Fig. 4 Receiver DSP design with two-stage linearization filter.
Fig. 5
Fig. 5 Receiver DSP design with SSBI estimation and cancellation technique. MOD & DEMOD DSP: SSB SCM signal generation and demodulation.
Fig. 6
Fig. 6 Experimental test-bed for WDM DD SSB 16-QAM Nyquist-SCM transmission. Insets: (a) Experimental WDM spectrum, (b) Detected digital spectrum.
Fig. 7
Fig. 7 Experimental BER versus OSNR without and with different digital SSBI post-compensation schemes in back-to-back operation.
Fig. 8
Fig. 8 Experimental BER versus CSPR at different OSNRs (a) without and (b) with two-stage linearization filter in back-to-back operation. The dashed black line indicates the shift of the optimum CSPR value.
Fig. 9
Fig. 9 Experimental optimum CSPR versus OSNR without and with different digital SSBI post-compensation schemes in back-to-back operation.
Fig. 10
Fig. 10 Experimental BER versus optical launch power per channel at 240 km WDM transmission without and with different digital SSBI post-compensation schemes.
Fig. 11
Fig. 11 Experimental BER versus optical launch power per channel at 480 km WDM transmission without and with different digital SSBI post-compensation schemes.
Fig. 12
Fig. 12 Experimental BER versus the receiver iteration numbers for the WDM transmission over transmission distances of (a) 240 km and (b) 480 km.
Fig. 13
Fig. 13 Received constellation diagrams (a) without (EVM = 17.9%) and with (b) single-stage linearization filter (EVM = 15.7%), (c) iterative linearization filter (EVM = 13.2%), (d) two-stage linearization filter (EVM = 13.0%) and (e) SSBI estimation and cancellation (EVM = 12.4%) after WDM transmission over 240 km.
Fig. 14
Fig. 14 Received constellation diagrams (a) without (EVM = 22.1%) and with (b) single-stage linearization filter (EVM = 19.2%), (c) iterative linearization filter (EVM = 17.9%), (d) two-stage linearization filter (EVM = 17.4%) and (e) SSBI estimation and cancellation (EVM = 17.6%) after WDM transmission over 480 km.
Fig. 15
Fig. 15 BER for each received WDM channel without and with different digital SSBI post-compensation schemes over (a) 240 km and (b) 480 km WDM transmissions.

Tables (1)

Tables Icon

Table 1 Parameters of loop components and fiber span

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

V DD ( n )=Κ[ | E carrier + E s ( n ) | 2 ] =2Re[ E carrier E s ( n ) ]+ | E s ( n ) | 2
V SF1 ( n )=α E s ( n )+Λ[ | E s ( n ) | 2 ]
V Lin1 ( n )= V SF1 ( n ) η 1 | V SF1 ( n ) | 2 =α E s ( n )+Λ[ | E s ( n ) | 2 ] α 2 η 1 | E s ( n ) | 2 2α η 1 Re[ E s ( n ) * Λ[ | E s ( n ) | 2 ] ] η 1 | Λ[ | E s ( n ) | 2 ] | 2
V SF2 ( n )=α E s ( n )2α η 1 Λ[ Re[ E s ( n ) * Λ[ | E s ( n ) | 2 ] ] ]
η 1 Λ[ | Λ[ | E s ( n ) | 2 ] | 2 ] V Lin2 ( n )= V SF2 ( n )+ η 2 Re[ V SF2 ( n ) * Λ[ | V SF2 ( n ) | 2 ] ]
V construct ( n )= | E s ' ( n ) | 2
V compensate ( n )= V DD ( n ) V construct ( n ) 2Re[ E carrier E s ( n ) ]

Metrics